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Abstract

In this thesis, we investigate four dimensional supersymmetric in-

dices. The motivation for studying such objects lies in the physics

of Seiberg’s electric-magnetic duality in supersymmetric field theo-

ries. In the first chapter, we first define the index and underline its

cohomological nature, before giving a first computation based on rep-

resentation theory of free superconformal field theories. After listing

all representations of the superconformal algebra based on shorten-

ing conditions, we compute the associated Verma module characters,

from which we can extract the index in the appropriate limit. This

approach only provides us with the free field theory limit for the index

and does not acount for the values of the R-charges away from free

field theories. To circumvent this limitation, we then study a theory

on R×S3 which allows for a computation of the superconformal index

for multiplets with non-canonical R-charges. We expand the fields in

harmonics and canonically quantise the theory to analyse the set of

quantum states, identifying the ones that contribute to the index. To

go beyond free field theory on R × S3, we then use the localisation

principle to compute the index exactly in an interacting theory, re-

gardless of the value of the coupling constant. We then show that

the index is independent of a particular geometric deformation of the

underlying manifold, by squashing the sphere. In the final chapter, we

show how the matching of the index can be used in the large N limit

to identify the R-charges for all fields of the electric-magnetic theo-

ries of the canonical Seiberg duality. We then conclude by outlining

potential further work.
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Chapter 1

Introduction

1.1 Dualities and Strong Coupling

Over the recent years, there has been a renewed interest in the study of higher

dimensional conformal field theories. This is largely due in part to the discovery

of dualities relating conformal field theories together [1, 2, 3, 4, 5] and also with

gravitational theories in higher dimensions [6, 7, 8, 9]. The former is Seiberg’s

electro-magnetic duality, which relates two field theories at a common infrared

conformal fixed points, while the second is the Maldacena’s AdS/CFT correspon-

dence for N = 4 supersymmetric theories in 4 dimensions and more recently has

been extended to ABJM [7] and BLG [8, 9] theories in 3 dimensions. From the

point of view of a physicist, these dualities are of paramount importance because

they provide a potential handle for understanding strongly coupled systems.

Here, we will mainly be concerned with the calculation of indices in 4 dimen-

sional supersymmetric field theories. The index is a generalisation of the Witten

Index [10] to theories invariant under the superconformal group [11]. Indices are

important in the study of dualities because they are computable at all values of

the coupling constant, as they are invariant under continuous deformations of the

theory, and are hence exactly computable at strong coupling, both perturbatively

and non-perturbatively [12]. For this reason, they constitute a powerful tool in

the study of dualities .

1



1. INTRODUCTION

1.2 Seiberg-duality

Seiberg duality [1] is an electro-magnetic duality giving two different and equiva-

lent descriptions of the same physical reality in the infrared [13]. Concretely, the

quarks and gluons in one theory correspond to solitonic objects on the other side

of the duality. Importantly, the duality does not hold at all energy scales [14].

Hence, it can be seen as a weak low-energy realisation of the duality postulated

by Montonen-Olive [15, 16, 17]. This duality is thought to be exactly realised for

the full N = 2, 4 supersymmetric theories [18, 19, 20] in the form of S-duality1.

The canonical example of Seiberg duality relates an SQCD theory [21, 22]

with the following anomaly free global symmetry,

H = SU(Nf )× SU(Nf )× U(1)B × U(1)R (1.1)

and SU(Nc) gauge group within the conformal window,

3

2
Nc ≤ Nf ≤ 3Nc , (1.2)

to a theory with SU(Ñc) gauge group, and the same global symmetry, where,

Ñc = Nf −Nc . (1.3)

The electric SU(Nc) gauge theory has the content,

Field SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q f f 1 1 Ñc/Nf

Q̃ f̄ 1 f̄ −1 Ñc/Nf

λ adj. 1 1 0 1

Figure 1.1: Seiberg Electric Theory

while the SU(Ñc) theory has the following content,

1Although Montonen-Olive duality was postulated with a Z2 transformation of the coupling
constant, N = 2, 4 actually exhibit S-duality which involves an Sl(2,Z) transformation for the
coupling constant complexified to include the theta angle τ = 1

2π θ + 1
g2 4πi.

2



1. INTRODUCTION

Field SU(Ñc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q f f̄ 1 Nc/Ñc Nc/Nf

q̃ f̄ 1 f −Nc/Ñc Nc/Nf

λ̃ adj. 1 1 0 1

M 1 f f̄ 0 2Ñc/Nf

Figure 1.2: Seiberg Magnetic Theory

One of the most non trivial tests of the duality is ’t Hooft anomaly matching

[23]. It was initially proposed as a consistency test for equivalent descriptions

of strongly coupled QCD-like theories. It is based on the idea that one should

be able to describe a theory both in terms of constituents and composite fields.

Assuming an asymptotically free theory, with a global symmetry group H, one

can compute the Adler-Bardeen-Jackiw [24] triangle anomaly for three H currents

in the ultraviolet, with fundamental fermions – quarks – running in the loop. One

can then weakly gauge the theory, with a coupling constant g � 1, and turning

on an H background gauge field. Should the anomaly be non zero, one can add

fermionic spectators coupling through H only to cancel the anomaly. One can

then consider the effective theory below the strong interaction scale, and provided

the symmetry H is not spontaneously broken and we keep the spectator fermions,

the anomaly should still cancel with composite fermions running in the loop. If

the symmetry is spontaneously broken, there are some other non-trivial results,

but they have to do with the appearance of Goldstone bosons [25]1.

However non-trivial, this check is not sufficient in itself to have any degree of

confidence that two theories are in fact dual [28]. Further non-trivial tests of the

proposed duality are required.

• Supersymmetry is a powerful requirement in itself. Anomaly matching oth-

erwise only constrains the fermionic spectrum of the theory [28], as only

1In [26], one should note that although the U(1)R symmetry is part of the anomaly free
global symmetry group, a non-zero anomaly coefficient is matched in the electric and magnetic
theories. There is no inconsistency, as the anomaly is calculated by turning on a non-physical
background R-charge gauge field which allows for a non-zero anomaly result. The same holds for
the Weyl anomaly [27], which only implies a breaking of conformal symmetry when a conformal
theory is coupled with a background gravitational field.

3



1. INTRODUCTION

fermions run through the loop of the triangle anomaly.

• Preservation of any chiral symmetry is another requirement [28]. For Seiberg

dual theories, this requirement is satisfied because both theories are con-

formal. In such a case massless composite fermions at low energy satu-

rate the ’t Hooft anomaly matching condition. However, in the case of

a QCD-like confining theory in the infrared, Goldstone bosons associated

with the breaking of chiral symmetry can essentially contribute to the ’t

Hooft anomaly matching constraint through their Wess-Zumino term. One

could imagine a partial breaking of chiral symmetry, but QCD like theories

do not break there vector-like theories [29], so either SU(Nf )× SU(Nf ) is

unbroken or it goes to the diagonal or it breaks to the diagonal SU(Nf )V .

• Finally, one should be able to consistently decouple any number of flavours

by giving them a mass and integrating them out of the lagrangian. This

should be consistently accounted for on both sides of the duality. This is

the case for Seiberg duality [30, 26].

1.3 Index and Seiberg Duality

As was previously mentioned, the study of dualities is challenging because of the

inevitable strong coupling hurdles, and ’t Hooft anomaly matching has limita-

tions. Hence one needs to define other quantities which, without being completely

information free, do not depend on the full details of the interacting quantum

theory, and are ultimately reliable regardless of the strength of the coupling. In-

dices provide us with such quantities, because of their topological properties, as

they only depend on a set of states protected against perturbative corrections

by shortening conditions for the supersymmetry algebra. Also non-perturbative

corrections can in principle contribute to the index, however, topological con-

siderations in four dimensions prevent them from contributing unlike in three

dimensions, where monopoles contribute absolutely [12].

The superconformal index was initially defined [11] as a generalisation of the

Witten Index [10] to theories invariant under the full superconformal group. The

Witten index is an integer which counts the number of supersymmetric vacua,

4



1. INTRODUCTION

and hence allows one to study supersymmetry breaking. The Witten Index is

defined as Tr (−1)F , with F acting on fermionic states |f〉 and bosonic states |b〉
as,

(−1)F |b〉 = 0 , (−1)F |f〉 = −|f〉 , (1.4)

The superconformal index on the other hand counts states in the cohomology of

a particular supercharge Q in the superconformal algebra.

Cohom(Q) = {|φ〉 |Q|φ〉 = 0, |φ〉 6= Q|ψ〉} (1.5)

The index itself does not depend on the choice of supercharge Q. While most

papers take Q2 = 0, we will take the supercharge to square a twisted hamiltonian,

as in [31]. As there is an infinite set of states in the cohomology of Q, one should

use an appropriately regulated version of the Witten Index. Denoting {Ci} the set

of generators of the symmetry algebra which commute withQ, the superconformal

index is defined as,

I(µi) = Tr(−1)F eµiCi . (1.6)

Note that the set of generators {Ci} are part of the superconformal algebra but

also include the relevant flavour generators of the theory under consideration.

The gauge generators play a role in the computation of the index, however, they

are only important in the projection of the index formula onto gauge singlets.

Importantly, the theory does not in fact have to be invariant under the full su-

perconformal group as was realised in [32, 33], and the superconformal index

should really be called a supersymmetic index. In fact, such quantity had been

proposed long ago [34] for N = 1 field theories on R × S3 although recently re-

discovered. For superconformal theories, both definitions are equivalent, through

radial quantisation. This definition of the index as supersymetric as opposed to

superconformal is important for calculational purposes, as the index can then be

computed for theories with arbitrary R-charges [33], and these are less constrained

than in a superconformal setting. This might also have important theoretical im-

plications, as candidates for dualities outside the conformal window have been

proposed [35].

A crucial realisation by Dolan and Osborn [36] was the fact that the matching

5



1. INTRODUCTION

of the electric and the magnetic index corresponds to a mathematical identity by

Spiridonov [37, 38] generalising the Nasrallah-Rahman theorem. The matching of

indices for more general dualities is a general identity by Rains [39]. Consequently,

despite the specificity of the state dependence of the index, its matching is a highly

non-trivial mathematical property of elliptic hypergeometric integrals. The latter

integrals arise when projecting onto gauge singlet the multiplarticle index, or

Plethystic [40, 41] of the single particle index.

A number of papers followed. In [42, 43] a large number of Seiberg dual pairs

were written down based on elliptic-hypergeometric identities. Duality was also

shown to hold for situations not requiring such identities, for instance for N = 1

superconformal field theories with AdS duals [44]. Finally, one should note that

the usefuless of these identities is not confined to Seiberg dual theories. In the

context of N = 2 superconformal field theories defined by Gaiotto [45] as com-

pactification of six dimensional (0, 2) theories, elliptic hypergeometric identities

appear in the calculation of a four dimensional indices for theories associated to

an n-punctured Riemann surface [46, 47]. The index is also relevant in the study

of AGT type of relations [48, 49] between two dimensional Liouville theory and

four dimensional N = 2 gauge theory on the four sphere [50].

1.4 R-charges and a, Z-maximisation

In all the previous considerations, the R-charges of the fields in the theory play

paramount role, both in the matching of the index, but also in the anomaly

matching procedure. In the case of SU(Nc)/SU(Ñc) duality, the charges are

fixed by physical consistency requirements.

• the superconformal U(1)R has to commute with all non abelian flavour

symmetries.

• it also has to commute with any charge conjugation operator. For instance,

in SQCD, baryons and antibaryons should have the same R-charge, and so

should left-handed and right-handed-quarks.

• Finally, the R-charge should be anomaly free, in the sense explained before.

6



1. INTRODUCTION

In the case of SQCD, this actually determines the R-charge unambiguously and

leads to the R-charge assignment in figure (1.1), (1.2). However, in some case

these physical requirements are insufficient to determine the R-charges unam-

biguously, as in the case of SQCD with an extra adjoint and no superpotential.

In this case, the a-maximisation [51] procedure allows one to determine the ap-

propriate R-charges. This construction was echoed more recently in the discovery

of the Z-maximisation procedure for 3-dimensional quantum field theories [52].

1.5 Motivation & Outline

Despite some impressive results regarding indices and dualities, there are still

some unresolved issues surrounding these objects. A well known feature of the

index is its topological nature. It is invariant under continuous deformations

of the theory which modify the chosen supercharge Q as well as the modified

hamiltonian H,

Q2 = H , (1.7)

but preserve the set of generators {Ci} which enter the definition of the index

(1.6). Then, one might be tempted to see the transition from free field theory

to interacting theory and strong coupling as a continuous modification of the

value of the coupling constant away from zero. Consequently, one might expect

the index formulas for a free superconformal theory to hold in the context of an

interacting theory. However this is not the case, for 2 reasons.

• There is no physical continuous deformation of N = 1 that takes one from

strong coupling to weak coupling while preserving conformality, allowing Q
to be defined as part of the superconformal algebra [36].

• The R-charge dependence for the chiral field is not captured by the previous

calculation. Even if we had a renormalisation path taking us to strong

coupling, it would be unclear how the renormalisation of the R-charge would

modify the picture above, as the numerical values of the free field R-charges

is implicitly entering the index formula at free field, and cannot hence be

extracted. In other words, while an index formula can be relatively easily

justified for free field theories, using representation theory [36], whereby the

7



1. INTRODUCTION

R charges take the value 2
3
, in an interacting theory the R-charges can be

renormalised away from free field values and this justification fails.

In fact, it will become clear later that the R-charge dependence cannot be cap-

tured with this approach because of the drastic restrictions imposed by conformal

invariance. By focusing on theories invariant under the SU(2, 1)L×SU(2)R subal-

gebra of the superconformal algebra which includes Q, {Ci}, one can compute an

index with an arbitrary R-charge dependence. For superconformal theories, one

recovers the appropriate index formula, and the SU(2, 1)L × SU(2)R subalgebra

can then be interpreted as the minimally N = 1 supersymmetric completion of

the isometry group of R× S3, which is the relevant space for radial quantisation

of a four dimensional conformal field theory.

This obervation allows for an exact computation of the index with arbitrary

R-charges, using localisation of the compactified theory on S1 × S3. This proce-

dure leads to exact formulas for expectation values of Q closed operators, and is

not limited to index computation. Such approach is valid even for theories not

amenable to a standard perturbative treatment, where superconformal symmetry

does not extend continuously to the free field theory, on spaces appropriate for

radial quantisation, here R × S3. This is different in flavour to other scenarios

where localisation techniques have been applied to computing indices, for example

[12], where superconformal symmetry holds for all values of the coupling. Such

localisation actions are at least applicable to superconformal field theories, when

the subgroup symmetry composed with translations, extends to superconformal

symmetry on R4. Such SCFTs, of course, include those even at IR fixed points,

not amenable to a perturbative analysis. So, ultimately, we are computing indices

for a larger class of supersymmetric theories on R×S3, for which localisation ap-

plies, and which include IR superconformal fixed points of relevance for Seiberg

duality. Localisation provides an alternative proof of the conjecture by Romels-

berger [32, 33] of the general form of the index in four dimensions, and a rigorous

derivation of its exact-value in interacting theories using localisation arguments.

In the first chapter, we define the superconformal algebra and review all pos-

sible representations, focusing on the relevant shortening conditions. This then

allows us to compute the single particle index for free superconformal theories,

using limits of various characters to obtain the results. In the second chapter, we

8



1. INTRODUCTION

focus on theories living on R× S3 invariant under the SU(2, 1)L × SU(2)R sub-

algebra. After defining the relevant differential operators and Killing spinors, we

define the chiral and vector representations used to construct supersymmetric and

covariant actions on R×S3. We can then repeat the analysis of the first chapter,

after expanding the field in spherical harmonics and canonically quantising the

theory. In the third chapter, we compute the index as a path integral. We review

the localisation framework and the appropriate twisting procedure which allows

a consistent computation of the index after compactifying the time direction to

S1. This then allows for a consistent localisation principle to be formulated in

order to justify the exactness of the index formula,

I(t, x, h) =

∫
dµ(g) Pexp(i(t, x, g, h)) , (1.8)

i(t, x, g, h) =
∑
i

triχRG,i(g)χRH,i(h)− t2−riχR̄G,i(g)χR̄H ,i(h)

(1− tx)(1− tx−1)

+
1− t(x+ x−1)

(1− tx)(1− tx−1)
χAdj.(g) , (1.9)

with i labelling the chiral multiplets with R-charges ri, transforming in gauge

group G representations RG,i, flavour group H representations RH,i, with gauge

group and flavour group elements g ∈ G, h ∈ H. The terms proportional to tri are

due to each chiral field, those proportional to t2−ri are due to conjugate anti-chiral

fields and the adjoint representation contribution is due to vector field multiplet.

Having shown explicitly that the free field theory Lagrangian is Q-exact, we can

reduce the path integral to an exact one loop determinant calculation around

saddle points of the free field action, as in [53]. The existence of zero modes

living on non-trivial instanton backgrounds on S1 × S3 means that there are no

non-perturbative contributions to the index in four dimensions, unlike in three

dimensions [12].

9



Chapter 2

Index and Representation Theory

2.1 The Superconformal Algebra

2.1.1 Constructing the Conformal Algebra

We first review here the construction of the conformal and superconformal algebra

in 4 dimensions, following the discussion in [54]. By definition, the conformal

group in d dimensions is defined as the set of transformations which leave the

metric invariant up to a positive factor,

x → x′ ,

ds2 → ds′2 = Ω(x)ds2 , (2.1)

with the line element defined as,

ds2 = gµνdx
µdxν (2.2)

Consider an infinitesimal coordinate change,

xµ → xµ + εµ . (2.3)

The transformation of the line element reads,

ds2 → ds2 + (∂µεν + ∂νεµ)dxµdxν . (2.4)

10



2. INDEX AND REPRESENTATION THEORY

For equations (2.1) and (2.4) to be compatible, one has to impose,

∂µεν + ∂νεµ =
2

d
(∂ρερ)ηµν (2.5)

Also, one gets the following expression for Ω in (2.1),

Ω(x) = 1 +
2

d
∂ε (2.6)

It follows that,

(ηµν� + (d− 2)∂µ∂ν)∂ε = 0 (2.7)

Consequently, ε corresponds to the following transformations,

1. Translations: εµ = bµ

2. Rotations: εµ = ωµbx
ν

3. Scalings: εµ = λxµ

4. Special conformal transformations: εµ = bµx2 − 2(b · x)xµ

This then leads up to the associated set of Killing vectors, which generate the

associated transformations,

1. Translations: Pµ = − i∂µ

2. Rotations: Mµν = − i(xµ∂ν − xν∂µ)

3. Scalings: H = xµ∂µ

4. Inversions: Kµ = i(2xµx
ν∂ν − x2∂µ)

11



2. INDEX AND REPRESENTATION THEORY

One should note that the special conformal transformations correspond to an

inversion xµ → xµ/x2 plus a translation. These lead to the conformal algebra,

[H,Pµ] = Pµ (2.8)

[H,Kµ] = −Kµ (2.9)

[Kµ, Pν ] = 2(ηµνH − iMµν) (2.10)

[Mµν , Kρ] = i(ηµρPν − ηνρPµ) (2.11)

[Mµν , Pρ] = i(ηµρKν − ηνρKµ) (2.12)

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (2.13)

This then leads [55] to the following action of the algebra generators acting on a

quasi-primary field OI(x),

[Pµ,OI ] = i∂µOI(x) , (2.14)

[H,OI ] = i(x·∂ + ∆)OI(x) , (2.15)

[Kµ,OI ] = i(x2∂µ − 2xµ x·∂ + 2∆xµ)OI(x) + 2OJ(x)(sµν)I
Jxν , (2.16)

[Mµν ,OI ] = LµνOI(x) + (sµν)I
JOJ(x) , (2.17)

with ∆ the scaling dimension of O and sµν the appropriate spin matrices. The

differential rotation genrators Lµν are given by the following,

Lµν = i(xµ∂ν − xν∂µ) . (2.18)

These, as well as the spin matrices satisfy the following commutation relations,

[Lµν ,Lρσ] = i(ηµσLνρ + ηνρLµσ − ηµρLνσ − ηνσLµρ) , (2.19)

[sµν , sρσ] = i(ηµσsνρ + ηνρsµσ − ηµρsνσ − ηνσsµρ) , (2.20)

2.1.2 Radial Quantisation

Conformal field theories can be studied in the framework of radial quantisation.

Within this framework, the euclidean path integral with operator insertions can

be regarded as wave functions, over the unit ball surrounding the origin. Dual

12



2. INDEX AND REPRESENTATION THEORY

wave functions can be obtained through the action of inversions. Under an inver-

sion, the rotations are taken to rotations, the dilation operator is taken to minus

itself, the translation generators are taken to the special conformal transformation

generators. This leads to the following hermiticity conditions,

M+
µν = Mµν , Pµ = K+

µ . (2.21)

Overall, radial quantisation is equivalent to the study of the field theory on R×S3.

The time translation generator corresponds to the dilation operator while the

generators Mµν correspond to the isometry generators of the spatial S3. In this

context, the generators Pµ and Kµ act as ladder operators which take quantum

states to different energy levels.

2.1.3 The Superconformal Algebra

When extending this symmetry group to include N = 1 supersymmetry, one has

to introduce one set of special supersymmetry generators Sα, S̄α̇ in addition to

the familiar supersymmetry generators Qα, Q̄α̇ of N = 1 supersymmetry. One

then obtains the SU(2, 2|1) superconformal algebra and following [36] notations,

the bosonic commutation relations are given by,[
M B
A ,M D

C

]
= δBCM D

A − δ DA M B
C , (2.22)

while the supercharge commutation relations are given by,

{QA, Q̄B} = 4M B
A + 3 δA

B R , (2.23)

{QA,QB} = {Q̄A, Q̄B} = 0 , (2.24)

the mixed commutation relations are given by,

[
MA

B,QC
]

= δC
BQA − 1

4
δA
BQC , (2.25)[

MA
B, Q̄C

]
= −δAC Q̄B + 1

4
δA
B Q̄C , (2.26)

13



2. INDEX AND REPRESENTATION THEORY

and finally, the external R-charge,

[R,QA] = −QA ,
[
R, Q̄B

]
= Q̄B , (2.27)

with the following definitions, for the bosonic operators,

MA
B =

(
M β

α + 1
2
δα

βH 1
2
Pαβ̇

1
2
K α̇β M̄ α̇

β̇
− 1

2
δα̇β̇H

)
, δA

B =

(
δα

β 0

0 δα̇β̇

)
,

(2.28)

and the supercharges,

QA =

(
Qα

S̄α̇

)
, Q̄B =

(
Sβ, Q̄β̇

)
, (2.29)

The rotation generators will be denoted by,

M β
α = −Jm(σm) β

α , M̄ α̇
β̇

= −J̄m(σm)α̇
β̇

(2.30)

where Jm, J̄m denote the SU(2)L and SU(2)R generators of the SU(2, 2|1) gen-

erators (2.26). These satisfy the standard SU(2) commutation relations,

[Jm, Jn] = i εmnp Jp , [J̄m, J̄n] = i εmnp J̄p . [Jm, J̄n] = 0 , (2.31)

with m,n, p = 1, 2, 3 the spatial indices, and εmnp the completely antisymmetric

Levi-Civita symbol such that ε123 = 1. The hermiticity properties of the genera-

tors can be chosen in two different ways. When studying a theory on flat space,

one will take the following hermiticity conditions,

Q†α = Q̄α̇ , Sα† = S̄α̇ , (2.32)

while the hermiticity properties which will be chosen in a radially quantised set-

ting will be given by,

Q+
α = Sα , Q̄+

α̇ = − S̄α̇ (2.33)
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2. INDEX AND REPRESENTATION THEORY

2.2 SU(2, 1)r Algebra and the Index

Just like for the Witten index, the superconformal index definition rests upon the

choice of a particular supercharge Q and the associated hamiltonian H defined

as 1,

Q2 = H , (2.34)

with this definition, the fermionic supercharge satisfies the following reality con-

dition,

Q = Q+ , (−1)FQ = −Q(−1)F . (2.35)

The difference between the Witten index and the superconformal index is due to

the different definitions for the hermitian conjugation and hence for the hamilto-

nian. For the Witten index, the appropriate hermitian conjugation operation is

the usual dagger operation which takes Qα to Q̄α̇ and leads to the square of the

chosen charge Q to be the actual hamitonian P0 of the theory. For the super-

conformal index on the other hand, the hermitean conjugation + takes Qα to Sα.

and leads to the definition of a twisted hamiltonian. Here, we take the following

convention,

Q =
1√
2

(Q1 + S1) , (2.36)

which, following equation 1.7, leads to the expression for the modified hamiltonian

H,

H = H + 3
2
R− 2J3 . (2.37)

The latter definition is the one prescribed by radial quantisation of superconfor-

mal field theory [26], and is associated with a scalar product determined by two

point correlation functions [56]. The Witten index [10] can be defined in a regu-

larised manner as Tr(−1)F e−βH. For the superconformal index, there are more

states contributing and we need to identify the elements {Ci} of the supercon-

formal algebra which commute with the supercharge Q and can be used to fully

regularise the definition of the index.

The bosonic subalgebra of the SU(2, 2|1) superconformal algebra that com-

1An alternative definition often found in the literature is {Q,Q+} = 2H. The two defini-
tions are equivalent and are related by the following transformation Q → Q + Q+. With the
alternative definition, Q2 = 0.
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2. INDEX AND REPRESENTATION THEORY

mutes with the charge Q is an SU(2, 1)r algebra:

[
M B

A ,M D
C

]
= δC

BM D
A − δADM B

C (2.38)

and one can use its Cartans {Ci} to weigh the counting. Given our chosen

supercharge (2.36), the appropriate SU(2, 1)r algebra is given by,

MA
B =

(
M̄ α̇

β̇
− 1

2
δα̇
β̇
R −P α̇

P̄β̇ R

)
, δA

B =

(
δα̇β̇ 0

0 1

)
, (2.39)

with:

P̄β̇ = 1
2
P2β̇ , P α̇ = − 1

2
K̄ α̇2 . (2.40)

The Cartans of the algebra are,

{Ci} = {R, J̄3} , (2.41)

with the following definition,

R = 2
3
(H + J3) , (2.42)

and the index then reads:

I(t, x) = Tr (−1)F tRx2J̄3 . (2.43)

The index only depends on the cohomology of Q, the set of states Q-closed

without being Q-exact. To justify this, assume a state such that, Q|ϕ〉 6= 0.

Then, as Q commutes with the generators Ci, the states |ϕ〉 and Q|ϕ〉 have the

same Ci eigenvalues, but opposite spin statistics. Hence the (−1)F factor implies

the cancellation of both contributions. Hence the index only depends on the Q-

cohomology, which is the kernel of H [57]. Assuming a state χ annihilated by Q,

then by definition of H, then χ is in KerH. Conversely, if Hχ = 0 then,

〈χ|H|χ〉 = 0 = 〈χ|Q+Q|χ〉 = ‖Qχ‖2 = 0 , (2.44)

where we’ve used the reality condition (2.35) on the charge Q. If χ is Q-exact,
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2. INDEX AND REPRESENTATION THEORY

specifically χ = Qξ then ξ is a zero eigenstate of H. This in turn means that

χ = 0 by equation (2.44). Consequently, χ is part of the Q-cohomology. Hence,

the index only receives contributions from states in KerH.

One can then refine the definition of the index (2.43) to highlight this exclusive

Ker H dependence. Rewrite R in the following fashion,

R = −R + 2J3 + 2
3
H (2.45)

and more generally

Rc = −R + 2J3 − cH (2.46)

Consequently, the index (2.43) does not to depend on the parameter c which

appears in the definition of Rc equation (2.46). Hence, denoting tc = y, one can

write:

I(t, x) = Tr (−1)FyHt−R+2J3x2J̄3 . (2.47)

The result should be independent of y for consistency. There are other equivalent

convention choices, but the result for the index is independent of such choice.

The table below summarises the alternative possible choices. Finally, for theories

SU(2, 1)r: M B
A Q 2P 2P̄ 3

2
R, J H(

M β
α + 1

2
δβαR Pα

−P̄β −R

)
Q̄1 − S̄1 Pα2̇ −K̄ 2̇β H − J̄3, J3 H + 2J̄3 − 3

2
R

Q̄2 − S̄2 Pα1 −K̄1β H + J̄3, J3 H − 2J̄3 − 3
2
R(

M̄ α̇
β̇
− 1

2
δα̇
β̇
R −P α̇

P̄β̇ R

)
Q1 + S1 −K̄ α̇2 P2β̇ H + J3, J̄3 H − 2J3 + 3

2
R

Q2 + S2 −K̄ α̇1 P1β̇ H − J3, J̄3 H + 2J3 + 3
2
R

Figure 2.1: All SU(2, 1)r Subalgebras of the Superconformal Algebra

invariant under a global symmetry group H such as flavour symmetry and/or

gauge group G, the definition of the index then includes extra factors,

I(t, x, h) =

∫
G

dµ(g)I(t, x, g, h) . (2.48)

I(t, x, g, h) = Tr (−1)FyHt−R+2J3x2J̄3 g h . (2.49)
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with g, h elements of the gauge group G and global symmetry group H. Note that

g, h are finite elements of the groups, as opposed to generators of the respective

Lie algebras. Also, the gauge and flavour groups have different roles. The flavour

symmetry element is a part of the definition of the index as these are global sym-

metries which commute with supercharges, whereas the gauge group integration

measure appears as one has to project the final answer on gauge singlet.

One should note that a generalised version of the index has been proposed in

[58]. In this approach, the flavour symmetry is gauged. This approach can useful

to generalise a duality which includes a global symmetry whose mapping through

the duality is known. One can then generate new dualities by gauging this global

symmetry. In that case, the integral (2.48) is generalised to include the measure

over the group H.

2.3 First Computation: Free Flat Space Theory

The first step in computing the index is the single particle index, defined as,

i(t, x, g, h) = Tr s.p. (−1)FyHt−R+2J3x2J̄3gh . (2.50)

with Tr s.p. the trace restricted to single particle states. One can then compute

the contributions from all multiparticle states, which is given by the Plethystic

exponential,

Pexp [i(t, x, g, h)] = exp

(
∞∑
n=1

1

n
i(tn, xn, gn, hn)

)
. (2.51)

One then needs to project this quantity onto gauge singlet to get the index,

I(t, x, h) =

∫
G

dµ(g) Pexp i(t, x, g, h) , (2.52)

with dµ(g) the invariant measure for the gauge group G.

18



2. INDEX AND REPRESENTATION THEORY

2.3.1 Superconformal Algebra Short Representations

Given a superconformal primary field O, through the state-operator correspon-

dence [59], one can define the associated state by acting on the vacuum with the

operator at the origin,

O(0)|0〉 = |O〉 (2.53)

Assuming O to be a superconformal primary operator, then O is annihilated by

S, S̄, K generators of the superconformal algebra, and defines a the lowest state

of a multiplet. Also define,

H|O〉 = ∆|O〉 , R|O〉 = r|O〉 . (2.54)

One can then define the operator O to be a chiral field,

O = φ , Q̄α̇|φ〉 = 0 , (2.55)

From the trace part of the {Q̄, S̄}|φ〉 = 0 commutation, one gets the usual relation

between scaling dimension ∆ and the R-charge r,

∆ = 3
2
r , (2.56)

Also, from the traceless part of the same anticommutation relation {Q̄, S̄}, it is

clear that φ falls into a (j, 0) representation of SU(2)l × SU(2)r. Similarly an

antichiral field lies in (0, j) representation of SU(2)l × SU(2)r, and,

Qαφ̄ = 0 , ∆ = − 3
2
r . (2.57)

2.3.2 The Chiral Multiplet

Let us first focus on the chiral multiplet, which corresponds to the the j = 0

representation of SU(2)r case from the above discussion. The transformations

are given by,

[Qα, φ] = ψα , {Qα, ψβ} = εαβF , [Qα, F ] = 0 . (2.58)
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with ε12 = − 1. For consistency with the superconformal algebra,

{Sβ, ψα} = 6r δβαφ , [Sα, F ] = − 2(3r − 2)ψα , (2.59)

{Q̄α̇, ψα} = 2i ∂αα̇φ ,
[
Q̄α̇, F

]
= − 2i ∂αα̇ψ

α . (2.60)

The corresponding antichiral multiplet has the following transformations,

[
Q̄α̇, φ̄

]
= ψ̄α̇ , {Q̄α̇, ψ̄β̇} = εα̇β̇F̄ ,

[
Q̄α̇, F̄

]
= 0 , (2.61)

and,

{S̄β̇, ψ̄α̇} = 6r δβ̇α̇φ̄ ,
[
S̄α̇, F̄

]
= − 2(3r − 2) ψ̄α̇ , (2.62)

{Qα, ψ̄α̇} = − 2i ∂αα̇φ̄ ,
[
Qα, F̄

]
= 2i ∂αα̇ψ̄

α̇ . (2.63)

Assuming a free field theory,

F = 0 , ⇒ ∂αα̇ψ
α = 0 , ∂2φ = 0 , (2.64)

and most importantly,

r = 2
3
. (2.65)

and similarly for an antichiral field,

F̄ = 0 , ⇒ r = − 2
3

(2.66)

All the information given so far is valid for the lowest lying state in the

multiplet. The rest of the multiplet is generated through the repeated use of P

translation generators on the lowest lying state we’ve just described. The states

which contribute to the index are those obtained through the action of the P

generators part of the SU(2, 1)r algebra described in equations (2.39) and (2.40).

Hence the bosonic states contributing to the index for the scalar chiral field are

given by,

Pm
21P

n
22|φ̄〉 , ∀m,n = 0, 1, 2 . . . (2.67)

The fermionic states contributing to the index are descendents of ψ2. In a free
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theory F vanishes, hence ψ2 is annihilated by Q1. Consequently, the fermionic

states contributing to the index are given by,

Pm
21P

n
22|ψ2〉 , ∀m,n = 0, 1, 2 . . . (2.68)

The single particle index for the chiral/antichiral multiplet is then given by the

following,

iφ(t, x) =
∞∑
m=0

∞∑
n=0

(tx)m(tx−1)n(t
2
3 − t

4
3 ) =

t
2
3 − t 4

3

(1− tx)(1− tx−1)
(2.69)

The infinite sums above arise from the contributions of all the descendent states,

while the numerator terms in the final expression arise from the antichiral and

chiral contribution respectively.

2.3.3 The Vector Multiplet Index

As was noted previously, the traceless part of the {Q̄, S̄} anticommutation rela-

tions implies that a chiral field falls into a (j, 0) representation of SU(2)l×SU(2)r.

If j = 1
2
, we are considering the usual supersymmetric vector multiplet. The su-

persymmetry transformations are then given by the following,

{Qα, λβ} = fαβ + εαβ iD , [Qα, fβγ] = εαβ µγ + εαγ µβ , (2.70)

[Qα, D] = i µα , {Qα, µβ} = 0 , (2.71)

[Sγ, fαβ] = 2(3r + 1) δγαλβ ,
[
Sβ, D

]
= 3(r − 1)i λβ , (2.72)

{Sβ, µα} = − 3(r − 1) εβγfαγ − (3r + 1)i δβαD , (2.73)

with fαβ = fβα, and

[
Q̄α̇, fαβ

]
= 2i ∂αα̇λβ ,

[
Q̄α̇, D

]
= − ∂αα̇λα , (2.74)

{Q̄α̇, µα} = i εβγ∂γα̇fαβ + ∂αα̇D . (2.75)
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The minimal spinor in four dimensions is Majorana, or two Weyl spinors λ and

λ̄ with the reality condition

λ̄α̇ = λ+
α (2.76)

which in turn leads to the following reality condition on D,

D = D+ = D̄ . (2.77)

The [Q,D] commutation relation then leads to,

µα = − i ∂αα̇λ̄α̇ , (2.78)

Consistency with {Q̄, µ} and {S, µ} then imposes the abelian Bianchi identity,

εβγ∂γα̇fαβ + ε̄γ̇β̇∂αγ̇ f̄α̇β̇ = 0 , r = 1 . (2.79)

where the usual field strength can be retrieved in the following fashion,

Fαα̇,ββ̇ = εαβ f̄α̇β̇ + ε̄α̇β̇ fαβ (2.80)

and the the value of the R-charge r = 1 for the gaugino λ is imposed by con-

sistency of the supersymmetry algebra. This in turn implies a zero value for the

R-charge of the field strength fαβ, f̄α̇β̇ and D, and hence no anomalous dimen-

sions are possible.

The fermionic states contributing to the index are then given by,

Pm
21P

n
22|λ̄α〉 , ∀m,n = 0, 1, 2 . . . (2.81)

but given the constraints,

∂22λ̄1 = ∂21λ̄2 (2.82)

the set of non-redundant fermionic states contributing to the index are given by,

{Pm
21P

n
22|λ̄1〉 , P n

22|λ̄2〉} , (2.83)
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while the contributing bosonic states are,

Pm
21P

n
22|f22〉 . (2.84)

Consequently, the index for the vector multiplet is given by,

iλ(t, x) = − tx

(1− tx)(1− tx−1)
− tx−1

1− tx−1
+

t2

(1− tx)(1− tx−1)
(2.85)

or equivalently,

iλ(t, x) =
2t2 − tχ2(x)

(1− tx)(1− tx−1)
, χ2(x) = x+ x−1 (2.86)

For non trivial gauge G and flavour symmetry F , denote g, h respective elements

of G, H. Denoting the corresponding representations as Rg, Rf , the definition of

the single particle index expression is modified in the following fashion,

iλ(t, x, g) =
2t2 − tχ2(x)

(1− tx)(1− tx−1)
χadj.(g) , (2.87)

iφ(t, x, g, h) =
t

2
3χRg(g)χRf (h)− t 4

3χRg(g)χR̄f (h)

(1− tx)(1− tx−1)
, (2.88)

with gauge and flavour symmetry group characters defined as the trace of the

group element U in the representation Rg,

χRg(U) = TrRgU . (2.89)

2.4 Indices and Characters

In this section we emphasize the close relationship between indices and confor-

mal and superconformal characters. This allows one to understand the state

dependence of the index. We first list the various possible representations of the

superconformal algebra and the various possible shortening conditions. We dif-

ferentiate between long, semi short and short representations of the algebra, the

latter being otherwise know as chiral representations.
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2.4.1 Primary States and Verma Modules

In this section we list all possible representations of the superconformal algebra.

We will denote the representations as V f,f̄
∆,r,j,̄. The subscripts denote the quantum

numbers of the primary state which acts as a seed of the representation,

(H,R, J3, J̄3)|∆, r, j, ̄〉h.w. = (∆, R, J3, J̄3)|∆, r, j, ̄〉h.w. , (2.90)

and the primary state is both a lowest lying state with respect to the set of H-

eigenvalues of the states in the representation as well as a highest weight state

wrt the SU(2)l × SU(2)r part of the algebra,

(K α̇α, Sα, S̄α̇, J+, J̄+)|∆, r, j, ̄〉h.w. = 0 . (2.91)

The Verma module Vf,f̄∆,r,j,̄ associated with each primary state can be obtained

by acting with the positive dimension generators of the superconformal algebra

as well as the J−, J̄− generators,

Vf,f̄∆,r,j,̄ = {PNαα̇
αα̇ QNα

α Q̄N̄α̇
α̇ JN− J̄

N̄
− |∆, r, j, ̄〉h.w. |N, N̄,Nαα̇ ∈ N, Nα, Nα̇ = 0, 1 }

(2.92)

while the actual representation is obtained by the usual unitarity constraints on

SU(2) and hence restrict N , N̄ to 0. . . 2j and 0. . . 2̄ respectively. Finally the f ,

f̄ superscripts in the definition of the representation subscrips denote the fraction

of the Q and Q̄ respectively annihilate the primary states.

When those BPS conditions are imposed, the Verma modules are truncated.

Consider the left-moving Q supercharges. They fall into a 1
2

representation of

SU(2)l, with Q2 the highest weight state. Hence, when acting on an SU(2)l

highest weight state |hwL〉, then Q2|hwL〉 also is an SU(2)l highest weight state.

However this is not the case for Q1. A most convenient way of visualising a rep-

resentation V or a Verma module V will be to list the highest weight states of

SU(2)l×SU(2)r obtained by acting with Q on the primary state. Given the prop-

erties of Qα, those states generated by Q2 and a modified version of Q1 denoted
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Q̃1 such that,

[J+, Q̃1]|∆, r, j, ̄〉h.w. = 0 , (2.93)

and the simplest choice for such a supercharge is given by,

Q̃1 = Q1 +
1

2j
Q2J− , j 6= 0 , (2.94)

˜̄Q2 = Q̄2 −
1

2̄
Q̄1J̄− , ̄ 6= 0 . (2.95)

where we have also given the result of the similar analysis for SU(2)r
1. in the

other sections. Hence we are now equipped with a set of supercharges such that,

[J+, Q̃α] = [J̄+,
˜̄Qα̇] = 0 , (2.96)

when acting on a primary state, and

[J3, Q̃1] = −1
2
Q̃1 , [J̄3,

˜̄Q2] = −1
2

˜̄Q2 , (2.97)

We have extended the definition to Q̃2 = Q2 as well as ˜̄Q1. One can then define

the following semi-short representations,

f = 1
2
, Q̃1|∆, r, j, ̄〉h.w. = 0 , ∆ = ∆r,j , when j 6= 0 , (2.98)

f̄ = 1
2
, ˜̄Q2|∆, r, j, ̄〉h.w. = 0 , ∆ = ∆−r,̄ , when ̄ 6= 0 , (2.99)

When j or ̄ = 0, the natural shortening condition is given by,

f = 1
2
, Q2|∆, r, 0, ̄〉h.w. = 0 , ∆ = ∆r,0 , (2.100)

f̄ = 1
2
, Q̄2|∆, r, j, 0〉h.w. = 0 , ∆ = ∆−r,0 . (2.101)

The shortening conditions impose the above values for the scaling dimensions of

the primary state, and implicitly the rest of the multiplet, with,

∆r,j = −3
2
r + 2 + 2j . (2.102)

1In this character based approach, the supercharges above will play a role similar to the
supercharge Q defined in equation (2.36). One can regard this as a convenient change of basis.
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This expression can be derived from the shortening condition and imposing the

zero-norm condition on Q̃1|h.w.〉 and the corresponding state for f̄ = 1/2 while

making use of the following relation,

1
2
{Q̃1, Q̃

+
1 }= H + 3

2
R− 2J3 − 2 , (2.103)

1
2
{ ˜̄Q2,

˜̄Q+
2 }= H − 3

2
R− 2J̄3 − 2 , (2.104)

One could wonder why the shortening conditions (2.98), (2.99) do not involve

Q̃2 = Q2. The reason is, assuming a representation whereby,

Q2|h.w.〉 = 0 ⇒ ∆ + 3
2
r + 2j = 0 , (2.105)

where we have used the fact that,

{Q2, Q
+
2 } = 2(H + 3

2
R + 2J3) = 2H2 . (2.106)

One then notices that,

{H2, Q̃1} = −2 Q̃1 , (2.107)

hence the state Q̃1|h.w.〉 such that its H2 eigenvalue is negative, eventhough H2

is positive semi-definite given its definition (2.106). For physical application,

we only consider unitary representations, hence the definition of the semi short

representation (2.98), (2.99).

Short representations, or chiral multiplets are defined as,

f = 1 , Qα|∆, r, 0, ̄〉h.w. = 0 , ∆ = −3
2
r , (2.108)

f̄ = 1 , Q̄α̇|∆, r, j, 0〉h.w. = 0 , ∆ = 3
2
r , (2.109)

with the scaling dimension obtained from the traceless of the zero norm condition

corresponding to the shortening condition, while the j = 0, ̄ = 0 conditions come

from its traceless part.
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2.4.2 Short, Semi-Short, and Long Representations

We can now give a diagrammatic representation of the long multiplet in a similar

fashion as in [55].

∆ (r)(j,̄)

↙ ↘
∆ + 1

2
(r−1)(j± 1

2
,̄) (r+1)(j,̄± 1

2
)

↙ ↘ ↙ ↘
∆ + 1 (r−2)(j,̄) (r)(j± 1

2
,̄± 1

2
) (r+2)(j,̄)

↘ ↙ ↘ ↙
∆ + 3

2
(r−1)(j,̄± 1

2
) (r+1)(j± 1

2
,̄)

↘ ↙
∆ + 2 (r)(j,̄)

Figure 2.2: Long Representation V 0,0
∆,r,j,̄

In figure (2.2), we have represented the states obtained by acting on the

primary state with the various Q̃ and ˜̄Q supercharges, and are SU(2)l × SU(2)r

highest weight states. One can hence generate the entire SU(2) representations

by acting with lowering operators on these states. The translation generators P

also act as ladder operators in the sense that they increase or decrease the values

of (j, ̄). One can then use a Clebsh-Gordan decomposition, and

P21|∆, r, j, ̄〉h.w. = C|∆, r, j + 1
2
, ̄+ 1

2
〉+ . . . , (2.110)

P12|∆, r, j, ̄〉h.w. = C|∆, r, j − 1
2
, ̄− 1

2
〉+ . . . , (2.111)

P11|∆, r, j, ̄〉h.w. = C|∆, r, j − 1
2
, ̄+ 1

2
〉+ . . . , (2.112)

P22|∆, r, j, ̄〉h.w. = C|∆, r, j + 1
2
, ̄− 1

2
〉+ . . . , (2.113)

where the constant C is the appropriate Clebsch-Gordan coefficient and the state

written is a highest weight state for SU(2)r × SU(2)l but is not a highest-weight

state in the sense that it is not primary. The dots denote extra-states coming

from the Clebsch-Gordan decomposition which are not highest-weight states in

any sense of the word. Hence the P generators allow to generate SU(2) repre-

sentations with all possible values of (j, ̄) half-integers from zero to infinity.
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One can then give the corresponding diagram for semi short representations

as shown in figure (2.3). while the other semi-short representation’s diagram is

∆ = ∆r̄ (r)(j,̄)

↙ ↘
∆r̄ + 1

2
(r − 1)(j± 1

2
,̄) (r + 1)(j,̄+ 1

2
)

↙ ↘ ↙
∆r̄ + 1 (r − 2)(j,̄) (r)(j± 1

2
,̄+ 1

2
)

↘ ↙
∆r̄ + 3

2
(r − 1)(j,̄+ 1

2
)

Figure 2.3: Semi-Short Representation V
0, 1

2
∆r̄,r,j,̄

shown in figure (2.4).

∆rj (−r)(j,̄)

↙ ↘
∆rj + 1

2
(−r − 1)(j+ 1

2
,̄) (−r + 1)(j,̄± 1

2
)

↘ ↙ ↘
∆rj + 1 (−r)(j+ 1

2
,̄± 1

2
) (−r + 2)(j,̄)

↘ ↙
∆rj + 3

2
(−r + 1)(j+ 1

2
,̄)

Figure 2.4: Semi-Short Representation V
1
2
,0

∆rj ,−r,j,̄

The f = 0, f̄ = 1 and f = 1, f̄ = 0 representations are given in figure (2.5).

∆ = 3
2
r (r)(j,0)

↙
3
2
r + 1

2
(r − 1)(j± 1

2
,0)

↙
3
2
r + 1 (r − 2)(j,0)

∆ = 3
2
r (−r)(0,̄)

↘
3
2
r + 1

2
(−r+1)(0,̄± 1

2
)

↘
3
2
r+1 (−r + 2)(0,̄)

Figure 2.5: Short Representations V 0,1
3
2
r,r,j,0

left, and V 1,0
3
2
r,−r,0,̄ right

Let us now consider representations which satisfy shortening conditions for

both supercharge sectors. In that case, one needs to be careful to not overcount

or undercount states due to the {Q, Q̄} = P commutation relation.
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∆ = δj̄ (rj̄)(j,̄)

↙ ↘
δj̄ + 1

2
(rj̄−1)(j+ 1

2
,̄) (rj̄+1)(j,̄+ 1

2
)

↘ ↙
δj̄ + 1 (rj̄)(j+ 1

2
,̄+ 1

2
) 	 (rj̄)(j− 1

2
,̄− 1

2
)

↙ ↘
δj̄ + 3

2
	(rj̄−1)(j,̄− 1

2
) 	(rj̄+1)(j− 1

2
,̄)

↘ ↙
δj̄ + 2 	(rj̄)(j,̄)

Figure 2.6: Semi-Short Representation V
1
2
, 1
2

δj̄,rj̄,j,̄

The values of the scaling dimension of the primary state as well as the R-

charge are obtained by imposing ∆ = ∆r,j = ∆−r,̄ as defined in equation (2.102)

and solving for (∆, r),

δj̄ = 2 + j + ̄ , rj̄ = 2
3
(j − ̄) (2.114)

Also, one has to impose the following conservation condition,

{Q̃1,
˜̄Q2}|∆, r, j, ̄〉h.w. = 0 (2.115)

with,

{Q̃1,
˜̄Q2} = 2P12 −

1

2j̄
J−P21J̄− +

1

j
J−P22 −

1

̄
P11J̄− (2.116)

Consequently, one has to subtract the set of states descending from (δj̄, rj̄)(j− 1
2
,̄− 1

2
)

as well as its Q2 and Q̄1 descendents as indicated in figure (2.6).

Finally the f = 1
2
f̄ = 1 and f = 1 f̄ = 1

2
are given in figure (2.7). In the

chiral case, the scaling dimension of the primary field is obtained by imposing

both constraints (2.102) and (2.99) and solving for (∆, r),

∆j = j + 1 , rj = 2
3
(j + 1) . (2.117)

In order to account for the conservation conditions,

{Q̃1, Q̄α̇}|∆, rj, j, 0〉h.w. = 0, { ˜̄Q2, Qα}|∆, rj, 0, ̄〉h.w. = 0, (2.118)
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one has to subtract the (rj)(j− 1
2
, 1
2

) and its Q2 descendent. However, too many

states are subtracted by imposing such a constraint as the translation P genera-

tors are commuting. This then implies that,[
{Q̃1, Q̄α̇}, {Q̃1, Q̄β̇}

]
= 0 ,

[
{ ˜̄Q2, Qα}, { ˜̄Q2, Qβ}

]
= 0 , (2.119)

consequently we need to add back the states (rj)(j−1,0) and scaling dimension

∆j + 5
2

to the multiplet and its Q2 descendent in the f = 1
2
, f̄ = 1 case as

indicated in figure (2.7).

∆ = ∆j (rj)(j,0)

↙
∆j + 1

2
(rj − 1)(j+ 1

2
,0)

∆j + 1 	(rj)(j− 1
2
, 1
2

)

↙
∆j + 3

2
	(rj − 1)(j, 1

2
)

∆j + 2 (rj)(j−1,0)

↙
∆j + 5

2
(rj − 1)(j− 1

2
,0)

(−rj)(0,j)

↘
(−rj + 1)(0,j+ 1

2
)

	(−rj)( 1
2
,j− 1

2
)

↘
	(−rj + 1)( 1

2
,j)

(−rj)(0,j−1)

↘
(−rj + 1)(0,j− 1

2
)

Figure 2.7: Short Representations V
1
2
,1

∆j ,rj ,j,0
left, and V

1, 1
2

∆j ,−rj ,0,j right

2.4.3 Multiplet Decompositions at Unitarity Thresholds

As seen previously, the possible shortening conditions on the multiplets lead to

restrictions on the scaling dimensions and R-charges of states in the multiplet,

and the shorter the multiplet, the more constrained its quantum numbers. This

leads to long multiplet decomposition at unitarity thresholds, i.e. when a long

multiplet staurates the shortening bounds, it can be be decomposed into shorter
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multiplets,

V 0,0
∆r̄,r,j,̄

= V
0, 1

2
∆r̄,r,j,̄

⊕ V 0, 1
2

∆
r+1,̄− 1

2
,r+1,j,̄− 1

2

, (2.120)

V 0,0
∆rj ,−r,j,̄ = V

1
2
,0

∆r̄,−r,j,̄ ⊕ V
1
2
,0

∆
r+1,j− 1

2
,−r−1,j− 1

2
,̄
, (2.121)

V
1
2
, 1
2

δj̄,rj̄,j,̄
= V

0, 1
2

δj̄,rj̄,j,̄
	 V

1
2
,0

δj̄+
1
2
,rj̄−1,j− 1

2
,̄

(2.122)

= V
1
2
,0

δj̄,rj̄,j,̄
	 V 0, 1

2

δj̄+
1
2
,rj̄+1,j,̄− 1

2

, (2.123)

2.4.4 Character Calculations

One can then compute the corresponding characters for all the previous repre-

sentations, where the characters are by definition given by,

χf,f̄ (s, u, x, x̄) = TrV f,f̄ (s
2HuRx2J3x̄2J̄3) , (2.124)

One can compute those quantities by looking at the previous diagrams for the

various representations given the following prescription,

(∆, (r)j,̄) ↔ s2∆urχj(x)χ̄(x̄)P (s, x, x̄) (2.125)

where the spin-j SU(2) character is defined as,

χj(x) = Trj x
2J3 =

j∑
m=−j

x2m =
x2j+1 − x−2j−1

x− x−1
(2.126)

while the action of the translation generators Pαα̇ gives another factor,

P (s, x, x̄) =
∏

ε,η=±1

1

1− s2xεx̄η
, (2.127)

Based on this analysis, one can then give the following characters,

χ0,0
∆,r,j,̄(s, u, x, x̄) = s2∆urχj(x)χ̄(x̄)P (s, x, x̄)Q(s, u, x)Q̄(s, u, x̄) (2.128)
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with the supercharge factors defined as,

Q(s, u, x)=
∏
ε=±1

(1 + su−1xε) , (2.129)

Q̄(s, u, x̄)=
∏
ε=±1

(1 + sux̄ε) , (2.130)

The semi-short representations’ characters are given by,

χ
0, 1

2
r,j,̄(s, u, x, x̄) = s3r+4̄+4 ur(χ̄(x̄) + suχ̄+ 1

2
(x̄))χj(x)P (s, x, x̄)Q(s, u, x) ,

χ
1
2
,0

r,j,̄(s, u, x, x̄) = s−3r+4j+4 ur(χj(x) + su−1χj+ 1
2
(x))χ̄(x̄)P (s, x, x̄)Q̄(s, u, x̄) ,

and,

χ0,1
r,j (s, u, x, x̄) = s3rur χj(x)P (s, x, x̄)Q(s, u, x) , (2.131)

χ1,0
r,̄ (s, u, x, x̄) = s3ru−rχ̄(x̄)P (s, x, x̄)Q̄(s, u, x̄) . (2.132)

Further semi-short characters are given by,

χ
1
2
, 1
2

j,̄ (s, u, x, x̄) = s4+2j+2̄u
2
3

(j−̄)P (s, x, x̄)(Dj,̄(s, x, x̄) +Dj+ 1
2
,̄+ 1

2
(s, x, x̄)

uDj,̄+ 1
2
(s, x, x̄) + u−1Dj+ 1

2
,̄(s, x, x̄)) , (2.133)

where Dj,̄(s, x, x̄) is defined as,

Dj,̄(s, x, x̄) = χj(x)χ̄(x̄)− s2χj− 1
2
(x)χ̄− 1

2
(x̄) , (2.134)

where the minus sign comes from the subtracted state arising from the conser-

vation condition (2.115). Finally the short representations’ characters are given

by,

χ
1
2
,1

j (s, u, x, x̄) = s2j+2 u
2
3

(j+1) P (s, x, x̄)(Cj(s, x, x̄) + su−1Cj− 1
2
)(s, x, x̄)) ,

χ
1, 1

2
̄ (s, u, x, x̄) = s2̄+2 u−

2
3

(̄+1)P (s, x, x̄)(C̄(s, x̄, x) + suC̄− 1
2
(s, x̄, x)) ,(2.135)

with,

Cj(s, x, x̄) = χj(x)− s2χj− 1
2
(x)χ 1

2
(x̄) + s4χj−1(x) (2.136)
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2.4.5 From Characters to Indices

In order to construct the index as defined in equation (2.49), one first needs to

obtain the (−1)F factor. This can be done by noticing that fermionic and bosonic

states can be identified by comparing their SU(2) eigenvalues,

|j − ̄| ∈ Z + 1
2
⇔ Fermionic , (2.137)

|j − ̄| ∈ Z ⇔ Bosonic , (2.138)

with (j, ̄) the (J3, J̄3) eigenvalues of the highest weight state, hence, for the

highest weight state,

(−1)F = (−1)2J3(−1)2J̄3 , (2.139)

Given that the action of J−, J̄− change the eigevalues of 2J3, 2J̄3 by two units,

one can use the same formula for the entire multiplet. Consequently, one can see

that,

χf,f̄ (s, u,−x,−x̄) = TrV f,f̄ (−1)F s2HuRx2J3x̄2J̄3 (2.140)

In order to compute the single particle index (2.49), one can then take,

i f,f̄ (t, x) = χ f,f̄ (y
1
2 , y

3
2 t−1,−ty−1,−x) (2.141)

Note that we have added the (f, f̄) notation to the index definition to keep track

of the contributions of the various multiplets. As was noted before, the index

only depends on multiplets that are part of the Q1-cohomology. This explains

the fact that,

i 0,0(t, x) = i 0, 1
2 (t, x) = i 0,1(t, x) = 0 , (2.142)
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while the following nonzero results hold,

i
1
2
,0

j,̄,r(t, x) =
χ̄(x)

(1− tx−1)(1− tx)
(−1)2(j+̄)+1t2j+r+2 , (2.143)

i 1,0
̄,r (t, x) =

χ̄(x)

(1− tx−1)(1− tx)
(−1)2̄tr , (2.144)

i
1
2
, 1
2

j,̄ (t, x) =
χ̄(x)

(1− tx−1)(1− tx)
(−1)2(j+̄)+1t

2
3

(2j+̄+3) , (2.145)

i
1
2
,1

j (t, x) =
1

(1− tx−1)(1− tx)
(−1)2j+1t

4
3

(j+1) , (2.146)

i
1, 1

2
̄ (t, x) =

χ̄(x)− tχ̄− 1
2
(x)

(1− tx−1)(1− tx)
(−1)2̄t

2̄
3

+ 2
3 , (2.147)

formula (2.69) and (2.86) by using the above formulas,

iφ(t, x) = i
1
2
,1

0 (t, x) + i
1, 1

2
0 (t, x) , (2.148)

iλ(t, x) = i
1
2
,1

1
2

(t, x) + i
1, 1

2
1
2

(t, x) . (2.149)

2.4.6 Characters, Indices and Gauge Symmetry

From the definition of the index as a limit of a character (2.141), one can see the

need for the integration over the gauge group (2.52). Characters are useful in de-

composing tensor product representations because of the orthogonality relations

between characters of irreducible representations [60],∫
dµ(g)χRg(g)χR̃g(g) = δRgR̃g , (2.150)

with dµ(g) the normalised left invariant Haar measure on the gauge group seen

as a manifold. This allows one to identify the number of of type R in a given

tensor product representation R1, . . .Rn,∫
dµ(g)χR(g)

n∏
i=1

χRi(g) = nR , (2.151)
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and in particular, one can project a given expression for an index onto gauge

singlets by taking, ∫
dµ(g)χR(g) , (2.152)

which leads to the expression for the index of gauged chiral multiplets and vector

multiplets (2.52).
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Chapter 3

Index and Arbitrary R-Charges

In this chapter, we provide the appropriate setup to deal with indices for matter

multiplets with arbitrary R-charges. After providing the relevant differential

geometry generators to set up the theory on R×S3, we define appropriate Killing

spinors and vectors. We then expand the theory in S3 harmonics and canonically

quantise it. Having obtained the appropriate quantum numbers, we take once

again the approach provided in chapter (2) and compute the index in the form

of the appropriate limits of the group characters.

3.1 Supersymmetry on R× S3

3.1.1 R× S3 Group Conventions

We use standard conventions for R× S3 and take a line element to be given by,

ds2 = −dt2 + ds̄2 , ds̄2 = gµν dx
µdxν , µ, ν = 1 . . . 3 , (3.1)

where the S3 bi-invariant metric g is,

gµν = 2 emµemν = 2 ēmµēmν , (3.2)
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3. INDEX AND ARBITRARY R-CHARGES

with greek spacetime indices and roman tangent space indices. The left or right

SU(2) invariant one forms are then given by,

e = UdU−1 , ē = U−1dU , (3.3)

for U ∈ SU(2). Using the normalisation,

e = − i
2
σm e

m , ē = − i
2
σm ē

m , (3.4)

with σm the standard Pauli matrices, and denoting the Euler angles, xµ =

(θ1, θ2, θ3),

0 ≤ θ1 ≤ π , 0 ≤ θ2 ≤ 2π , 0 ≤ θ3 ≤ 4π , (3.5)

one can use the following standard parametrisation for SU(2),

U = exp(− i
2
θ2σ3) exp(− i

2
θ1σ2) exp(− i

2
θ3σ3) = n0 1 + i nmσm , (3.6)

with the following definition,

n0 = cos
(

1
2
θ1
)

cos
(

1
2
θ2 + 1

2
θ3
)
, n2= − sin

(
1
2
θ1
)

cos
(

1
2
θ2 − 1

2
θ3
)
, (3.7)

n1 = sin
(

1
2
θ1
)

sin
(

1
2
θ2 − 1

2
θ3
)
, n3= − cos

(
1
2
θ1
)

sin
(

1
2
θ2 + 1

2
θ3
)
, (3.8)

and,

DetU = n2
0 + nm nm = 1 , (3.9)

then, the right invariant one form, which we will take as dreibein, is,

em = emµdx
µ . (3.10)

Explicitly,

em =


e1 = sin θ3dθ1 − sin θ1 cos θ3dθ2 ,

e2 = cos θ3dθ1 + sin θ1 sin θ3dθ2 ,

e3 = cos θ1dθ2 + dθ3 .

(3.11)
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The left invariant one-form is given by,

ēm =


ē1 = sin θ2dθ1 − sin θ1 cos θ2dθ3 ,

ē2 = − cos θ2dθ1 − sin θ1 sin θ2dθ3 ,

ē3 = − cos θ1dθ3 − dθ2 .

(3.12)

In this basis, the left invariant vector fields∇m can be constructed from ωm(∇n) =

δmn , and denoting,

∇m = em
µ∂µ, (3.13)

one obtains,

∇m =


∇1 = sin θ3∂1 − csc θ1 cos θ3∂2 + cot θ1 cos θ3∂3 ,

∇2 = cos θ3∂1 + csc θ1 sin θ3∂2 − cot θ1 sin θ3∂3 ,

∇3 = ∂3 ,

(3.14)

satisfying an SU(2) commutation relations as differential operators,

[∇m,∇n] = εmnp∇p . (3.15)

One can also construct the right invariant vector field ∇̄m which also satisfies

the above commutation relation, by imposing ēm(∇̄m) = δmn . Note that both the

definition (3.3) and the parametrisation have been chosen here so that they may

be obtained by the parameter changes θ3 ↔ −θ2

∇̄m =


∇̄1 = sin θ2∂1 + cot θ1 cos θ2∂2 − csc θ1 cos θ2∂3 ,

∇̄2 = − cos θ3∂1 + cot θ1 sin θ2∂2 − csc θ1 sin θ2∂3 ,

∇̄3 = − ∂2 ,

(3.16)

These also satisfy,

[∇̄m, ∇̄n] = εmnp∇̄p , [∇m, ∇̄n] = 0 , (3.17)

For R× S3, the left invariant one-forms and vector fields are supplemented by,

e0 = dt , ∇0 = ∂0 , (3.18)
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3. INDEX AND ARBITRARY R-CHARGES

determining the appropriate vierbein. The spin connection may then be deter-

mined by imposing the conservation of the dreibein. The torsion free Maurer-

Cartan equations reads,

dem = −ωmn ∧ en . (3.19)

As there is no curvature in the time direction, one can focus on the spatial part,

ωmnp = em
µ∇nepµ − emµenνΓρµν epρ , (3.20)

where the non-zero Christoffel symbols are determined to be,

Γ1
23 = 1

2
sin θ1 , Γ2

13 = Γ3
12 = −1

2
csc θ1 , Γ2

12 = Γ3
13 = 1

2
cot θ1 , (3.21)

gives non-zero components,

ωmnp = −1
2
εmnp . (3.22)

Denoting,

σmn = 1
2
[σm, σn] = iεmnpσp , (3.23)

the spinor spacetime covariant derivative acting on spinors is defined as,

Dmχα = Dmχα = ∇mχα +
1

4
ωmnp(σnpχ)α (3.24)

and after simplification,

D0ψα = ∂0ψα , Dmχα = ∇mχα −
i

4
(σmχ)α , (3.25)

For vectors, the spacetime covariant derivative is given by,

D0Am = ∂0Am , DmAn = ∇mAn + ωmnpAp , (3.26)

which can be derived by imposing consistency with the spinor covariant deriva-

tive (3.25) and applying the Leibniz rule on a vector constructed in terms of two

arbitrary spinors ψ̄σmψ.
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3. INDEX AND ARBITRARY R-CHARGES

We will denote (D0, Dm) the spacetime covariant derivatives for all kinds of

fields. The gauge and spacetime covariant derivatives will be denoted (D0,Dm),

and will be defined in due time.

3.1.2 SU(2)r × SU(2|1)l Algebra and the Index

As was noticed in the previous section, superconformal invariance of a free field

theory imposes strict restrictions on the R-charges. Off course, in the context of

Seiberg duality, conformal invariance holds at the IR fixed-point for interacting

theories. However, here, for calculational purposes, we break away from afore-

mentioned restrictions, by considering theories invariant under a subgroup of the

superconformal group. This subgroup should include the supercharge Q. There

are multiple possible choices,

1. SU(2)r × SU(2|1)l, the supersymmetry algebra on R× S3,

Qα , Sβ , H , R , Jm , J̄m , (3.27)

2. U(1)r×SU(2|1)l, the three-sphere S3 is replaced by a squashed sphere [61],

Qα , Sβ , H , R , Jm , J̄3 , (3.28)

3. SU(2)r × U(1|1)l, here the squashed sphere has a different orientation,

Q1 , S1 , H , R , J3 , J̄m , (3.29)

4. U(1)r × U(1|1)l, which is the simplest possible algebra,

Q1 , S1 , H , R , J3 , J̄3 , (3.30)

Here, we will consider theories defined on R×S3, which is the appropriate space to

canonically quantise a superconformal field theory in four dimensions. The reality

condition on the action should be understood in the sense of the + operation.

Also, the time translation generators corresponds to the dilation operator, and
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the rotation generators are the spatial isometry generators. The dilation operator

for unitary, positive energy representations of the superconformal group, has a

positive spectrum of real eigenvalues. Both the dilation operator and the rotation

generators are hermitian in the sense of +. Considering theories invariant under

SU(2)r×SU(2|1)l only will allow us to write down free and interacting lagrangians

for arbitrary R-charges matter fields.

3.1.3 Differential Representation of SU(2)r × SU(2|1)l

We here give the differential representation of the various operators H, Jm gen-

erating the isometry of R× S3. We closely follow a discussion in [62].

Following the usual prescription of radial quantisation, the dilation operator

is identified with the time translation operator with action on any field X given

by,

[H,X] = i∂0X . (3.31)

We now need to build the relevant differential operators needed to construct a

supersymetric action on R × S3. Given an operator O, we define the action of

Jm on O,

[Jm,O] = −JmO , (3.32)

with Jm a differential operator acting on O seen as a function, and the left hand

side acting on O seen as an operator. As emphasized in [62], this is still consistent

with (2.31),

[Jm,Jn] = iεmnpJp , (3.33)

because, given two operators A, B with differential representation A, B such that

[A,B] = C, then,

AB(O) = [A, [B, O]] = −[A, BO] = −B[A, O] = BAO , (3.34)

which is then consistent with [A,B] = C. Following the construction in section

(3.1.1), we take the action of SU(2)l generators acting on scalars, Weyl spinors,
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vectors, to be given by1,

iJmφ = ∇m φ , (3.35)

iJmψα = Dmψα − i
4
(σm)α

βψβ , (3.36)

iJmAn = DmAn − 1
2
εmnpAp , (3.37)

One can obtain these equations by considering equation (2.17) applied to a spinor

operator, with the indices µ, ν restricted to spatial indices. Then, identifying,

Mmn = −εmnpJp , Lmn = −εmnpJp , smn = −1
2
εmnpσp , (3.38)

allows one to recover the spinor differential rotation generator (3.36), as the full

angular momentum operator is the sum of the orbital and spin angular momenta

operators,

Jm = Lm + Sm . (3.39)

One can then derive the equation for the vector by applying Leibniz rule on an

object constructed out of two spinors whose indices are contracted with a Pauli

matrix.

Let us show that this definition is consistent with the standard SU(2) com-

mutation relations (2.31), by computing the commutation relations on a scalar

operator φ. First compute JmJnφ. Note Jnφ is a vector, hence one should take

the vector representation for Jm given in (3.37), and the scalar representation for

Jn (3.35)

Jm Jn φ = −iJm∇nφ = −∇m∇nφ+ εmnp∇pφ , (3.40)

1One should note that these conventions are consistent with [32]. There, these equations
are given in (3.1) and (4.3) in the form,

δJiKi = iKiJi , δJiKiφ = Kiσ
(L)
i φ , δJiKiψ = Ki(σ

(L)
i + 1

4εijkγ
jk)ψ , i = {1, 2, 3}

with γjk half the commutator of a four component spin matrix, and the metric convention
mostly plus.
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Hence, using (3.14), the commutator of Jm is given by,

[Jm,Jn]φ = εmnp∇pφ = iεmnpJpφ , (3.41)

as expected1.

3.1.4 Supersymmetry on the Sphere, Killing Spinors

As was pointed out in [63], to define a supersymmetric theory on a curved back-

ground, one first needs to exhibit the Killing spinors of the background in ques-

tion. For instance, the supersymmetry variations of a Yang-Mills theory put on

a curved background is given by,

δLSYM =
[
(Dmε̄)σ

npσmλ+ λ̄σmσnp(Dmε)
]
Fnp , (3.42)

with ε, ε̄ the supersymmetry variation parameters, or Killing spinors, σ the Pauli

matrices and commutators theoreof, and λ, λ̄ the Weyl spinor gaugino. In order

for the theory to be invariant under such variations. one could obviously impose

the vanishing of Dmε. However, one can take a less drastic restriction. The most

general Killing spinor equation on a curved manifold is given by

Dmε = σmε
′ , (3.43)

where ε′ is not necesarily proportional to ε. However, it was shown in [64] that, on

spaces of constant curvature such as S3, it is always possible to take ε′ proportional

to ε. Consequently, we will use Killing spinors such that,

∂0ε
α = − i

2
εα , Dmε

α = i
4
(ε σm)α , (3.44)

∂0ε̄α = i
2
ε̄α , Dmε̄α = − i

4
(σmε̄)α . (3.45)

1Note that these conventions are unlike the ones used in [34]. The conventions in the latter
paper, amount to, for any field C whether bosonic or fermionic,

[Jm, C] = −i∇mC , [Jm, Jn] = iεmnpJp , [∇m,∇n] = εmnp∇p ,
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Substituting the expression for the spinor spacetime covariant derivative shows

that the Killing spinors are spatially constant

∇mε = 0 , ∇mε̄ = 0 . (3.46)

One can actually derive the above equations from the SU(2, 1) algebra com-

mutation relations. Following Wess and Bagger’s conventions [65], one can write

the supersymmetry transformation on any given field X, as1

δX = [εαQα, X] , δ̄X = [ε̄αS
α, X] . (3.48)

Here, we do not give a differential operator representation of the supercharges, as

we believe that a component field approach is simpler than a superspace approach.

We now compute the following commutation relation,

[Jm, ε
αQα] . (3.49)

Following [66] , one can see the operator εαQα as a function, or as an operator,

[Jm, ε
αQα] = −(Jmε)αQα = εα [Jm, Qα] . (3.50)

Substituting the expression for the spinor rotation generators (3.36) and the

rotation-supercharge commutation relation given in (A.8) yields the spatial Killing

spinor equation (3.44)2. Similarly, the timelike Killing spinor equation is given

1Note that in four dimensional flat space, the convention for hermitian conjugation is given
by,

(ψαχα)† = χ̄α̇ψ̄
α̇ ,

and the supersymmetry variations are then given by ζαQα + ζ̄α̇Q̄
α̇ as in equation (3.3) in [65].

Here, our convention for hermitian conjugation is given by,

(ψαχα)+ = χ̄αψ̄α = −ψ̄αχ̄α , (3.47)

2One should note that such an approach also allows one to obtain the Killing spinor equation
in [34]. With the conventions in this paper, the spatial Killing spinor equation can be obtained,

− (Jmεα)Qα = εα [Jm, Qα]⇔ ∇mεα = − i
2

(εσm)α . (3.51)
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by,

[H, εαQα] = (i∂0ε
α)Qα = εα[H, Qα] . (3.52)

More recently in [67], it was shown how rigid supersymmetric theories on

curved background can be constructed in a more systematic fashion by using

background supergravity fields. The idea, which was already pointed out in [34]

based on [68, 69] and in [70], is to start from N = 1 supergravity and freeze the

gravitational background into a rigid manifold with the gravitino having a zero

vacuum expectation value. The graviton supersymmetry variation will then be

zero, as the gravitino VEV is set to zero. Then, if one can find a set of supersym-

metry parameters – or Killing spinors – such that the gravitino supersymmetry

variation is zero in this particular background, one is then assured be able to

define a rigid supersymmetry theory in this background. This method is used in

[67] to write down rigid supersymmetric theories on R × S3, but also on AdS4,

S4 and S3.

These Killing spinors are also used in [53] for purposes of localisation of

Wilson-loops and partition functions on the 3-sphere. As was also pointed out

in the same paper, there exist some other Killing spinors which correspond to

the opposite sign the spatials parts of equations (3.44) and (3.45), and can be

most easily computed in a right invariant vielbein. The choice of coordinates we

have made implies that the Killing spinors are constant in the left invariant frame

on S3. Ignoring time-like Killing spinor equations, there are four possible Killing

spinors on S3, half being constant in the left invariantframe which we can think of

as corresponding to undotted supercharges, the other half so in the right invariant

frame and which are associated with dotted supercharges of the superconformal

group. The timelike Killing spinor equations double the number and the choice

shown is consistent with Q(ε, ε̄) commuting with J̄3. One should note that impos-

ing the requirement of a the theory to be invariant under all superchargese dotted

and undotted implies that the theory has to be fully superconformal. This then

means that the shortening conditions relating scaling dimensions are restored,

and the R-charge cannot take a set of continuous values. One then loses the

freedom to adjust the R-charge of the multiplet and defeats the point of studying

the theory on the sphere. Consequently we will only require invariance under Qα,
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Sβ and hence the SU(2, 1) subalgebra of the superconformal group.

We give all left-invariant Killing spinors,

εα1 = e−
it
2 δα1 , ε̄ 1

α = e
it
2 δ1

α , (3.53)

εα2 = e−
it
2 δα2 , ε̄ 2

α = e
it
2 δ2

α . (3.54)

Note that the numerical sub/super-scripts are not spinor indices in this context.

They only label the various spinors.

The Killing spinors can then be combined to get the Killing vector Vm satis-

fying,

V0 = 0 , Vm = εσmε̄ , DmVn = − 1
2
εmnpVp . (3.55)

V0 = εε̄ , Vm = 0 . (3.56)

It is clear that equation (3.55), (3.56) are a special case of the general Killing

vector equation,

DmVn +DnVm = 0 , (3.57)

∂0Vn + ∇nV0 = 0 , (3.58)

One can check that this allows us to recover all Killing vectors on R × S3 as

listed in [71, 72]. There are 3 Killing spatial vectors obtained from contracting ε,

ε̄ spinor with a Pauli matrix, ε1σmε̄
1 ∼ ε2σmε̄

2, while the temporal Killing vector

is obtained from contracting the spinors directly. Also, we have mentioned the

Killing spinors correspondng to the dotted supercharges S̄α̇, Q̄α̇. Repeating the

same analysis with those Killing spinors providess us with an extra three Killing

vectors. Hence, in total we get the expected 7 Killing spinors of R × S3, which

essentially correspond to H, Jm, J̄m.

For a conformal theory, we have an extra 8 conformal Killing vector, which

correspond to the translation and inversion generators.
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3.1.5 Chiral Multiplet

The primary fields in chiral and anti-chiral multiplets for ordinary N = 1 super-

conformal representation theory belong to conjugate representations (φ, ψα, F ),

(φ̄, ψ̄α, F̄ ) of SU(2|1)l, and are trivial representations of SU(2)r.

A chiral multiplet is such that,

δ̄φ = 0 , (3.59)

Having identified the supercharges on R × S3 as the Q, S supercharges in the

superconformal algebra allows one to write down the supersymmetry transforma-

tions. This is somehow more efficient than trial and error with generic transfor-

mations involving Killing spinors. One can raise, lower spinor indices with the

antisymmetric tensor εαβ, εαβ

χα = εαβχ
β , χα = εαβχβ , ε12 = −1 , ε12 = 1 , (3.60)

We now need to contruct supersymmetry variations compatible with the following

hermiticity requirements,

(φ, ψα, F )+ = (φ̄, ψ̄α, F̄ ) , (3.61)

as well as the hermiticity requirements for the supercharges (2.33) and the super-

symmetry variation equation (3.48). One gets the following transformations,

1√
2
δφ = εαψα , (3.62)

1√
2
δψα = εαF , (3.63)

1√
2
δ̄ψα = − ε̄α(i∂0 + 3

2
r)φ+ 2i(σmε̄)α∇mφ , (3.64)

1√
2
δ̄F = − ε̄α(i∂0 + 3

2
r − 1)ψα + 2i(σmε̄)αDmψ

α , (3.65)

Other transformation not indicated are zero. Similarly the anti-chiral multiplet
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is defined by,

1√
2
δφ̄ = 0 , (3.66)

1√
2
δ̄φ̄ = ψ̄αε̄α , (3.67)

1√
2
δ̄ψ̄α = ε̄αF̄ (3.68)

1√
2
δψ̄α = εα(i∂0 − 3

2
r)φ̄− 2i(εσm)α∇mφ̄ , (3.69)

1√
2
δF̄ = − εα(i∂0 − 3

2
r + 1)ψ̄α + 2i(εσm)αDmψ̄α . (3.70)

In contrast to flat space N = 1 superconformal case, however, for the SU(2)r ×
SU(2|1)l algebra we have fewer (anti-)commutation relations to satisfy so that

closure of the algebra of fields allows for the freedom of having arbitraryR charges,

for free or interacting theories. For the purpose of constructing an invariant action

we take φ, φ̄ to have opposite R-charge,

[R, φ] = r φ , [R φ̄] = − r φ̄ , (3.71)

so that,

[R, ψα] = (r − 1)ψα ,
[
R, ψ̄α

]
= (1− r)ψ̄α , (3.72)

[R, F ] = (r − 2)F ,
[
R, F̄

]
= (2− r)F̄ . (3.73)

An important remark to make is that, unless the theory is conformal in addition

to being supersymmetric on R×S3, the value of the R-charge for the scalar chiral

multiplet is unconstrained in general, as the algebra closes consistently without

any such requirement, unless conformality is restored.

A similar construction was published in [34] but seems to have gone unnoticed

until very recently, and was rediscovered in [32, 33].

One can also notice [34] that we can define the chiral and anti-chiral multiplets

to be generated solely by the action of Qα on the respective highest weight states

φ, F̄ , both being annihilated by δ̄, but with the relations (3.70) holding for the

anti-chiral case. This allows one to define R × S3 chiral superfields Φ, Φ̄ via
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Grassmann parameters ηα, namely,

Φ(t,Ω, η) = φ+ ηα ψα + η2F , (3.74)

Φ̄(t,Ω, η) = F̄ + ηαQαF̄ + ηαηβQαQβF̄ , (3.75)

where Ω denotes generic Euler angles for S3. We will not attempt to base our

analysis on this approach and will use component field instead.

3.1.6 Vector Multiplet

Similarly, one can define the vector multiplet with the following shortening con-

dition,

δ̄λα = 0 , δλ̄α = 0 . (3.76)

Hence the vector multiplet can be regarded as a spin-1
2

chiral multiplet. Defining

the field strength on R× S3 in the usual fashion,

Fmn = DmAn−DnAm+[Am, An] , (3.77)

F0m = ∂0Am −DmA0 + [A0, Am] , (3.78)

with Dm the spacetime covariant derivatives, we have,

1√
2
δλα = − iF+

m(εσm)α + 1
2
εαD , 1√

2
δ̄λ̄α = iF−m(σmε̄)α + 1

2
ε̄αD , (3.79)

where we have defined, for convenience,

F±m = F0m ± iεmnpFnp . (3.80)

Denote Dm the spacetime and gauge covariant derivatives, so that for any field

X, in a gauge group representation generated by generators T a,

DmX = DmX + [Am, X] , [Am, X] = Aam[T a, X] , (3.81)

D0X = ∂0X + [A0, X] . (3.82)
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The remaining supersymmetry transformations are,

1√
2
δFmn = 1

2
εσmDnλ̄− 1

2
εσnDmλ̄+ 1

4
εmnpεσpλ̄ , (3.83)

1√
2
δF0m = −1

2
εσmD0λ̄+ εDmλ̄− i

2
εσmλ̄ , (3.84)

1√
2
δ̄Fmn = 1

2
Dnλσmε̄− 1

2
Dmλσnε̄+ 1

4
εmnpλσpε̄ , (3.85)

1√
2
δ̄F0m = −1

2
D0λσmε̄+Dmλε̄+ i

2
λσmε̄ , (3.86)

1√
2
δD = −iεD0λ̄+ 2iεσmDmλ̄ , (3.87)

1√
2
δ̄D = iD0λε̄− 2iDmλσmε̄ . (3.88)

These transformations are consistent with,

1√
2
δA0 = εαλ̄α ,

1√
2
δAm = −1

2
εσmλ̄ , (3.89)

1√
2
δ̄A0 = λαε̄α ,

1√
2
δ̄Am = −1

2
λσmε̄ , (3.90)

along with the following R-charge assignments,

Rλα = −λα , Rλ̄α = λ̄α , (3.91)

RFmn = 0 , RD = 0 . (3.92)

These charges are required for the algebra to close properly given the structure of

the supersymmetry transformations on the gaugino given in equation (3.79) and

thereafter. This is in constrast with the scalar chiral multiplet whose R-charges

are unconstrained in non-conformal theories.

Useful to note, for closure of the Lagrangian under supersymmetry, is the

Bianchi identity for the field strength,

εmnpDmFnp = 0 , DmFn0 +DnF0m +D0Fmn = 0 , (3.93)

where the derivatives are spacetime and gauge covariant derivatives.

When coupling matter fields to the gauge sector, the supersymmetry transfor-

mations detailed in the previous sections get modified. All derivatives are replaced

by gauge covariant derivatives, as defined above, and the F term transformations
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get modified to,

1√
2
δF̄ = −εα(iD0 − 3

2
r + 1)ψ̄α +2i(εσm)αDmψ̄α − 2i εα

[
λα, φ̄

]
, (3.94)

1√
2
δ̄F = −ε̄α(iD0 + 3

2
r − 1)ψα+2i(σmε̄)αDmψ

α + 2i [λ̄α, φ]ε̄α . (3.95)

while chiral multiplet gauge interaction terms arise from making the derivatives

in (3.99) gauge covariant.

3.1.7 Chiral and Vector Actions

The transformation formulae for chiral/anti-chiral fields written earlier allow us

to write down an ungauged supersymmetric action on R× S3 as,

Sφ =

∫
dt d3Ω (Lφ + Lψ + LF ) , (3.96)

Lφ = −(i∂0 − 3
2
r + 1)φ̄(i∂0 + 3

2
r − 1)φ− 4∇mφ∇mφ̄− φφ̄ , (3.97)

Lψ = −ψ̄α(i∂0 + 3
2
r − 1)ψα − 2iψ̄α(σm)α

βDmψβ , (3.98)

LF = F̄F . (3.99)

One should note that in the r = 2
3

case, one recovers the standard free field theory

action for a conformal scalar field written in conformal coordinates, including the

conformal mass term.

For the vector multiplet, we have the following action,

SA =
1

g2

∫
dt d3Ω (LA + Lλ + LD) , (3.100)

LA = F0mF0m − 2FmnFmn , (3.101)

Lλ = −iλ̄αD0λ̄α − 2iλ̄α(σm)α
βDmλβ , (3.102)

LD =
1

2
D2 , (3.103)

When gauging the scalar field multiplet action, one has to replace all derivatives

in the chiral field action by gauge invariant derivatives Dm → Dm and also add
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3. INDEX AND ARBITRARY R-CHARGES

an additional interaction term,

Sint. =

∫
dt d3ΩLint. , (3.104)

Lint. = iφ
[
D, φ̄

]
− 2iψα

[
λα, φ̄

]
+ 2iψ̄α

[
λ̄α, φ

]
, (3.105)

to the overall action to maintain gauge symmetry and supersymmetry.

BRST Symmetry

In order to define the gauge localisation action properly we will make use of

the gauge BRS operator below. The gauge invariant action (3.100) and corre-

sponding path integral can be gauge fixed in the standard fashion, by adding to

the vector Lagrangian in (3.101),

Lgf =
1

g2
s (c̄ ∂0A0 − 2c̄∇mAm) , (3.106)

with the BRS operator defined as,

sA0 = D0c , sc = −1
2
[c, c] ,

sAm = Dmc , sc̄ = B , (3.107)

sB = 0 .

The ghost fields are taken to be invariant under supersymmetry,

Qαc = Qαc̄ = QαB = 0 , (3.108)

and the same holds for Q̄α.

A Note on Normalisation of Fields

One should note the two possible normalisation which can be taken to discuss

the vector multiplet Lagrangian. So far we have use the so called “holomorphic”

normalisation of [73, 74]. Alternatively, we could have taken the “canonical” nor-

malisation. This distinction is important fo localisation purposes. To change
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from holomorphic normalisation equation (3.106) has to be rescaled as,

A→ gA (3.109)

and leads to the canonically normalised Lagrangian,

Lcan.
A = F0mF0m − 2FmnFmn , (3.110)

Lcan.
gf = s(c̄ ∂0A0 − 2c̄∇mAm) , (3.111)

with the field strength and the covariant derivative, then redefined as,

Fmn = ∇mAn −∇nAm + g[Am, An] , (3.112)

DmX = ∇mX + g[Am, X] , (3.113)

Also, the interaction Lagrangian (3.105) is rescaled to

Lcan.
int. = igφ

[
D, φ̄

]
− 2igψα

[
λα, φ̄

]
+ 2igψ̄α

[
λ̄α, φ

]
, (3.114)

as given in [26], and taking the limit g → 0 with either normalisations is a free

field theory limit.

3.2 Canonical Quantisation

In order to canonically quantise the theory and compute the partition function,

we will expand all fields in S3 spherical harmonics which were first defined in [75].

A similar approach is taken in [76].

3.2.1 Spherical Harmonics on S3

S3 can be identified with a coset space G/H with G = SU(2)l × SU(2)r the

isometry group and H = SO(3) the Lorentz group. The generators of H are

denoted as,

Sm = Jm + J̄m , (3.115)
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and the representations of G are labelled by two spins (j, ̄) taking half-integer

values. Denoting the states spanning these representations as |j m〉|̄ m̄〉, one can

write the Clebsch-Gordan decomposition of representations of H,

|s n; j ̄ 〉 =
∑
m,m̄

Csn
jm,̄m̄|j m〉|̄ m̄〉 . (3.116)

Csn
jm,̄m̄ denoting the Clebsch-Gordan coefficients. Also, the following restriction

holds,

| j − ̄ | ≤ s ≤ j + ̄ . (3.117)

One can then write down the following generic element of G/H, in terms of the

Euler angles on the 3-sphere,

Υ = e−iθ
3L1e−iθ

2L3e−iθ
1(J1−J̄1) . (3.118)

The spin-s spherical harmonics are then given by the following formula,

Ysnjm,̄m̄(Ω) =

√
(2j + 1)(2̄+ 1)

2s+ 1
〈s n; j ̄ |Υ(Ω)|jm〉|̄m̄〉 . (3.119)

With this normalisation, the spherical harmonics will satisfy the following or-

thonormality condition,

∑
n

∫
d3Ω(Ysnjm,̄m̄)∗Ysnj′m′,̄′m̄′ = δjj′δ̄̄′δmm′δm̄m̄′ , (3.120)

with d3Ω the solid angle for S3. Also, one can work out the complex conjugate

of a given spherical harmonic using equations (3.118) and (3.119),

(Ysnjm,̄m̄)∗ = (−1)−j+̄−s+m−m̄+nYs−nj−m,̄−m̄ (3.121)

This complex conjugation will on our context correspond to the hermitian con-

jugation + defined in equations (2.21) and (2.33).

Scalar Harmonics
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Scalar spherical harmonics are such that:

s = 0⇒ j = ̄ . (3.122)

They will be denoted as:

Y`mm̄ = Y00
`
2
m, `

2
m̄

(3.123)

with ` an integer running from zero to infinity. The Laplacian acts on the scalar

harmonics in the following fashion:

D2Y`mm̄ = −`(`+ 2)Y`mm̄ (3.124)

Spinor Harmonics

Spinor spherical harmonics are given by (j, ̄) = (j ± 1
2
, j), and are denoted

by:

Y κ
`mm̄α =

Y
+1
`mm̄α = Y

1
2
α

`+1
2
m, `

2
m̄
,

Y −1
`mm̄α = Y

1
2
α

`
2
m, `+1

2
m̄
,

(3.125)

where α = ±1/2 is the usual spinor index. The Dirac operator on S3 acts on the

spinor harmonics in the following fashion:

6DS3Y κ
`mm̄α = i(σnDnY

κ
`mm̄)α = κ

2
(`+ 3

2
)Y κ

`mm̄α , (3.126)

Vector Harmonics

We will use the following notation:

Y ρ
`mm̄n =


Y 1
`mm̄n = iY1n

`+2
2
m, `

2
m̄

Y 0
`mm̄n = Y1n

`
2
m, `

2
m̄

Y −1
`mm̄n = −iY1n

`
2
m, `+2

2
m̄

(3.127)
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with n a spatial vector index running from 1 to 3. We will require the following

Laplacian eigenvalues,

D2Y ρ=±1
`mm̄n = − 1

4
((`+ 2)2 − 2)Y κ

`mm̄n . (3.128)

Also, one should note the divergencelessness of the following harmonics,

DnY
ρ=±1
`mm̄n = 0 , (3.129)

3.2.2 Chiral Multiplet

Scalar Component

Let us first expand the scalar field in spherical harmonics,

φ(t,Ω) =
∞∑
`=0

`
2∑

m,m̄=− `
2

φ`mm̄(t)Y`mm̄(Ω) , (3.130)

φ̄(t,Ω) =
∞∑
`=0

`
2∑

m,m̄=− `
2

φ̄`mm̄(t)Y ∗`mm̄(Ω) . (3.131)

The Lagrangian density can then be expanded in terms of φ̄`mm̄ modes and spa-

tially integrated. Using the spherical harmonics orthonormality relation (3.120)

as well as their laplacian eigenvalues (3.124) one gets the following Lagrangian,

Lφ =
∑
`mm̄

(
dt + 3

2
ir − i

)
φ̄`mm̄

(
dt − 3

2
ir + i

)
φ`mm̄ − (`+ 1)2φ̄`mm̄φ`mm̄ , (3.132)

One can write H, J3, J̄3, R in terms of the scalar modes. The conjugate momenta

to the latter are given by,

π`mm̄(t) =
(
dt + 3

2
ir − i

)
φ̄`mm̄ , π̄`mm̄(t) =

(
dt − 3

2
ir + i

)
φ`mm̄ . (3.133)
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Define the following modes,

a`mm̄(t) =
1√

2(`+ 1)
(π̄`mm̄ + i(`+ 1)φ`mm̄) , (3.134)

a+
`mm̄(t) =

1√
2(`+ 1)

(
π`mm̄ − i(`+ 1)φ̄`mm̄

)
, (3.135)

b`mm̄(t) =
1√

2(`+ 1)

(
π`mm̄ + i(`+ 1)φ̄`mm̄

)
, (3.136)

b+
`mm̄(t) =

1√
2(`+ 1)

(π̄`mm̄ − i(`+ 1)φ`mm̄) . (3.137)

Canonically quantise this theory using the following commutation relations,

[a`mm̄(t), a+
`′m′m̄′(t)] = δ``′δmm′δm̄m̄′ , (3.138)

One can then express the hamiltonian and the angular momentum generators as,

H =
∑
`mm̄

(
`+ 3

2
r
)
a+
`mm̄a`mm̄ +

(
`+ 2− 3

2
r
)
b+
`mm̄b`mm̄ , (3.139)

J3 =
∑
`mm̄

m (b+
`mm̄b`mm̄ − a

+
`mm̄a`mm̄) , (3.140)

J̄3 =
∑
`mm̄

m̄ (b+
`mm̄b`mm̄ − a

+
`mm̄a`mm̄) , (3.141)

R =
∑
`mm̄

r (b+
`mm̄b`mm̄ − a

+
`mm̄a`mm̄) , (3.142)

which leads to the following expression for H defined in (2.37),

H =
∑
`mm̄

(`+ 2m)a+
`mm̄a`mm̄ + (`− 2m+ 2)b+

`mm̄b`mm̄ . (3.143)

One can check that the index for the scalar field is obtained from the contribution

of the zero modes for H, which are created by a+

`− `
2
m̄

. Noting that the creation

operator a+
`mm̄ ∼ φ̄`mm̄, these correspond to SU(2)l highest weight antichiral
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states. Summing over those modes gives,

∞∑
`=0

`
2∑

m̄=− `
2

tr+`x2m̄ =
tr

(1− tx)(1− tx−1)
. (3.144)

Assume theR-charge now takes its superconformal value, as given by a-maximisation

[51]. Those states are related to each other through the action of the translation

generators P commuting with Q1, S1. Following equation (2.39) these are given

by P2α̇. Consider the most general quantum states of the problem and denote

them as,

|∆ ( `
2
,m) (

¯̀

2
, m̄) 〉r , (3.145)

where the various quantum numbers correspond to the action of H, SU(2)l,

SU(2)r and R respectively. The scalar states contributing to the index are given

by,

|` m̄〉r = |`+ 3
2
r ( `

2
, `

2
) ( `

2
, m̄) 〉−r . (3.146)

Note the minus sign on the eigenvalue of J3 here. Due to the complex conjugation

properties of scalar spherical harmonics given in (3.121) one gets,

a+
`mm̄|0〉 = |`+ 3

2
r ( `

2
,−m) ( `

2
,−m̄) 〉−r . (3.147)

To generate all states |` m̄〉r contributing to the index , one acts with the J̄−

generators, which gives us all possible values for m̄, given a value for `. To

generate all values of `, one can act on the following parent state,

|0〉r = |3
2
r (0, 0) (0, 0) 〉−r , (3.148)

with P22. Hence, one can generate all states |`, m̄〉r by acting with J̄−, P22 and

the corresponding module is generated by,

|` m̄〉r ∝ J̄−
`
2
−m̄P `

22|0〉r . ` = 0 . . .∞ , m̄ = − `
2
. . . `

2
. (3.149)
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The character for this module can hence be written given the following corre-

spondence,

P22 → s2xx̄ , J̄− → x̄−2 . (3.150)

The character hence reads,

∞∑
`=0

`
2∑

m̄=− `
2

s2`+3rx`x̄2m̄u−r =
s3ru−r

(1− s2xx̄)(1− s2xx̄−1)
(3.151)

Rescaling the variables as in equation (2.141), allows one to recover the expression

for the scalar part of the index (3.144).

One can also obtain the index by considering the following states,

P `1
21 P

`2
22 |0〉r . `1, `2 = 0 . . .∞ , (3.152)

hence one can interpret the second factor in the denominator as coming from,

P21 → s2xx̄−1 , (3.153)

Fermionic Component

Similarly, consider the fermion field part of the action in (3.96) and expand

the fields in spinor harmonics. Using the shorthand,

∑
`mm̄κ=+

=
∞∑
`=0

`+1
2∑

m=− `+1
2

`
2∑

m̄=− `
2

,
∑

`mm̄κ=−

=
∞∑
`=0

`
2∑

m=− `
2

`+1
2∑

m̄=− `+1
2

. (3.154)

Note that we will use a similar shorthand for products in the following chapter.

The spinors can be expanded in spherical harmonics (3.125),

ψα(t,Ω) =
∑
`mm̄κ

ψκ`mm̄(t)Y κ
`mm̄α(Ω) , ψ̄α =

∑
`mm̄κ

ψ̄κ`mm̄(t)Y κ
`mm̄α(Ω)∗ ,

(3.155)
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Using the orthonormality relation (3.120) and the eigenvalues for the Dirac op-

erator (3.126), the fermionic Lagrangian reads,

Lψ =
∑
`mm̄κ

ψ̄κ`mm̄
(
i∂0 + 3

2
r − 1− κ

(
`+ 3

2

))
ψκ`mm̄ , (3.156)

The conjugate momenta to the spinor modes read,

π+
`mm̄ =

∂L

∂ψ̇+
`mm̄

= iψ̄+
`mm̄ , (3.157)

π−`mm̄ =
∂L

∂ψ̇−`mm̄
= iψ̄−`mm̄ . (3.158)

This leads to the hamiltonian, R-charge and angular momentum generators,

H =
∑
`mm̄+

(
`+ 5

2
− 3

2
r
)
ψ+
`mm̄ψ̄

+
`mm̄ +

∑
`mm̄−

(
`+ 1

2
+ 3

2
r
)
ψ̄−`mm̄ψ

−
`mm̄ ,

J3 =
∑
`mm̄+

mψ+
`mm̄ψ̄

+
`mm̄ −

∑
`mm̄−

mψ̄−`mm̄ψ
−
`mm̄ , (3.159)

J̄3 =
∑
`mm̄+

m̄ψ+
`mm̄ψ̄

+
`mm̄ −

∑
`mm̄−

m̄ψ̄−`mm̄ψ
−
`mm̄ , (3.160)

R =
∑
`mm̄+

(r − 1)ψ+
`mm̄ψ̄

+
`mm̄ −

∑
`mm̄−

(r − 1)ψ̄−`mm̄ψ
−
`mm̄ . (3.161)

In all these expressions we interpret ψ+ and ψ̄− as creation operators, while ψ̄+

and ψ− are interpreted as annihilation operators. This leads to the expression for

H,

H =
∑
`mm̄+

(`− 2m+ 1)ψ+
`mm̄ψ̄

+
`mm̄ +

∑
`mm̄−

(`+ 2m+ 2)ψ̄−`mm̄ψ
−
`mm̄ , (3.162)

and the zero modes are created by ψ+

` `+1
2
m̄

. Summing over those modes for the

index, including the necessary minus sign, gives,

−
∞∑
`=0

`
2∑

m̄=− `
2

t−r−`x2m̄ = − t2−r

(1− tx)(1− tx−1)
.. (3.163)
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All fermionic states contributing to the index are given by,

|`+ 1
2
, m̄〉r = |`− 3

2
r + 5

2
( `+1

2
, `+1

2
) ( `

2
, m̄) 〉r−1 , (3.164)

One can then define the following parent fermionic state, which also turns out to

be a chiral primary state,

|1
2
〉r = | − 3

2
r + 5

2
(1

2
, 1

2
) (0, 0) 〉r−1 , (3.165)

The corresponding truncated module is generated by,

|`+ 1
2
, m̄〉r ∝ J̄−

`
2
−m̄P `

22|12〉r . (3.166)

or equivalently,

P `1
21 P

`2
22 |12〉r . `1 , `2 = 0 . . .∞ , (3.167)

This echoes the construction of the free field index leading up to (2.69) based

on the states P `1
12 P

`2
22 |0〉r and P `1

12 P
`2
22 |12〉r. The character for the corresponding

module or the spinors is given by,

∞∑
`=0

`
2∑

m̄=− `
2

s2`+5−3rx`+1x̄2m̄ur−1 =
s5−3rur−1x

(1− s2xx̄)(1− s2xx̄−1)
. (3.168)

Rescaling the arguments of the above character as in (2.141), allows one to re-

cover the expression for the fermion part of the index (3.163).

One can now define the supersymmetry generators for the chiral supermulti-
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plet,

Q1 =
∑
`mm̄

√
2(`+ 1)ψ+

`m+ 1
2
m̄
b`mm̄ , (3.169)

Q2 =
∑
`mm̄

√
2(`+ 1)ψ+

`m− 1
2
m̄
b`mm̄ , (3.170)

S1 =
∑
`mm̄

√
2(`+ 1) ψ̄−

`−1m− 1
2
m̄
a`mm̄ , (3.171)

S2 =
∑
`mm̄

√
2(`+ 1) ψ̄−

`−1m+ 1
2
m̄
a`mm̄ , (3.172)

The following diagrams summarises the previous paragraphs. The vertical

axis z corresponds to H, the horizontal axis to J3, J̄3. The blue, red states are

scalar states, the green states are fermionic. The black upwards arrows are the

Q supercharges, the S supercharges are the black downwards pointing arrows,

the Q̄ supercharges are orange arrows. The upwards purple arrows are the P22,

P12 generators, while the horizontal purple arrow is a J̄− generator. The states

contributing to the index are part of the yellow plane on all diagrams. The

Figure 3.1: Chiral States in Conformal Theory
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previous diagram corresponds to chiral multiplet in a superconformal theory. The

fermionic states are left-moving – the κ = + set of states of the previous sections

– and are generated through the action of Q on the scalar states. The scalar chiral

primary field |2− 3
2
r, (0, 0), (0, 0), r〉 is the lowest lying red state. One should note

that this chiral primary is annihilated by the Q̄ as well as the S, S̄ generator,

as expected. One generates all other blue scalar states through the action of

the purple P generators. Because of the commutation relation [P, S] = Q̄, these

descendent blue scalar states are also annihilated by S. Also, because [P, Q̄] = 0

they are also annihilated by Q̄. The point is that all scalar states are such that,

Q̄|φ`mm̄〉 = S|φ`mm̄〉 = 0 , (3.173)

and are hence compatible with the usual definition of a chiral field as a field

annihilated by Q̄, but also compatible with our definition of a chiral field (3.59)

as a field annihilated by the S supercharges. A supersymmetric chiral multiplet

is unsurprisingly made of a scalar state and a left-moving spinor related through

the action of a supercharge Q, which is illustrated in the diagram below. The

dashed red line surrounds the chiral multiplet, where there are two multiplets

surrounded by red and black tubes. Let us now focus on the antichiral multiplet.

1

Q1

J 3

H

Q2

Φl m m

Ψl,m+
1
2 ,mΨl,m-

1
2 ,m

-
1

2
0

1

2

J3

Figure 3.2: Basic Chiral Multiplet

This diagram corresponds to the antichiral supermultiplet mode expansion for
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Figure 3.3: Antichiral States in Conformal Theory

a superconformal theory. The red antichiral primary state is annihilated by Q,

S, S̄. All other scalar states are generated through the action of the purple

momentum generators P . Given that [P,Q] = 0, the blue descendent scalar

states are annihilated by the Q supercharges. As expected, the antichiral states

are unambiguously defined by the shortening condition,

Q|φ`mm̄〉 = 0 . (3.174)

One should then note that the fermionic states are right-moving – the κ = −
set of states of the previous sections. The H = ` + 1/2 , ` = 0 . . .∞ set of

fermionic states can be generated by acting with the orange Q̄ supercharges on

the red & blue scalar states such that H = `. Alternatively one can act with

the black S supercharges on the blue scalar states – not the red primary, which

is annihilated by S charges – such that H = ` + 1. This is illustrated in the

diagram below. Here, we generate the fermionic states in the antichiral multiplet

(3.66) by acting on scalar states with the S supercharge, which is indicated on
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the diagram below inside the black tube, while the standard definition of the

antichiral multiplet is given by acting on the scalar states with Q̄ supercharges,

as in the red tube below. The point is that the two definitions are equivalent,

because the set of states contributing in a superconformal theory are the same,

the only thing that varies is the way we arrange them in supermultiplets, either

through the action of the Q̄ supercharges or the S supercharges. One can also

Figure 3.4: Antichiral Multiplet

construct the chiral multiplet for a non-conformal theory. In that case, the R-

charge can take an arbitrary value above 2/3. The only symmetry of the theory

that remain are the supercharges Q and S, along with the rotation generators

SU(2)l × SU(2)r. The states with higher values of H are still present and arise

from the higher dimension representations of SU(2). One generates the fermionic

states through action of Q upon scalar states. For the antichiral supermultiplet,

the fermionic green states are generated by acting upon the scalar states with the

S supercharges. This implies that the lowest lying state |3
2
r, (0, 0), (0, 0),−r〉 is

annihilated by all supercharges of the non conformal theory on R×S3, that is Q

and S.

65



3. INDEX AND ARBITRARY R-CHARGES

Figure 3.5: Chiral Multiplet in a non Conformal Theory

Figure 3.6: Antichiral Multiplet States in non-Conformal Theory
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3.2.3 Vector Multiplet

Vector Field

In this section, we limit ourselves to a free abelian vector field. The non-

abelian case will be treated in a functional approach in a later section, and we

will also show that the free field theory index is exact, for both the scalar field

and the vector field. In expanding the vector field action, we use the shorthand,

∑
`mm̄ ρ=+

=
∞∑
`=0

`+2
2∑

m=− `+2
2

`
2∑

m̄=− `
2

,
∑

`mm̄ ρ=−

=
∞∑
`=0

`
2∑

m=− `
2

`+2
2∑

m̄=− `+2
2

, (3.175)

One can impose the Coulomb gauge for the spatial part of the vector field, and

hence expand it in divergenceless S3 spherical harmonics. Also one can expand

the timelike component of the vector in scalar harmonics,

A0(t,Ω) =
∑
`mm̄

A`mm̄(t)Y`mm̄ (Ω) , (3.176)

An(t,Ω) =
∑

`mm̄ ρ=±

Aρ`mm̄(t)Y ρ
`mm̄n(Ω) . (3.177)

Note that, the reality condition Bm = B∗m imply the following relation between

modes,

A∗`mm̄ = A`−m−m̄ . (3.178)

The Lagrangian can the be obtained using (3.120) for the vector can then be

rewritten, after expansion into harmonics, as,

L[Am] =
∑

`mm̄ ρ=±

Aρ`−m−m̄(∂t − (`+ 2)2)Aρ`mm̄ , (3.179)

L[A0] =
∑
`mm̄

(−1)m−m̄ `
2
(`+ 2)A`−m−m̄A`mm̄ , (3.180)
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is the free field value of the conformal dimension of vector field descendants. The

conjugate momenta,

π+
`mm̄(t) = ∂0B

+
n,−m,−m̄ + g[α,B+

n,−m,−m̄] , (3.181)

π−`mm̄(t) = ∂0B
−
n,−m,−m̄ + g[α,B−n,−m,−m̄] . (3.182)

Define the following modes,

a`mm̄ρ(t) =
1√

2(`+ 2)
(πρ`−m−m̄ + i(`+ 2)Bρ

`mm̄) , (3.183)

a+
`mm̄ρ(t) =

1√
2(`+ 2)

(πρ`mm̄ − i(`+ 2)Bρ
`−m−m̄) . (3.184)

The R-charge being zero, the hamiltonian, angular momentum generator and H
are,

H =
∑
`mm̄ρ

(`+ 2) a+
`mm̄ρa`mm̄ρ , (3.185)

J3 =
∑
`mm̄ρ

ma+
`mm̄ρa`mm̄ρ , (3.186)

J̄3 =
∑
`mm̄ρ

m̄ a+
`mm̄ρa`mm̄ρ , (3.187)

H =
∑
`mm̄ρ

(`+ 2− 2m) a+
`mm̄ρa`mm̄ρ , (3.188)

The index for the vector field is obtained from the contribution of the zero modes

for H, which are given by the a`− `+2
2
m̄+ modes. Summing over those,

∞∑
`=0

`
2∑

m̄=− `
2

t`+2x2m̄ =
t2

(1− tx)(1− tx−1)
. (3.189)

The vector states contributing to the vector index are given by,

|`+ 2, m̄〉0 = |`+ 2 ( `+2
2
, `+2

2
) ( `

2
, m̄) 〉0 . (3.190)
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Define the following parent state,

|2〉0 = |2 (1, 1) (0, 0) 〉0 , (3.191)

One can generate all states |`+2, m̄〉0 by acting with J̄−, P22. The corresponding

Verma module is spanned by,

|`+ 2 m̄〉0 ∝ J̄−
`
2
−m̄P `

22|0〉r . (3.192)

or alternatively defined via the action of P2α̇. The corresponding truncated char-

acter hence reads,

∞∑
`=0

`
2∑

m̄=− `
2

s2(`+2)x`+2x̄2m̄ =
s4x2

(1− s2xx̄)(1− s2xx̄−1)
(3.193)

Rescaling the variables as in equation (2.141) allows one to recover the expression

for the vector part of the index.

Gaugino

Finally for the gaugino, the Lagrangian reads,

Lλ =
∑
`mm̄κ

λ̄κ`mm̄
(
i∂0 − κ

(
`+ 3

2

))
λκ`mm̄ , (3.194)

which allows to write the conjugate momenta,

π+
`mm̄(t) =

∂L

∂λ̇+
`mm̄

= iλ̄+
`mm̄ , (3.195)

π−`mm̄(t) =
∂L

∂λ̇−`mm̄
= iλ̄−`mm̄ . (3.196)
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This leads to the hamiltonian, R-charge and angular momentum generators,

H =
∑
`mm̄+

(
`+ 3

2

)
λ+
`mm̄λ̄

+
`mm̄ +

∑
`mm̄−

(
`+ 3

2

)
λ̄−`mm̄λ

−
`mm̄ , (3.197)

J3 =
∑
`mm̄+

mλ+
`mm̄λ̄

+
`mm̄ −

∑
`mm̄−

mλ̄−`mm̄λ
−
`mm̄ , (3.198)

J̄3 =
∑
`mm̄+

m̄ λ+
`mm̄λ̄

+
`mm̄ −

∑
`mm̄−

m̄ λ̄−`mm̄λ
−
`mm̄ , (3.199)

R =
∑
`mm̄+

λ+
`mm̄λ̄

+
`mm̄ −

∑
`mm̄−

λ̄−`mm̄λ
−
`mm̄ . (3.200)

This leads to the expression for H,

H =
∑

`,m,m̄,+

(`+ 3− 2m)λ̄+
`mm̄λ

+
`mm̄ +

∑
`,m,m̄,−

(`− 2m)λ̄−`mm̄λ
−
`mm̄ , (3.201)

and the zero modes are given by λ̄−
` `

2
m̄

. Summing over those modes for the index,

including the necessary minus sign, gives,

−
∞∑
`=0

`+1
2∑

m̄=− `+1
2

t`+1x2m̄ =
t2 − t(x+ x−1)

(1− tx)(1− tx−1)
. (3.202)

All gaugino fermionic states contributing to the index are given by,

|`+ 3
2
, m̄〉−1 = |`+ 3

2
( `

2
, `

2
) ( `+1

2
, m̄) 〉−1 , (3.203)

The character restricted to these states is given by,

∞∑
`=0

`+1
2∑

m̄=− `+1
2

s2(`+ 3
2

)u−1x`x̄2m̄ = −s
3xu−1(s2 − x−1(x̄+ x̄−1))

(1− s2xx̄−1)(1− s2xx̄)
(3.204)

From reading this expansion, one can see that all contributing states can be

generated by acting with {J̄−, P22} or P2α̇ on the following parent states,

|1
2
± 1

2
〉−1 = |3

2
(0, 0) (1

2
,±1

2
) 〉−1 , (3.205)
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modulo the following constraint, which can most easily be explained in the context

of a superconformal theory by the following equality,

P21λ̄2 = P22λ̄1 . (3.206)

To avoid double-counting any of those states, a compensation term proportional

to s5u−1x in the character expression, proportional to x2 in the index expression.

As usual, the index can be recovered by rescaling the character variables following

equation (2.141).

3.3 A Second Look at Characters

We now focus on repeating analysis from chapter (2) for the subalgebra SU(2, 1)

which was defined in section (2.2).

3.3.1 Short, Long Representations of SU(2,1) Subalgebra

As pointed earlier, the relevant subalgebra is (3.27). Let us first list the shortening

conditions for this algebra. So called short representations, or chiral multiplets

are now defined as,

f = 1 , Qα|∆, r, 0, ̄〉h.w. = 0 , (3.207)

f̄ = 1 , Sα |∆, r, j, 0〉h.w. = 0 , (3.208)

while semi-short representations are annihilated by the following supercharges,

Q̃1 = Q1 +
1

2j
Q2J− , j 6= 0 , (3.209)

S̃1 = S1 +
1

2j
J+S

2 , j 6= 0 . (3.210)

One can then define the following semi-short representations,

f = 1
2
, Q̃1|∆, r, j, ̄〉h.w. = 0 , j 6= 0 , (3.211)

f̄ = 1
2
, S̃1 |∆, r, j, ̄〉h.w. = 0 , ̄ 6= 0 , (3.212)
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When j or ̄ = 0, the natural shortening condition is given by,

f = 1
2
, Q2|∆, r, 0, ̄〉h.w. = 0 , (3.213)

f̄ = 1
2
, S2|∆, r, j, 0〉h.w. = 0 , (3.214)

Note that the shortening conditions impose much less severe restrictions on the R-

charge and the scaling dimensions of the states part of the various representations.

These shortening conditions can be summarised with the following diagrams,

In this diagram, ↘ corresponds to Sβ while ↖ corresponds to Qα. All states

∆ + 1 (r − 2)(j,̄)

↖
∆ + 1

2
(r − 1)(j± 1

2
,̄)

↖
∆ (r)(j,̄)

↘
∆− 1

2
(r + 1)(j± 1

2
,̄)

↘
∆− 1 (r + 2)(j,̄)

Figure 3.7: Long Representation Ṽ 0,0
∆,r,j,̄

indicated corresponds to a (j, ̄) representation of SU(2)l × SU(2)r. They also

include an infinite tower of states which correspond to higher energy states, so,

the seed state (r)j̄ also includes in fact all the following,

(∆, r)(j,̄) ,

(∆ + 1, r)(j+ 1
2
,̄+ 1

2
) ,

(∆ + 2, r)(j+1,̄+1) ,

. . .

One can then write down the corresponding diagram for what we will call

chiral and antichiral representations. The shortening condition for the antichiral

representations will involve the Qα supercharges, as usual, while the antichiral

representations are defined as being annihilated by the Sβ supercharges.
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∆ + 1 (r − 2)(j,̄)

↖
∆ + 1

2
(r − 1)(j± 1

2
,̄)

↖
∆ (r)(j,̄)

∆ (−r)(j,̄)

↘
∆− 1

2
(−r + 1)(j± 1

2
,̄)

↘
∆− 1 (−r + 2)(j,̄)

Figure 3.8: Chiral, Antichiral Representations Ṽ 0,1
∆,r,j,̄, and Ṽ 1,0

∆,−r,j,̄ right

Finally, one has the short representations, In the last diagram, the remaining

∆ + 1
2

(r − 1)(j+ 1
2
,̄)

↖
∆ (r)(j,̄)

∆ (−r)(j,̄)

↘
∆− 1

2
(−r + 1)(j− 1

2
,̄)

Figure 3.9: Short Representations Ṽ
1
2
,1

∆,r,j,̄, and Ṽ
1, 1

2
∆,−r,j,̄ right

supercharges are Q2 and S2. The last represention is the only one whose quantum

numbers are constrained by the shortening condition,

{Q1, S
β}|∆, r, ̄〉h.w. (3.215)

3.3.2 Character and Indices Calculation

Based on the previous analysis, one can give the characters for the various rep-

resentations. Define the supercharges factors,

Q(s, u, x)=
∏
ε=±1

(1 + su−1xε) , (3.216)

S(s, u, x)=
∏
ε=±1

(1 + s−1uxε) , (3.217)
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Hence, one can give the following characters for the various representations,

χ0,0
∆,r,j,̄(s, u, x, x̄) = s2∆ur χ̄(x̄)χj(x)Q(s, u, x)S(s, u, x) , (3.218)

χ0,1
∆,r,j,̄(s, u, x, x̄) = s2∆ur χ̄(x̄)χj(x)Q(s, u, x) , (3.219)

χ1,0
∆,r,j,̄(s, u, x, x̄) = s2∆u−rχ̄(x̄)χj(x)S(s, u, x) , (3.220)

χ
1
2
,1

∆,r,j,̄(s, u, x, x̄) = s2∆ur χ̄(x̄)(χj(x) + su−1χj+ 1
2
(x)) , (3.221)

χ
1, 1

2
∆,r,j,̄(s, u, x, x̄) = s2∆u−rχ̄(x̄)(χj(x) + s−1uχj− 1

2
(x)) , (3.222)

and finally,

χ
1, 1

2
∆,r,j,̄(s, u, x, x̄) =

s2∆u−rχ̄(x̄)(χj(x) + s−1uχj− 1
2
(x)) if j 6= 0 ,

s2∆u−rχ̄(x̄)χj(x) if j = 0 ,
(3.223)

Based on the previous analysis, one can compute the index from by taking the

appropriate limit as defined in equation (2.141). For the chiral field, one gets,

∞∑
l=0

χ
1
2
,1

∆l,r,r,
l
2
, l
2

(y
1
2 , y

3
2 t−1,−ty−1,−x) = − t2−r

(1− tx)(1− tx−1)
(3.224)

with,

∆l,r = l + 2− 3
2
r , (3.225)

while for the antichiral field,

∞∑
l=0

χ
1, 1

2

∆̄l,r,−r, l2 ,
l
2

(y
1
2 , y

3
2 t−1,−ty−1,−x) =

tr

(1− tx)(1− tx−1)
(3.226)

with the scaling dimension given by,

∆̄l,r = l + 3
2
r . (3.227)

The values of the scaling dimensions can be obtained by radially quantising a the-

ory invariant under the previous symmetry group. The states that are captured
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by the χ
1
2
,1 character limit in equation (3.224) are the following,

|l + 2− 3
2
r, ( l

2
,m), ( l

2
, m̄)〉r , |l + 5

2
− 3

2
r, ( l+1

2
,m), ( l

2
, m̄)〉r−1 , (3.228)

where we have used the following notation in the equation above,

|H, (j,m), (̄, m̄)〉R , (3.229)

which denotes an (m, m̄) eigenvalue state part of a (j, ̄) representation of the

SU(2)l×SU(2)r. In order to contribute to the index, these states have to exhibit

a zero H eigenvalue, and the only ones that actually fullfill this constraint are

fermionic states such that,

|l + 5
2
− 3

2
r, ( l+1

2
,− l+1

2
), ( l

2
, m̄)〉r−1 , (3.230)

On the other hand, the states captured by the χ1, 1
2 character limit in equation

(3.226) are the following,

|l + 3
2
r, ( l

2
,m), ( l

2
, m̄)〉−r , |l + 1

2
+ 3

2
r, ( l

2
,m), ( l+1

2
, m̄)〉−r+1 (3.231)

and the states contributing to the index are given by the following,

|l + 3
2
r, ( l

2
,− l

2
), ( l

2
, m̄)〉−r (3.232)

Hence, one the antichiral scalar states contribute to the index, while the chiral

spinor states contribute to the index.
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Chapter 4

Index and Localisation

In this chapter, we clarify the status of the topological nature of the index. In

order to settle this issue, we compute the index as a partition function on R×S3

and then use localisation methods to prove the exactness of the free field theory

result.

4.1 General Setup

4.1.1 Index as a Path Integral

The usual definition of a path integral in bosonic quantum theory with a finite β

time interval or β−1 temperature is given by,

Tr e−βH =

∫
PBC

[dX]eiS[X] , (4.1)

with PBC denoting periodic boundary conditions on the bosonic quantum states,

and H the time translation generator H = P0. For fermionic quantum states,

one then has the choice between periodic and antiperiodic boundary conditions.

The former lead to an alternative definition of the index, while the latter leads

to a regular path integral. Let us review the situation with the index, following

closely a discussion in [34].

Consider a correlation function involving fermions exclusively. The number
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of fermions has to be even for the result to be nonzero. Let us take an operator

approach, and consider the time ordered product of fermionic operators. Take

one of the inserted fermionic operator and continuously move it accross the time

interval. It will have to go past an odd number of fermionic operators, picking

up a minus sign every time. It will then hit the periodic boundary and come

back to its original position having gained one overall minus sign. In order for

the correlation function to be invariant under such operation, one has to insert a

factor of (−1)F in front of all correlation functions. Going back to a path integral

approach, the generalisation of the above formula (4.1) to a theory involving

fermionic and bosonic states is given by,

Tr (−1)F e−βH =

∫
PBC

[dX]eiS[X] , Tr e−βH =

∫
Fer. aPBC
Bos. PBC

[dX]eiS[X] , (4.2)

with the subscript aPBC denoting antiperiodic boundary conditions for fermions

in the computation of the plain path integral. The index may be evaluated by em-

ploying radial quantisation, using a path integral representation, compactifying

the time direction from R to a circle S1 of period β so that, in (2.49),

s = e−β , (4.3)

To make the path integral well defined we will Wick rotate the time direction1,

∂0 = i∂τ , (4.4)

which then leads to the following definition for the index [77],

I(β) = Tr (−1)F e−βH =

∫
PBC

[dX]e−SE [X] , (4.5)

where X denotes the fields contributing, and SE denotes the Euclideanised action

on S1 × S3.

1In the remainder of this thesis, we will always take the Minkowski time subscript to be
zero, while the Euclidean time will be denoted b τ.
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4.1.2 Topological Invariance of the Index

The above representation of the index is convenient to explore the topological

properties of the index [77]. Define the expectation value of an operator O as,

〈O〉β =

∫
PBC

[dX]Oe−SE [X]∫
PBC

[dX]e−SE [X]
(4.6)

with periodic boundar conditions along a time interval of length β. One has the

following properties or the index.

• The index is independent of β.

• The usual flat space vacuum expectation value of an operator is just the

limit 〈O〉∞.

• If O is an operator such that, δO = εαQαO then,

I(β)〈δO〉β = 0 (4.7)

Hence if I(∞) 6= 0 then supersymmetry is unbroken. A necessary condition

for dynamical supersymmetry breaking is I(β) = 0.

• The index is invariant under contiuous deformations of the theory. If one

assumes,

L =
∑
i

λiLi , (4.8)

then,
∂I

∂λi
= −I(β)

∫
d4x〈Li〉β (4.9)

Assuming these Lagrangians are exact under supersymmetry, or equiva-

lently that they can be recast as F or D-terms of certain superfields, one

can write,

〈Li〉 ∝ 〈δOi〉 = 0 , (4.10)

and consequently equation (4.9) is zero. Hence, assuming all pieces of the

Lagrangian to be δ-exact implies the invariance of the Lagrangian under

continuous deformation.
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4.1.3 Twisting the Boundary Conditions on S1 × S3

When dealing with supersymmetry in the usual flat space context with any num-

ber of dimensions, the time translations are generated by the zeroth component

of the vector of translation generators. When commuting this generator with the

supercharges of the theory,

[P0, Qα] = 0 , (4.11)

which then implies that the Killing spinors ε does not have a time dependence.

Consequently, the variation supersymmetry variation,

φ→ φ+ εαψα , (4.12)

is compatible with periodic boundary conditions for both the spinor ψ and the

scalar φ, as the left hand side and the right hand side are both invariant under,

φ(τ + β) = φ(τ) , ψα(τ + β) = ψ(τ) ,
∂εα

∂τ
= 0 . (4.13)

In a radially quantised context, the situation is different. The time translation

generator is identified with the dilation operator H which has nonzero commu-

tator with all supercharges (A.7) which then leads to time dependence of the

Killing spinor as shown in (3.53). This then implies that equation (4.12) is not

compatible with plain periodic boundary conditions, because of the non-trivial

time-dependence of the Killing spinor.

When computing an index as a path integral, the right definition for the time

translation operator is not in term of dilation operator or in terms of translation

generators, but rather in terms of supercharges. In the previous section, the

following definition held for the time translation generator,

{Q,Q†} = 2P0 , (4.14)

Here, we will do the same, having chosen one particular supercharge within our

subalgebra Q = Q1, as well as having identified the appropriate hermitean conju-

gation +, the counterpart of equation (4.14) was given earlier in (2.34) or equiva-
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lently (2.34). Consequently, in order to maintain consistency with supersymme-

try when compactifying the time direction from R to S1 a twist of the boundary

conditions is required, which implements the transformation,

H
twist−−→ H , (4.15)

or explicitly,

i∂0
twist−−→ i∂0 + 3

2
R− 2J3 , (4.16)

with R the differential operator associated with the R-charge, as defined in equa-

tion (3.32). We will not need its expression1, however one can still use the ap-

proach in equation (3.50) to assign an R-charge to Killing spinors,

Rεα = εα , Rε̄α = −ε̄α . (4.17)

In practice, the twisting is achieved by rescaling all fields X = {φ, ψ, F,A, λ,D}
and their conjugates as,

X = e−it(
3
2
R−2J3)X̃ , (4.18)

and this also applies to Killing spinors [78], using the explicit R charge we defined

earlier 4.17. Then, using equation (4.18) applied to the Killing spinor, along with

the eigenvalues we have assigned them allows, which leads to the following,

εα1 = e
it
2 ε̃α1 , (4.19)

The periodicity boundary conditions are then imposed on the rescaled fields in

the usual fashion for both fermionic and bosonic fields,

X̃(τ + β) = X̃(τ) . (4.20)

Then, imposing periodic boundary conditions on {φ̃, ψ̃} is compatible with the

times dependence of the Killing spinor, and a supersymmetric theory can be

defined on a compact time direction, with the following supersymmetry transfor-

1In a superspace formulation, with fermionic parameters (ηα, η̄
α), it would be R = ηα ∂

∂ηα +

η̄α ∂
∂η̄α
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mation

φ̃→ φ̃+ ε̃αψ̃α , with ε̃α1 = δα1 (4.21)

If one wanted to write the supersymmetry transformations for the entire

twisted chiral multiplet, one would just need to modify the time derivatives as in

(4.16). For instance,

δ̃φ̃ = ε̃αψ̃α , (4.22)

˜̄δψ̃α = ˜̄εα(i∂0 − 2i∇3)φ+ 2i(σm˜̄ε)α∇mφ , (4.23)

One should note that the previous analysis is not valid for the Killing spinors

defined in equation (3.54). This is because the J3 eigenvalue of ψ2 is −1
2

and

does not allow for a proper cancellation of the prefactors to get to equation

(4.21). The point is that the twisted theory is only invariant under the following

supersymmetries,

δ1X = [εα1Qα, X] , δ̄1X = [ε̄1αS
α, X] . (4.24)

Once again, the 1 sub/super-scripts are not spinor indices, they simply label the

various supersymmetry variations of the theory. This said, given the definition of

εα1 , ε̄1α given in equation (3.53), one can certainly think of δ1, δ̄1 as corresponding

to Q1, S1 respectively. The point is that the twisted theory is not invariant under

Q2, S2, and so we have promoted Q1, S1 to scalar superharges through twisting.

This finally leads us to the path integral for the 4-dimensional index,

Tr (−1)F e−βH =

∫
PBC

[dX] exp(−Stwist
E [X]) , (4.25)

with the euclidean action twisted following equation (4.16). Overall, we have

shown that we can compactify the time direction to a finite temperature interval

with periodic boundary conditions for all fields and preserve 2 supersymmetries

out of the 4 that we had started with in an uncompactified setting1.

1The theory on R× S3 is an N = 1 supersymmetric theory with 4 supercharges
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We now want to compute the full superconformal index (2.49). In fact, we

have no choice. As has been pointed out in the previous chapters, there is an

infinite number of states in the Q-cohomology contributing to the index. Hence

we need to weigh there contibutions by the remaining Cartans of SU(2, 1). This

can be done by twisting further the theory under consideration. In order to do

that, we first write the fugacities s, x, y in terms of the corresponding chemical

potentials,

s = e−β , x = e−βγx , y = e−βγy , (4.26)

and rewrite the index as,

Tr (−1)F sH+γx(R−2J3)+2γy J̄3 , (4.27)

To compute this in the context we have layed out, we further twist the time

derivative,

i∂0
twist−−→ i∂0 + 3

2
R− 2J3 + γx(R− 2J3)− 2γyJ̄3 (4.28)

One can straightforwardly understand the relevance of twisting in a generic, not

necesarily supersymmetric theory, in modifying a given hamiltonian to include

other generators. Consider the complex scalar field φ with the Lagrangian:

L[φ, φ†] = −φ†(dτ + a)2φ+ b2φ†φ (4.29)

Note that this Lagrangian is euclidean. The conjugate momenta are given by the

following:

p = (dτ − a)φ† , p† = (dτ + a)φ . (4.30)

Expanding in modes,

a+
1 =

1√
2b

(
p+ bφ†

)
, a1 =

1√
2b

(
p† − bφ

)
, (4.31)

a+
2 =

1√
2b

(
p† + bφ

)
a2 =

1√
2b

(
p− bφ†

)
, (4.32)

and imposing the following canonical commutation relations,

[a+
1 , a1] = 1 , [a+

2 , a2] = 1 , (4.33)
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the hamiltonian can then be written as,

H = (a+ b)a+
1 a1 + (b− a)a+

2 a2 (4.34)

Equation (4.34) implies that the eigenvalues of the hamiltonian are given by:

h = ±a+ b (4.35)

This Lagrangian is invariant under U(1) transformations1:

[T, φ] = αφ (4.36)

One can write the charge operator in the following fashion:

T = −α a+
1 a1 + α a+

2 a2 (4.37)

Hence if one defines the modified hamitonian:

H̃ = H + T = (a− α + b)a+
1 a1 + (b− a+ α)a+

2 a2 (4.38)

One can see that this modified Lagrangian is the same as the one in equation

(4.34), where the following transformation has been performed,

a
twist−−→ a− T (4.39)

with T the differential operator associated with T as defined in equation (3.32).

One can then compute the so called partition function associated with H̃ by using

the following twisted Lagrangian:

L[φ, φ†, T ] = −φ†(dτ + a− T )2φ+ b2φ†φ (4.40)

This prescription can be generalised to any set of fugacities.

To make contact with previous chapters, we will compute the generic partition

1These considerations generalise to any type of global symmetries of the theory.
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function,

Tr(−1)F s2HuRx2J3x̄2J̄3 , (4.41)

using the twisting procedure previously discussed, the relevant fugacities are de-

fined as,

s = e−β , u = e−βγu , x = e−βγx , x̄ = e−βγx̄ , (4.42)

which allows us to compute the partition function (4.41) by simply computing a

free field theory path integral with the following twisted time derivatives,

∂τ
twist−−→ ∂τ − T , T (γu, γx, γx̄) = γxJ3 + γx̄J̄3 + 1

2
γuR . (4.43)

∂τX
twist−−→ ∂τX + [T, X] , T (γu, γx, γx̄) = γxJ3 + γx̄J̄3 + 1

2
γuR . (4.44)

We then take the limit (2.141) to obtain the free field value of the index, which

we show to be the exact result in the following section.

4.1.4 Supersymmetry and Localisation

Here we review the localisation framework. Our aim is to explain the usual state-

ment about localisation which is essentially the following [79],

“Localisation allows the exact computation of correlation functions of Q-closed

operators, where Q is a supercharge promoted to a scalar operator by twisting the

boundary conditions of a finite time direction in a Euclidean field theory”.

Localisation as a Handle on Strong Coupling

In the context of supersymetric theories, localisation allows for exact compu-

tation of expectation values of certain operators invariant under a chosen scalar

supercharge, regardless of the value of the coupling [80]. This makes it a com-

plement to the strong coupling calculation methods based on dualities as the

gauge-string duality in 4 and in 3 dimensions [6] and [7] as well as the electro-

magnetic duality. One of localisation’s main advantage is that it can be used

with any theory which includes just one supercharge. However it is restricted to

the computation of expectation values of operators closed under this supercharge.
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Obviously, calculations based on dualities do not have this restriction, however,

the theories considered have more symmetries, and are hence more peculiar and

less phenomenologically realistic.

Localisation has lead to important progress in the understanding of super-

symmetric theories over the last few years. There was first the proof by Pestun

[81, 82] of the matrix model conjecture due Erickson, Semenoff, Zarembo and

Drukker, Gross [83] and [84] for Wilson loops, which had first been postulated

following AdS/CFT. Before that, the Seiberg Witten prepotential for 4 dimen-

sional N = 2 theories had been computed exactly using localisation techniques

[85, 86, 87]. More recently, Drukker, Mariño and Putrov computed the exact

partition function for ABJM theory [88] as well as the planar free energy of the

theory, from they were able to extract the correct N
3
2 scaling for the number of

degrees of freedom of M2 brane theories. Finally, the index for 3-dimensional the-

ory was computed exactly for ABJM theory [12, 89], with a generalisation of this

index to arbitrary R-charges given in [78]. This computation, just like Pestun’s,

is important because they correspond to field theory calculations which are exact

to all orders in perturbation theory, which also incorporate all non-perturbative

corrections. Localisation was also used [90] to test three dimensional Seiberg like

dualities in three dimensions for Chern-Simons theory [91] [92]. Such a calculation

was also performed for the index in 3 dimensional Chern-Simons matter theory

for the index [93]. Also, a very similar aproach to the one in this chapter is given

in [78], where the index on S2×S1 is computed for theories with general R-charge

assignments for the matter fields.

General Considerations

An exact computation of the path integral for the index can then be per-

formed using localisation arguments [10]. This procedure relies on the existence

of a fermionic supercharge δ, which annihilates the action, and for which the

square δ2 = H is a bosonic symmetry of the action. This method relies on the

invariance of the path integral under the addition of δ-exact term to the action.

The correlation function of any operator δ-closed operator is invariant under such
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a transformation,

d

dα

∫
[dX]O e−SE [X]−αδV = 0 , with δO = 0 , (4.45)

This can be shown in the following fashion [77], as equation (4.45) is proportional

to, ∫
[dX](δV )O e−SE [X]−αδV = δ

(∫
[dX]OV e−SE [X]−αδV

)
= 0 , (4.46)

The requirements on V is invariance under the bosonic symmetry H,

HV = 0 , (4.47)

This property the allows one take the limit,

α→∞ , (4.48)

provided δV can be shown to be positive definite fo well-definedness of the limit.

This then makes the saddle point approximation exact. Generically, the saddle

point, or one loop approximation can be summarised as follows. Consider the

bounded below function f(x),∫
dx e−αf(x) =

∫
dx exp(−αf(xc)− 1

2!
αf (2)(xc)(x− xc)2

− 1
3!
αf (3)(xc)(x− xc)3 + . . . )

=
∑
{xc}

√
2π

αf (2)(xc)
e−αf(xc) +O(α−1) , (4.49)

with xc the set of critical points for f defined as,

∂f

∂x

∣∣∣∣
xc

= 0 . (4.50)
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In the α→∞ limit, the approximation becomes more and more accurate. In the

following we will show that for both the vector and the scalar multiplet,

Lφ = δVφ , Lint. = δVint. , LA =
1

g2
(δ + s)VA , (4.51)

these actions have been defined in equations (3.96), (3.100), (3.104), and VA,Vφ
are functionals invariant under H. When dealing with the gauge theory, one has

to localise the gauge fixed theory. This is achieved by using a standard BRS

procedure as explained in [53] and by adding to the localisation supercharge the

BRS charge, δ → δ + s ,. One can then identify αA with the gauge coupling 1
g2

and take the coupling g to zero which is a free field theory limit. We will need to

put an αφ parameter in front of S[φ, ψ, F ] as well, because the definition (3.96)

of the chiral multiplet action does not include any superpotential terms. Should

the theory under consideration have a superpotential, the αφ → ∞ limit makes

sure that the superpotential can be neglected in the sense that the associated

coupling constant will not contribute, and the index can be computed in a free

field theory approach. This is the input of the localisation approach.

4.1.5 A Remark on the Superpotential and the Index

One cannot however completely forget about the superpotential [32, 33] as it can

break some of the global symmetries of the free theory. So the superpotential

will in fact affect the very definition of the index, as one will associate fugacities

to the symmetries that are preserved by the superpotential. In the case of a

Wess-Zumino model with superpotential,

W (φ) = φn , (4.52)

with the constraint,

nr = 2 , (4.53)

the global U(1) symmetry is broken down to Zn and the superconformal index

for an ungauged chiral multiplet in equation (2.88) is modified to the following
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expression,

iφ(t, x, h)→ iφ(t, x, ω) =
trω − t2−rω−1

(1− tx)(1− tx−1)
, (4.54)

with ω such that,

ωn = 1 . (4.55)

Given the constraints on the superpotential and the R-charge (4.53), the single

particle index can be rewritten,

iφ(t, x, ω) =
trω − (trω)n−1

(1− tx)(1− tx−1)
. (4.56)

This implies that for n = 2, i.e. for a massive multiplet, the contribution to the

index drops out. This can be interpreted as the index being a quantity probing the

infra-red of a given theory, which implies that massive multiplets are essentially

integrated out from the index.

4.1.6 Practical Setup for Localisation

The localisation supercharge we will use will be a generic one,

[QL, X] = (δ + δ̄)X , (4.57)

which will be generated by mutually complex conjugate Killing spinor as defined

in (3.53), so either {εα1 , ε̄ 1
α} or {εα2 , ε̄ 2

α}. Here, we will take QL as the sum of

εα1Qα and ε1αS
α for instance. Provided that QL squares to a bosonic symmetry of

the theory which leaves V invariant, one can take QL to be fermionic, hence the

Killing spinors are commuting quantities. As defined, the supercharge squares

to,

Q2
L = H + 3

2
R− 2VmJm , (4.58)

and if one makes the choice of Killing spinors {εα1 , ε̄ 1
α} then QL squares to the

modified hamiltonian H defined in equation (2.37).

For practical calculations, we will need to take a finite size time direction.

Consequently, to ensure compatibility with supersymmetry we will need to twist
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the theory and break half the supersymmetries. When taking the radius of the

thermal circle S1 to infinity, we will recover the full supersymmetry.

One could then ask, why could we not take the radius of S1 to infinity, which

would restore QL as a preferred supercharge, as opposed to Q, keep H as a

hamiltonian, include fugacities associated with R, J3, J̄3, which commute with

QL in the untwisted infinite radius theory. We would then be able to define an

index which would be topologically protected via localisation as well? It would

be computed on an S1 and its radius would be taken to inifinity at the end of the

calculation. This would be its expression,

Tr (−1)F sHuRxJ3x̄J̄3 . (4.59)

However this doesn’t work [94]. In the infinite radius theory, the set of states

to be considered becomes a continuum with an associated density of states. In

particular, it might not be true that |φ〉 and QL|φ〉 have the same density. The

index expression would then look like,

(−1)f
∫
dω(g+(ω)− g−(ω))Iω(s, u, x, x̄) , (4.60)

with g+(ω), g−(ω) the densities of states for |φ〉 and QL|φ〉 respectively. If the

density g± are not identical at a given energy level, the previous analysis essen-

tially breaks down. Some 2-dimensional examples of such phenomenon were given

in [95] based on the Callias-Bott-Seeley index theorem [96, 97]. Also, in 4 dimen-

sions, we were unable to exhibit any kind of electric-magnetic duality matching

for indices defined as in (4.59).

In practice, we compute the localisation action [QL, Vφ], [QL, VA] using the

standard supersymmetry transformations for instance (3.62) and apply the twist-

ing at the end. As we have noted before, the twisting procedure modifies the the

Killing spinors and makes them essentially time independent as was shown in

equation (4.21). At the level of the supercharge, this then implies that under
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twisting, the supercharge QL, when taken to be generated by {εα1 , ε1α},

QL
twist−−→ Q (4.61)

where Q had been defined in equation (2.36). So the twisting indeed promotes

a spinorial supercharge to a scalar operator, and this can be traced back to the

requirement of periodicity of all fields along the euclidean time direction. Now

that we have established that the twisted path integral is invariant under Q –

and not QL – it is clear from a path integral point of vue, that the only index

that can consistently be defined to satisy the localisation requirements is the one

given in equation (2.49). One should think of this quantity as the expectation

value of an operator under twisted boundary conditions,

I(x, y) = 〈x−R+2J3y2J̄3〉 , (4.62)

and the localisation argument can be used because,

[
Q, x−R+2J3

]
=
[
Q, y2J̄3

]
= 0 . (4.63)

In this setting, the computation of the index reduces to the computation of the

twisted one loop determinant around trivial backgrounds for all fields.

Geometric Interpretation

The twisting has the following impact on the supercharges of the theory. Con-

sider a superconformal theory, and see how the supercharges decomposes under

the isometries of R×S3 which are U(1)×SU(2)L×SU(2)R. In addition to these

isometries, we have the R-charge.

SU(2, 2)× U(1)R → SU(2)L × SU(2)R × U(1)× U(1)R

Q̄B 41 → (1, 2)− 1
2
,1 ⊕ (2, 1) 1

2
,1

QA 4̄−1 → (1, 2) 1
2
,−1 ⊕ (2, 1)− 1

2
,−1

(4.64)

with Q̄B, QA as defined in equation (2.29). When the theory is not conformal

anymore, the only supercharges left are the the undotted supercharges Qα, Sβ.
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After twisting the theory, the theory is supersymmetric on S1×S3 with periodic

boundary conditions on the rescaled fields X̃ defined , and the only supercharges

left are Q1, S1 as scalar supercharges, and 0 charge under R and H,

Sβ (2, 1) 1
2
,1

twist−−→ Q1 (1, 1)0,0

Qα (2, 1)− 1
2
,−1

twist−−→ S1 (1, 1)0,0

(4.65)

This is a slightly different approach from the one taken in [80]. The theory under

consideration there is a 4 dimensional N = 2 supersymmetric theory which is

naturally constructed by extending a 3 dimensional Floer theory to a relativistic

setting. One can also regard it as a spatially twisted version of 4 dimensional

N = 2 supersymmetric Yang-Mills theory. R4 has an SU(2)L×SU(2)R isometry.

Also, N = 2 theories have the SU(2)U × U(1)I R-symmetry. The theory is

twisted by considering an exotic action of the 4 dimensional rotation group. It is

replaced with SU(2)L × SU(2)′R, where SU(2)′R is the diagonal sum of SU(2)R

and SU(2)U . Under this twisting, the supercharges are modified as,

SU(2)L × SU(2)R × SU(2)U × U(1)I
twist−−→ SU(2)L × SU(2)′R × U(1)I

(1
2
, 0, 1

2
)−1 ⊕ (0, 1

2
, 1

2
)1

twist−−→ (1
2
, 1

2
)−1 ⊕ (0, 1)1 ⊕ (0, 0)1 ,

(4.66)

hence the Lorentz scalar supercharge identified for localisation purposes is the

(0, 0)1 component. Explicitly, this supercharge can be constructed by contracting

SU(2)R and SU(2)I [98] with the the usual antisymmetric tensor ε used to raise

and lower spinor indices,

Q = εAα̇QA α̇ , (4.67)

with α̇ the usual SU(2)R index and A the SU(2)I index. In the approach we

have taken, imposing the periodicity boundary conditions on the fields meant

we had to redefine the degrees of freedom of the theory we are considering on

S1 × S3, and that this modified theory is only invariant under one preserved

supercharge Q = Q1 and its conjugate S1. On the other hand, the twisted

theory in [80] is really the standard N = 2 supersymmetric Yang-Mills theory

written with an exotic action of the rotation group. Ultimately, Witten’s twisting

is a reformulation of the same theory in a different basis which allows for a
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scalar supercharge, whereas our approach is an actual modification of a given

theory to make it fit on a compactified manifold, which only allows us to keep on

supercharge, and the latter get promoted to a scalar operator.

4.1.7 Localisation Actions

The scalar field action (3.96), with the derivatives gauge covariantised, including

the gauge interaction terms (3.104) may be written in aQL-exact fashion [QL, Vφ]

with Vφ defined as,

Vφ = 1
2
(ψβεα[Qβ, ψ̄

α]− ε̄α[Q̄β, ψ̄
α])− 1

2
(ψ̄βεα[Qβ, ψ

α]− ε̄α[Q̄β, ψ
α])

+φ[QL, φ̄]− φ̄[QL, φ] , (4.68)

Vint. = −iφ
[
ελ̄, φ̄

]
+ iφ̄ [ε̄λ, φ] , (4.69)

which can also be written,

Vφ = −1
2
(εψ)(iD0 − 3r

2
+ 2)φ̄+ i(εσmψ)Dmφ̄

+1
2
(ε̄ψ̄)(iD0 + 3r

2
− 2)φ+ i(ε̄σmψ̄)Dmφ− 1

2
(εψ̄F + ε̄ψF̄ ) (4.70)

The vector multiplet action (3.100) may also be written in a (QL + s) exact

manner,

VA = i
2
(ε̄σmλ)F+

m + i
2
(εσmλ̄)F−m − 1

4
(ελ̄+ ε̄λ)D . (4.71)

4.1.8 Saddle Points & Fermionic Zero Modes

Having shown that the action for chiral and vector multiplets are localisation

actions, in the sense that they are QL-exact on R× S3 and Q-exact on S1 × S3

when twisted, the remaining question is the identification of saddle points. As

was shown in the saddle point approximation equation (4.49), the index has to be

expanded around each critical point of the theory. This can be an involved task.

In 2 dimensions, one has to expand around kink solutions, as in [94]. There, it is

shown that a non compact spatial dimension, the boundary conditions at infinity

can lead to kink vacuum solutions around which the index has to be expanded.

Some of these solutions can also have non-integer fermionic charges [99, 100, 101].
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In 3 dimensions, monopole solutions play a crucial role in the computation of the

index [12, 58] as a partition function on S1 × S2. This is due to the existence of

monopole operators and the absence of any zero modes on these background. On

S3, when computing partition functions [102] and expectations values of Q-closed

Wilson loops [53], the saddle points are trivial configurations. In 4 dimensions,

the computation of Wilson loops expectation values localises on instanton con-

figuration [81].

Here, we will show that, although instanton configurations can in principle

be constructed on R × S3 [32], the existence of fermionic zero modes mean that

there are no non-perturbative corrections to the index. After Wick rotation, the

vector action can be rewritten as F+
mF

−
m , a positive definite quantity, hence the

saddle points of this action can be written as,

F±m = F0m ± iεmnpFnp = 0 , D = 0 . (4.72)

In the remainder of this section we will consider the F−m = 0 configuration. In

this background, the gaugino supersymmetry transformations result in lead to

the definition of fermionic modes λα0 ,

δλα = − iF+
m(εσm)α ≡ λα0 , δ̄λ̄α = 0 . (4.73)

The first equation defines fermionic zero modes [103] living on the instanton

background,

Lλ0 = 0 (4.74)

up to total derivatives. Consequently, the path-integral measure for the gaugino

splits into non-zero modes λ̃ and zero modes λ0,

[dλ] = [dλ0][dλ̃] (4.75)

and the Lagrangian for the gaugino obviously only depends on λ̃, this implies

that, ∫
[dλ0]

∫
[dλ̃] exp

(
−
∫
Lλ̃
)

= 0 , (4.76)
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because of the rules of Grassman integration which essentially state that,∫
dθ1dθ2 . . . dθnθnθn−1 . . . θ1 , (4.77)

is essentially the only non-zero integral one can construct with a set of Grassman

variables {θi}n1 . This hence means that the only saddle point contributing to the

index calculation of the index is the vacuum,

Am = λ = D = 0 , φ = ψ = F = 0 . (4.78)

So, the index does not received non-perturbative corrections in 4 dimensions.

4.2 A Calculation of the Index

4.2.1 Determinant Calculation

In the following we will need to compute the one-loop determinants for various

fields. After reducing the theory to a quantum mechanical Lagrangian by ex-

panding fields in spherical harmonics and performing a Wick rotation, all indices

boil down to a product of determinants of operators of the following form:

∆a,b = − (dτ + a)2 + b2 , (4.79)

where (a, b) are N ×N matrices, and the fields acted upon are periodic of period

β in the euclidean time direction, s = e−β. This allows to expand the fields acted

upon by ∆a,b in Fourier modes of the form,

φa,b(τ) =
∑
k∈Z

eikωτφk,a,b , ω =
2π

β
, (4.80)

with ω the fundamental Matsubara frequency. The determinant of the operator

(4.79) is then,

Det ∆a,b = Det
∏
k∈Z

[
−(ikω + a)2 + b2

]
. (4.81)
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Then, use,

Det ∆a,b = exp (Tr ln ∆a,b) , (4.82)

and following [104], the product can be expanded,

Tr ln ∆a,b = Tr ln
∏
k∈Z

[
−(ikω + a)2 + b2

]
,

= Tr ln (b2 − a2)
∏
k∈N∗

[
−(ikω + a)2 + b2

] [
−(−ikω + a)2 + b2

]
,

= Tr ln (b2 − a2)
∏
k∈N∗

k4ω4
(

1 + (a+b)2

k2ω2

)(
1 + (a−b)2

k2ω2

)
, (4.83)

= Tr lnM2 sinh
(
π
ω

(a+ b)
)

sinh
(
π
ω

(−a+ b)
)
,

= Tr lnM2 eβb(1− ta+b)(1− t−a+b) ,

where we have used the following identity,

∞∏
n=1

(
1− β2

n2π2

)
=

sin β

β
, (4.84)

withM an infinite product factor independent of (a, b) which will cancel between

fermionic and bosonic degrees of freedom given that we are considering N = 1

supersymmetric theories, and that we will hence ignore,

M =
ω

2π

∏
k∈N∗

k2ω2 → 1 . (4.85)

Expanding the logarithm and Taylor expanding the various terms of the sum in

(4.83) gives:

Tr ln ∆a,b = β Tr b+
∞∑
k=1

Tr
(
tk(a+b) + tk(−a+b)

)
k

(4.86)

where the first term corresponds to a Casimir energy term. Finally, we get:

Det ∆a,b = CbPexp [i+(t) + i−(t)] (4.87)

95



4. INDEX AND LOCALISATION

with Cb the Casimir energy factor and the plethystic exponential [40] defined as,

Pexp [g(t1, . . . , tr)] = exp[
∑
k=1

1

k
g(tk1, . . . , t

k
r)] (4.88)

and the single-particle determinants are given by:

i+(t) = Tr ta+b , i−(t) = Tr t−a+b . (4.89)

In general we will use the notation:

i(t) = i+(t) + i−(t) (4.90)

Based on equation (4.35), one can hence write that:

i(t) = Trs.p.t
H (4.91)

the trace over the single particle states. When dealing with a full theory, one

needs to sum single particle contributions for all states labelled (`mm̄).

4.2.2 Chiral Multiplet Calculation

In this section we compute the generic partition function (4.41) and take the

appropriate limit (2.141) to compute the index (2.49) for the chiral and anti-

chiral multiplets, ignoring for the moment gauge and flavour group symmetry.

Scalar Component

Following the generic twisting prescription (4.44) the twisted Lagrangian ob-

tained from the scalar Lagrangian (3.132),

Ltw.
φ =

∑
`mm̄

(
d0 + 3

2
ir − i+ iT

)
φ̄`mm̄

(
d0 − 3

2
ir + i+ iT

)
φ`mm̄−(`+1)2φ̄`mm̄φ`mm̄ ,

(4.92)

with (` + 1) the mass of the (`,m, m̄) scalar mode on R × S3, corresponding

to usual conformal dimensions in the free, conformal limit, and T the generic
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twisting defined in equation (4.44). Thus after Wick rotation (4.4), we have for

the associated free path integral,

Zφ(s, u, x, x̄) =
∏
`mm̄

det−1
[
−(dτ − 3

2
r + 1 + T φ`mm̄)2 + (`+ 1)2

]
, (4.93)

with T φ`mm̄(s, u, x, x̄) the eigenvalue of the mode φ`mm̄ under the T operator de-

fined in equation (4.44),

[T, φ`mm̄] = T φ`mm̄φ`mm̄ (4.94)

with the following conventions1,

[R, φ`mm̄] = rφ`mm̄ , [J3, φ`mm̄] = mφ`mm̄ , [J̄3, φ`mm̄] = m̄φ`mm̄ , (4.97)

which then leads to

T φ`mm̄(s, u, x, x̄) = γxm+ γx̄m̄+ 1
2
γur . (4.98)

Evaluation results that the partition function is given by,

Zφ(s, u, x, x̄) = Cφ Pexp(−z 0σ r(s, x, x̄, u)− z 0−σ−r(s, x̄, x, u)) , (4.99)

where σ is here defined as,

σ = 3
2
r − 1 , (4.100)

where the normalisation Cφ is the Casimir energy factor, and,

zj,σ,r(s, u, x, x̄) = ur
∞∑
`=0

χ `
2

+j(x)χ `
2
(x̄)s2(j+`+1−σ) , (4.101)

1Note that the angular momentum conventions mean that the harmonics considered are
slightly unusual in the sense that,

[J3, φ`mm̄Y`mm̄] = −φ`mm̄J3Y`mm̄ = [J3, φ`mm̄]Y`mm̄ , (4.95)

hence,
J3Y`mm̄ = −mY`mm̄ . (4.96)
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in terms of standard SU(2) group characters for spin j representations,

χj(x) = =

j∑
m=−j

x2m =
x2j+1 − x−2j−1

x− x−1
, (4.102)

allowing for more general unrestricted values of j, σ, r for later. The partition

function in equation (4.101) can be evaluated explicitly,

zj,σ,r(s, u, x, x̄) = s2j+2−2σurP (s, x, x̄)Cj(s, x, x̄) , (4.103)

where, Cj(x), P (s, x, x̄) have been defined in equations (2.127), (2.136). Thus,

for σ = 0, equation (4.99) is in accord with the contributions expected for free

scalar fields with R-charge ±2
3
. Note that for a general conformal field theory, not

assuming supersymmetry, zj 0 r(s, u, x, x̄), zj 0−r(s, u, x̄, x) are contributions to the

single particle partition function for spin (j, 0), respectively (0, j) free fields, with

respective R-charges ±r

Fermionic Component

The twisted Lagrangian for the spinor matter field is given by,

Ltw.
ψ =

∑
`mm̄κ

ψ̄κ`mm̄

(
i∂0 + 3

2
r − 1− Tψ`mm̄κ − κ

(
`+ 3

2

))
ψκ`mm̄ , (4.104)

with Tψ`mm̄κ(s, u, x, x̄) the eigenvalue of the mode ψ`mm̄κ under the twisting T
(4.44),

Tψ`mm̄κ(s, u, x, x̄) = γxm+ γx̄m̄+ 1
2
γu(r − 1) . (4.105)

The associated determinant is given by,

Zψ(s, u, x, x̄) =
∏

`mm̄−

det(−∂τ+3
2
r−Tψ`mm̄−+`+1

2
)
∏

`mm̄+

det(∂τ−3
2
r+Tψ`mm̄++`+5

2
) ,

(4.106)

which may be evaluated to give,

Zψ(s, u, x, x̄) = Cψ Pexp
(
z 1

2
,σ,r−1(s, u, x, x̄) + z 1

2
,−σ,−r+1(s, u, x̄, x)

)
, (4.107)
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with Cψ the Casimir energy factor. Again, this is consistent with the ordinary

conformal case, σ = 0, for j = 1
2
.

The Chiral Multiplet Index

Since the F terms lead to trivial contribution in (3.96), the full modified par-

tition function is therefore given by,

ZΦ(s, u, x, x̄) = Zφ(s, u, x, x̄)Zψ(s, u, x, x̄) = CΦPexp(zΦ(s, u, x, x̄)+zΦ̄(s, u, x, x̄)) ,

(4.108)

with the Casimir energy factor,

CΦ = CφCψ , (4.109)

and where the effective single particle partition functions for the chiral and anti-

chiral scalar multiplet are given by,

zΦ(s, u, x, x̄) = ( z 1
2
σ r−1 − z 0σ r )(s, u, x, x̄) , (4.110)

= s4−3rurP (s, x, x̄)(C0 − su−1C 1
2
)(s, x, x̄) ,

zΦ̄(s, u, x, x̄) = (z 1
2
−σ 1−r−z 0−σ−r)(s, u, x̄, x) (4.111)

= s3ru−rP (s, x, x̄)(C0 − suC 1
2
)(s, x, x̄) .

This is consistent with the ordinary superconformal case, for σ = 0, r = 2
3
, with

contributions to the generic partition function (4.41) from a multiplet with spin

(j, 0) or (0, j) and conformal dimension j + 1. The conformal chiral multiplet is

a the j = 0 special case of the characters formula for the (1, 1
2
) and (1

2
, 1) rep-

resentation of the superconformal algebra given in equation (2.135). One should

note however that the analysis performed in this chapter provides us with a more

general result than the latter equation, as we have, in a sense, obtained a formula

for the (1, 1
2
) and (1

2
, 1) character for a multiplet whose R-charge and scaling di-

mensions are not constrained by equation (2.117). This is due to the fact that

the Q̄, S̄ supercharges do not generate symmetries of the theory considered here,

so the multiplet is somewhat shortened, but the constraints associated with the

99



4. INDEX AND LOCALISATION

superconformal algebra commutation relations do not apply.

To evaluate the index we make the variable change (2.141) and obtain,

iΦ(t, x) = zΦ(y
1
2 , y

3
2 t−1,−ty−1,−x) =

tr

(1− tx)(1− tx−1)
, (4.112)

iΦ̄(t, x) = zΦ̄(y
1
2 , y

3
2 t−1,−ty−1,−x) = − t2−r

(1− tx)(1− tx−1)
, (4.113)

showing that, indeed, the y dependence drops out, as expected. Obviously, the

full single particle index (1.8), modulo gauge and flavour symmetry, discussed

shortly, is the sum of the two contributions above.

4.2.3 Vector Multiplet Calculation

Vector Component

Consider a non abelian gauge theory. The vector index will be computed by

twisting the following free path integral,

ZA =

∫
dA0 dAm ∆ δ(gauge fixing) e−SA (4.114)

with ∆ is the Fadeev-Popov determinant associated with the gauge-fixing choice,

δ a Dirac-delta function, and SA the vector field action on S1 × S3 canonically

normalised as in equation (3.110). Consider the A0 field and decompose it as,

A0(τ, ω) = α(τ) +B(τ,Ω) , (4.115)

with α(τ) the constant holonomy mode over the sphere for A0,

α(τ) =

∫
d3ΩA0(τ,Ω) , (4.116)
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and B the spatial fluctuations of A0. α(τ) is a zero mode as its quadratic action

vanishes and it can hence be independently rescaled,

α(τ)→ 1

g
α(τ) . (4.117)

Following this rescaling, in the free field theory limit, the action for the vector

field is given by,

L [B] = BD2B , (4.118)

L [Am, α] = Am
(
(∂τ − i[α, . ])2 + 4δmpD

2 − 4DpDm

)
Ap , (4.119)

with D2 the scalar or vector laplacian on S3. From now on, for notational pur-

poses, we will denote −i[α, . ] by −iαg, and αg is a matrix to be taken in the

appropriate representation of the gauge group G for the field under considera-

tion. The path integral associated with B hence yields the determinant of the

scalar laplacian,

(DetD2)−
1
2 (4.120)

Having integrated out the B fluctuations defined in (4.115) on the free field theory,

one can impose the following gauge fixing on the remaining αg modes,

∂ταg = 0 , (4.121)

which leads to the following Fadeev-Poppov determinant,

∆0 = Det(dτ + iαg) . (4.122)

It can be computed in the same fashion as previously. Assume that the matrix

α has a set of eigenvalues {λi}ni=1, the determinant is given by,

∆0 =
∏
k∈Z∗

n∏
i,j=1

(ikω + i(λi − λj)) =Mβ
n∏

i,j=1

(
1− 1

k2π2

(
1
2
β(λi − λj)

)2
)
,

=Mβ

n∏
i,j=1

2

β(λi − λj)
sin(1

2
β(λi − λj)) ,
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where we have used the infinite product formula (4.84) and the definition of the

prefactor M in equation (4.85). Given the integration measure for αg,

dαg =
n∏
i=1

dλi
∏
i<j

(λi − λj)2 (4.123)

one can identify dαg∆0 with the left-right invariant measure over matrices,

g = exp(iβαg) , (4.124)

in the following fashion,

dαg∆0 = dµ(g) =
n∏
i=1

dλi
∏
i<j

sin2(1
2
β(λi − λj)) , (4.125)

We now decompose the vector field Am into an exact and a a divergenceless part,

Am = Bm +∇mφ , (4.126)

with Bm a divergenceless vector. Imposing the following gauge fixing condition

on Am,

DmAm = 0 , (4.127)

implies no restriction on Bm and the following on φ,

D2φ = 0 , (4.128)

Hence the associated Fadeev-Popov determinant is:

∆1 = DetD2 , (4.129)

Also, substituting the expression for A in terms of exact and closed contribution

shows that φ drops out of the action (4.119), as

∇mφδmpD
2∇pφ−∇mφDpDm∇pφ = 0 (4.130)
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where we have used the no torsion condition,

[Dm, Dn]φ = 0 , (4.131)

with Dm the spacetime covariant derivative. Acting on the scalar φ, it is just

the Killing vector ∇m, acting on the vector ∇mφ it is the spacetime covariant

derivative defined in equation (3.26). The term containing a time derivative

involving φ can just be integrated by parts away, thanks to the gauge fixing

condition on φ equation (4.128). Consequently, the overall contribution from φ

to the path integral is given by,∫
[dφ]δ(D2φ) = (DetD2)−

1
2 . (4.132)

Overall, all laplacian determinant factors from fluctuations of A0 in equation

(4.120), the FP determinant of the spatial gauge fixing-condition (4.129) and the

integration of the the closed part of the vector Am in equation (4.132) all cancel.

At this point, we have reduced the computation of the path integral to the

following,

ZA(s) =

∫
dµ(g)ZA(s, g) , (4.133)

ZA(s, g) =

∫
[dBm]exp

(
−
∫
L[Bm, αg]

)
, (4.134)

with g gauge group matrices defined in equation (4.124), dµ(g) the gauge group

integration measure, while Bm is a divergenceless 3-component vector and the

dependence on s defined in (4.42) arising from the β periodicity in the time

direction. The Lagrangian for the spatial vector only includes contributions from

divergenceless Bm,

L [Bm, α] = Bm

(
(∂τ − iαg)2 + 4(D2 − 1

2
)
)
Bm , (4.135)
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where we have used the following identity,

[Dm, Dn]Bp = 1
4
(δmpBn − δnpBm) , (4.136)

to obtain the divergenceless vector action from the vector action in equation

(4.119). Expanding this action in divergenceless vector spherical harmonics as in

equation (3.179) and applying the generic twist leads to the following expression

for the generic partition function,

ZA(s, u, x, x̄, g) =
∏
`mm̄ρ

det−1
[
−(dτ + T A`mm̄ρ − iαg)2 + (`+ 2)2

]
, (4.137)

with the following expression for the twisting,

T A`mm̄ρ = γxm+ γx̄m̄ , (4.138)

Also Tr e∓βαg is the gauge character factor which one finds in equation (2.19) in

[36]. Also when matter chiral fields are coupled to a gauge sector, an extra term

−iαg has to be added to the twisting of the partition function (4.93), (4.106), with

αg in the appropriate representation of the field considered. Also note that the

integral measure dµ(g) naturally arises from this path integral analysis, and that

the integration over the holonomy zero-mode in the path integral corresponds to

the projection onto gauge singlets in the approach based upon character calcu-

lations[36]. The holonomy around the time circle Tr g can also be thought of as

a Wilson loop around the time circle [104]. One should note that, when setting

the twisting to the appropriate value for the computation of the full supercon-

formal index, one can proceed similarly as in equation (4.79) to show positive

definiteness of the action.

Here it is useful to consider the αg term as an extra contribution to the

twisting, and, using,

TrAdj.f(αg) = TrAdj.f(−αg) , (4.139)

evaluating the path integral in terms of determinants, similar to the scalar field
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case considered earlier, we obtain,

ZA(s, u, x, x̄, g) = CA Pexp (−(z1 0 0(s, u, x, x̄) + z1 0 0(s, u, x̄, x))χAdj.(g)) ,

(4.140)

for the contribution of the vector field to the overall path integral. Specifically,

the single particle partition function z1 0 0(s, u, x, x̄) (resp. z1 0 0(s, u, x̄, x)) corre-

sponds to ρ = + (resp. ρ = −) harmonics as defined in equation (3.127). Also

we have denoted,

χR(g) = TrR exp(iβαg) , (4.141)

the gauge group character in for representation R. The integration over the gauge

group follows from the coupling of the chiral multiplet to the gauge field A0 and

the associated zero-mode α.

Gaugino Component

The gaugino action can be written directly by essentially modifying the time

derivative in the quark action considered earlier and taking a trace over the ad-

joint representation,

Ltw.
λ = TrAdj.

∑
`mm̄κ

λ̄κ`mm̄
(
dτ + T λ`mm̄ − iαg + κ(`+ 3

2
)
)
λκ`mm̄ . (4.142)

The associated path integral may be evaluated similarly as before to give the

following contribution, apart from an overall normalisation,

Zλ(s, u, x, x̄, g) = Cλ Pexp
(

(z 1
2
,0,1(s, u, x, x̄) + z 1

2
,0,−1(s, u, x̄, x))χAdj.(g)

)
.

(4.143)

Here, the κ = + left-moving harmonics give rise to the first term z 1
2

0 1(s, u, x, x̄)

in the single-particle partition function.

The Vector Multiplet Index

The full modified partition function, in the absence of coupling of the gauge
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sector to matter, is given by,

ZV (s, u, x, x̄) =

∫
dµ(g)ZA(s, u, x, x̄, g)Zλ(s, u, x, x̄, g) , (4.144)

and the single particle partition function is given by the following,

zV (s, u, x, x̄) = ( zV, l + zV, r )(s, u, x, x̄) , (4.145)

zV, l(s, u, x, x̄) = ( z 1
2

0 1 − z1 0 0)(s, u, x, x̄) , (4.146)

zV, r(s, u, x, x̄) = (z 1
2

0−1− z1 0 0)(s, u, x̄, x) , (4.147)

where the two equations correspond to the contributions from left (ρ = −) and

right sectors (ρ = +) with ρ defined in (3.127). To evaluate the index we make

the variable change (2.141) and obtain the single particle index,

iV (t, x) = (iV, l + iV, r)(t, x) , (4.148)

iV, l(t, x) = zV, l(y
1
2 , y

3
2 t−1,−ty−1,−x) =

t2

(1− tx)(1− tx−1)
, (4.149)

iV, r(t, x) = zV, r(y
1
2 , y

3
2 t−1,−ty−1,−x) =

t2 − t(x+ x−1)

(1− tx)(1− tx−1)
, (4.150)

with no y dependence.

Gauged, Flavoured Chiral Multiplet

Here we assume that the chiral multiplet considered in the last subsection

belongs to a reducible representation of the gauge group G and flavour symmetry

group H. Each component we assume transforms in a representation RG,i of G

and RH,i of H and has R-symmetry charge ri. The effect of the flavour group on

the twisting (4.44) is that

T → T + iαh (4.151)
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where αh is an element of the flavour algebra H. The chiral multiplet lagrangians

(4.92) (3.156) then become,

Ltw.
φ =

∑
`mm̄i

Tr φ̄i`mm̄

(
−(dτ − 3

2
r + 1 + T φ`mm̄ − iαg + iαh)

2 + (`+ 1)2
)
φi`mm̄ ,

Ltw.
ψ =

∑
`mm̄κi

Tr ψ̄κi`mm̄

(
dτ − 3

2
r + 1 + Tψ`mm̄κ − iαg + iαh + κ

(
`+ 3

2

))
ψκi`mm̄ .

Evaluation of the path integrals associated with the previous lagrangians (4.152),

(4.152) proceeds as before, using, for any analytic function f ,

TrRHf(αh) = TrR̄Hf(−αh) , (4.152)

and similarly for G. This leads to the contribution,

ZΦ(s, u, x, x̄, g, h) =
∏
i

CΦiPexp
(
zΦi(s, u, x, x̄)χRG,i(g)χRH,i(h)

+zΦ̄i(s, u, x, x̄)χR̄G,i(g)χR̄H,i(h)
)
(4.153)

where we define the characters χRG(g), χRF (h) as in equation (4.141), the sin-

gle particle partition functions defined in (4.110), and the Casimir energy factor

(4.109) .

The Full Index

As the D and F term contributions are trivial so that we finally obtain for

the partition function,

Z(s, u, x, x̄, g, h)=CV Pexp(zV (s, u, x, x̄)χAdj.(g))(∏
i

CΦiPexp(zΦi(s, u, x, x̄)χRG,i(g)χRH,i(h)

+ zΦ̄i(s, u, x, x̄)χR̄G,i(g)χR̄H,i(h))
)
,(4.154)

This is consistent with expectations for free field theory for chiral/anti-chiral
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multiplets with spin 1
2

primary fields. For the full index we obtain,

I(t, x, h) =

∫
dµ(g)Pexp(iV (t, x)χAdj.(g))∏

i

CΦ,i Pexp
(
iΦ,i(t, x)χRG,i(g)χRH,i(h)

+iΦ̄,i(t, x)χR̄G,i(g)χR̄H,i(h)
)
, (4.155)

Obviously this leads to (1.8).

4.2.4 Casimir Energies

The scalar and fermionic Casimir energies are given by the following [104, 105],

lnCφ = −
∞∑
`=0

(`+ 1)3 , lnCψ = 2
∞∑
`=0

(`+ 3
2
)(`+ 1)(`+ 2) , (4.156)

as the scalar modes with energy (`+1) have a degeneracy (`+1)2, as they fall into

a ( `
2
, `

2
) representation of SU(2)L×SU(2)R. The spinor modes with energy (`+ 3

2
)

have degeneracy (`+1)(`+2) arising from their being in a ( `±1
2
, `

2
) representation.

This has to be regularised using zeta function regularisation [106],

ζ(s) =
∑
n∈N∗

n−s (4.157)

which converges for s > 1 and can be regularised to take finite values for s

negative. This leads to,

lnCφ = − 1

120
, lnCψ = lnCλ = − 17

480
, (4.158)

with the Casimir energy for the gaugino the same as the one for the quark, and

the vector contribution given by,

lnCA = −
∞∑
`=0

(`+ 1)(`+ 2)(`+ 3) = − 11

120
. (4.159)
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4.2.5 On Positive Definiteness and Localisation

One has to emphasize that the formula for the generic partition function (4.41)

is not valid in an interacting theory and is only valid for free field theories. The

index (4.155) is not modified in interacting theories, and, in four dimensions,

does not receive any non-perturbative contributions. This observation relies on

the positive definiteness of the action considered, so that the free field theory limit

taken in the localisation procedure (4.48) is well defined. Consider the twisted

action appropriate for the computation of the scalar field index. The propagator

can be rewritten in the generic form (4.81), with,

a = a`mm̄ = 2m+ 1 + γt(−r + 2m) + γx2m̄ , b = b`mm̄ = `+ 1 , (4.160)

One can then note that the corresponding action amounts to a positive definite

quantity, provided we assume γx, γt to be real, from the factorisation of the

determinant given in the third line of equation (4.83). This then makes the limit

(4.83) well defined as the localisation action is positive definite.

4.3 Further Generalisations of the Index

The index we have focused upon can be generalised in various ways, including

the deformation of the 3-sphere to less symmetric spaces which preserves the

symmetries relevant to the definition of the index [107]. Also, one can generalise

the index by gauging the flavour symmetry and integrating over the flavour group

in the same fashion as we have so far for gauge symmetry.

4.3.1 Deforming the 3-Sphere

Orbifolding

As was mentioned in the previous chapter, one can compute the index for

spaces that preserve a subset of the superconformal algebra which includes at

least (3.30). The sphere we have used to define the index can be deformed in

a way that preserves the isometries in (3.30) and, most importantly, the super-
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charges Q1, S1 at least. For instance, the index can be computed on lens spaces

S1 × L(p, q), with (p, q) two integers parameterizing an orbifold on the 3-sphere

[107],

S3 : {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} , (z1, z2) ∼ (e
2πiq
p z1, e

− 2πi
p z2) , (4.161)

where the orbifold action is chosen so as to preserve the supercharge Q. The

important difference between the calculation on S3 and the one on the lens space

is the degenerate set of vacuas labelled by the holonomy along the Hopf fibration

direction of the underlying 3-sphere, which breaks the gauge group to product

of p subgroups, and hence modifies the measure of integration appropriate for

projection upon gauge singlets.

Squashing the 3-Sphere

Also, bearing in mind the relation between N = 2 partition functions on 3-

dimensional manifolds and the corresponding index once a temporal S1 is added

to the space [108], a similar construction is given in [61]. The partition function

for 3-dimensional squashed sphere is given and the partition function computed

for squashed spheres preserving either SU(2)l × U(1)r or U(1)l × U(1)r. At a

technical level, the reduction from 4 to 3 dimensions can be performed along fol-

lowing the prescription. Considering equation (4.83), the dimensional reduction

from four to three dimensions can performed as,∏
k∈Z

[
−(ikω + a)2 + b2

]
→ −a2 + b2 (4.162)

For instance, one can check that our result for the generic partition function

agrees with the partition function given in [109] following a similar localisation

prescriptions. This relationship between 3 dimensional partition functions and

4 dimensional index was emphasised in [108] [110] and lead to the conjecture of

new supersymmetric dualities for d = 3, N = 2 theories based on the dualities

for the parent d = 4, N = 1 supersymmetric dual theories.
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Chapter 5

Index on Squashed-Sphere

Here we compute the index for R×S3
e with S3

e the squashed sphere, and e denotes

the squashig parameter to be defined below. We first compute the following

quantity,

Tr(−1)F e−βH , (5.1)

where H will be defined as the square of the appropriate supercharge.

Later on we show that the expression for the full index on the squashed sphere

is the same as on the round sphere. Computation also shows that the final result

is identical to the one on the round sphere.

5.1 Differential Geometry and Killing Spinors

5.1.1 Differential Geometry

Following [61], consider the following right invariant one-form µm = µmµdx
µ,

defined in terms of the round sphere right invariant one-form given in equations

(3.10), (3.11),

µm = {µ1 = e1 , µ2 = e2 , µ3 = ee3} , (5.2)

with e the squashing parameter. The left invariant one-form is the same as on the

round sphere (3.12), and so is the right-invariant vector field. The left-invariant
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5. INDEX ON SQUASHED-SPHERE

vector field µm = µm
µ∂µ is a deformed version of (3.14),

µm = {µ1 = ∇1 , µ2 = ∇2 , µ3 = e−1∇3} , (5.3)

the round sphere is given by e = 1. When e 6= 1, the sphere is squashed and has

a U(1)l × SU(2)r isometry. The spin connection is given by the following,

ωmnp = −1
2
eεmnp + δm3(e− e−1)εnp 3 , (5.4)

with ε123 = 1. We will also need the Riemann tensor for the squashed sphere,

Rmnpq = µm
µµn

ν(Rµν)pq , (Rµν)pq = (∂µων − ∂νωµ + [ωµ, ων ])pq , (5.5)

as well as the Ricci tensor and scalar

Rmn = Rmpnp, R = Rmm . (5.6)

For the squashed sphere, the only non-zero component for the Riemann tensor

Rmnpq are given by,

R1212 = 1
4
(4− 3e2) , R1313 = 1

4
e2 , R2323 = 1

4
e2 . (5.7)

and the Ricci tensor, scalar, are given by,

Rmn =

 1− 1
2
e2 0 0

0 1− 1
2
e2 0

0 0 1
2
e2

 , R = 2− 1
2
e2 . (5.8)

One should note that R = 3
2

for the non squashed sphere. Usually one finds

R = 6 for the unit sphere. This would be the case had we defined the vielbein

such that [∇m,∇n] = 2εmnq∇p on the round sphere. Instead, we have chose the

normalisation of the dreibein such that [∇m,∇n] = εmnq∇p, which translates into

the Ricci scalar definition by rescaling it by 4. Finally, the Bianchi identity reads,

εnpqRmnpq = 0 . (5.9)
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5.1.2 Killing Spinors and Twisting

There are no Killing spinors on the squashed background [61]. The covariant

spinor covariant derivative is given by,

Dmχ
α = ∇mχ

α + 1
4
ie(χσm)α − 1

2
i(χσ3)αδm 3(e− e−1) (5.10)

Take a time dependent, spatially constant spinor εα ∝ δα1 . In that case

(Dm + iVm)εα = 1
4
ie(εσm)α (5.11)

with the following definition,

Vm = 1
2
δm3(e− e−1) . (5.12)

Here, we have shown that by turning on a background gauge field associated with

a U(1) global symmetry B under which the Killing spinor is charged, one can turn

constant spinors into Killing spinors for the squashed sphere. Given that,

Rεα = εα , (5.13)

one could be tempted to identify this global symmetry B with the R-charge. How-

ever, as was pointed in [51], at the classical level, the R-charge is indistinguishable

from,

B = R +
∑
I

sIFI , (5.14)

with FI all the non-R flavour charges of the global symmetry group F and sI

arbitrary real parameters. Consequently, we define the spatially twisted covariant

derivative as,

Dm = Dm + iVmB , (5.15)

113



5. INDEX ON SQUASHED-SPHERE

with B a global symmetry for which a background gauge field will now be turned

on. B also verifies equation (5.13), and D is the spacetime covariant derivative,

DmAn = µmAn + ωmnpAp , (5.16)

Dmχα = µmχα + i
4
ωmnpεnpk(σkχ)α , (5.17)

Dmφ = µmφ . (5.18)

We will also need the field strength associated with the background B-symmetry

gauge field,

Fmn = DmVn −DnVm , (5.19)

By definition of Vm in equation (5.12), the field strength is given by,

Fmn = −1
2
eεmnpVp . (5.20)

Having turned on the background R-charge gauge field, the Killing spinor equa-

tions are given by,

Dmεα = 1
4
ie(εσm)α , ∂0ε

α = 1
2
ieεα . (5.21)

One can then give the commutator of the twisted covariant derivatives,

[Dm,Dn]Ap = ibAFmnAp +RmnpqAq , (5.22)

[Dm,Dn]ψα = ibψFmnψα + i
4
Rmnpqεpqs(σsψ)α , (5.23)

[Dm,Dn]φ = ibφFmnφ , (5.24)

with bX the eigenvalue of the field X under the symmetry B. Note that the last

equation shows that, in this context, the twisting procedure is in fact a torsion

procedure, as we have, from the geometric point of view, introduced torsion on

this spacetime as seen from equation (5.24). Applying equation (5.23) along with

(5.21) to the Killing spinors gives the following consistency condition,

εmpnFmpεα = (1
2
R− 1

4
e2)(εσn)α −Rmn(εσm)α , (5.25)
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5.2 Lagrangian and Free Partition Function

5.2.1 Matter Lagrangians

Consider the usual R×S3 scalar field Lagrangian and apply the twisting defined

above which allows for Killing spinors on the squashed sphere. After some fid-

dling with mass parameters, one can then define the following Lagrangian which

exhibits supersymmetry on R× S3
e ,

Lφ = −(i∂0 − 3
2
er + e)φ̄(i∂0 + 3

2
er − e)φ− 4Dmφ̄Dmφ+ (3

2
rR + e2 − 9

4
re2)φ̄ φ ,

Lψ = −ψ̄α(i∂0 + 3
2
er − e)ψα + 2 i ψ̄α(σm)α

βDmψβ , (5.26)

LF = F F̄ . (5.27)

The supersymmetry transformations are given by,

1√
2
δφ = εαψα , (5.28)

1√
2
δψα = εαF , (5.29)

1√
2
δψ̄α = iεα∂0φ̄− 2i(εσm)αDmφ̄+ 2irφ̄(Dmεσm)α , (5.30)

1√
2
δF̄ = − εα(i∂0 − 3

2
r + e)ψ̄α + 2i(εσm)αDmψ̄α . (5.31)

One can check that these supersymmetry transformations reduce to the ones given

in equation (3.62) for the round sphere. The commutators of the supersymmetries

on the fields are given by,

1
2

[
δ, δ̄
]
φ = i∂0φ+ 3

2
erφ− 2iVmDmφ , (5.32)

1
2

[
δ, δ̄
]
φ̄ = i∂0φ− 3

2
erφ− 2iVmDmφ , (5.33)

1
2

[
δ, δ̄
]
ψα = i∂0ψα − 2iVm(Dmψ − 1

4
ieσmψ)α + 3

2
e(r − 1)ψα , (5.34)

1
2

[
δ, δ̄
]
ψ̄α = i∂0ψα − 2iVm(Dmψ + 1

4
ieσmψ)α − 3

2
e(r − 1)ψα , (5.35)

with Vm the Killing vector defined in equation (3.55) by contracting a Pauli matrix

between two Killing spinors. Taking,

εα = e
−it
2 δα1 , ε̄α = e

it
2 δ1

α , (5.36)
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and denote by δ1, δ̄1 the corresponding supersymmetry transformations. One can

then compute the commutator of the supersymmetries acting upon the various

fields of the theory. By definition of H,

HX = 1
2

[
δ1, δ̄

1
]
X , (5.37)

for any field X. The relevant fields for the computation of the index are (φ, ψα)

and the conjugates (φ̄, ψ̄α), hence,

Hφ = i∂0φ+ e−1(3
2
r − 2i∇3)φ , (5.38)

Hφ̄ = i∂0φ̄+ e−1(3
2
r − 2i∇3)φ̄ , (5.39)

Hψα = i∂0ψα + e−1(−2i∇3ψα − (σ3ψ)α + 3
2
rψα − ψα) + 1

2
eψα , (5.40)

Hψ̄α = i∂0ψ̄
α + e−1(−2i∇3ψ̄

α + (ψ̄σ3)α − 3
2
rψ̄α + ψ̄α)− 1

2
eψ̄α , (5.41)

One should note that contact can be made with the squashed sphere partition

function of [61], whose Lagrangian is given by,

L̃φ = Dmφ̄Dmφ− 1
8
e2r3D(2r3D − 1) + 1

4
r3DR , (5.42)

To match the three dimensional Lagrangian (5.42) with its four dimensional coun-

terpart (5.27), one can shrink the radius of the temporal S1 to zero and hence

set ∂0 to zero, and identify identify the 3 dimensional R-charge as,

r = 3
2
r3D , (5.43)

As the 3 dimensional R-charge is implicitly contained in the three dimensional

Lagrangian in the spatial derivative term through the twisting, and that the R-

charge is the U(1) symmetry which is used to construct the twisted Lagrangian

in 3 dimensions, one cannot take B in to be the R-charge in 4 dimensions. We

need to take B such that,

[B, φ] = 3
2
r , [B,ψ] = 3

2
r − 1 , (5.44)

We are now ready to compute the index as a free field partition function.
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5.2.2 Free Field Theory Partition Function

Scalar Component

One can then rewrite the Lagrangian after Wick rotation the time direction,

which leads to the following Laplacian.

∆φ = −(∂τ− 3
2
er+e)2−4(∇1∇1 +∇2∇2 +e−2(∇3− 3

4
ir(1−e2))2)+e2 +3r(1−e2) ,

(5.45)

In order to compute the index, one needs to twist the time derivative appropri-

ately,

H → H , (5.46)

where H can be read off from equation (5.38). The twisted laplacian is the such

that the Wick rotated time derivative part is modified to,

∂τ → ∂τ + e−1(3
2
r + 2m) , (5.47)

Spinor Component

A similar analysis can be performed for the spinor Lagrangian. The action

for the spinor can be rewritten as,

Lψ = ψ̄(i∂0−2i(σ1∇1 +σ2∇2 +e−1σ3∇3)+ 3
2
e(r−1)−e−1 +(3

2
r−1)(e−e−1)σ3)ψ ,

(5.48)

One can then rewrite the Wick rotated Dirac operator as,

6D =

(
D1

1 D1
2

D2
1 D2

2

)
(5.49)
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with,

D1
1 = −∂τ + 3

2
r(e− e−1) + 1

2
e(3r − 5)− 2e−1i∇3 , (5.50)

D1
2 = −2i(∇1 − i∇2) , (5.51)

D2
1 = −2i(∇1 + i∇2) , (5.52)

D2
2 = −∂τ + 3

2
e−1r − 1

2
e− 2e−1 + 2e−1i∇3 , (5.53)

Applying the twisting (5.46), modifies the following entries,

D1
1 → D̃1

1 = −∂τ + 3r(e− e−1)− 4e−1i∇3 , (5.54)

D2
2 → D̃2

2 = −∂τ , (5.55)

where one should note that the twisting is not the same for the first component

of the spinor and the second.

5.2.3 Determinant Computation

Scalar Component

One can then expand the scalar Lagrangian in terms of S3 spherical harmon-

ics, as these constitute a basis of three dimensional function, as well as a Fourier

modes along the S1 time direction, which implies the correspondence between the

time derivative and the eigenvalues ∂τ ∼ ikω with k an integer, and ω the funda-

mental Matsubara frequency of the time interval define in equation (4.80). One

can then apply the twisting (5.46). This leads to the following twisted laplacian

eigenvalues,

∆kjm = −(ikω − 3
2
r(e− e−1) + 2me−1 + e)2 + 4j(j + 1)− 4m2 (5.56)

+(2me−1 − 3
2
r(e− e−1))2 + e2 + 3r(1− e2)

with the following quantum numbers,

k ∈ Z , j ∈ 1
2
Z , −j ≤ m ≤ j . (5.57)
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This expression can be factorised when m = j,

∆kjj = −ikω
(
ikω + 4je−1 + e(2− 3r) + 3e−1r

)
(5.58)

When m 6= j, the factorisation is,

∆kjm = −(ikω − E+
jm)(ikω − E−jm) , (5.59)

with,

E±jm = −(2m+ 3
2
r)e−1 + e(3

2
r − 1) (5.60)

±
√

(2me−1 + e(1− 3
2
r) + 3

2
e−1r)2 + 4(j −m)(j +m+ 1)

Spinor Component

One can then expand expand the spinor Lagrangian in spherical harmonics

as for the index on R×S3, after Wick rotation. The Dirac operator can be block

diagonalised by the following set of spinors,

eikωτ

(
|j,m〉
|j,m+ 1〉

)
, eikωτ

(
|j, j〉

0

)
, (5.61)

with the following (half-)integers,

k ∈ Z , j ∈ 1
2
Z , −j ≤ m ≤ j (5.62)

and the following representation for the rotation generatators,

J3|j,m〉 = i∇3|j,m〉 = m|j,m〉 , J±|j,m〉 = (j ∓ 1)|j,m± 1〉 (5.63)

Note the expression for J3. Why did we change representation for the rotation

generators? Here, the most convenient way of dealing with the Dirac operator

is to consider harmonics of SU(2)l × SU(2)r × SU(2)spin. Before, we considered

harmonics SU(2)l×SU(2)r, as the latter group was implicitly including the spin

connection term when needed. In other words, we separate the action of what
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remains SU(2)l into spin and orbital angular momentum. This leads to the

following Dirac operator, after performing the twisting (5.55), when acting upon

this basis of spinors,

˜6D =

(
−ikω − 4e−1m− 3e−1r + (3r − 2)e −2(j +m+ 1)

−2(j −m) −ikω

)
. (5.64)

and the associated determinant is,

6Dkjm = ikω
(
ikω + 4e−1m+ 3e−1r − e(3r − 2)

)
− 4(j −m)(j +m+ 1) , (5.65)

which can be factorised once again as,

6Dkjm = (ikω − E+
jm)(ikω − E−jm) , (5.66)

with E±jm defined in equation (5.61). One can then compute the determinant

associated with the index defined in equation (5.1), which is just the ratio of

the product given of eigenvalues for the scalar Laplacian (5.57) and the Dirac

operator (5.64). As there is an infinite set of states which contribute to the index

(5.1), we need to restrict our computation to a given value of j and k to compute

both products. Given that there are 2j + 1 degenerate states contributing to the

determinant for both the scalar and the spinor determinant, which are due the

the SU(2)r ismetry of the squashed sphere, the following holds,

Trkj(−1)F e−βH =

j∏
m=−j

6Dkjm

∆kjm

= (−1)2j+1 (5.67)

with the subscript k, j denoting the restriction to the subspace of spin j and wave

number k, and where the appropriate determinants for the scalar and the spinor

Lagrangian had been defined in equations (5.57) and (5.65). This expression

is the one we expected, so we are doing something right. It shows that our

supersymmetric theory is consistent, and that the object we have defined is truly

an index. Hence, it receives only contributions from the kernel of the twisted

Hamiltonian H. By identifying those states, one can compute the full index on

the squashed sphere, which we are now going to define.
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5.2.4 The Full Index on the Squashed-Sphere

We need to define the set of operators which commute with the supercharge

associated with the supersymmetric variation δ1. In the flat space situation, the

only such operators are H, −R+2J3, J̄3. They are defined as the operators which

commute with the charge Q1 of the superconformal algebra, or equivalently, the

corresponding Killing spinor. Here we do not have such algebra, but we have the

Killing spinor in question. The commutation relations of the Killing spinor with

R, J̄3 are unchanged compared with the round sphere. Let us focus on J3, and

given that the Killing spinor is constant εα1 ∝ δα1 ,

J3ε
α
1 = 1

2
εα1 , (5.68)

hence the definition of the full index on the squashed sphere is identical to the

definition on the round sphere (2.47). To compute the index on the squashed

sphere we then need to identify the states which contribute to the index as they

are in the kernel of the twisted HamiltonianH. One can then canonically quantise

the theory as set out in section (3.2). One can then recover the formulas (3.144)

and (3.163).
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Chapter 6

The Multiparticle Index

We have only focused on the single particle index so far. There are different

approaches one can take to compute the full superconformal index. The generic

approach is to compute take a large N limit in the number of colors considered.

This allows one to compute an approximate result for the full index up to O( 1
N

)

correction which can be compared with the corresponding result for the dual

theory [36]. This approach is also used in routinely in 3 dimensional calculations

[78, 12]. The second approach allows for an exact matching of indices and relies

on the theory of elliptic hypergeometric functions [111, 36], and relies on recently

discovered identities which from physicist’s point of view relate indices on both

sides of Seiberg dual theories [36, 42, 43, 112, 35, 113, 114]. It also yields exact

results for 3 dimensional partition functions [108].

6.1 Matching Indices with Generic R-charges

6.1.1 Indices for Seiberg Dual Theories

In this section, we consider the large Nc limit of an SU(Nc) gauge theory and show

how an exact expression for the index in this limit. We also take the number of

flavours Nf to infinity, while keeping the ratio of the number of flavours to colors
Nf
Nc

constant. However, we depart slightly from the standard theories (1.1) and

(1.2) and relax the constraints on the R-charges for the various fields. Imposing

the matching of the index in the large N limit will then be shown to allow the
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recovery of the appropriate quantum numbers.

Field SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q f f 1 1 rQ
Q̃ f̄ 1 f̄ −1 rQ̃
λ adj. 1 1 0 1

Figure 6.1: Seiberg Electric Theory, Generic R-charges

Field SU(Ñc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q f f̄ 1 Nc/Ñc rq
q̃ f̄ 1 f −Nc/Ñc rq̃
λ̃ adj. 1 1 0 1
M 1 f f̄ 0 rM

Figure 6.2: Seiberg Magnetic Theory, Generic R-charges

Note that the R-charges for the vector multiplets V and Ṽ are fixed by the su-

persymmetry algebra on R× S3 given in equation (3.83).

One can then read of the single particle index for the electric theory with field

content given in figure (1.1) combined with the formula for single particle index

for chiral multiplet (2.88) and vector multiplet (2.87), the single particle index

on the electric side is given by,

iE(t, x, v, y, ỹ, z)

=
2t2 − tχ2(x)

(1− tx)(1− tx−1)

(
pNc(z)pNc(z

−1)− 1
)

(6.1)

+
1

(1− tx)(1− tx−1)

(
trQv pNf (y)pNc(z)− t2−rQv−1pNf (y

−1)pNc(z
−1)

+trQ̃v−1pNf (ỹ)pNc(z
−1)− t2−rQ̃v pNf (ỹ−1)pNc(z)

)
,
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while on the magnetic side,

iM(t, x, v, y, ỹ, z)

=
2t2 − tχ2(x)

(1− tx)(1− tx−1)

(
pÑc(z)pÑc(z

−1)− 1
)

(6.2)

+
1

(1− tx)(1− tx−1)

(
trqv pNf (y)pÑc(z)− t2−rqv−1pNf (y

−1)pÑc(z
−1)

+ trq̃v−1pNf (ỹ)pÑc(z
−1)− t2−rq̃v pNf (ỹ−1)pÑc(z) ,

+trMpNf (y)pNf (ỹ
−1)− t2−rMpNf (y−1)pNf (ỹ)

)
,

where we have introduced the following gauge variables,

z = (z1, z2, . . . , zNc) , (6.3)

a well as the flavour variables,

y = (y1, y2 . . . , yNf ) , ỹ = (ỹ1, ỹ2 . . . , ỹNf ) , (6.4)

and the flavour and gauge characters χR(z) and χR(y) for z denoting elements of

SU(Nc) and (y, ỹ) denoting elements of SU(Nf )× SU(Nf ),

χSU(N), f (z) =
n∑
i=1

zi = pN(z) , (6.5)

χSU(N), f̄ (z) =
n∑
i=1

z−1
i = pN(z−1) , (6.6)

χSU(N),Adj.(z) =
∑

1≤i,j≤n

zi
zj
− 1 = pN(z)pN(z−1)− 1 , (6.7)

while imposing the unitarity condition on z appropriate for SU(N),

N∏
i=1

zi = 1 , (6.8)

One can rewrite both single particle indices in the following generic form,

i(t, z) = f(t)(pN(z)pN(z−1)− 1) + g(t)pN(z) + ḡ(t)pN(z−1) + h(t) , (6.9)
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with,

t = (t, x, y, ỹ) . (6.10)

The full index associated with i(t, z) is given by the plethystic integral,

I(t) =

∫
SU(N)

dµ(z) exp

(
∞∑
n=1

1

n
i(tn, zn)

)
(6.11)

with the left-invariant measure on SU(N) defined as,∫
SU(N)

dµ(z) =

1

(2π)N−1N

∫
−π≤θ1≤θ2≤···≤θN−1≤π

N−1∏
i=1

dθi
∏
i<j

4 sin2 1
2
(θi − θj) . (6.12)

The measure factor can be rewritten as,

∏
i<j

4 sin2 1
2
(θi − θj) =

∏
i 6=j

exp

(
−
∞∑
n=1

1

n
ein(θi−θj)

)
(6.13)

which leads to the following expression for the index,

I(t) =

∫ N−1∏
i=1

dθi Pexp(−S(t, θ)) (6.14)

with the so-called action S(t, θ) defined as,

S(t, θ) = (1− f(t))
∑
i 6=j

ei(θi−θj)− g(t)
∑
i

e−iθi − ḡ(t)
∑
i

eiθi −h(t) + f(t) (6.15)

6.1.2 Infinite N Limit

One can then take the large N limit, which has as a main consequence to replace

the integration over {θi}N−1
i=1 by a functional integral over a continous variable

[dθ] ranging from −π to π such that,

N−1∑
i=1

f(θi)→ N

∫ 1

0

dx f(θx) . (6.16)
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One can then evaluate the full index in the large N limit by considering the

density function for θ defined as,

ρ(θ) =
dx

dθ
. (6.17)

The integration measure for the path integral (6.14) in terms of the Fourier modes

of ρ,

ρn = N

∫ π

−π
dθρ(θ)einθ , (6.18)

which leads to the following expression for the path integral measure,

N−1∏
i=1

dθi → [dθ] = [dρ] =
∏
n≥1

n

π
dρndρ−n . (6.19)

One can then rewrite the Plethystic exponential in (6.14) as,

−Log Pexp(−S(t, θ))→
∞∑
n=1

1

n
((1− f(tn))ρnρ−n − g(tn)ρ−n − ḡ(tn)ρn − h(tn) + f(tn)) , (6.20)

and we are now left with a Gaussian integral which can be computed exactly,

with the following saddle points,

ρn =
g(tn)

1− f(tn)
, ρ−n =

ḡ(tn)

1− f(tn)
, n ∈ N∗ (6.21)

and the expression for the index in the large N limit is then given by,

IN→∞(t) = Pexp

(
g(t)ḡ(t)

1− f(t)
− f(t) + h(t)

) ∞∏
n=1

1

1− f(tn)
. (6.22)
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With the definition (6.10) for t, one can apply the previous analysis to Seiberg

dual theories,

fE(t) =
2t2 − tχ2(x)

(1− tx)(1− tx−1)
= fM(t) , (6.23)

gE(t) =
v

(1− tx)(1− tx−1)
(trQpNf (y)− t2−rQ̃pNf (ỹ−1)) , (6.24)

gM(t) =
v

(1− tx)(1− tx−1)
(trqpNf (y)− t2−rq̃pNf (ỹ−1)) , (6.25)

ḡE(t) =
v−1

(1− tx)(1− tx−1)
(trQ̃pNf (ỹ)− t2−rQpNf (y−1)) , (6.26)

ḡM(t) =
v−1

(1− tx)(1− tx−1)
(trq̃pNf (ỹ)− t2−rqpNf (y−1)) , (6.27)

hE(t) = 0 , (6.28)

hM(t) =
1

(1− tx)(1− tx−1)
(trMpNf (y)pNf (ỹ

−1)

− t2−rMpNf (y−1)pNf (ỹ)) , (6.29)

Equating the indices on both sides of the duality then imposes the following

restrictions on the R-charges of the various fields in the theories,

rQ + rQ̃ = rM , (6.30)

rq + rq̃ = 2− rM , (6.31)

which is compatible with the definition of the Seiberg dual theories under consid-

eration, but a weaker condition. To get more constraints on the R-charges, one

can compute the leading finite N correction to equation (6.22), and match the

electric and magnetic results. This can be achieved by using Schur polynomials

techniques as in [115, 36].

In the usual approach to Seiberg duality [26], the first constraint on the R-

charges can be interpreted as the fact that the mesons M are composites of

the electric quarks Q, Q̃. The second equation corresponds to the R-charges

constraints associated with to the magnetic theory superpotential,

W = M̃i
jφiφ̄j , i, j = 1 . . . Nf , (6.32)
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with φ, φ̄ the magnetic squarks and M̃ is the magnetic scalar mesino. It is inter-

esting to note that, despite the nature of the index as a free fiel theory quantity,

the matching of the full index on both sides of the duality contains implies the

information regarding the superpotential. So, although the localisation argument

implies that the superpotential does not impact the index1, the matching of the

index seems, at least in this context, to provide the information contained in the

superpotential.

6.1.3 Finite N Corrections

To do this, one can recast the plethystic exponential which constitutes the inte-

grand of the full multiparticle index expression given in equation (6.11) using,

Pexp(f(t)) =
∑
a

1

Na
fa(t) . (6.33)

where a represents an infinite row vector a = (a1, a2 . . . ) and we have used the

following notation,

pa(z) =
∞∏
n=1

pN(zn)an , fa(t) =
∞∏
n=1

f(tn)an , (6.34)

as well as the normalisation constant,

Na =
∞∏
n=1

nanan! , (6.35)

which allows the index integrand to be recast in terms of power symmetric poly-

nomials as,

Pexp (i(t, z)) =
∑
a,b,b̄

1

NaNbNb̄
fa(t)gb(t)ḡb̄(t)pa+b(z)pa+b̄(z

−1) . (6.36)

The power symmetric polynomials can be rewritten in terms of Schur polynomials

which satisfy standard orthogonality relations. Schur polynomials depend on the

1See more refined statement in section (4.1.5)
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variables z = (z1, z2 . . . zN) and the index λ = (λ1, λ2 . . . λ`(λ)),

sλ(z) = sλ1,λ2 ... λn(z) =
det
[
z
λj+n−j
i

]
det
[
zn−ji

] (6.37)

which correspond to SU(N) characters, provided the unitarity constraint on the

variables z given in (6.8), and the partition λ is ordered,

λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) ≥ 1 , λ`(λ)+1 = 0 . (6.38)

with `(λ) the length of the vector λ. As a consequence of the unitarity constraint

(6.8) on the product of xi, the following relation holds,

sλ(z) = sλ+nρ
N

(z) , ρN = (1, 1 . . . 1) , `(ρ
N

) = N , (6.39)

which allows us to set λN = 0. One can then make contact with the previous

definitions of SU(N) characters (6.7),

χSU(N), f (z) = s1,0 ... 0,0 (z) , (6.40)

χSU(N), f̄ (z) = s1,1 ... 1,0 (z) , (6.41)

χSU(N),Adj.(z) = s2,1 ... 1,0 (z) . (6.42)

One can then rewrite the power symmetric polynomials in terms of Schur poly-

nomials,

pa(z) =
∑
λ

`(λ)≤N

ωa
λsλ(z) , sλ(z) =

∑
a

1

Na
ωa

λ pa(z) , (6.43)

with,

|a| =
∑
n≥1

nan = |λ| =
∑
n≥1

λn . (6.44)

We were able to invert equation (6.43) by using the following,∑
λ

ωa
λ ωb

λ = Naδa b . (6.45)
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The orthogonality relations between Schur polynomials is given by,∫
SU(N)

dµ(z)sλ(z)sλ′(z) = δλλ′ +
∞∑
n=1

(δλ′, λ+nρ
N

+ δλ, λ′+nρ
N

)

`(λ), `(λ′) < N (6.46)

which can then be translated to the corresponding result for the power symmetric

polynomials,∫
SU(N)

dµ(z)pa(z)pb(z) =
∑
λ

`(λ)≤N

ωa
λ ωb

λ +
∑
λ

`(λ)≤N

∞∑
n=1

(ωa
λ+nρ

N ωb
λ + ωa

λ ωb
λ+nρ

N ) .

This can then be used to give an exact, although rather involved, formula for the

full superconformal index,

I(t) =
∑
a b b̄

1

NaNbNb̄
fa(t)gb(t)ḡ b̄(t) (6.47) ∑

λ
`(λ)≤N

ωa+b
λ ωa+b̄

λ +
∑
λ

`(λ)≤N

∞∑
n=1

(ωa+b
λ+nρ

N ωa+b̄
λ + ωa+b

λ ωa+b̄
λ+nρ

N )

 .

One can then use this to integrate equation (6.36) over SU(N). The first term

on the right hand side of (6.47) gives rise to the large N limit formula,

IN→∞(t) =
∑
a b

Na+b

NaN 2
b

fa(t)gb(t)ḡb(t) , (6.48)

which is equivalent to equation (6.22). One can then compute the first finite N

correction. The leading non-zero correction is the n = 1, λ = 0 term, and is given

by,

IN<∞ =
∑
b

1

Nb
( gb(t) + ḡb(t))ωb

ρ
N + . . . , |b| = N , (6.49)
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Applying this expression to the electric theory in figure (1.1), the first finite N

corrections are proportional to,

IE,N<∞ ∼
∑
b

1

Nb
(tNcrQvNcpb(y) + tNcrQ̃v−Ncpb(ỹ))ωb

ρ
Nc + . . . (6.50)

For the magnetic theory, this gives,

IM,N<∞ ∼
∑
b

1

Nb
(tÑcrqvÑcpb(y) + tÑcrq̃v−Ñcpb(ỹ))ωb

ρ
Ñc + . . . (6.51)

Matching for t gives some extra relations on the R-charges,

NcrQ = Ñcrq , NcrQ̃ = Ñcrq̃ , (6.52)

When combined with the other relations on R-charges,

rM =
2Ñc

Nf

, (6.53)

The quark charges are not fixed by this, as one parameter α remains unfixed,

rq = Nc
Nf

+ α , rq̃ = Nc
Nf
− α , (6.54)

rQ = Ñc
Nf

+ α Ñc
Nc
, rQ̃ = Ñc

Nf
− α Ñc

Nc
, (6.55)

The large N limit of the index does not depend on the parameter α, as can be

seen from substituting the expression for the quark R-charges (6.55) into equation

(6.22). However, one can impose the correct α parameter by maximising the first

finite N corrections to the index in the limit,

y = ỹ , v = 1 , (6.56)
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For instance in the Seiberg electric theory, the α dependence for gE is given by,

gE(t) =
v

(1− tx)(1− tx−1)
tα

Ñc
Nc (t

Ñc
Nf pNf (y)− t2−

Ñc
Nf pNf (ỹ

−1)) , (6.57)

ḡE(t) =
v−1

(1− tx)(1− tx−1)
t−α

Ñc
Nc (t

Ñc
Nf pNf (ỹ)− t2−

Ñc
Nf pNf (y

−1)) . (6.58)

Consequenly, given that fE(t) does not depend on any R-charge, and given that

hE(t) is zero, the large N limit of the index (6.22) does not depend on the α

parameter, as only the product g(t)ḡ(t) enters its defintion. If one now focuses

on the leading finite N correction to the index, one can see that,

∂αIE,N<∞(y = ỹ, v = 1) =
∑
b

2

Nb
Ñc Log(t) t

NcÑc
Nf sinh(αÑc) pb(y)ωb

ρ
Nc + . . .

(6.59)

One can see that in the limit (6.56), setting α to zero extremises IE,N<∞. This

analysis can be repeated on the magnetic side in order to recover the electro-

magnetic dual R-charges in figure (1.1) and figure (1.2).

6.2 Extremising the Index

The previous observation regarding index maximisation can in fact be expanded

beyond finite N considerations. Consider the Seiberg electric theory. The expres-

sion for the full particle index given in equation (6.48) can be given emphasizing

the dependence on parameter α defined in equation (6.55),

I(t) =
∑
a b b̄

1

NaNbNb̄
fa(t)gb, α=0(t)ḡ b̄, α=0(t) (6.60)

∑
λ

`(λ)≤N

(
ωa+b

λ ωa+b̄
λ +

∞∑
n=1

(tαÑcnωa+b
λ+nρ

N ωa+b̄
λ + t−αÑcnωa+b

λ ωa+b̄
λ+nρ

N )

)
.

where we have made use of equation (6.44). In the limit (6.56), one can compute

the derivative of the full index with respect to α. In this limit, one should note

that,

gb(t) = ḡb(t) , (6.61)
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which means that one can symmetrise the last terms in the sum (6.61) with

respect to b↔ b̄, so in the limit (6.56),

∂αI(t) =
∑
a b b̄

2

NaNbNb̄
fa(t)gb, α=0(t)g b̄, α=0(t) (6.62)

∑
λ

`(λ)≤N

∞∑
n=1

nLog(t) Ñc sinh(αn Ñc)ωa+b
λ+nρ

N ωa+b̄
λ .

Consequently, taking the parameter α to zero minimises the index in the appro-

priate limit. This observation is reminiscent of a-maximisation [1] in 4 dimensions

and Z-maximisation in 3 dimensions.

One should note that α parameterises the difference in R-charge between the

electric quarks Q and Q̃, and the same observation holds for the magnetic theory.

Consequently, assuming chiral symmetry to be unbroken means that α should be

set to zero. However, it is still interesting to observe that the appropriate value

for this parameter also happens to maximise the index.

6.3 Elliptic Hypergeometry of the Index

The full index can in fact be shown to agree on both sides of Seiberg dual theo-

ries [36, 42, 43, 112, 35, 113, 114]. This matching is due to non-trivial identities

relating integrals of Gamma functions due to Rains [39] and Spiridonov. We here

review the simplest matching of electric-magnetic indices [36] for Seiberg dual

theories with a magnetic theory with (Nf , Nc) = (2, 3).

The elliptic Gamma function will be used to rewrite the scalar multiplet single

particle inex, and is defined as,

Γ(y; p, q) =
∏
j,k≥0

1− y−1pj+1qk+1

1− ypjqk
, (6.63)

while the theta function and the (x; p) infinite product will be used to rewrite the
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single particle index for the vector multiplet,

θ(z; p) =
∏
j≥0

(1− zpj)((1− z−1pj+1)) , (x; p) =
∏
j≥0

(1− xpj) , (6.64)

With these definitions and the following variable definition,

p = tx , q = tx−1 , y = t rz (6.65)

with z the U(1)B fugacity. The single particle scalar index reads,

iφ(p, q, y) =
trz − t2−rz−1

(1− tx)(1− tx−1)
=

y − pqy−1

(1− p)(1− q)
, (6.66)

and its Plethystic exponential can be rewritten,

Pexp(iφ(p, q, y)) = Γ(y; p, q) , (6.67)

whereas the vector single particle index reads,

iλ(p, q) = − p

1− p
− q

1− q
= 1− 1− pq

(1− p)(1− q)
(6.68)

and its Plethytistic reads,

Pexp(iλ(y, p, q)(z + z−1)) =
θ(z; p)θ(z; q)

(1− z)2
, (6.69)

=
1

(1− z)(1− z−1)Γ(z; p, q)Γ(z−1; p, q)
, (6.70)

Pexp(iλ(y, p, q)) = (p; p)(q; q) . (6.71)

For the electric theory, the the flavour symmetry can be rewritten as an SU(6)

global symmetry, U(1)B × SU(3) × SU(3) → SU(6), with the electric quarks

in the six dimensional fundamental representation and the magnetic dual quarks

and mesons form the 15 dimensional antisymmetric representation A. This leads
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to the expression for the electric single particle index,

iE(p, q, u, z) = −
(

p

1− p
+

q

1− q

)
χ3(z)

+
1

(1− p)(1− q)
(p6(u)− pqp6(u−1))χ2(z) , (6.72)

with u, z the flavour and gauge variables, and the polynomials pN defined in

equation (6.5). Similarly, one can write the single particle index for the

iM(p, q, u) =
1

(1− p)(1− q)
(χSU(6),A(u)− pq χSU(6),A(u−1)) , (6.73)

with the characters for the antisymmetric tensor representation A of SU(6) given

by,

χSU(N),A(u) =
∑

1≤i<j≤N

uiuj , (6.74)

One can then show that the full superconformal index for the electric theory can

be recast as,

IE(p, q, u) = −(p; p)(q; q)
1

4πi

∮
dz

z3
θ(z2; p)θ(z2; q)I(p, q, u, z) , (6.75)

with the following definition,

I(p, q, u, z) =
6∏

a=1

Γ(uaz; p, q)Γ(uaz
−1; p, q) , (6.76)

while on the magnetic side, there is no integration sign,

IM(p, q, u) =
∏

1≤a<b≤6

Γ(uaub; p, q) . (6.77)

The matching of the full indices (6.75) (6.77) then stems from an identity obtained

by Spiridonov [37].
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Conclusions

In this thesis we have given a detailed analysis of the 4-dimensional index. After

computing the index for a generic 4-dimensional free superconformal field theory,

we were able to generalise the index to less symmetric theories by constructing

N = 1 Lagrangians on R × S3 which reduce to radially quantised theories for

conformal theories, but allow for more generic R-charges away from conformality.

This then allowed us to write down the twisted action for a finite time interval

and show exactness of the index formula (2.49). Finally, we focused on the index

in the large N limit for Seiberg dual theories. Taking R-charges to be completely

generic and imposing mathing of the index and matching the infinite N limit as

well as the first finite N corrections on both sides of the duality, we were able

to recover the appropriate R-charges, and we also uncovered some sign that an

extremisation principle similar to a, Z-maximisation might be at play for the

index. This in itself is no surprise, as the index can be dimensionally reduced

to the three-dimensional partition function on the sphere. Also, the localisation

principle makes explicit on loop nature of the index in 4 dimensions, which is also

the case for the Weyl anomaly which defines the coefficient a.

This leaves many questions open, some of which are given below.

Index and Non-Perturbative Contributions

The exactness of the matching of the index for Seiberg dual theories is an

impressive result from a mathematical point of vue, and provides a powerful new
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tool to test and postulate new dualities. However it only contains information

about a limited portion of the spectrum of the theories under consideration. Also,

it does not probe the non-perturbative regime of the theories under considera-

tion. One could then ask whether non-perturbative physics can be probed while

retaining exactness associated with localisation principles we have used here. De-

noting the S the appropriately twisted action which gives rise to the index, we

have shown that,

I(t, x) =

∫
[dX]e−S , (7.1)

is exact, with X the set of fields in the theory. In order to probe non perturbative

physics, we somehow need to soak up the zero modes in the instanton background

by having fermionic insertions. For localisation principles to be applicable, we

can only Q-closed operators. Keeping the same conventions as before such that

Q = Q1+S1 is twisted to become a scalar operator, one can consider the following

two point correlation function,

Ĩψ(t, x) =

∫
dτd3Ω

∫
[dX](ψ̄1ψ1 + λ̄1λ1)(τ,Ω)e−S , (7.2)

with insertions of the quarks and the gaugino. One can think of the insertion

as the fermion counting operator F defined in equation (1.4). This makes the

definition of the modified index (7.2) reminiscent of the modified index defined

in [94]. For this quantity to be exact, the number of fermionic zero modes on

the curved background should match the number of fermion insertions. Also,

assuming this is true, one would need to define monopole spherical harmonics for

R× S3 in the same spirit as [116, 117, 118].

Further Geometric Deformations of the Sphere

As was pointed out in section (4.3.1) and developped in chapter (5), the index

can be defined for more generic spaces with less than the superconformal sym-

metry which was initially required for the definition. In section (3.1.2), we have

underlined the symmetries one has to preserve to define an index consistently,

and we have investigated the case of the singly squashed sphere in chapter (5).

One should extend this approach to the case of the doubly squashed sphere as in
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[61]. Another potential extension mentioned in (4.3.1) is the computation of the

index on spaces with non-trivial holonomies such as the lens space [107], which

would give rise to more complex structure for the index of gauge theories. Also,

understanding better the relationship between four dimensional indices and three

dimensional partition functions would be desirable. The interplay between those

quantities could lead the a better understanding of a, Z-maximisation as well as

dualities.
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Appendix A

Superconformal Algebra

In this appendix we give the explicit realisation of the algebra (2.26) for practical

purposes. For Qα, Sα, Q̄α̇, S̄α̇ denoting supercharges,

{Qα, S
β} = 2δβα

(
H + 3

2
R
)
− 4Jm(σm)α

β , (A.1)

{Q̄α̇, S̄
β̇} = −2δβ̇α̇

(
H − 3

2
R
)
− 4J̄m(σm)β̇ α̇ , (A.2)

{Qα, Q̄α̇} = 2Pαα̇ , (A.3)

{Sα, S̄α̇} = 2K α̇α , (A.4)

where σm denote usual Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
, (A.5)

The dilation, translation and inversion operators act on the supercharges as,

[H,Qα] = 1
2
Qα ,

[
H, Q̄α̇

]
= 1

2
Q̄α̇ , [H,Pαα̇] = Pαα̇ , (A.6)

[H,Sα] = −1
2
Sα ,

[
H, S̄α̇

]
= −1

2
S̄α̇ ,

[
H,K α̇α

]
= −K α̇α , (A.7)

The supercharges transform under rotation as,

[Jm, Qα] = −1
2
(σm)α

βQβ , [Jm, S
α] = 1

2
Sβ(σm)β

α , (A.8)[
J̄m, Q̄α̇

]
= 1

2
Q̄β̇(σm)β̇α̇ ,

[
J̄m, S̄

α̇
]

= −1
2
(σm)α̇β̇S̄

β̇ , (A.9)
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Or equivalently,

[J3, Q1] = −1
2
Q1 ,

[
J3, S

1
]

= 1
2
S1 , (A.10)

[J+, Q1] = −Q2 , [J−, Q2] = −Q1 , (A.11)[
J+, S

2
]

= S1 ,
[
J−, S

1
]

= S2 , (A.12)

The R-charge action is given by,

[R,Qα] = −Qα , [R, Sα] = Sα , (A.13)[
R, Q̄α̇

]
= Q̄α̇ ,

[
R, S̄α̇

]
= −S̄α̇ . (A.14)

The commutation relations between J rotation generators and the P translation

and K inversion generators are given by,

[Jm, P0] = 1
2
Pm , [Jm, Pn] = 1

2
δmnP0 + i

2
εmnpPp , (A.15)

[Jm, K0] = 1
2
Km , [Jm, Pn] = 1

2
δmnK0 + i

2
εmnpKp , (A.16)[

J̄m, P0

]
= −1

2
Pm , [Jm, Pn] = −1

2
δmnP0 + i

2
εmnpPp , (A.17)[

J̄m, K0

]
= −1

2
Km , [Jm, Pn] = −1

2
δmnK0 + i

2
εmnpKp , (A.18)

In the spinorial basis,

[J3, P11] = −1
2
P11 , [J3, P22] = 1

2
P22 , (A.19)

[J3, P12] = −1
2
P12 , [J3, P21] = 1

2
P21 , (A.20)

Other commutators not shown are zero. Under radial hermitean conjugation

these generators satisfy,

H+ = H , J+
m = Jm , J̄+

m = J̄m , R+ = R , Q+
α = Sα , Q̄+

α̇ = −S̄α̇ ,
(A.21)

while under the “flat” hermitean conjugation,

H† = −H , J†m = J̄m , R† = R , Q†α = Q̄α̇ , Sα† = S̄α̇ (A.22)
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Appendix B

Localisation Actions

B.1 Chiral Multiplet Action: Free Part

Here we determine QLVφ decomposing,

Vφ = Vφ1 + Vφ2 + Vφ3 , (B.1)

where we have defined,

Vφ1 = −1
2
(ψβ ε̄αSβψ̄

α + ψ̄βεαQβψ
α) , (B.2)

Vφ2 = 1
2
(ψβεαQβψ̄

α + ψ̄β ε̄αSβψ
α) , (B.3)

Vφ3 = φQLφ̄− φ̄QLφ , (B.4)

excluding for the moment gauge interaction terms. We deal with the remaining

terms of appearing in the localisation action arising from gauge interactions in

the following subsection.

In computing these expansions we use the following identities for the Killing

spinors, namely,

εαεα = ε̄αε̄α = 0 , εαε̄β = 1
2
δαβ + 1

2
Vm(σm) α

β , ε̄αεβ = −1
2
δαβ + 1

2
Vm(σm) α

β ,

(B.5)

where Vm is the Killing vector defined in equation (3.55) (3.56). Expanding QLVφ1
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B. LOCALISATION ACTIONS

we obtain,

QLVφ1 = −1
2
(εαεγQαψ̄βQ

βψγ + εαε̄γQαψ
βSβ, ψ̄

γ − εαε̄γψβQαSβψ̄
γ

−ε̄αε̄γSαψβSβ, ψ̄γ − ε̄αεγSαψ̄βQβψγ + ε̄αεγψ̄βSαQ
βψγ) . (B.6)

The bosonic parts in this expansion are given by,

εαεγQαψ̄βQ
βψγ = −2i(εσmε)∂mφ̄F , (B.7)

εαε̄γQαψ
βSβ, ψ̄

γ = FF̄ , (B.8)

−ε̄αε̄γSαψβSβ, ψ̄γ = 2i(ε̄σmε̄)∂mφF̄ , (B.9)

−ε̄αεγSαψ̄βQβψγ = FF̄ , (B.10)

while the fermionic parts are,

−εαε̄γψβQαSβ, ψ̄
γ = 1

2
ψ(i∂0 − 3r−2

2
)ψ̄ + iψσmDmψ̄ (B.11)

+1
2
Vmψσm(i∂0 − 3r−2

2
)ψ̄ + iVmψDmψ̄ + εmnpVmψσnDpψ̄ ,

ε̄αεγψ̄βSαQ
βψγ = −1

2
ψ̄(i∂0 + 3r−2

2
)ψ + iψσmDmψ̄ (B.12)

+1
2
Vmψσm(i∂0 − 3r−2

2
)ψ̄ − iVmψ̄Dmψ − εmnpVmψ̄σnDpψ .

One can simplify the last equation by noting, up to boundary terms,

εmnpVmψ̄σnDpψ = εmnpVmψσnDpψ̄ − Vmψσmψ̄ . (B.13)

Consequently, in total, the bosonic and fermionic parts are,

QLVφ,bos.
1 = −FF̄ + i(εσmε)∂mφ̄F − i(ε̄σmε̄)∂mφF̄ , (B.14)

QLVφ,ferm.
1 = −1

2
ψ(i∂0 − 3r−2

2
)ψ̄ − iψσmDmψ̄

−1
2
Vmψσm(i∂0 − 3r−2

2
)ψ̄ − iVmψDmψ̄ − 1

2
Vmψσmψ̄ . (B.15)

Similarly,

QLVφ2 = 1
2
(εαεγQαψβQ

βψ̄γ + εαε̄γQαψ̄
βSβ, ψ

γ − εαε̄γψ̄βQαSβψ
γ

−ε̄αε̄γSαψ̄βSβ, ψγ − ε̄αεγSαψβQβψ̄γ + ε̄αεγψβSαQ
βψ̄γ) .(B.16)
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The bosonic parts are,

εαεγQαψβQ
βψ̄γ = −2i(εσmε)∂mφ̄F , (B.17)

−ε̄αε̄γSαψ̄βSβψγ = 2i(ε̄σmε̄)∂mφF̄ , (B.18)

along with,

εαε̄γQαψ̄
βSβ, ψ

γ = (∂0 + i3
2
r)φ̄(∂0 − i3

2
r)φ− 4∂mφ ∂mφ̄

−4iεmnpVp∂mφ̄∂nφ+ 2Vm∂mφ̄(∂0 − i3
2
r)φ

−2Vm∂mφ(∂0 + i3
2
r)φ̄ , (B.19)

−ε̄αεγSαψβQβψ̄γ = (∂0 + i3
2
r)φ̄(∂0 − i3

2
r)φ− 4∂mφ ∂mφ̄

−4iεmnpVp∂mφ̄∂nφ+ 2Vm∂mφ(∂0 + i3
2
r)φ̄

−2Vm∂mφ̄(∂0 + i3
2
r)φ . (B.20)

The last equation noticing may be simplified using, suppressing boundary terms,

εmnp4iVp∂mφ̄∂nφ = −4iVmφ∂mφ̄ . (B.21)

Meanwhile, the fermionic parts are given by,

−εαε̄γψ̄βQαSβψ
γ = 1

2
ψ̄(i∂0 + 3r−2

2
)ψ̄ − iψ̄σmDmψ + ψψ̄ (B.22)

+1
2
Vmψ̄σm(i∂0 + 3r−2

2
)ψ − iVmψ̄Dmψ + εmnpVmψ̄σnDpψ ,

ε̄αεγψβSαQ
βψ̄γ = −1

2
ψ(i∂0 − 3r−2

2
)ψ̄ − iψσmDmψ̄ + ψψ̄ (B.23)

+1
2
Vmψσm(i∂0 − 3r−2

2
)ψ̄ + iVmψDmψ̄ − εmnpVmψσnDpψ̄ .

Consequently,

QLVφ,bos.
2 = −i(εσmε)∂mφ̄F + i(ε̄σmε̄)∂mφF̄

+(∂0 + i3
2
r)φ̄(∂0 − i3

2
r)φ− 4∂mφ ∂mφ̄− 4iVmφ∂mφ̄ , (B.24)

QLVφ,fer.
2 = −1

2
ψ(i∂0 − 3r−2

2
)ψ̄ − iψσmDmψ̄

+1
2
Vmψσm(i∂0 − 3r−2

2
)ψ̄ + ψψ̄ − 1

2
Vmψσmψ̄ , (B.25)

gathering the bosonic and fermionic parts together. Finally, we have for the
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bosonic and fermionic parts of QLVφ3 ,

QLVφ,bos.
3 = φ(i∂0 − 3

2
r)φ̄− φ̄(i∂0 + 3

2
r)φ+ 2iVmφ∂mφ̄− 2iφ̄Vm∂mφ ,(B.26)

QLVφ,fer.
3 = −ψψ̄ + Vmψσmψ̄ . (B.27)

Collecting all bosonic and fermionic terms leads to (3.96) with (3.99).

B.2 Chiral Multiplet Action: Interacting Part

The final piece of the action for an interacting scalar field, save for interaction

terms from gauge covariant derivatives, is given by QLVφint. where we have defined,

Vφint. = −iφ[ελ̄, φ̄] + iφ̄[ε̄λ, φ] . (B.28)

Expanding this expression (B.28),

−iQLφ[ελ̄, φ̄] = −i(εψ)[(ελ̄), φ̄] + i
2
φ[D, φ̄] + i

2
ψ̄[λ̄, φ]

+ i
2
Vmψ̄σm[λ̄, φ]− Vmφ[F−m , φ̄] , (B.29)

iQLφ̄[ε̄λφ] = −i(ε̄ψ̄)[(ε̄λ), φ] + i
2
φ[D, φ̄]− i

2
ψ[λ, φ̄]

+ i
2
Vmψσm[λ, φ̄]− Vmφ̄[F+

m , φ] . (B.30)

The sum of the latter may be simplified slightly using,

− Vmφ[F−m , φ̄]− Vmφ̄[F+
m , φ] = −2iVmεmnpFnp[φ, φ̄] . (B.31)

The analysis of the previous subsection also gets modified as all derivatives get

covariantised and give rise to some extra terms resulting from the action of QL
on the connection A0, Am itself. These terms may be read off from (4.70), taking
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account only of A0, Am and F -term modifications, as,

− i
2
εψ[QLA0, φ̄] = i

2
(εψ)[(ελ̄), φ̄]− i

4
ψ[λ, φ̄] + i

4
Vmψσm[λ, φ̄] , (B.32)

i
2
ε̄ψ̄[QLA0, φ] = i

2
(ε̄ψ̄)[(ε̄λ), φ] + i

4
ψ̄[λ̄, φ] + i

4
Vmψ̄σm[λ̄, φ] , (B.33)

iεσmψ[QLAm, φ̄] = i
2
(εψ)[(ελ̄), φ̄]− 3i

4
ψ[λ, φ̄]− i

4
Vmψσm[λ, φ̄] , (B.34)

iε̄σmψ̄[QLAm, φ̄] = i
2
(ε̄ψ)[(ε̄λ), φ] + 3i

4
ψ̄[λ̄, φ]− i

4
Vmψ̄σm[λ̄, φ] , (B.35)

1
2
(ε̄ψ)QLF̄ = − i

2
ψ[λ, φ̄]− i

2
Vmψσm[λ, φ̄] , (B.36)

1
2
(εψ̄)QL, F = i

2
ψ̄[λ̄, φ]− i

2
Vmψ̄σm[λ̄, φ] . (B.37)

Furthermore, the equation (B.21) becomes modified to,

4iεmnpVpDmφ̄Dnφ = −4iVmφDmφ̄+ 2iVmεmnpFnp[φ, φ̄] , (B.38)

giving rise to an extra term in (B.20), after derivatives are replaced by gauge

covariant ones, cancelling the term arising from (B.31). Collecting all these terms

leads to (3.104) with (3.105).

B.3 Vector Multiplet Action

Here, defining,

VA1 = i
2
(ε̄σmλ)F+

m , (B.39)

VA2 = i
2
(εσmλ̄)F−m , (B.40)

VA3 = −1
4

(ελ̄+ ε̄λ)D , (B.41)

suppressing integration symbols as before, the bosonic part of the action may be

computed as,

QLVA,bos.
1 = i

2
(ε̄σmQL λ)F+

m = 1
2
F0mF0m − FmnFmn + i

4
VmF

+
mD, (B.42)

QLVA,bos.
2 = i

2
(εσmQL λ̄)F−m = 1

2
F0mF0m − FmnFmn − i

4
VmF

−
mD , (B.43)

QLVA,bos.
3 = −1

4
(εαQL λ̄α + ε̄αQL λα)D = i

4
Vm(F−m − F+

m)D + 1
4
D2 . (B.44)
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Collecting all those terms gives the bosonic part of the vector multiplet action

(3.100). Determining the fermionic part of this expression, namely,

QLVA,fer.
1 = − i

2
(ε̄σmλ)QLF+

m , (B.45)

QLVA,fer.
2 = − i

2
(εσmλ̄)QLF−m , (B.46)

QLVA,fer.
3 = 1

4
(ελ̄+ ε̄λ)QLD . (B.47)

Expansion gives in detail,

QLVA,fer.
1 = i

4
(ε̄σmλ)(εσm∂0λ̄) + i

2
(ε̄σmλ)(εDmλ̄) + 1

2
(ε̄σmλ)εmnp(εσnDpλ̄)

+ i
4
(ε̄σmλ)(ε̄σm∂0λ)− i

2
(ε̄σmλ)(ε̄Dmλ) + 1

2
(ε̄σmλ)εmnp(ε̄σnDpλ)

+1
2
(ε̄σmλ)(ε̄σmλ) , (B.48)

QLVA,fer.
2 = i

4
(εσmλ̄)(ε̄σm∂0λ)− i

2
(εσmλ̄)(ε̄Dmλ)− 1

2
(εσmλ̄)εmnp(ε̄σnDpλ)

+ i
4
(εσmλ̄)(εσm∂0λ̄) + i

2
(εσmλ̄)(εDmλ̄)− 1

2
(εσmλ̄)εmnp(εσnDpλ̄)

+1
2
(εσmλ̄)(εσmλ̄) , (B.49)

QLVA,fer.
3 = − i

4
(ελ̄)(ε̄∂0λ) + i

2
(ελ̄)(ε̄σmDmλ)− i

4
(ε̄λ)(ε∂0λ̄)− i

2
(ε̄λ)(εσmDmλ̄)

− i
4
(ελ̄)(ε∂0λ̄)− i

2
(ελ̄)(εσmDmλ̄)− i

4
(ε̄λ)(ε̄∂0λ)

+ i
2
(ε̄λ)(ε̄σmDmλ) , (B.50)

To simplify, we use for QLVA,fer.
1 the relations, employing (3.53),

i
4
(ε̄σmλ)(εσm∂0λ̄) = 3i

8
λ∂0λ̄− i

8
Vmλσm∂0λ̄ , (B.51)

i
2
(ε̄σmλ)(εDmλ̄) = i

4
λσmDmλ̄+ i

4
VmλDmλ̄− 1

4
εmnpVmλ̄σnDpλ

−1
4
Vmλσmλ̄ , (B.52)

1
2
(ε̄σmλ)εmnp(εσnDpλ̄) = i

2
λσmDmλ̄− i

2
VmλDmλ̄ , (B.53)

i
4
(ε̄σmλ)(ε̄σm∂0λ) = i

4
(ε̄λ)(ε̄∂0λ) , (B.54)

− i
2
(ε̄σmλ)(ε̄Dmλ) = − i

2
(ε̄λ)(ε̄σmDmλ) , (B.55)

(ε̄σmλ)(εmnpε̄σnDpλ) = (ε̄σmλ)(ε̄σmλ) = 0 , (B.56)
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and for QLVA,fer.
2 the relations,

i
4
(εσmλ̄)(ε̄σm∂0λ) = −3i

8
λ̄∂0λ− i

8
Vmλ̄σm∂0λ , (B.57)

− i
2
(εσmλ̄)(ε̄Dmλ) = i

4
λ̄σmDmλ− i

4
Vmλ̄Dmλ+ 1

4
εmnpVmλ̄σnDpλ ,(B.58)

−1
2
(εσmλ̄)εmnp(ε̄σnDpλ) = i

2
Vmλ̄Dmλ+ i

2
λ̄σmDmλ , (B.59)

i
4
(εσmλ̄)(εσm∂0λ̄) = i

4
(ελ̄)(ε∂0λ̄) , (B.60)

i
2
(εσmλ̄)(εDmλ̄) = i

2
(ελ̄)(εσmDmλ̄) , (B.61)

(εσmλ̄)(εmnpεσnDpλ̄) = (εσmλ̄)(εσmλ̄) = 0 , (B.62)

to arrive at,

QLVA1 +QLVA,fer.
2 = 3i

4
λ∂0λ̄+ 3i

2
λσmDmλ̄− i

4
Vmλσm∂0λ̄− i

2
VmλDmλ̄

−1
4
Vmλσmλ̄+ i

4
(ελ̄)(ε∂0λ̄) + i

2
(εσmDmλ̄)

+ i
4
(ε̄λ)(ε̄∂0λ)− i

2
(ε̄λ)(ε̄σmDmλ) . (B.63)

Similarly, for QLVA,fer.
1 using the identities,

− i
4
(ελ̄)(ε̄∂0λ) = − i

8
λ̄∂0λ+ i

8
Vmλ̄σm∂0λ , (B.64)

i
2
(ελ̄)(ε̄σmDmλ) = i

4
λ̄σmDmλ− i

4
Vmλ̄Dmλ− 1

4
εmnpVmλ̄σnDpλ , (B.65)

− i
4
(ε̄λ)(ε∂0λ̄) = i

8
λ∂0λ̄+ i

8
Vmλσm∂0λ̄ , (B.66)

− i
2
(ε̄λ)(εσmDmλ̄) = i

4
λσmDmλ̄+ i

4
VmλDmλ̄+ 1

4
εmnpVmλ̄σnDpλ

+1
4
Vmλσmλ̄ , (B.67)

we obtain,

QLVA,fer.
3 = i

4
λ∂0λ̄+ i

2
λσmDmλ̄+ i

4
Vmλσm∂0λ̄+ i

2
VmλDmλ̄+ 1

4
Vmλσmλ̄

− i
4
(ελ̄)(ε∂0λ̄)− i

2
(εσmDmλ̄)− i

4
(ε̄λ)(ε̄∂0λ)

+ i
2
(ε̄λ)(ε̄σmDmλ) . (B.68)

Summing (B.63) and (B.68) the fermionic part of the action (3.100) follows.
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In this thesis, we investigate four dimensional supersymmetric indices. The moti-

vation for studying such objects lies in the physics of Seiberg’s electric-magnetic

duality in supersymmetric field theories. In the first chapter, we first define the

index and underline its cohomological nature, before giving a first computation

based on representation theory of free superconformal field theories. After listing

all representations of the superconformal algebra based on shortening conditions,

we compute the associated Verma module characters, from which we can extract

the index in the appropriate limit. This approach only provides us with the

free field theory limit for the index and does not acount for the values of the

R-charges away from free field theories. To circumvent this limitation, we then

study a theory on R× S3 which allows for a computation of the superconformal

index for multiplets with non-canonical R-charges. We expand the fields in har-

monics and canonically quantise the theory to analyse the set of quantum states,

identifying the ones that contribute to the index. To go beyond free field theory

on R × S3, we then use the localisation principle to compute the index exactly

in an interacting theory, regardless of the value of the coupling constant. We

then show that the index is independent of a particular geometric deformation of

the underlying manifold, by squashing the sphere. In the final chapter, we show

how the matching of the index can be used in the large N limit to identify the

R-charges for all fields of the electric-magnetic theories of the canonical Seiberg

duality. We then conclude by outlining potential further work.
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