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The moderating impact of supply network topologytloa effectiveness of risk management

Abstract

While supply chain risk management offers a riabiget for dealing with risk at the dyadic levekdeattention
has been given to the effectiveness of risk managéimm complex supply networks. We bridge this &gp
building an agent based model to explore the meiahip between topological characteristics of caxglupply
networks and their ability to recover through inteey mitigation and contingent rerouting. We sintala
upstream supply networks, where each agent repeeaesupplier. Suppliers' connectivity patternsgaeerated
through random and preferential attachment modsh supplier manages its inventory using an arahdf
adjust ordering policy. We then randomly disrupgpgiers and observe how different topologies recavieen
risk management strategies are applied. Our reshitsv that topology has a moderating effect on the
effectiveness of risk management strategies. Soadesupply networks generate lower costs, havhenill-
rates, and need less inventory to recover whensexpto random disruptions than random networksd&wan
networks need significantly more inventory disttdxliacross the network to achieve the same fiksras scale-
free networks. Inventory mitigation improves filie more than contingent rerouting regardless oo
topology. Contingent rerouting is not effective farale-free networks due to the low number of ad#ttve
suppliers, particularly for short-lasting disruptio We also find that applying inventory mitigatitnthe most
disrupted suppliers is only effective when the retwis exposed to frequent disruptions; and not etfective
otherwise. Our work contributes to the emergirddfiof research on the relationship between comglgply
network topology and resilience.

Keywords: supply chain risk management, complexpbupetworks, random networks, scale-free networks,

inventory mitigation, contingent rerouting, agemasbd modelling

1. Introduction

Over the past decades, supply chains have grovgetamnd became interconnected as a result of jgéaliah
and rising cost pressures (Christopher and Holvi2€d,1). Interconnectedness implies that a failurerne
supply chain entity can potentially cascade actbheswhole network (Schmitt and Singh, 2012), makiisg

monitoring and mitigation challenging.



Suppliers of multiple tiers are tied together drepemergent, yet predictable connection pattetascribed as
“supply network topology” (Thadakamalla et al., 2D1Studies on network topology, conducted under th
framework of network science aim to unveil the bataral phenomena of interconnected systems, which
cannot be well understood from the perspective single entity. Understanding how the decision-mgkbf
multiple interconnected entities influence ovenaditwork resilience is necessary to cope with disong

effectively because failures are more likely togagate in certain topologies (Watts, 2002).

Supply Chain Risk Management (SCRM) methods ratelysider the impact of disruptions on the extended
supply network, where the teraxtended refers to ties beyond a firm's direct suppliersl austomers. The
relationship between supply network topology anel #ffectiveness of recovery from disruptions usiisd

management strategies has not yet been explored.

We aim to address this gap as follows. After reugmnprevious work done in the field of SCRM and qbex
supply networks, we employ a modelling approachenetseveral theoretical network topologies basethen
extant empirical literature are generated. The geed topologies are used to configure a supphyvordd, after
which the networks are subjected to random disoagti Two SCRM strategies, namely inventory mitigati
and contingent rerouting, are applied and the éxterwhich these strategies are able to enhanosonet

recovery is observed.

Our results sound a cautionary note. We find thatdffectiveness of the two SCRM strategies is maidd by
the topology of the supply network and that aneased understanding of supply network topologyetseasary
to underpin the choice of an effective strategystFiit is shown that inventory mitigation outperfes
contingent rerouting in a complex supply networkisg regardless of topology. A key lesson is tfatdom
topologies need significantly higher inventory lesvio recover from disruptions than scale-free oeks. It is
also observed that contingent rerouting is nototiffe for scale-free networks due to low numberaltdrnative

suppliers, particularly for short-term disruptions.

We then explore targeted risk management, wherg supppliers which suffered the most from disrupgion
apply a risk management strategy. Targeting sugptiees not always result in cost reduction. Orcthvdrary,

targeted inventory mitigation might significantlycrease costs when the network is exposed to ismgptions



due to excessive inventory being kept for longqasiof time. Targeted contingent rerouting createsntory

oscillations when network is exposed to short+agstlisruptions, resulting in decreased fill-ratad ancreased

costs. Our work motivates further studies on tHatienship between the functionality and performeard

supply networks and their topology.

2. Literaturereview

2.1. Supply Chain Risk Management

Supply networks are exposed to numerous risks asictatural catastrophes, epidemics, economic dfises),

2006), IT failures, and many others. There are #itnde of risk management techniques aiming aticety

risk exposure in supply chains, gathered undeectile term Supply Chain Risk Management (SCRM)RBIC

literature refers to those strategies mainly dsmgigation; however in this workisk mitigation is restricted to

those proactive strategies performed before theiromece of a disruption. Reactive strategies, whach

performed after the occurrence of the disruptior, referred in this paper a&sntingency strategies (Tomlin

2006). Examples of risk management strategies msepted in Table 1, including strategies suchafestys

stock, multi-sourcing strategies, information shgricollaboration, and contingent rerouting. Thesategies

usually focus on adding redundancy or flexibilitghppra and Meindl, 2004; Talluri et al., 2013; Y aamy

Yang, 2010).

Table 1: Supply chain risk management strategies accotdingrious sources

Reference

Risk management strategies

Juttner et al. (2003)

avoidance; control; cooperatilexibility

Chopra and Meindl (2004)

additional capacity, addal inventory, redundant suppliers; increa
responsiveness; increase flexibility; aggregatpaml demand; increas

capability; multiple customers

nse

Khan and Burnes (2007)

supplier collaboration; pasing partnerships; risk sharing/knowled
transfer; strategic alliances; inventory manageméntus on corg
competence; proactive supply management; bufferspdyst

differentiation

Manuj and Mentzer (2008)

avoidance; postponement;pecidation; hedging; contro|;

transferring/sharing risk; security

ge




Oke and Gopalakrishnan (2009) multiple sourcingnaging demand; supplier collaboration; plannjng

and coordination of supply demand

Giannakis and Louis (2011) Intercoordination withitware agents / information systems

There is no one-fits-all solution and each stratagys at reducing certain risk type(s) (Chopra kfeindl,
2004). In this study, particular attention will gien to inventory mitigation and contingent refing as these

are identified as effective strategies in redudimg impact of supply network disruptions (Choprd aeindl,
2004), which is the main scope of the pabeventory mitigation is considered as a redundancy based strategy,
where additional amounts of inventory is kept tevyant the focal company from stocking-out in theecaf a
disruption. Kurano et al. (2014) noted that the ami@f additional inventory needed is dependenthenrisk
profile. Tomlin (2006) highlighted that inventoryitigation is not an attractive strategy in rare dodg
disruptions, if other options are available becabhsecosts associated with excessive inventory faplong
periods of time would not balance the risk, althougensures production continuity in case of disian

(Kamalahmadi and Parast, 2017) and absorbs shbtigsré et al., 2016).

Contingent rerouting is considered as a flexibility based approach,resttke company reorganises its ordering
volumes after the disruption so as to minimise stuglition’s impact. Literature highlights the domine of
flexibility based strategies over redundancy baseds (Talluri et al., 2013). For example, Carvaéioal.
(2012) found that flexible transportation capagigrforms better than inventory mitigation and Dcangpl
Tomlin (2012) advocated that contingent reroutsgnore effective in cost reduction than inventoitigation

for rare and long disruptions.

The performance of inventory mitigation and conéing rerouting have been broadly investigated in the
literature. Tomlin (2006) and Qi and Lee (2015) estigated performance of inventory mitigation and
contingent sourcing in a two echelon setting withable and unreliable manufacturers. Qi (2013)lwatad
different sourcing strategies under disruptionsttet primary supplier. Chen et al. (2012) evaluated
performance of contingent rerouting strategy witlhackup supplier. Lakovou et al. (2015) determitieel
optimal capacity level while using emergency saugciHowever, SCRM studies focus on the local orditya
perspectives giving little attention to how effeetiess of these strategies can be influenced bguihyaly chain

members’ connectivity patterns; namslpply network topology.



2.2 Supply Network Topology

Until two decades ago, theoretical studies assuimetdthe topological properties of the majorityreél world
networks were random in nature (Barabasi, 2009ppiay large-scale structures of networks such as\tbrid
Wide Web revealed that not only the connectivititgras are not random, but also that the way nadesvired
with each other gives rise to unique system charistics (Barabasi, 2009). Particular attention lxsn given
to degree distribution, which defines the probability of a randomly sédeicnode having a certain number of
connections with its neighbours (Newman, 2010). degree distribution is the most commonly used oneas
determining topological properties of complex sgggNewman, 2005) and a key feature that deterntireis
vulnerabilities (Barabasi, 2009; Watts, 2002). Twost characteristically distinct network topologiessed on

degree distribution are:

1. random networks, which are networks with Poisson degree distrdtivhere links between nodes are placed
at random. There are two popular random networleggion models(n,m) and G(n,p). G(n,m) model
assumes that links are placed amongstnodes at random; whereé¢n, p) model assumes that connections
betweenn nodes are chosen according to the probahiliflewman, 2010). Random networks are often used

for benchmarking to verify whether the topologygiiestion exhibits certain features.

2. scale-free networks, which are networks with a power-law degree distiion. They consist of largeub

nodes that have very large number of links, andynsamall nodes, which connect to these hubs. Theedegp
which nodes can obtain links, has an exponentiatiomship to the number of a node’s existing linkkere are
numerous examples of networks that exhibit scale-firoperties, such as physical internet or Woridé/Web

(Barabasi and Albert, 1999).

Some of the first studies that challenged the piwe of supply chains being linear and hierarchinelude
(Choi et al., 2001; Borgatti and Li, 2009; Lomi aRdttison, 2006, Basole and Bellamy, 2012). Thetleoas
replaced the linear chain idea by the notion of giem supply networks, which are intricately intemoected

systems emerging without a single entity contrgllinem.



Empirical studies included: Kim et al. (2011) whapped Honda supply network with 70 figrisomi and
Pattison (2006) who analyzed Italian automotivepdypetwork with 106 firms; and Kegiang et al. (8)Q@vho
mapped the Guangzhou automotive supply network 84tlirms. More recently, large-scale empiricaldsts

have been conducted by Brintrup et al (2011), Kital., (2014); and Brintrup et al (2015).

Gafiychuk (2000), Thadakamalla et al. (2004), Naid Vidal (2011), and Hearnshaw and Wilson (2013)
suggested that supply networks exhibit scale-fogmlbgies. Nair and Vidal (2011) created an agexsted
model that simulated production in random and sfrale supply network topologies showing that a esdede
network is more robust than a random network. Bogdn the scale-free network discussion, Maril §2@15)
designed a resilient network generation algorithsingl a heterogeneous preferential attachment rule,
differentiating between retailer, manufacturer aogplier nodes. Brintrup et al (2015) created anéaork on
how disruptions can be modelled in complex supm@iworks, showing that product distribution on tlwles
need to be considered when evaluating possibleréajpropagation on the network topology. Kim e{2415)

highlighted the need to differentiate between naai link and network level failures on network toy.

Although the existence of a scale-free propertybdeen widely discussed in literature, studies bntBrp et al.
(2011), and Kito et al. (2014) showed that Toyotdwmrk’s in-degree and out-degree follow log-norraat
stretched exponential distributions, respectivélyis means that the networks have hubs but thoss &te not
as hig, as they would be in a scale-free networintBip et al. (2015) further showed that Airbugply
network topology exhibits a hub structure, with ardy of firms connecting only to these hubs. Yteg Airbus
sample was too small to determine the patterngafestherefore the authors did not refute norfoege the

hypothesis of supply networks following scale-fpegterns.

Following these studies, we use random and scatefietworks to characterise our supply networks e
(1) We concur with theoretical studies that point the existence of hubs in supply networks; (2)tiple
sources use these to model supply networks, ineuihadakamalla et al. (2004), Nair and Vidal (20&hd
Zhao et al. (2011); and (3) these models are weduchented in the literature to have various sttengind

weaknesses to different disruption types.



Supply network topology is important because it bagn shown that different topologies exhibit darta
robustness properties depending on how the netigodisrupted. Network theory literature disting@shtwo
main types of disruptions: random and targeted.d@andisruptions impact all network members with aqu
probability while in targeted disruptions nodestttal are chosen based on some parameter sudh agmber
of connections or position in the network. Randatworks show vulnerability against random disrupgiand
robustness against targeted disruptions. Conversslgle-free networks are vulnerable against tadyet
disruptions when a hub node is the target, andstohgainst random disruptions (Barabasi and Ald&399;
Cohen et al., 2000). Simulation models built by dddeamalla et al., (2004); and Nair and Vidal, (2084ve

proved the same effect taking place in the coragéstupply networks. .

2.3. Knowledge Gap

SCRM literature focuses mostly on a given focal pany and its direct business partners rather than t
extended supply network. Nonetheless, there areptixms where study has been extended to muladier
supply network. Benaicha and Hadj-Alouane (2013gased how adding a backup supply location inwaankt
increases the performance in light of disruptioBBbermayr and Minner (2014) evaluated performaate
single and dual-sourcing strategies in a supplywork subject to disruptions. Talluri et al. (201iB8yestigated
the efficiency of different risk mitigation straieg in a multi-echelon supply network. Wang et (2010)
assessed the performance of dual sourcing and ggaogrovement strategy. Carvalho et al. (2012duse
redundancy and flexibility strategies in an autam®tsupply network to assess their performancenagai
disruptions. Although these studies consider ntidtied topologies, they have an underlying asswonptin
linear chain structures that do not account for glemtopologies that empirical studies highlighted.
Regardless of the strategy applied, SCR managts néed to decide on the trade-offs between robsstand
efficiency (Christopher and Peck, 2004). Schmid &ingh (2012) highlighted that in order to stréwegt the
whole system, the performance of the weakest liedéds to be improved. This assumption brings tothe
considerations about targeted mitigation and cgeticy, where applying these strategies in the worst
performing suppliers might substantially improvefpemance of the overall system.

While the extant literature studies the effectivenef risk management strategies for a focal comptre
effectiveness of mitigation and contingency in dyppetworks with distinct topological features hast been

explored yet. In addition, there is a lack of umstiending of whether and how strengthening the wstake



supplier can benefit supply network performance.wlmat follows, we address this gap by applying risk

management strategies in complex supply networks aistinct topological features.

3. Research design

This section discusses four main components ofiélBearch design: (a) an agent based model of fhyaysu
network; (b) a stock-management model; (c) perfarceametrics; and (d) the design of experiments tsed
extract the relationship between the network togwlaisk profile, and effectiveness of risk managemn

strategies.

3.1. Agent-based model

Literature advocates the use of multi-agent systeEmsaodel supply networks since it enables us prasent
supply chain members as autonomous, interdepenadéaptive, and self-organising entities (Swaminatega
al., 1998). Agent based modelling methods are éspewaluable since they capture complex phenomana
network-level (Pathak et al., 2007), which could be obtained by traditional analytical approacft@&satfield
et al., 2013). Previous authors have also modelbedplex supply networks with agent based approagitiais

and Vidal 2011, Thadakamalla et al 2004).

In our work, an agent-based model is an upstregmplgwnetwork comprised of interconnected agents Th
model comprises of four types of agents: the Oalgiquipment Manufacturer (OEM) agent, supplierrdagie

logistics provider agents and dummy agents (Figlre



Dummy agent

A

Logistics provider
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OEM agent ()

-

Q?;KQ

Supplier agents /

!
A

Dummy agent

Figure 1. lllustration of agent types

e The OEM agent resides in the downstream part of the upstreamlgupetwork, and follows a simplified
version of the anchor-and-adjust policy as giverSterman (1989) and Edali and Yasarcan (2014) to
manage its inventory.

e Supplier agents constitute the extended supply network of the OBking OEM's suppliers of the first,
second, third, and further tiers. Similarly to &M, they follow a simplified version of the anckemd-
adjust policy as given in Sterman (1989) and Ealafl Yasarcan (2014). A supplier agent can be alisupp
of one company and a customer of another at the siame.

* Logistics provider agents form the links between nodes, delivering goodsnfr@ supplier to a customer.
Each supplier-customer pair has a unique logigtiosider assigned.

e The upstream and downstream ends of the networkegresented bglummy agents, whose purpose is to
pull the demand and provide an infinite supplyafmaterial.

The functionality scope of the OEM and supplierrdagéncludes: order receipt, demand forecastingppgtig,

and supply ordering. Agents order from their suggliand accept orders from their customers comrating

via messages. Simulation runs in a discrete manwiegre agents simultaneously perform ordering dmtss
each week. Agents can have multiple customers applisrs, responding to their requests on a fioshe-first-
served basis. We assume that all suppliers of antdtave perfectly substitutable goods. Agent-basedel
design is presented in Figures 2 and 3. Figureo®vstiwo exemplary supply networks with random acales

free topologies and Figure 3 shows the interactimta/een agents and logistics providers.
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Figure 2: Exemplary supply networks with random and scede topologies. Arrows indicate material flow

from the supplier to the customer.
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Figure 3: Interaction between supplier agents and logigiioviders. Solid arrows indicate material flow from

the supplier to the customer, and dashed arrovisatalinformation flow

3.2. Upstream supply network generation

Each topology consists of 103 nodes and 472 liwk&re number of nodes and links were chosen base¢deo
size of an existing supply network topology, whimbuld not be reported in this paper due to confidéty

issues. Nodes represent the OEM and supplier agamddinks represent material flow. Each link ssigned a
logistics provider agent to carry out deliveries these are not part of the topology. Dummy agerist only

for computational purposes, to provide raw materiahd pull the demand, and hence are not parteof th
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topology. Random and scale-free topologies arergéss five times creating unique supply networkanses.

In order to create network topologies, two generatinodels are used: random attachment and preifdrent
attachment. Theandom attachment model placesm links betweenn nodes at random, generating random
networks. Thepreferential attachment model placesm links betweem nodes, choosing a node to form a link
with a probability proportional to the number ofiglgbours a node has, generating scale-free networks

(Newman, 2010).

While our network generation algorithm follows teame underlying principles of random and prefeaénti
attachment, the generation process has been gligiutlified as the original algorithms generate teated
networks with no constraints on the number of linksorder to address these shortcomings, and te reare

that the algorithm is applicable, the following eétules is applied

(1) The first node created is the OEM; (2) the dimn of the link is always from the new node tisatreated to
the existing node. Hence the next node generattiteifirst supplier of the OEM; (3) the rest of thedes are
created and attached using the random attachmednpraferential attachment rules respectively (seeNan
2010); (4) The network is fully connected, and dicy¢5) After generation, all nodes with zero iegiee have
a dummy agent attached, which provides infinite amboof raw material; (6) There is only one dummy
customer with only one incoming link which is theE®; and (7) Each link is represented by a logistics
provider agent, whose goal it is to deliver goodsneen suppliers and customers. The pseudo codetfioork

generation is given on Figure 4.

Initialize:

n= number of nodes

m= number of links

k =(round)M/N, where k is average number of linkstgebe allocated
Create OEM node

Create supplier node

Add incoming link from supplier node to OEM

m=m-1

n=n-2

While n >0 do
k = (round)m/n
Create supplier node
Add k outgoing links from a new node to exigtimodes according to attachment rules (randomedegantial)
m=m -k
n=n-1
End while

Figure 4: Network generation process
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3.3. The stock management model

Supplier agents and the OEM control their own inegn which we modelled using a stock management
structure (see Figure 5). This generic structuppasses both the physical aspects of the stonkgeaent

task and the decision making processes of humasidecenakers (Sterman, 1989; Yasarcan, 2011).

Each agent makes ordering decisions as describékeirstock management model presented in Edali and
Yasarcan (2014). The main differences between ik of Edali and Yasarcan (2014), and our work are:

(1) in Edali and Yasarcan (2014), the supply chme@mbers are connected as a chain, whereas we ®@mula
complex network structures;

(2) their model describes only four agents, wheoesanodel includes more than a hundred;

(3) in their paper, the end-customer demand israta@ight units per week, but in this paper, itdsianed to be
equal to 1400 units per week.

The model was reconstructed in the Java Agent Dewetnt Framework (JADE). The code was validated
through comparison of output across different patem settings. A further check included replicatioi

optimum costs reported by Sterman (1989).

12
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Figure 5 — Stock management model

3.3.1. Physical sub-structure

The inventory of an agent is updated weekly, wisettescripti,t represents the variable associated with an agent
i in weekt. The acquisition flowdf) is the rate of receiving orders. Net inventa)(increases vidaf), and
decreases via sales).(Supply line &) represents orders that are placed and have hatyeed to the ordering
agent’s inventory. Supply line increases via ordeysand decreases via the acquisition flow (Equatibmasd
2).

NI;eiq = Nl +af; — sie )

SLity1 =SLi¢ + 05 — afiy 2)
On-hand inventory (I) and backlog (B) are obtairfiemm net inventory using Equations 3 and 4; wheh ne
inventory is positive, we have on-hand inventong avhen it is negative, we have backlog.

Iy = MAX(0,NI;,) 3

Bi,f = MAX(O, _1 . Nli,t) (4)

13



We assume that negative orders cannot be plaeeddnce placed, orders cannot be cancelled). Tdrdsys
are formulated to be equal to indicated ordersdfdated ordersid) are positive. Otherwise, orders are equal to
zero (Equation 5).

0;r = MAX(0,i0;,) (5)
Orders that are placed enter supply line and renteire for a time period that is defined as theussitipn
delay time &dt), which is also known as the lead time. The adtjoisdelay time can be expressed as the sum
of mailing delay time (mdt) and shipment time (sthere mailing delay time is the time it takes thoe order to
be received by the supplier, and shipment timévéstime it takes for goods to be delivered to thstamer
(Equation 6).

adt = mdt + st (6)

Accordingly, acquisition flow is the delayed versiof orders (Equation 7).

afie = Opt—aat (7)

3.3.2. Decision-making sub-structure

Indicated orders are formed using a simplified ier®f the anchor-and-adjust ordering policy (Stanm989).
We present the equations of the simplified verdietow (see Sterman (1989) and Edali and Yasarocah6j2

for an extended version).

In our model, indicated orders is equal to thehardtic sum of expected saldsy], inventory adjustmenid),
and supply line adjustmerd &) terms (Equation 8).
0o = ES;¢ +ia;; + sla;, (8)
Expected saleéES) is obtained by using simple exponential smootHuorgcasting method (Equations 9 and
10). Expectation adjustment fractiag) {s a parameter, which was set to 0.2 in the aaséd simulation.
ESi 141 =ES; +ear;, =ES;  +a-(s;e — ES;¢) 9)
ESippa=0—a) ES; +a-s;, (10)
Whereear stands for expectation adjustment rate. Invenaoljustment (ia) is the discrepancy between desired
inventory (*) and net inventory (Equation 11).

lage =1; — Nl (11)

14



Supply line adjustmentsi@) is the discrepancy between desired supply I8ée ) and Supply line (Equation
12).

sla;; = SL;; — SL;, (12)
Desired supply line is calculated by multiplyingpexted sales with acquisition delay time (Equafi8h This
aims to keep supply line at a level that satidlieslead time demand (Sterman, 1989; Yasarcan,)2011

SL;, = adt - ES;; (13)

3.4. Experimental setup for the stock managememttsires in the network

The agent-based model allows for supplier agerdstz OEM to have more suppliers than in origirtal®an
(1989) model. Therefore, we have updated the ardedecision rules. The agent performs the sameriagde
decisions as specified by the anchor-and-adjustypalthough when it has more than one supplisplits the
order volume equally between its suppliers as §ipddin Equation 14, where pis the ordering decision of an
agent in weekt; g;;is the order submitted by an agetd an agenjtin weekt; A is the adjacency matrix of the
network, where 4 is equal to 1 when an aggrsupplies to an ageitandk™, is the number of suppliers of an
agenti.

Ajjoit

in
k;

Ojj¢ = (14)
The initial set up for the agent-based simulat®asg follows:
e The dummy agent at the end of the supply-chainrggée® a constant demand of 1400 units per week.

« Each agent’s desired inventory is equated to zdrehwcorresponds to aiming to minimize the net

inventory (Equation 15).

=0 (15)

* The initial net inventory is equated to zero (Equatl6).

Nl =0 (16)

* In order to ensure that the simulation is in aniléium, the initial order of each agent is eqtmthe
sum of initial orders of this agent’s customersy&ipn 17), wherd\ is the adjacency matrix withy;
equal to 1 when an ageinis a customer of an agentand ¢ is the initial order placed by an aggnt
to an agent. The estimation of the initial order starts from thEM, whose initial order is known and

is equal to 1400 units per week

15



Oito = Z?]:O,j::i(Ajini,tO) (17)
* The initial supply line &) of each agent is equal to initial demand of #gént multiplied by the

acquisition delay time (Equation 18).

SLito = (adt) - 09 (18)
e The timeframe of the simulation is extended to &@@ks to prevent the effect of the short-term

transient dynamics from dominating overall results.

If no disruptions are introduced, the model produnero backlog and inventory costs, since the itorgnhat is
acquired is immediately sold. When there are disonp, the agent’s inventory level can oscillatetHis case
one of the following scenarios occur: 1) The agships to customers all of its inventory and alse tiewly
arrived items to satisfy its demand. Thus, in #iatulated week, no inventory or backlog cost istad for that
agent; 2) The sum of newly arrived items and itémthe inventory is greater than the demand. Tthesagent
must store the amount that is not shipped creatimgntory holding costs for that week; 3) The agetkeives
demand more than it can satisfy. All unsatisfiethded is backordered, and backlog cost is created uyé
first-come-first-serve rule for orders that arrimedifferent weeks. However, if an agent receivestiple orders

within the same week, it randomly prioritizes thders to be satisfied for that week.

When an agent applies inventory mitigation, theirddsinventory level is equated to the initial arad that
agent ( = o0;.0). Contingent rerouting is performed only when aers has more than one supplier; the
number of suppliers of a specific agent dependshemetwork topology in which it is embedded. Wtan
agent reroutes, it stops ordering from the dismigtgoplier and moves the disrupted volume to sappthat are

still operational. The agent sources equally fresoperational suppliers at all times.

3.5. Performance metrics

Supply network performance has been evaluated usitaj costs incurred by all agents in the netw¢8ker );
costs incurred by the OEM (g ); average unit fill-rate of agents in the netwfkRye7); and unit fill-rate of
the OEM ( FRian). These four metrics enable us to evaluate trdfdeb®tween maintaining low costs and
keeping high customer service at the OEM and asyis¢em level. Gan and FRjay are calculated as; @nd

FR, respectively, where i corresponds to the OEM.
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The total cost incurred by agent i is representeengby Equation 19:

C;=XI1(05 I;+1-B;,) (19)

li; is the on-hand inventory and,Bhdicates the backlog of an agent i in weekK ts the duration of a single
simulation run that is 500 weeks. These valuesrarkiplied by the inventory holding cost and baakloost,
which are 0.5$% and 1$ per unit per week, respdgti{@terman, 1989; Edali and Yasarcan, 2014). Itvgn
holding costs and backlog costs generated in eamtkvare summed and show the total cost that agent i
generated during 500 weeks of a single simulatiom Mhe total cost incurred by the whole network is

represented by, which is equal to the sum of costs generatedoedéently by all agents (Equation 20).

Cner = 2?’:1 C; (20)

Where N is the total number of agents in the network edicig dummy agents. The unit fill-rate can be
described as a measure of customer service, nuafharits (e.g. cases) filled as a fraction of urutslered
(Closs et al., 2010). We refer later to this measas fill-rate. Fill-rate of agent i (PRis a percentage of net

demand in 500 simulated weeks (Equation 21).

T T
_ Zt=1Dit—Xt=1UDj:

FR; = T (22)

D;; and UD; are the demand and unmet demand of agent i in waekpectively. FRr , , is the average of

fill-rates of individual supplier agents ( Equati@).

TN FR;

FRNET = (22)

3.6. Design of experiments

We opt out of modelling specific root causes ofwiions in our simulation and instead generalizeugtions

under the collective characteristics of disrupfi@guency and duration by generating risk proffleable 2).
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A risk profile is composed of risk frequency andation, where frequency is categorised into raik faequent
disruptions, and duration into short and long. Phebability of a disruption to occur is given byethisk
frequency while the duration of the disruption isvem by risk duration. An example of a rare andglon
disruption might be a fire; while an example of gtemd frequent disruption might be a logisticaiessuch as a
truck arriving late.

A rare disruption is defined as one having 0.5%nckaof occurrence per week, meaning that disruption
happens approximately once per four years per agefrequent disruption is defined as the one hg\if%
chance of occurrence and indicate that it happane per 10 weeks. Short and long disruptions st fand 5
weeks, respectively. The combination of frequernt lamg disruptions is considered as a high riskrenment,
and the combination of rare and short disruptioa &swv risk environment. Thus all supplier agents@ubset
of them might be disrupted simultaneously in a leirgimulation run. Disruptions cause the agentecome
unresponsive which halts their delivery to custasmand demand to its own suppliers. We focus odaan
disruptions because literature shows numerous ebegntpat highlight how disruptions in small, peeéphl

firms cascade in the network impacting hubs.

Table 2: Experimental set-up for performance assessmemitgfation and contingency

Experiments  (A) Topologies (B) Risk profile  (C) Strategy (D) Mit./Cont. level
rare, short (%, 5%
14400° 5 Random rare, long Inventory mitigation 25%, 50%
5 Scale-free frequent, short Contingent rerouting 5%, 100%

frequent, long

" conducted using permutation of values in { A)-{D); includes 30 repetitions of each scenario

Table 3: Experimental set-up for targeted mitigation and contingency

Experiments  (A) Topologies (B) Risk profile  (C) Strategy (E) Targeting strategy
rare, short 5% random
240" 5 Random rare, long Inventory mitigation 5% highest costs
5 Scale-free frequent, short Contingent rerouting 5% lowest fill-rate

frequent, long

" conducted using permutation of values in (A)-(C) and (E)

The final experimental variable consists of twatgies: inventory mitigation and contingent reirogit At any

given run, only one strategy is available to akrg. The amount of agents applying a strategyodenated by
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the mitigation level, which indicates the percestag agents within the supply network that are ehoat
random to apply the strategy. These consist of; 8%, 25%, 50%, 75%, and 100%, where 0% indicatas th

none of the agents apply mitigation or contingeaiegt 100% indicates that all agents apply the gsisategy.

Thus, a single experimental run consists of a gheglogy, risk profile, strategy, and the levemdtich that
strategy is pursued. Each experimental run is tede20 times, giving a total of 14400 experimeBienarios

are summarized in Table 2.

The next set of experiments focuses on target&dwanagement so as to investigate whether stremgtip¢he
worst performing agents influences overall netwpekformance. The weakest agents are chosen bagedion
performances obtained in the scenarios with neithgentory mitigation nor contingent rerouting (0%
mitigation/contingency level scenarios shown in [€ad). Then, for every topology and each risk peofb% of
agents that obtained the highest cosai@l 5% of agents that obtained the lowest fikri@R are chosen. The
improvements in targeted and random risk managepefarmances are then compared with each othereTh

are 240 experiments summarized in Table 3.

4. Results and discussion

In this section, we assess the performance of gumilvorks using costs and fill-rates at individaat system
levels. The individual level corresponds to OEM&fprmance whereas the system level correspondget@ll
network performance. We first expose the netwodksandom disruptions without applying either inagt
mitigation or contingent rerouting to investigat@ahtopology affects failure propagation in randond &cale-
free networks. Then, we apply mitigation and cageimcy strategies in randomly chosen firms to assess
effectiveness of these strategies in networks wiiffierent topologies; we compare the effectivenegs
strategies to conclude which one enables bettavesg. Finally, we target the weakest firms to gppsk

management strategies and compare the outcomeamitiom selection.

4.1. Disruption impact
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In a perfect just-in-time system, when demand isstant and there are no disruptiongg{ds equal to 0 and
FRuer is equal to 100% for all scale-free and randonolmgies. This is because there are no inventory

oscillations; everything that is ordered is immésglasold.

When the network is exposed to disruptions, sonemtagexperience problems in fulfilling the demaffdheir
customers due to delayed deliveries of their sepglilnventory levels oscillate, and these osailiet travel

upstream and downstream, causing lower fill-rateskagher costs (Table 4).

We found that random networks generate higher ¢bats scale-free for all risk profiles. For exampte low
risk profile, costs are $1,180,476 and $82,835rémdom and scale-free networks, respectively; fgh hisk
profiles, costs are $13,615,534 and $2,469,877.Higieer the risk profile is, the higher is the cdsterence.
Random networks incur on average 14 times highstscthan scale-free networks for low risk profifesd

more than 50 times higher for high risk profiles.

Random networks have lower fill-rates than scade;fwhich are 75.40% and 95.99% in random and -fede
networks, respectively, for low risk. When riskhigh, random network fill-rates drop to 25.81%, e¥his half

of the fill-rate obtained for scale-free networkwlar the same conditions.

Our work further validates conclusions of Nair avidal, (2011); and Thadakamalla et al., (2004) vgosed
that scale-free supply networks are more robustitdom disruptions. Beyond this, our work shoves thhen
Sterman (1989)’s model is extended to complex supgetwork topologies, scale-free supply networksegate

lower costs and have higher fill-rates..
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Table 4: Performance of supply networks exposed to disougti where inventory mitigation and contingent

rerouting are not appliedsFRyer and cCyegr are standard deviations of fill-rates and costpeetively.

Topology Risk profile  FRygr o FRyger Cwer TCyer

rare, short T540%  4.36% L1580 4765 2924475

rare, long 46.39% 4.43% 34793508 538.250%

Random . - P e e o
frequent, short  38.38% 2.17% 49472058 370,403%

frequent, long  25.81% 1.14% 136155345 817.470%

rare, short 05.09% 1.15% B2 H358 24 Be0%

Seale-free  rare, long BOR3%  267% 28194058 Ho666%
frequent, short  T5.96% 1.67% T07.9778 44 63H%

frequent, long  55.00% 1.B5% 24698775 1307045

“ average over 5 topologies and 30 wrials

4.2. Effectiveness of inventory mitigation

The inventory mitigation strategy proves to be @ffee for scale-free and random topologies becéusaays
increases fill-rates and might decrease costs. Memny¢he amount of cost reduction depends on theank’s
risk profile and topology. Results are presenteHigures 6 and 7. For frequent and long disrupti@gr was
decreased by 31.81% and 32.66%, ap@dnCby 53.78% and 64.31% for random and scale-freeldgjes,
respectively. Cost reductions are caused by thetliat the increase in inventory holding costs Itexy from

the additional inventory is less than the decréasiee backlog costs.

When disruptions are rare, topology has a strongagnon the effectiveness of the inventory mitigati
strategy. A decrease in cost is observed only émdom topologies, when 25% of firms keep additional
inventory. Cost reduction does not occur for raseuptions in scale-free topologies because they@bust by
design, thus, they do not require as much invendsryandom topologies. This is expressed by araser in

Cnet by 836.54% for rare and short disruptions, and &%.64% for rare and long disruptions (Table 5).

The inventory mitigation strategy always improvédkrétes, regardless of topology (Figure 7). TheyEr
improvement for frequent and long disruptions is4B% and 17.44% for random and scale-free topodpgie
respectively. Scale-free topologies recover bdttarause they reach highereRthan random topologies for
all risk profiles. For example, under frequent atrt disruptions, in order to reach 75%y\ERin random
topology, almost all agents need to keep additiaomagntory. For scale-free networks, the same tesn be
obtained with only 5% of agents applying inventonjtigation. It is also interesting that the OEM ogers

better than the overall network for the majoritytbé risk profiles for both topology types. Thiskiscause
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additional inventory prevents failures to propagateoss the network, stopping inventory oscillagidrom
reaching the OEM. When risk is high, the amouningéntory is not enough to stop the failures aradithpact

of the disruption reaches the OEM.

On average, scale-free networks are more robusirtdom disruptions, they recover better using itmsn
mitigation, generate lower \gr and Gyan, and have higher KRy and FRjan. They have higher disruption
tolerance and need less inventory than randomagpes for the same risk profile. Keeping additioma&kentory
is an effective risk mitigation strategy in a compkupply network environment as it always incredSB et

and FRyan, and might decrease & and Gyan depending on the risk profile and topology.
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4.3. Effectiveness of contingent rerouting

Contingent rerouting is not effective for shortrdjgtions because of order processing time (effeltimcting as
the mailing delay time parameter in Sterman, 1983he disruption duration is short, the disrupsegbplier is
back to business before its customer applies ageinrerouting. Delay in the application of conéngy
strategy causes unnecessary inventory oscillaiodsresults in increased costs and decreaseati#tfor both

the OEM and the whole network (Figures 8 and 9).
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Contingent rerouting is effective for long disrupts, but not in all cases. It improves random netwo
performance, with an increase in fgR and FRjany, and with a decrease iny& and Gyan. For scale-free
networks, the strategy works only for the OEM wath increase in Ry and a decrease iny&. However, it
does not improve the performance of the overalivogk (Table 5). This happens because the majofifirras

within the scale-free network do not have manyraitéve sourcing options.
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4.4. Differences between inventory mitigation andtgent rerouting

The inventory mitigation strategy clearly outpenfsr contingent rerouting for both topology types dhe
majority of the risk profiles. The more additionalventory is kept in the network the lower the co$t
disruptions is. However, network topology plays iamportant role in effectiveness of inventory mitiga
because it influences the threshold value beyondhathe cost of inventory exceeds the benefitsinbthfrom

it. Scale-free topologies have lower threshold trantom, which implies that they need less inventor

Contingent rerouting decreases the costs for lasmgiptions and increases costs for short disruptiblowever,

even for long disruptions, effectiveness of inventmitigation is still better than contingent retiog (Table 5).
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Inventory mitigation always improves the fill-rat@hereas contingent rerouting decreases it fonthprity of

the cases.

Effectiveness of inventory mitigation and contingearouting has been a topic broadly discussedhe t
literature. It has been claimed that for long disiens, the inventory mitigation is not an attraetistrategy
(Dong and Tomlin, 2012; Tomlin, 2006; Talluri et,&013), whereas our results show that the effectss of
the strategy is highly dependent on the topology performs better than contingent rerouting for riegority

of the cases. High effectiveness of inventory raiiign results from the absorption of inventory tations
across the network (Mishra et al., 2016). Low pemiance of contingent rerouting results from high
interconnectedness of the supply network; in whiod alternative supplier that receives demand Hiasro
supply obligations to meet. This short-term incee@s demand at the alternative supplier causesniove

oscillations that travel through the network cnegta bullwhip effect and generating higher backlogs

Table 5: Effectiveness of mitigation and contingency whdinagents apply IM or CR strategies. % change

from when no IM/CR strategy is applied.

FRyer Cner
Topology Risk profile
M CR’ M’ CR’
rare, short TN R 52.71% 24.50%
Random | rare, long 43.32% 2.03% -3495% 5H8%
frequent, short  38.093%  3.011% -43.75%  19.44%
frequent, long  13.43% 6.63% -31.81%  -BETR
rare. short IOT%  265%  B3654%  5R.23%
Seale-free  rare, long 858%  -1L96% 182649 553%
frequent, short  21.69%  -10.72% 2327%  42.70%
frequent, long  17.44% 2.65% 32.66% -4.37%

* IM (inventory mitigation); CR (contingent rerouting)

4.5. Effectiveness of targeted mitigation and augghncy

Next, we investigate how strengthening the weatkass influences overall network performance. Tosto we
choose 5% of companies which showed lowest utitdibes and highest costs during the analysis. g fiesis
then apply inventory mitigation and contingent tdnog (Tables 6 and 7). We then compare resultargieted

mitigation with results obtained from runs withkriimanagement strategies chosen at random.
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For the majority of the cases, when 5% of firmshwitghest costs and lowest fill-rate are targetedriventory
mitigation the performance of the overall netwoskhigher than when these 5% of firms were chosen at
random. The observation does not hold for rareugitons in scale-free networks. In those casegeteny
companies that generate highest costs significantseases costs incurred - by 383.36% for rare sirait
disruptions and by 72.74% for rare and long disanst compared to when the selection was randons iBhi
because firms that generate highest costs alsothaveighest demand and inventory oscillations ctviimply

that the amount of additional inventory kept wolkgdhigh and incur high inventory holding costs.

Targeted contingent rerouting proves to be effectimly for long disruptions; for other cases, teefgrmance
is even worse than what it would be if the firmsrevehosen at random. Although a previous study eateol
that strengthening the weakest link improves oVesatem performance (Schmitt and Singh, 20123, did not
hold true for some of our experiments. For somesascale-free topologies recovered better witdaamrisk

management strategies compared to the cases withrtieted ones.

Table 6: The change in gt and FRgr for inventory mitigation. The comparison is dorme the case with

disruptions between no mitigation and 5% mitigation

FRNET CHLT
Topology Selection strategy
RS’ RL" F§' FL' RS’ RL" FS’ FL'
Random 2.86% 5.65% 380% 2.16% -4.27% -3.82% -3.27% -1.29%
Random —— Highestcost  4.90%  9.90% 520% 2.89%  0.60% -2121% -1475%  -9.25%
AEELe Lowest fill-rate  6.46% 11.18% 538% 056% -2644% -10.13%  -8.36%  -1.76%
Scalofro Random 025% 0.2% 120% 1.35%  4131%  10.27%  0.53%  -1.12%
Tareeted Highest cost 1.28% 1.53%  299% 1L17% 382.36% 72.74% -5.09% -22.68%
o

Lowest fill-rate  (0.21% 304%  2.00% 1L.33% 30.99%  -15.00% ST S23.43%

* B (rare disruptions): F (frequent); § (short); L {long)

Table 7: The change in &+ and FRgr for contingent rerouting. The comparison is dooethe case with

disruptions between no rerouting and 5% rerouting.

F'RNH CNE-"

Topology Selection strategy
RS RL" F§* FL* RS* RL* F§* FL~
Random 0.05%  097% -1.07% L12%  -2.01% -3.25% 225%  -0.76%
Highest cost ~ -559%  553%  -301%  3.65% 2539% 026%  H28% -3760%

Random

Targeted .
et Lowest fill-rate  0.06% 3.14%  -086%  3.10% -0.76%  -0.69%  348% -0.01%
Sealore Random D16% 020% -1.03% 031%  L88%  203%  356% 0.66%
Seile-iree Wahestcost  -1.71%  0.79% -12.10% -537% 47.25% -1527% 4084% -4.97%
Targeted

Lowest fill-rate  -0.71%  1.01% 0.26% -6.74% 34.08% -0.94% 238%  -273%

* B (rare disruptions): F (frequent); § (short); L {long)
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5. Conclusions

SCRM approaches involve practices that are welletstdod at the local and dyadic levels. Howeveg, th
relationship between the effectiveness of SCRMtesiias and supply network topology has thus farbesn
investigated, despite recent studies highlightiognglex network topologies that underpin supply ohain this
paper we bridged this gap by exploring effectivenafsinventory mitigation and contingent reroutingsupply

networks with different topological characteristics

After a review of literature, we focussed on twodely practiced SCRM strategies: inventory basell ris
mitigation and contingent routing; and two suppgtwork topologies: a randomly organised supply oekw
and a scale-free supply network. This was thead by a simulation approach to test which stygtagwhat
level, in which topology results in a better penfiance for the OEM and for the overall network. Berfance

criteria included both network and the OEM’s filite and associated costs.

We came to the following conclusions about inveptoiitigation strategy: (1) Additional inventory adws
increases fill-rate regardless of topology; (2) Aidtal inventory might decrease or increase cdsfsending
on risk profile and network topology. Applicatiorf amventory mitigation for rare and long disrupt®n
decreases costs in random networks and increasts inoscale-free networks, while the oppositerug for
scale-free networks; (3) Scale-free networks hagken disruption tolerance and need less invertmmngcover

than random topologies for the same risk profiles.

We have come to the following conclusions abouttiogent rerouting strategy: (1) Contingent rerogtin
decreases costs and increases fill-rates only wfsnption duration is long. For short disruptiotigre is an
increase in costs and decrease in fill-rates dueventory oscillations caused by order processimg; (2)
Contingent rerouting does not allow fill-rate ingse and cost reduction for scale-free networksusecanost

companies in the network have a small number efrative suppliers.

Following on these findings, further experimentsraveonducted to explore whether the targeting oRBIC
strategies in the network would affect the outcadiféerently. This involved selecting suppliers thad the
highest costs and lowest fill-rates during disropsi in previous simulation runs. Interestingly, fwand that

targeting the worst performing companies did netak increase performance.

28



The following managerial implications may be dedué®m our work: (1) Literature has often undenmastied
inventory mitigation as a risk treatment strateflyis research shows that it serves well in majaftgases as
an effective shock absorption mechanism; (2) Streke-supply network topologies need less inventban
random topologies to both withstand and recovemfrdisruptions, therefore it is important to ideytthe
topology under which an OEM’s network operates wbemsidering risk management strategies; (3) Cgatih
rerouting has proven to be less efficient than meg/ mitigation in a complex supply network sedtitin order
for contingent rerouting to work well, specific aitions need to be met: (a) majority of supply chaiembers
need to have multiple alternative suppliers, whinlght not be practical in real-world scenarios; (bg
response time has to be less than the disrupticatido. If these conditions are not met, contingembuting
results in increased inventory oscillations andodrim effectiveness; (4) Since supply network top@s show
robustness to different risk types, theoreticalig ipossible to design supply network in a way this robust to
specific types of risk; (5) Targeted risk managemean be an effective tool to remedy the impact of
disruptions, however it needs to be carefully desih If misaligned, the strategy that initially waisned at

decreasing risk might end up significantly hurtthg performance of the overall system.

In conclusion, this work shows that network topgi@iays a crucial role when exposed to random gissas.

There are a few limitations of this study that pdevdirections for the future research. We considemly two
strategies as examples of redundancy and flexililitsed approaches. In the future, more diversigatidn
and contingency strategies could be explored. Maedhybrid strategies that combine inventory naitign
and contingent rerouting could be applied. It $ti@lso be noted that strategies considered imauk are not
a one-fits-all solution and they might increaseeottypes of risks such as inventory handling rigkisopra and

Meindl, 2004). Future extensions could incorporifferent types of targeted disruption scenarios.

The model presented in our paper is a single-pitosiygply network, which assumes that all suppldstver
perfectly substitutable goods. Multi-product coesations could bring more in-depth analysis on haw
company’s product portfolio influences the effeetiess of mitigation and contingency. Finally, whiiethis
work we focus on the upstream part of the supptywaork, future extensions could incorporate the detweam

network including distributors, wholesalers anailets.
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