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Abstract— A new approach to implement minimum variance
distortionless response (MVDR) beamforming is introduced for
coherent plane-wave compounding. MVDR requires the covari-
ance matrix of the incoming signal to be estimated and a spatial
smoothing approximation is usually adopted to prevent this
calculation from being under-constrained. In a new approach,
we analyze MVDR as a spatial filter that decorrelates signals
received at individual channels before summation. Based on the
analysis, we develop two MVDR beamformers without using any
spatial smoothing. In the first, MVDR weights are applied to the
received signals after accumulating the data over transmits at
different angles, while the second involves weighting the data
collected in individual transmits and compounding over the
transducer elements. In both cases, the covariance matrix is
estimated using a set of slightly different combinations of the echo
data. We show the sufficient statistic for this estimation can be
described by approximating the correlation among the backscat-
tered ultrasound signals to their spatial coherence. Using the van
Cittert-Zernike theorem, their statistical similarity is assessed by
relating the spatial coherence to the profile of the source intensity.
Both spatial-coherence-based MVDR beamformers are evaluated
on datasets acquired from simulation, phantom and in vivo
studies. Imaging results show that they offer improvements over
simple coherent compounding in terms of spatial and contrast
resolution. They also outperform other existing MVDR-based
methods in the literature that are applied to coherent plane-wave
compounding.

Index Terms - adaptive beamforming, coherent plane-
wave compounding, minimum variance beamforming, spatial
coherence, van Cittert-Zernike theorem, acoustic reciprocity,
image quality.

I. INTRODUCTION

In array processing, a beamformer is defined as a spatial
filter associated with a sensor array to receive a signal arriving
at a specific location while attenuating those radiating at the
other locations [1]. When applied to ultrasound imaging, this
filter involves a set of delays and weights that are applied to
each transducer element to control the acoustic beam shape
on transmit and a similar set that are applied on receive to
create focal zones [2]. The goal is to generate a uniformly
narrow pulse-echo beam with low sidelobe amplitudes over
the entire imaging region. This enables the reconstruction of a
B-scan image with high contrast and spatial resolution [3]. The
beamformer performance, therefore, can be evaluated by using
these figures of merit, along with the echo signal-to-noise ratio
(eSNR) that characterizes the beam penetration [4].

Over the last decade, minimum variance distortionless
response (MVDR) beamforming has been comprehensively

investigated by many ultrasound imaging groups [5]–[8], as
an alternative to conventional delay-and-sum (DAS) beam-
forming. The MVDR beamformer generates imaging data in
a manner that minimizes the interference and noise while
maintaining the signals reflected from the main target. The
beamforming weights can be calculated directly from inversion
of the data covariance matrix. This type of approach is
classified as adaptive beamforming implying the beamformer
is optimized based on the incoming signals.

In practice, MVDR performance is mainly limited by er-
rors in the covariance matrix estimation. These errors are
unavoidable especially in a conventional acquisition system
where data at each imaging point is generated from only
one pulse-echo sequence. As a result, the covariance matrix
is estimated from only one vector sample of the signals, or
snapshot, collected at the receive aperture. If the errors are too
large, the MVDR-based algorithm quickly degrades the image
quality to a point where it is even worse than conventional
DAS. Several approximations have been proposed to overcome
this issue. Most popular among them is spatial smoothing that
reduces the aperture size so that several realizations of the data
vector can be formed over the receive array [8]. To avoid ill-
conditioning, the number of snapshots should be greater than
or equal to the matrix size [9]. This limits the aperture size to
less than or equal to half the original vector length. Although
spatial smoothing helps improve the beamformer robustness,
this reduction of the effective aperture significantly decreases
the image resolution.

Developments in hardware flexibility make it realistic to
implement two-way focussing ultrasound imaging systems,
i.e. the pulse-echo beam is generated with both transmit and
receive focussing over the entire imaging region [3]. Such
systems include synthetic aperture imaging [10], coherent
plane-wave compounding [11], and pixel-based beamforming
with focused beams [12], [13]. In these approaches, the
transmit focusing is synthesized by accumulating data from
a large number of pulse-echo sequences. This process creates
more echo data that can be used for the covariance matrix
estimation, and hence can enhance the MVDR performance.
Yet, most MVDR beamformers applied to these systems still
use the spatial smoothing approximation [14]–[17], which
compromises the image quality.

In [18], Wang et al. proposed an MVDR beamformer based
on a synthetic aperture approach, without using spatial smooth-
ing. They estimated the covariance matrix using data vectors
acquired from several different transmits; they also used a
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diagonal loading parameter to regularize the calculation of the
inverse. The resulting matrix was named the pseudocovariance
due to the fact that the data for the calculation are not
generated using a single transmission. The method is faster
than using the spatial smoothing approach but was found to
compromise the eSNR of the generated images [19].

In this paper, we develop new MVDR-based algorithms
for coherent plane-wave compounding (CPWC) by upgrading
the pseudocovariance matrix calculation. Compared to other
MVDR studies in the ultrasound literature, the novelty of our
approach is to consider the beamformer as a spatial filter used
to decorrelate the echo data as in array signal processing
[20]. The signal correlation is approximated to the spatial
coherence, a measure of the similarity of backscattered echoes
received on different transducer elements [21]. Based on the
analysis, we propose two MVDR beamformers; they are each
applied to a differently constituted vector of compounded data.
The first is performed on the superposition of the received
data from multiple transmits, where each transmit involves
an outgoing wave at a different angle; so we accumulate
across the transmits and then apply the MVDR weights to the
different transducer elements. The second is applied to post-
summed signals within individual transmits; so we accumulate
across the receive elements and apply the MVDR weights
to the different transmit angles. In each beamformer, the
snapshots for the covariance matrix estimation are generated
by combining a set of vectors, formed from slightly differ-
ent combinations of the echo data. The statistical similarity
between each input vector and its corresponding snapshots is
explained using the van Cittert-Zernike theorem, developed
for ultrasound imaging [22]. This links the spatial coherence
among signals to the Fourier transform of the source pattern.
Our proposed beamformers are demonstrated on a series of
datasets acquired using a research scanner [23]. They are also
demonstrated in an in vivo study where the data has more
realistic clinical characteristics.

The rest of the paper is organized as follows. In Section II,
we describe a standard MVDR beamformer as a spatial filter,
applied across the transducer aperture. Then we review two
recent MVDR beamformers applied to CPWC [16], [17],
as well as the pseudocovariance matrix calculation in [18].
In Section III, we develop two new MVDR beamformers
based on the spatial coherence approach. All beamformers
are then demonstrated on datasets obtained from simulation,
phantom, and in vivo studies in Section IV. Their performance
is evaluated based on the spatial and contrast resolution of the
generated images. The results are discussed and explained in
Section V. Finally, we summarize our work in Section VI.

II. LITERATURE REVIEW

A. MVDR Beamforming as a Spatial Filter

We begin by introducing a standard MVDR beamformer
applied to conventional ultrasound imaging [8]. That is,
it generates an image line-by-line; after each transmit the
backscatter down the centreline of that transmit is estimated.
For convenience, we denote the imaging data and its associated
vector dimensions using a common notation convention. This

notation is extended in the next section when we describe
MVDR beamforming for coherent plane-wave compounding.

Consider a receive aperture of N elements and let x (k) be
a data vector collected from the aperture for an imaging point
P at time instant n, x (n) = [x1 (n) , x2 (n) , ..., xN (n)]

T. The
vector can be modeled as

x (n) = sp (n)a(τp) + i (n) , (1)

where sp (n) is the signal waveform at P, i (n) represents a
combination of the acquisition noise and off-target interfer-
ence, a(τp) is the time-delay vector.

The beamforming weight vector w is calculated by [20]

w =
R−1

i a(τp)

aH (τp)R
−1
i a(τp)

, (2)

where Ri is the N × N interference-plus-noise covariance
matrix, and (·)H stands for the Hermitian transpose. The
beamformer output is obtained as

y (n) = wHx (n) =
N∑

m=1

w∗
mxm (n) . (3)

Equation (2) is derived under the assumption of narrow-
band signals for the radio-frequency (RF) data. It assumes the
backscattered echoes arriving at individual transducer receive
channels are only different in their phase components, or
in the time delays from the imaging point to each of these
channels [24]. Although this is a poor approximation for
ultrasonic signals, we adopt the assumption for the sake of
simplicity. As there is similarity or correlation between each
pair of echoes received on transducer elements when back-
propagated from a point-scatterer [21], the MVDR acts as a
spatial filter that suppresses noise and off-target interference by
decorrelating them before adding them together. Through the
matrix inversion lemma, one can show that the decorrelation
is still equivalent if it is applied to all components of x (k),
from which w is given by [20]

w =
R−1

x a(τp)

aH (τp)R
−1
x a(τp)

, (4)

where Rx , σ2
pa(τp)a

H (τp) + Ri – the data covariance
matrix, and σ2

p is the scattering strength at P. The main signal
sp (k) is preserved by matching the filter output to a(τp). This
equation allows the MVDR to be implemented directly on
x (k). By assuming a(τp) is known exactly through a constant
sound-speed (c = 1540 m/s), the beamformer performance
depends on the accuracy with which it is possible to determine
Rx.

Since there is only one sample vector of x available, an
approximation is needed to estimate Rx. In the most popular
method, called spatial smoothing, x (n) is divided into N −
L + 1 overlapping vectors of length L, and Rx is estimated
as

R̂x =
1

N − L+ 1

N−L+1∑
l=1

xl (n)x
H
l (n) , (5)

where xl (n) = [xl (n) , xl+1 (n) , ..., xl+L−1 (n)]
T – the l th

subarray formed over x (n).
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Fig. 1. Diagrams of the MVDR beamformers from data matrix X (n) to the beamformed output signals: (a) double MVDR, (b) joint MVDR, (c) PCM-MVDR,
(d) DCT-MVDR, and (e) DCR-MVDR. The transmit and receive MVDR beamformers in (a) and (b) are calculated with the spatial smoothing approximation.

As a result of the spatial smoothing approximation, w has
its size reduced to L. Thus, x (n) also needs to be adapted to
match this new length. It is modified to x (n) through subarray
averaging, given by

x (n) =
1

N − L+ 1

N−L+1∑
l=1

xl (n) . (6)

For R̂x to be nonsingular, the number of snapshots N−L+1
should be greater than or equal to the matrix size L, or L ≤
(N + 1) /2 [9]. To enhance the beamformer robustness, the
estimation is also combined with a diagonal loading technique.
This adds a small constant ε to the elements on the main
diagonal of R̂x , i.e., the estimated matrix becomes R̂x + εI.
Using a smaller subarray length or increasing parameter ε
enhances the non-singularity of the estimated matrix but at
greater cost to the image resolution. This reduces the benefit
of the MVDR beamforming and makes it closer in terms of
performance to a DAS beamformer.

B. Coherent Plane-wave Compounding

In CPWC, data are acquired by insonifying with plane-
wave beams in multiple directions over the entire imaging
region. The travel time delay depends on the angle of each
pulse. Details of the calculations are provided in [11]. By
assuming the transmit beam is steered in M different angles
and backscattered waveforms are received on an N -element
linear array, the signals with time index n, after appropriate
delays for the specific pixel under consideration, can be
arranged in a 2-D matrix X (n) of M ×N , given by [17]

X (n) =


x1,1 (n) x1,2 (n) · · · x1,N (n)
x2,1 (n) x2,2 (n) · · · x2,N (n)

...
...

. . .
...

xM ,1 (n) xM ,2 · · · xM ,N (n)

 , (7)

where xij (n) is the signal received on channel j after a
transmitted excitation at firing angle i. By averaging all of
these matrix elements, we obtain the compounded data as

yCPWC (n) =
1

MN

M∑
i=1

N∑
j=1

xij (n) . (8)
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MVDR beamforming can be integrated into this compound-
ing strategy by being applied to the rows or the columns of
the matrix. The former option involves applying it to data
within each plane-wave transmission, while in the latter option
it is applied across the different firing angles, on the signals
collected from one element or on combined signals from
several transducers. To differentiate these options from each
other, we name them the receive element weighting MVDR
(or receive MVDR) and transmit beam weighting MVDR (or
transmit MVDR), respectively. In the next two sections, we
describe two MVDR-based algorithms applied to the CPWC in
[16], [17]. They can be viewed as compositions of the transmit
and receive MVDRs in different ways. All involve covariance
matrices calculated using the spatial smoothing approximation.

C. Double MVDR beamformer

The MVDR approach can be applied as a receive beam-
former to each row of the X (n) matrix. It can then be re-used
as a transmit beamformer to combine the results. This strategy
forms the double MVDR [16].

First, let ri (n) = [xi,1 (n) , xi,2 (n) , ..., xi,N (n)]
T – a

vector transposed from row i. It includes receive signals
acquired from transmit event i. By applying the receive MVDR
to ri (n), we calculate the weight vector wr ,i (r: receive) and
obtain zi (n) – the beamforming output at row i. In the second
step, all calculated zi (n) are stacked together to form an M -
dimensional vector z (n). The transmit MVDR is applied to
z (n) to obtain the beamforming weight vector wt (t: transmit)
and the overall output ydouble (n). The diagram for the double
MVDR beamformer is shown in Fig. 1(a). In the diagram,
Xr (n) is the modification of X (n) after applying subarray
averaging to all of its rows, and z (n) is the subarray-averaged
version of z (n). These modifications are required to adapt
to the needs of the spatial smoothing approximations used
to estimate the covariance matrices. In each receive MVDR
applied to ri (n), the covariance matrix estimation includes
the diagonal loading term of εr ,iI. Similarly in the transmit
MVDR applied to z (n), the estimation includes the diagonal
loading term of εtI.

D. Joint MVDR Beamformer

In [17], Zhao et. al. proposed the joint MVDR beamformer
where the transmit and receive beamformers are applied to
X (n) simultaneously. The diagram is shown in Fig. 1(b). In
the joint MVDR, we denote wr (r: receive) as the receive
element weight vector. These weights may well be different
from the wr ,i weights in the double MVDR. Similarly, we
denote we (e: emission) as the transmit beam weight vector
which can also be different from wt . Both wr and we are
calculated directly on the pre-summed data. This strategy
has advantages in the context of implementation on parallel
computing architectures. However this is beyond the scope of
the present study.

The matrix for calculating the receive weight wr is given
by

R̂r =
1

M

M∑
i=1

R̂r ,i + εrI , (9)

where R̂r ,i is the estimated covariance matrix of ri (n) from
the use of the spatial smoothing approximation, εr is the
diagonal loading parameter. We recall that ri (n) is a column
vector of received signals acquired in transmit event i.

Similarly, the transmit weight we has the corresponding
matrix estimation as follows:

R̂e =
1

N

N∑
j=1

R̂e,j + εeI , (10)

where R̂e,j is the estimate covariance matrix of the j th

column ej (n) of X (n) using spatial smoothing, i.e., ej (n) =
[x1,j (n) , x2,j (n) , ..., xM ,j (n)]

T – a vector of signals re-
ceived on element j and collected over all transmit events,
εe is the diagonal loading parameter. The matrices R̂r and
R̂e are inverted in order to calculate wr and we , respectively.

The spatial smoothing approximations reduce the sizes
of wr and we . Thus, X (n) needs to be modified before
calculating the beamformer output. The modified matrix X (n)
is created from X (n) using submatrix averaging. The full
expression for X (n) is provided in Eq. (11) at the top of
Page 5. The beamformed output is given by

yjoint (n) = wH
e X (n)wr . (12)

The joint MVDR has two major differences from the double
MVDR. First, its transmit weight we is calculated directly on
the pre-summed echo data, while in the double MVDR, wt

is calculated based on data that has been through the receive
MVDR beamformer. Second, the receive weight wr in the
joint MVDR is guaranteed to be the same when applied to
data from all transmits, while wr ,i could be different from
one transmit to another.

E. Pseudo-Covariance-Matrix MVDR Beamformer

Before proposing our MVDR beamformers for CPWC,
we summarize the pseudocovariance matrix of the MVDR
beamformer applied to synthetic aperture imaging in [18]. Our
first beamformer, described in Section III-A, is developed by
enhancing the calculation of this matrix.

The pseudocovariance matrix is calculated in a similar way
to (9) but without using spatial smoothing:

R̂PCM =
1

M

M∑
k=1

rk (n) r
H
k (n) + εI . (13)

The beamforming weights are calculated by inverting
R̂PCM, similar to Eq. (4). They are used to apodize data
received within each of the transmits. The results are then
superposed to obtain the beamformer output. We adopt this
strategy to form a new MVDR beamformer applied to CPWC.
We refer to it as the pseudocovariance-matrix MVDR (PCM-
MVDR). Its diagram is shown in Fig. 1(c). The PCM-MVDR
can be considered as an extension of the joint MVDR where
Rr is estimated without using spatial smoothing and we is
simply a uniform vector.
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X (n) =
1

(N − L1 + 1) (M − L2 + 1)

M−L2+1∑
i=1

N−L1+1∑
j=1


xi,j (n) xi,j+1 (n) · · · xi,j+L1−1 (n)

xi+1,j (n) xi+1,j+1 (n) · · · xi+1,j+L1−1 (n)
...

...
. . .

...
xi+L2−1,j (n) xi+L2−1,j+1 · · · xi+L2−1,j+L1−1 (n)

 (11)

III. SPATIAL COHERENCE APPROACH TO MINIMUM
VARIANCE BEAMFORMING

A. Data-Compounded-among-Transmit MVDR Beamformer

First, we realize that the PCM-MVDR output remains
unchanged if we apply wPCM after data superposition
among all rows of X (n). Alternatively, the input vector
of PCM-MVDR can be considered as a data vector com-
pounded over multiple transmits. We denote it by v (n) =
[v1 (n) , v2 (n) , ..., vN (n)]

T where

vj (n) =
M∑
i=1

xi,j (n) for j = 1,N , (14)

which is the summed signals on element j over all transmit
events. We recall that (i, j) are used respectively to index M
transmit events and N receive elements.

By considering the MVDR beamforming as a spatial filter,
we wish to decorrelate the input vector v (n) by using a
matrix that is equal or close to the second-order statistics of
v (n). Matrix R̂PCM, however, is estimated from rk , each of
which is a small part of v (n) and unrelated to the others.
To achieve better decorrelation, we would like to create new
snapshots of data with the second-order statistics similar to that
of v (n). Thus, we generate a new set of snapshot pk (n) =
[pk ,1 (n) , pk ,2 (n) , ..., pk ,N (n)]

T , where

pk ,j (n) =
1

M − 1

M∑
i=1
i ̸=k

xi,j (n) . (15)

Vector pk (n) is still composed of compounded data like
v (n) but excluding echo signals from transmit event k.
The statistical similarity between v (n) and pk (n) can be
described as follows. Take v (n) first. It comprises coherently
compounded signals among multiple planar transmits. In [11],
Montaldo et al. showed that such compounding is equivalent to
the insonification of the focused beam at its focal point, where
the beam is a combination of plane-wave beams from M
directions. By approximating each plane wave to a spherical
pulse, we can assume the beam is generated from an M -
element pseudo phased array. This argument is valid for every
pixel in the imaging region. By approximating the covariance
matrix of the signals in v (n) to the spatial coherence among
them, we can apply the van Cittert-Zernike (VCZ) theorem
to relate its statistics to the profile of the source intensity.
The VCZ theorem describes the spatial coherence between
the two received waveforms observed at two separate points
P1 and P2. It is equal to the Fourier transform of the source
pattern taken at the spatial frequency that relates to the distance
between P1 and P2 (see [25], Chap. 5). In this case, P1 and
P2 are the positions of the receiving transducer elements.

Similarly, the covariance matrix of pk (n) approximates the
spatial coherence among its components, which is determined
by the beam generated from the same M -element pseudo
phased array, but with element k deactivated. This deactivation
is the only difference when comparing the spatial coherence of
v (n) to that of pk (n). For a large number, M , of transmits,
we assume this variation is small enough so that the vectors
have similar second-order statistics to each other. This explains
how the covariance matrix of v (n) can be better estimated by
using snapshots pk (n).

The VCZ theorem was derived for ultrasound imaging in
[22]. In that work, the second-order statistics of the data was
calculated in terms of the spatial covariance, which includes
normalizing terms. In our study, the covariance matrix does
not include any normalizing term. Each of its elements is more
similar to the spatial coherence in statistical optics [25], or the
visibility in radio-astronomy imaging (see [26], Chap. 5).

Over the entire range of firing angles, we can form M such
vectors of pk (n) for the matrix estimation (k = 1,M ). The
covariance matrix can then be estimated:

R̂DCT =
1

M

M∑
k=1

pk (n)p
H
k (n) + εI , (16)

where ε is the diagonal loading parameter.
This estimation forms a new strategy to calculate the covari-

ance matrix for the MVDR beamforming. As the snapshots are
generated by using data compounded among multiple trans-
mits, we name it data-compounded-among-transmit MVDR
(DCT-MVDR). A diagram of the beamformer is shown in
Fig. 1(d).

B. Data-Compounded-on-Receive MVDR Beamformer

We propose another beamformer using the spatial coherence
approach based on the foregoing analysis. The beamformer is
applied to a vector composed of data superposed over the echo
signals received within individual transmits. By denoting it as
u (n) = [u1 (n) , u2 (n) , ..., uM (n)]

T , each of its elements,
ui (n), is given by

ui (n) =
N∑
j=1

xi,j (n) for i = 1,M . (17)

In our analysis, we describe the MVDR beamformer as
a filter that suppresses the spatial coherence among echo
signals. The spatial coherence occurs between two signals
propagated from the same point-source [25]. In ultrasound
imaging, however, the source is reflected from the transmit
beam. Thus, a MVDR beamformer should be applied to
decorrelate echo signals within one transmission. The input
vector u (n), however, has components generated in different
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transmits. We can still view this MVDR beamformer as
a decorrelation by making use of the acoustic reciprocity
theorem that exchanges the roles of transmit and receive in
the context of spatial coherence [27]. From that perspective,
the post-summed signals in u (n) can be considered as echo
data received on the M -element pseudo-phased-array when
the beam is insonified from an N -element linear array. The
MVDR beamformer is thus used to decorrelate the signals
coming from these M directions.

Similar to the DCT-MVDR beamforming, we generate mul-
tiple snapshots sk (n) to represent different aspects of u (n)
by dropping the echo data from transducer element k out of
the superposition. This has ith component, sk ,i (n), given by

sk ,i (n) =
N∑
j=1
j ̸=k

xi,j (n) . (18)

Over the entire N -element array, we can generate N snap-
shots for the covariance matrix estimation. Because of the
dynamic focusing of CPWC on receive, acoustic reciprocity
means that we can consider each of sk (n) and u (n) as
being composed of backscattered signals from the foci of
the corresponding beams. These beams are generated from
the linear array of N elements. Thus the VCZ theorem can
be applied to describe the statistical similarity between u (n)
and each of sk (n), in a similar way to the argument above
for the DCT-MVDR beamformer. For the DCT-MVDR, we
discussed how the spatial frequency in the coherence function
is determined by the distance between the two transducer
positions P1 and P2. For the present algorithm, acoustic
reciprocity tells us that this distance must now be replaced
by a parameter ∆Θ , the difference between the two steering
angles.

The covariance matrix is estimated using

R̂DCR =
1

N

N∑
k=1

sk (n) s
H
k (n) + εI , (19)

where ε is the diagonal loading parameter. Since this beam-
former has snapshots generated by data compounded on
the receive channels, we call this the data-compounded-on-
receive MVDR beamformer (DCR-MVDR). The key differ-
ence between the DCR-MVDR and DCT-MVDR beamformers
is that they are performed on different dimension of data
matrix X (n). The diagram of the DCR-MVDR beamformer
is showed in Fig. 1(e).

IV. IMAGING DATA AND RESULTS

A. Data Acquisition and Beamformer Implementation

We demonstrate the beamformers on imaging data provided
by the Plane-wave Imaging Challenge in Medical Ultrasound
(PICMUS) [23]. The datasets were recorded using a Verason-
ics Vantage 256 research scanner and L11 probe (Verasonics
Inc., Redmond, WA). The data also includes simulations of
point-targets with Field II [28], [29] configured to model
the same system. The probe is a 128-element linear array
which has an element size of 0.27 × 5.0mm2, separated by

a 0.03 mm kerf (N = 128). An excitation voltage of two
and a half cycles is applied to generate an ultrasound pulse
with a center frequency at 5.208 MHz and a 67% pulse-echo
bandwidth. The signals are sampled at 20.832 Msamples/s.
Each set contains data acquired by 75 steered plane-waves
distributed from −16◦ to +16◦ (M = 75). All beamformers
are performed on RF data to generate envelope images with a
pixel size of 0.0739mm × 0.0986mm.

Beamformed images are generated using data from all 75
firing angles. In all spatial smoothing approximations, we set
the subarray length L equal to a half the size of the input
vector. The diagonal loading parameter is set relative to ∆ =
Tr(R̂)/L, where R̂ is the estimated matrix. It is selected using
a trial-and-error method based on visualization of the gener-
ated image. In the double MVDR, we set εr ,i = εt = 2∆. In
the joint MVDR, εr = 0.1∆ for the receive and ε2 = 0.5∆
for the transmit. These diagonal loading parameters are applied
to all datasets. In the PCM-MVDR, we set ε = 10∆ for data
from the simulated point-targets and increase it to ε = 50∆ for
the other datasets. For the DCT-MVDR and DCR-MVDR we
use: ε = ∆ for simulated point-target data and ε = 5∆ for the
others. In these beamformers, ∆ is the average of elements on
the main diagonal of R̂PCM, R̂DCT and R̂DCR, respectively.
In the four beamformers: DAS, PCM-MVDR, DCT-MVDR,
and DCR-MVDR, the images are generated with an F-number
of 1. However, for the double and joint MVDR the images
are generated without limiting the receive aperture. This helps
maximize the spatial resolution for these beamformers.

B. Evaluation Metrics

We evaluate each beamformer based on the spatial and
contrast resolution of the generated images. The spatial reso-
lution is quantified using the responses of each beamformer to
individual scatterers. Because all MVDR-based beamformers
are developed based on an assumption of narrow-band signals
that ignores temporal correlation, they mainly improve the
lateral resolution. Thus, we are interested in the full width
at half maximum (FWHM) of the response in the lateral
direction only. The narrower the lateral FWHM the better the
beamformer performance.

The contrast resolution is measured using the contrast ratio
(CR) between a lesion and the background, given by [19]

CR =
Iout − Iin√
I 2out + I 2in

, (20)

where Iin and Iout are the mean intensities (in decibels)
measured inside and outside the lesion, respectively. The term
CR has a value of 1 for perfect contrast, and a value of 0 for no
contrast between the lesion and background. The background
kernel is selected as a circular ring enclosing the lesion with
an area that is the same as that of the lesion. This helps
to minimise the effects of variations in the attenuation and
diffraction of the ultrasound.

The eSNR calculation requires multiple RF datasets of the
same scan which are not available, thus we do not measure it
in this study. Another common metric to quantify the contrast
resolution is the contrast-to-noise ratio (CNR). However, we
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Fig. 2. Simulated images of 20 point-targets generated with different beamformers: (a) CPWC, (b) double MVDR, (c) joint MVDR, (d) PCM-MVDR, (e)
DCT-MVDR, and (f) DCR-MVDR. All images are log-compressed and displayed with a dynamic range of 60 dB.
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showed in previous studies that the CNR is inversely propor-
tional to improvements in the spatial resolution [2], [12]. We
found that any information about contrast that it provides was
masked by a drop in CNR caused by improvements in spatial
resolution. Therefore, it does not provide a useful independent
metric with which to assess the performance of the MVDR
beamformers.

C. Simulated Point-Targets

We first evaluate the beamformer performance on simulated
data generated with 20 point-targets. Eight of them are located

in the center of the image, ranged from 10 mm to 45 mm with
a 5 mm separation. There are also two sets of 7 point-targets at
depths of 20 mm and 40 mm. In each of these sets, the points
are evenly distributed from −15mm to 15mm in the lateral
direction.

Figures 2(a)–(f) show the images generated with the CPWC,
double MVDR, joint MVDR, PCM-MVDR, DCT-MVDR, and
DCR-MVDR beamformers, respectively. In the figures, the
PCM-MVDR image has the most blurring point-targets, as
well as the most artefacts in the area close to the transducer
surface, i.e. the near-field region. Other MVDR-based images
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Fig. 4. Experimental images for resolution evaluation generated with different beamformers: (a) CPWC, (b) double MVDR, (c) joint MVDR, (d) PCM-MVDR,
(e) DCT-MVDR, and (f) DCR-MVDR. All images are log-compressed and displayed with a dynamic range of 70 dB.

show substantial improvements over DAS in term of the point-
resolutions although the double and joint MVDR beamformers
still exhibit some artefacts in the near-field. These artefacts are
not observed in the DCT-MVDR and DCR-MVDR images. In
the DCT-MVDR image, however, the point-resolution varies
over the imaging depth. It is broad in the near-field but
become much smaller in the far-field. Among the figures,
the DCR-MVDR image has the best resolution as the points
scatterers generate the most localised response at all depths.
We quantify the image quality using the FWHMs measured
through the mainlobes of the beamformer responses in Figs. 2.
The averaged results are summarized in Table I.

To show the performance of the beamformers in more detail,
we plot their lateral responses to some of the point-targets in
Figs. 3(a)–(c). These are the responses to the central points at
depths of 15 mm, 30 mm, and 45 mm, respectively. The plots
show that all the MVDR-based algorithms, except the PCM-
MVDR, help reduce the mainlobes compared to CPWC. The
plots also illustrate the variation of the mainlobe in the DCT-
MVDR response to a point-target. It has a mainlobe on a par
with the CPWC in the near field, but becomes the smallest,
even narrower than the DCR-MVDR, in the far-field.

To understand the artefacts that appear at the edges of each
MVDR image, we plot the lateral profiles in this near-field
region for all beamformers in Fig. 3(d) (at depth 10 mm). The
plot clearly reveals the strongest artefacts of the PCM-MVDR.
Between the joint and double MVDR, the artefacts appearing

on the joint MVDR image are slightly higher. The plot also
shows the high-sidelobes of the DCT-MVDR response, which
affect the imaging contrast in this region of the beamformer.

D. Phantom Study

We apply the beamformers to experimental data acquired by
scanning a multi-purpose tissue-mimicking phantom (model
040GSE, CIRS, Norfolk, VA, USA) [23]. The manufacturer
reported a sound speed of 1540 ± 10 m/s and a background
attenuation coefficient slope of 0.5 dB cm−1MHz−1. The first
dataset is designed to enable assessment of beamformer spa-
tial resolution performance. The scanned volume includes
seven nylon-monofilament wires, 100 microns in diameter,
suspended against the speckle background. Five of them are
located on the central axis and distributed from about 10 mm
to 50 mm in depth. The other two are at a depth of 40 mm,
positioned at −10mm and 10mm in the lateral direction.

The images generated with the different beamformers are
shown in Figs. 4(a)-(f). Compared to the simulation, the
MVDR-based images generated using the spatial smooth-
ing approximation show less improvement over CPWC (in
Fig. 4(a)). The resolutions are also reduced in the double and
joint MVDR images (shown in Figs. 4(b) and (c)). Between
these two, the joint MVDR image has lower resolution and a
brighter appearance than the double MVDR, which indicates
the lower impact of the MVDR beamformer as a spatial
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Fig. 6. Experimental images for contrast evaluation generated with the different beamformers: (a) CPWC, (b) double MVDR, (c) joint MVDR, (d) PCM-
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TABLE I
PERFORMANCE METRICS MEASURED ON BEAMFORMED IMAGES FROM SIMULTATION, PHANTOM AND IN VIVO STUDIES

Beamformer average FWHM (simulation) average FWHM (experiment) near-field CR far-field CR in-vivo CR exec. time

CPWC 0.44 ± 0.06 mm 0.49 ± 0.08 mm 0.470 0.547 0.634 4 min
double MVDR 0.27 ± 0.10 mm 0.52 ± 0.12 mm 0.369 0.454 0.549 420 ± 5 min
joint MVDR 0.29 ± 0.10 mm 0.54 ± 0.09 mm 0.408 0.474 0.506 435 ± 5 min
PCM-MVDR 0.45 ± 0.20 mm 0.44 ± 0.06 mm 0.410 0.467 0.523 44 ± 1 min
DCT-MVDR 0.33 ± 0.17 mm 0.33 ± 0.13 mm 0.567 0.683 0.600 44 ± 1 min
DCR-MVPB 0.23 ± 0.08 mm 0.30 ± 0.04 mm 0.840 0.884 0.797 44 ± 1 min



10

CPWC
A

x
ia

l 
(m

m
)

5

20

25

30

0 10-10

(a)

10

15

Lateral (mm)

double MVDR

0 10-10

(b)

Lateral (mm)

joint MVDR

0 10-10

(c)

Lateral (mm)

PCM-MVDR

A
x
ia

l 
(m

m
)

5

20

25

30

0 10-10

(d)

10

15

Lateral (mm)

DCT-MVDR

0 10-10

(e)

Lateral (mm)

DCR-MVDR

0 10-10

(f)

Lateral (mm)
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filter. Compared to the joint and double MVDR, the PCM-
MVDR is shown to have better performance on experimental
data. It has a line-target resolution slightly higher than that
generated with CPWC. The two proposed beamformers, DCT-
MVDR and DCR-MVDR, still offer clear improvements over
CPWC. Similar to the simulation, however, the DCT-MVDR
(in Fig. 4(e)) exhibits variations in resolution from the near-
field to the far-field. The DCR-MVDR (in Fig. 4(f)) still has
the best performance as the image shows the smallest wire-
targets and finest speckle pattern in the background. For each
beamformer, we measures the beam profiles over all seven
wire-targets and report the averaged FWHMs in Table I.

As for the simulation, we plot some examples of lateral
beam responses to the central point-targets in Figs. 5(a)–
(c). They show beamformer profiles at depths of 10 mm,
30 mm, and 50 mm, respectively. The plots mainly reveal the
differences between the DCT-MVDR and the DCR-MVDR
beamformers. In the near-field (at depth 15 mm), the DCT-
MVDR has a similar mainlobe to the other MVDR beam-
formers while its sidelobes are higher. In this region, the
DCR-MVDR obviously has the best performance with the
narrowest mainlobe and lowest sidelobes. In the far-field (at
depth 50 mm), the DCT-MVDR becomes on a par with the
DCR-MVDR achieving equivalent mainlobes and almost the
same level of sidelobes.

To assess the contrast resolution, we apply the beamformers
to the second dataset of the phantom study, acquired by
scanning two anechoic cysts against a speckle background.

The cysts are 3 mm in diameter, positioned at depths around
15 mm and 45 mm. Images generated with the beamforming
strategies are shown in Figs. 6(a)-(f). In these figures, the
contrast ratios of the double, joint and PCM-MVDR images
(in Figs. 6(b)-(d)) are lower than that of the CPWC image (in
Fig. 6(a)). Improvements are only observed in the DCT-MVDR
and DCR-MVDR images (Figs. 6(e)-(f)). Between them, the
best anechoic contrast for both cysts is with the DCR-MVDR.
We measure the CRs on each cysts (near-field CR and far-field
CR) and summarize the results in Table I.

E. In vivo Study

To show the robustness of our new DCT-MVDR and DCR-
MVDR beamformers in clinical settings, we demonstrate them
on an in vivo dataset, obtained from a carotid ultrasound
scan of a healthy person. Compared to the simulation and
phantom studies, the object has more complex structure and
the beamformer performance may be more affected by phase
aberrations. Fig. 7(a) shows the image generated with the
CPWC method, which contains a cross-section of the carotid
artery located at the center. Those generated using the MVDR-
based algorithms are shown in Figs. 7(b)-(f). Under normal
conditions, the artery is shown as a round structure on the
sonogram in which the lumen is displayed as an anechoic
region surrounded by the specular scattering of the artery wall.
The contrast ratio of this lumen is calculated for each of the
beamformers and presented in Table I. The image is displayed
together with a magnified view of a highly echogenic region
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below the vessel (enclosed by the white square). This shows
the speckle pattern of a diffuse scattering region which helps
evaluate the spatial resolution.

The images generated with double, joint and PCM-MVDR
are shown in Figs. 7(b)-(d). They all have lower CRs compared
to that calculated on the CPWC image. The degradation is
caused by the artefacts inside the lumen generated with each
of these beamformers. On the magnified views corresponding
these images, the speckle patterns are similar to that shown
with the CPWC. The image generated with our new DCT-
MVDR (shown in Fig. 7(e)) offers finer speckle pattern on the
magnified view compared to the CPWC. However, the contrast
measured through CR is slightly lower. This may be explained
by the fact that the region of interest is in the near-field, where
the pulse-echo beam has been shown to have a broad mainlobe
and higher sidelobes (see Figs. 3(a) and (d)). The DCT-MVDR
image can produce better CR at larger depths as shown in the
simulation and phantom study.

Consistent improvements over CPWC are only observed in
the DCR-MVDR image (in Fig. 7(f)). It enhances the contrast
over the entire imaging region and delivers the sharpest vessel
boundary, which indicates the effect of MVDR beamforming
as a spatial filter. It also generates images with clearer discrete
speckle spots which are difficult to detect in the CPWC and
other images. Inside the lumen, the artefacts generated by the
other MVDR-based algorithms are no longer presented. This
makes it appear the most uniformly anechoic and results in
the highest CR.

V. DISCUSSION

From the point-target simulation to experiments, there is
a considerable reduction in performance of the joint and
double MVDR beamformers using the spatial smoothing. This
loss can be explained by the fact that the real data is more
noisy and has a greater level of interference. It is thus less
good for estimating the covariance matrix. In the spatial
smoothing approach, the diagonal loading typically ranges
from 0.01∆ to 0.2∆, where ∆ is the average of elements
on the main diagonal of the estimated covariance matrix [8].
In this study, however, the diagonal loading parameters for
the joint and double MVDR are out of this range. Yet the
images obtained with them are still unstable, indicated by the
artefacts appearing in the near-field region (see Figs. 2(b,c)).
These artefacts could be suppressed by using apodization or a
larger diagonal loading parameter. Both techniques, however,
further reduce the image resolution. The resolution could be
slightly improved by using different combinations of subarray
length and diagonal loading. Nevertheless, this is not a focus
of our study.

The low performance of the double MVDR can be explained
using the acoustic reciprocity theorem. In this composite
algorithm, the transmit MVDR is applied to vector z (n),
comprising signals from different transmits. According to the
theorem, two components of vector z (n), e.g. zi (n) and
zj (n), can be considered as data acquired from the same beam
using an N -element linear array to transmit and receive in
directions i and j. The weight vectors wr ,i and wr ,j , however,

are equivalent to the apodization vectors applied to the N -
element aperture to generate each of the signals. They should
be identical to guarantee zi (n) and zj (n) are backscattered
from the same insonified beam. Thus, the transmit MVDR
only works according to its principles if the receive MVDR
weight vector remains unchanged at all steering angles. A large
diagonal loading helps all the wr ,i to converge to a uniform
vector, as for the DAS algorithm. However, this reduces the
benefit of using the MVDR approach.

The degradation of the joint MVDR performance can also
be explained using our spatial coherence approach. In the
beamformer expression wH

e X (n)wr , the product wH
e X (n)

can be considered as a data vector obtained from one transmit
beam with apodization we . The apodization changes the
transmit beamshape and affects the spatial coherence among
the receive signals [21]. As wr is the coefficient weight of
the spatial filter used to decorrelate this vector, it must be
adapted to we . Similarly through acoustic reciprocity, we must
be adapted to wr . In the joint MVDR beamformer, however,
they are both calculated based on the pre-summed data X (n),
independently from each other. Thus, this calculation is not
sufficient to perform the adaptive beamforming accurately.
Finding a proper way to jointly calculate these weight vectors,
however, is a complex problem and remains a challenge to
address.

The three MVDR beamformers without spatial smoothing:
PCM-MVDR, DCT-MVDR, and DCR-MVDR can be viewed
as hybrid algorithms between DAS and MVDR beamform-
ing. Although the PCM-MVDR has the lowest point-target
resolution in simulation, its performance is on par to that
of the joint and double MVDR on experimental and in-
vivo data. To some extent, it shows the benefit of the DAS
beamforming step that improves the coherence and eSNR
of the input data, which is used in the subsequent MVDR
algorithm. When applied to synthetic aperture imaging in
[18], the pseudocovariance matrix was implemented with a
calculated time delay varying within a bounded interval that
takes phase aberration into account. This strategy may lead
to further improvements for PCM-MVDR beamforming but is
beyond the scope of the present study. Throughout all datasets,
the DCT-MVDR is shown to offer significant improvements
over the PCM-MVDR. These validate the advantages of using
the new generated snapshots pk (n). They have statistical
properties similar to each other and close to that of the input
vector v (n), which lead to better decorrelation of the MVDR
beamforming as a spatial filter.

Both DCT-MVDR and DCR-MVDR use much higher di-
agonal loading parameters compared to the typical range used
with spatial smoothing (from 0.01∆ to 0.2∆). This could be
explained by the high correlation among the new snapshots
(pk (n) for DCT-MVDR and sk (n) for DCR-MVDR). As
a result, the estimated matrices R̂DCT and R̂DCR (without
diagonal loading) have low effective rank. This can be con-
sidered as a limitation of our new proposed methods. Yet,
both DCT-MVDR and DCR-MVDR substantially enhance the
image resolution compared to CPWC in all datasets. They also
offer a ten-fold reduction in computational time compared to
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the double and joint MVDR beamformers. The computational
time for each beamformer is presented in Table I. The most
time consuming step in the double or joint MVDR relates
to the subarray averaging. This requires scanning through
each of the columns and rows of X (n). The execution times
are all measured using Matlab (Mathworks Inc. Natick, MA,
USA) on a desktop PC (Windows 7, 64-bit system, Intelr
CoreTM i7-4770, and 8 Gb Memory). Hence these figures
are only approximate indications of the relative un-optimised
computational load, distorted by the strengths and weaknesses
of Matlab.

Compared to the DCT-MVDR, the DCR-MVDR has higher
performance in the near-field region. The lower performance
of the DCT-MVDR in that region mainly comes from the
assumption that v (n) is generated from the focus of a 75-
element pseudo-phase-array, which requires an approximation
of the plane-wave transmission as a spherical pulse. Several
factors in the near-field region, such as diffraction [30], prevent
the backscattered plane-wave from being approximated as a
spherical wave propagated from one element of the pseudo-
phase-array. In the far-field where this approximation become
reasonable, the performance of the DCT-MVDR increases and
become on par to that of the DCR-MVDR beamformer.

In our analytical framework, the new snapshots are gener-
ated based on an approximation of the covariance matrix to
the spatial coherence among the input signals. Compared to
the matrix estimation in (16) or (19), the standard approaches
for estimation of spatial coherence often includes another
step for temporal averaging [25], [26]. However, we can
drop this step because of the narrow-band signals assumption.
This implies that the echo signals extracted at different time
instants have statistics that are independent from each other. In
some other MVDR beamforming studies [19], the covariance
matrix was estimated with a temporal averaging step. This
estimation then becomes consistent with the exact definition
of spatial coherence. To explore the effect of this step, we have
added additional temporal averaging into our beamforming
calculation for the first dataset of the phantom study. The
covariance matrix is averaged over a time interval that relates
to one wavelength in the axial direction. The generated images
are smoother in the axial direction but there is no gain in lateral
resolution. Furthermore, the temporal averaging increases the
calculation excessively. Thus, we perform all our beamformer
calculations at one time instance only and approximate them
to the spatial coherence.

Both DCT–MVDR and DCR–MVDR beamformers were
developed based on a feature of the CPWC whereby the
entire linear array is used to capture the backscattered data
in all transmits. Thus, they can be extended for use in
synthetic aperture imaging or pixel-based beamforming if such
algorithms share similar features in their data acquisitions. In
our study, we calculate both DCT-MVDR and DCR-MVDR
by assuming the sound-speed is constant. This could lower
the beamformer performance because of phase abberation. It
has been shown in other studies that the VCZ theorem can
also be used to form an adaptive DAS beamformer [31]–[33].
This helps to restore some of the echo coherence lost when
the wave speed or attenuation in the medium is unknown

and spatially variable. Integrating this work into our spatial
coherence approach for MVDR beamforming could enhance
the image quality and remains for further investigation.

VI. SUMMARY

We have proposed two new MVDR beamformers that are
designed to integrate with coherent plane-wave compounding.
In our study, the beamformers were developed in a framework
where the MVDR beamforming is analyzed as a spatial filter
and the correlation among echo signals is approximated by
the spatial coherence, a concept from modern optics. From
the analysis, we have drawn two MVDR beamformers that
are applied to compounded data. The covariance matrix in
each beamformer is estimated through slightly different com-
binations of the backscattered echoes. This helps us to avoid
using the spatial smoothing approximation which reduces the
image resolution. Our analysis also emphasizes the benefit of
using DAS beamforming together with MVDR. It not only
enhances the eSNR in the incoming signal but also improves
the similarity among them before the MVDR decorrelation is
applied.

Through demonstrations on imaging data, we show that
our proposed methods offer significant improvements over
CPWC in terms of both contrast and spatial resolution. They
also outperform and are more computationally efficient than
some other existing MVDR-based methods that require the
spatial smoothing approach. By providing these beneficial
features without compromising hardware complexity, the new
beamformers show the importance of using a spatial-coherence
approach to improve the efficacy of MVDR beamforming as
two-way focussing systems become increasingly popular in
ultrasound imaging applications.
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Cervenansky, and Dr. Oliver Bernard from the University of
Lyon for sharing imaging data and the code for coherent
compounding. We are most grateful to the anonymous referees
for their constructive comments and suggestions during the
review process.

REFERENCES

[1] B.D. Van Veen and K.M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 424, 1988.

[2] N.Q. Nguyen and R.W. Prager, “Minimum variance approaches to
ultrasound pixel-based beamforming,” IEEE Trans Med Imag, vol. 36,
no. 2, pp. 374–384, 2017.

[3] K. E. Thomenius, “Evolution of ultrasound beamformers,” Proceedings
of the IEEE Ultrasonics Symposium., pp. 1615-1622, 1996.

[4] M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging
for small scale systems,” in IEEE Trans Ultrason Ferroelec Freq Control,
vol. 42, no. 3, pp. 429–442, 1995.

[5] J.A. Mann and W.F. Walker, “A constrained adaptive beamformer
for medical ultrasound: Initial results,” in Proceedings of the IEEE
Ultrasonics Symposium, pp. 1807–1810, 2002.

[6] M. Sasso and C. Cohen-Bacrie, “Medical ultrasound imaging using the
fully adaptive beamformer,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Processing, pp. 489–492, 2005.



13

[7] F. Vignon and M.R. Burcher, “Capon beamforming in medical ultra-
sound imaging with focused beams,” in IEEE Trans Ultrason Ferroelec
Freq Control, vol. 55, no. 3, pp. 619–628, 2005.
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Jensen,“Adaptive receive and transmit apodization for synthetic aperture
ultrasound imaging,” in Proceedings of the IEEE Ultrasonics Sympo-
sium, pp. 1–4, 2009.

[15] A. Austeng, C.-I.C. Nilsen, A.C. Jensen, S.P. Näsholm, and S. Holm,
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