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ABSTRACT 

Pediatric cancer survivors are a steadily growing population; however chronic 

anthracycline-induced cardiotoxicity (AIC) is a serious long-term complication 

leading to substantial morbidity. We aimed to identify new genes and low-

frequency variants influencing the susceptibility to AIC for pediatric cancer 

patients. We studied the association of variants on the Illumina HumanExome 

BeadChip array in 93 anthracycline-treated pediatric cancer patients. In addition 

to single-variant association tests we carried out a gene-based analysis to 

investigate the joint effects of common and low-frequency variants on chronic 

AIC. Although no single-variant showed an association with chronic AIC which 

was statistically significant after correction for multiple testing, we identified a 

novel significant association for GPR35 (G protein-coupled receptor 35) by 

gene-based testing, a gene with potential roles in cardiac physiology and 

pathology (P=4.0x10-6, PFDR=0.02). The greatest contribution to this observed 

association was made by rs12468485, a missense variant (p.Thr253Met, 

c.758C>T, minor allele frequency=0.04), the T allele being associated with 

increased risk of chronic AIC and more severe symptomatic cardiac 

manifestations at low anthracycline doses. This study reveals GPR35 as a 

novel susceptibility gene associated with chronic AIC in pediatric cancer 

patients and the results emphasize the need for very large studies to reveal 

additional susceptibility variants. 
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INTRODUCTION  

Anthracycline chemotherapeutic agents are highly effective and widely used to 

treat childhood cancers1, but their clinical use is compromised by cardiotoxicity, 

especially for late-onset disease2,3. Children typically develop chronic dilated 

cardiomyopathy, which can progress with time to congestive heart failure and 

eventual demise (up to 7.3% of patients after 30-years)3,4, although survivors 

treated with anthracyclines can be asymptomatic for several years (up to 57% 

of patients)5.  

Several studies6-21 have identified genetic variants associated with 

anthracycline-induced cardiotoxicity (AIC). Most have been hypothesis-driven 

candidate-gene studies and have focused on common genetic variants (minor 

allele frequency (MAF) ≥5%). Still, a substantial portion of genetic susceptibility 

to AIC remains unexplained. There is increasing evidence that low-frequency 

variants (MAF<5%) also play an important role in the genetic architecture of 

complex traits22, but the role of this type of variation in AIC has not been 

explored thus far.  

We performed a genome-wide association analysis of 93 anthracycline-treated 

pediatric cancer patients using the Illumina HumanExome Beadchip, which is 

enriched for low-frequency coding variants (>80% variants with MAF ≤1%)23. 

Due to the low power to detect individual low-frequency AIC susceptibility 

alleles we explored the joint associations of variants using gene-based tests. 

We also performed gene-enrichment and pathway analyses. 

MATERIALS AND METHODS 
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Patients 

283 anthracycline-treated pediatric cancer patients at the La Paz University 

Hospital and the Niño Jesús University Hospital in Madrid and at the University 

Clinic of Navarra in Pamplona were reviewed between 2010 and 2014 and 

relevant clinical information was abstracted from medical records 

(Supplementary Table 4). All patients were treated with doxorubicin, 

daunorubicin or epirubicin as part of their chemotherapy protocol.  

AIC was defined as early-onset (occurring within 1 year after anthracycline 

treatment completion) or late-onset (occurring >1 year after anthracycline 

therapy completion) chronic left ventricle (LV) dysfunction assessed by 

echocardiogram measurements and evidenced by shortening fraction (SF) or 

symptoms/signs of severe mitral valve insufficiency, pericardial effusion, left 

ventricular hypertrophy or pulmonary hypertension. The criteria for determining 

a symptomatic event were established by pediatric cardiologists. To avoid inter-

observer and intra-observer variability in echocardiographic evaluations and to 

better differentiate between cases and controls, we defined as cases patients 

with SF≤27% at any time after anthracycline treatment completion. Controls 

were patients who had no symptoms or signs of cardiac complications and had 

normal echocardiograms (SF≥35%) during and after therapy. To rule out acute 

AIC, only echocardiograms obtained 30 days or more after an anthracycline 

dose were considered. All pediatric cancer patients had normal cardiac function 

before commencing anthracycline therapy. 93 out of 283 (33%) patients fulfilled 

the above-mentioned criteria. 
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Written informed consent was obtained from adult patients and the parents or 

legal guardians of children. The study was approved by the ethics committees 

of all participating universities and hospitals. 

Methods 

To determine the role of low-frequency coding variants, we genotyped 93 

anthracycline-treated pediatric patients for the 247,870 variants on the Illumina 

HumanExome Beadchip and we evaluated single-variant associations with risk 

of chronic AIC and also performed gene-based testing and gene-enrichment 

and pathway analysis. Details of genotyping, statistical analyses and in silico 

prediction are provided in the Supplementary Information.     

RESULTS 

The demographic and clinical characteristics of the 93 anthracycline-treated 

pediatric cancer patients are shown in Table 1. Controls were significantly 

younger than cases at diagnosis (median age 5.1 and 10.4 years, respectively, 

P=0.004). Cumulative anthracycline dose was higher in cases than in controls 

(360 mg/m2 v 130 mg/m2 P<0.001), with doxorubicin being the most frequent 

anthracycline drug administered. There were fewer cases than controls 

diagnosed with leukemia (37% v 88%; P<0.001) but more with pediatric bone 

tumors (34% v 5.2% with osteosarcoma; P<0.001 and 29% v 6.9% with Ewing 

sarcoma; P=0.007). Regarding concomitant therapy, bleomycin was more often 

administered in cases than in controls (37% v 3.4%; P<0.001).  

Three patients (1 case and 2 controls) failed genotyping (call rate<0.95) and 7 

patients (4 cases and 3 controls) were excluded as ethnic outliers based on 
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inspection of plots of the two first principal components, leaving 83 patients for 

further analysis (Supplementary Figure 1).  

Single-variant associations 

Of the 247,870 variants on the array, 246,060 passed quality control and 53,136 

were polymorphic. After adjusting for age at diagnosis and cumulative 

anthracycline dose, none of these variants reached statistical significance after 

correcting for multiple testing (PFDR>0.05). 

Gene-based test 

We carried out gene-based analysis to further investigate the role of common 

and low-frequency variants in chronic AIC using the optimized sequence kernel 

association test (SKAT-O)24,25. We identified GPR35 (G protein-coupled 

receptor 35) as the gene most significantly associated with chronic AIC 

(P=4.0x10-6) and this association remained statistically significant after 

correction for multiple testing (corrected PFDR=0.02). Sensitivity analyses 

revealed variant rs12468485 (p.Thr253Met; c.758C>T) (MAF=0.04) made the 

greatest contribution to the observed association (Figure 1). The minor T allele 

of this variant was almost exclusively present in cases (MAFCASES=0.09 v 

MAFCONTROLS=0.009), with only one CT carrier among controls; no TT carriers 

were found in our series of anthracycline-treated pediatric cancer patients. The 

majority (67%) of cases carrying the CT genotype had an extreme chronic AIC 

phenotype: LV dysfunction, mostly symptomatic, evidenced after treatment with 

anthracycline doses well below the average for cases (CT cases=155mg/m2 v 

all other cases=360 mg/m2). To assess whether the model with the variant 

rs12468485 was more informative than the model with only non-genetic 
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variables (age at diagnosis and cumulative anthracycline dose) we used 

likelihood ratio tests. We obtained that the model including the variant 

rs12468485 and clinical factors provides a significant improvement over the 

model with only clinical variables (P=8.6x10-5). 

In order to evaluate the impact of the missense variant rs12468485 

(p.Thr253Met) on GPR35 protein structure or function, we applied six in silico 

prediction algorithms (Supplementary Table 1). p.Thr253Met was classified as 

pathogenic by PolyPhen-2 and MutPred, and was predicted by F-SNPs to a 

have a potentially regulatory role in splicing (Supplementary Table 1).  

GPR35 sequencing  

Due to the incomplete coverage in the exome array of coding variants in 

GPR35, we sequenced the exonic region of the gene in our series of 

anthracycline-treated pediatric cancer patients. We identified 17 coding 

variants, 6 of which had been genotyped on the exome array. Of the other 11, 2 

were in complete linkage disequilibrium with the variant rs12468485 and 2 had 

call rate<0.90 and were not analysed further. Of the remaining 7 coding variants 

identified (r2<0.36 with variant rs12468485) in GPR35 (Supplementary Table 2), 

4 were synonymous and 3 missense, and all had MAF<5%. 

Of these 7 new GPR35 variants, only rs35155396 was associated with risk 

independently of clinical factors (P=5.16x10-3), but not independently of 

rs12468485 (P=0.99).  

Gene-enrichment and pathway analysis  
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To gain further insight into the nature of the biological pathways impacting on 

AIC we performed a gene enrichment analysis using the bioinformatics tool 

DAVID based on the list of significant genes (P<0.05) with at least 3 variants 

identified in the SKAT-O analysis. Ten clusters with an enrichment score (ES) 

≥1.3 (indicating biological significance) were found (Supplementary Table 3). 

The cluster with the highest ES (3.1) revealed overrepresentation of 

glycoproteins, receptors, N-linked glycosylation sites and cell and plasma 

membrane components. No pathways were associated with AIC risk after 

multiple testing correction (P≥0.05). 

DISCUSSION 

Despite the demonstrated therapeutic effectiveness of anthracyclines in cancer 

treatment26, AIC continues to be a serious problem in survivors long after their 

treatments have ended and cancer has been cured1,2 and clinicians remain 

unable to accurately stratify patients into high or low-risk groups3,4. Considering 

that children are particularly vulnerable to the cardiotoxic effect of 

anthracyclines, even more than adults and/or at lower doses3,5, the identification 

of biomarkers of AIC risk in this specific group of patients seems crucial to 

maximize clinical benefit and minimize harm. 

In recent decades, candidate-gene studies and genome-wide association 

studies (GWAS) have been extensively applied to dissect the common genetic 

architecture of many complex traits27,28. Candidate-gene studies are limited by 

our understanding of the underlying molecular and biological mechanisms, and 

common variants discovered in GWAS studies explain only a small proportion 
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of the total heritability of complex traits29. New evidence has emerged over the 

past few years that additional heritability might be explained by low-frequency 

variants22,30, and in particular coding variants, which a priori are more likely to 

have larger impact on protein function31. Here, we have explored the 

contribution of low-frequency coding variants to susceptibility to AIC in children. 

To the best of our knowledge, this is the first study where this type of variation 

has been comprehensively analyzed using exome array data for children 

treated with anthracyclines and with long-term follow-up.   

Using standard single-variant association tests, none of the 246,060 variants 

analyzed was found to be statistically significantly associated with chronic AIC 

after correction for multiple comparisons; however, this result may be explained 

by low statistical power, due to small sample size and few patient cases32. We 

performed gene-based tests that have greater statistical power to detect 

associations with rare variation and can evaluate the cumulative effect of 

multiple genetic variants within a gene33. Some genes/regions may have a high 

proportion of causal variants and influence the phenotype in the same direction 

while others may have few causal variants or the causal variants may have 

different directions of association. Therefore, the use of methods optimal for 

both scenarios, such as the combined gene-based test SKAT-O applied in this 

study, is desirable24. Using this approach, we have identified GPR35 as the 

gene most significantly associated with chronic AIC in children. While the 

SKAT-O does not provide any parameter estimates, we assessed the individual 

contribution of variants within GPR35 and found that rs12468485, a missense 

low-frequency variant (p.Thr253Met), strongly associated with the most severe 
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cardiac manifestations, was most influential. Although in silico prediction 

algorithms yielded discrepant results, rs12468485 was predicted to a have a 

potentially regulatory role in splicing. Due to the incomplete coverage of coding 

variants on the exome array, we sequenced the coding region of GPR35 in our 

series of 93 anthracycline-treated pediatric cancer patients but we were unable 

to identify additional independent association signals at the gene.  

GPR35 belongs to the G-protein-coupled receptor family, which are membrane 

proteins mediating a wide range of physiological processes34. Although the 

exact functions of GPR35 are not known, several lines of evidence strongly 

suggest potential roles for this receptor in cardiac physiology and pathology. 

Sun et al35 were the first to report a cardiovascular role for GPR35, with a non-

synonymous single nucleotide polymorphism (rs3749172) significantly 

associated with the burden of coronary artery calcification. GPR35 was later 

found to be up-regulated in failing myocardium of patients with severe chronic 

heart, and in the same study GPR35 knock-out mice showed higher systolic 

blood36. More recently, GPR35 has been characterized as an early marker of 

progressive cardiac failure37. In vitro functional assays in cardiomyocytes 

demonstrated that GPR35 overexpression reduced cell viability and promoted 

morphological changes36,37. Several studies have linked GPR35 to inflammatory 

regulation38,39 and there is ample evidence to support the hypothesis that 

inflammation, as well as hypoxia, play a significant role in the pathogenesis and 

development of chronic cardiac complications, including cardiomyopathy40,41. 

These findings provide a possible explanation for the involvement of this 

receptor in cardiovascular disease. On the other hand, the cellular and 
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biological effects of GPR35 on cardiovascular pathophysiology could be largely 

mediated by downstream signaling pathways such as Gα13, Gαi/o and RhoA, 

following receptor activation42,43. Putative endogenous ligands of GPR35 have 

also been linked to cardiovascular disease in animals models44,45 and in 

patients with chronic advanced heart failure46 or acute myocardial infarction47. 

In conclusion, apart from the well-established clinical risk factors for AIC, such 

as age at diagnosis and cumulative anthracycline dose, GPR35, a gene with 

important roles in cardiac physiology and pathology, and in particular 

rs12468485, appear to be an independent risk factor for chronic AIC. We 

demonstrated that the inclusion of this variant significantly improved the risk 

prediction model and may enhance the ability of physicians to identify high-risk 

patients in clinical practice. However, further replication of the association and 

resequencing of the gene in larger cohorts of patients to identify additional 

GPR35 rare variants associated with risk of AIC are required. 
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FIGURE LEGENDS  
 

Figure 1. Contribution of individual GPR35 variants on statistical 

significances for the GPR35 gene. Top: genomic location of GPR35 displayed 

in the USCS Genome Browser. Exon location and amino acid substitution of 

each of the 7 coding polymorphic variants included in the Illumina 

HumanExome BeadChip array are depicted. Bottom: P-values for the GPR35 

association in SKAT-O gene-based tests after removing one variant (black line) 

at a time and recalculating the association. Grey line indicates the P-value for 

the GPR35 association with chronic AIC including all 7 coding variants 

(P=4.0x10-6). Abbreviations: Prot, protein. 
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Table 1. Patient clinical characteristics  

 Controls (N=58) Cases (N=35) 
 

Characteristic N %* N %* P 

Age at diagnosis (years)   0.004 

Median 5.1 10.4  

Range 1.4-16.9 1.2-21.1  

Gender     0.19 

Female 25 43 10 29  

Male 33 57 25 71  

Primary diagnosis (tumor type)      

Leukemia 51 88 13 37 <0.001 

Osteosarcoma 3 5.2 12 34 <0.001 

Ewing Sarcoma 4 6.9 10 29 0.007 

Family history of cardiovascular disease 3 5.2 4 17 0.21 

Radiotherapy involving the heart
a
 3 6.7 6 19 0.15 

Cumulative anthracycline dose (mg/m2)
b
     <0.001 

Mean 130 360  

Range 49.2-562 105-780  

≤ 200 43 74 8 23  

> 200 15 26 27 77  

Anthracycline type      

Doxorubicin 50 86 34 97 0.31 

Daunorubicin 8 14 1 2.9 0.15 

Epirubicin 5 8.6 - - 0.15 

Concomitant therapy      

Cyclophosphamide 55 95 27 77 0.06 

Vincristine 54 93 32 91 0.42 

Etoposide 14 24 13 37 0.24 

Bleomycin 2 3.4 13 37 <0.001 

Follow-up (years)     0.06 

Median 8.3 10.5  

Range 1-24.1 1-27.5  

Age, cumulative anthracycline dose and follow-up were analyzed by Wilcoxon-Mann-Whitney U test. Gender, tumor 

type, family history of cardiovascular disease, radiotherapy involving the heart, anthracycline type and concomitant 

therapy were analyzed by Fisher’s exact test. * Percentages are computed based on the total number of non-missing 

values. a Radiotherapy involving the heart includes mediastinal and mantle radiation and total body irradiation. b 

Cumulative anthracycline dose was calculated using doxorubicin equivalents. Bold fold indicates statistically 

significant P-values (P<0.05).  
 





 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. In silico prediction of the functional effect of rs12468485 (p.Thr253Met) 
 

 
 

F-SNP prediction 
 

Variant SIFT 
prediction 

Polyphen-2 
prediction 

MutPred 
prediction 

SNPs&GO 
Prediction 

PON-P2 
prediction 

PredictSNP 
prediction 

ESEfinder 
prediction 

ESRSearch 
prediction 

PESX 
prediction 

RESCUE_ESE 
prediction 

rs12468485 
(p.Thr253Met) 

Tolerated Possibly  
damaging Pathogenic Neutral Neutral Neutral Changed Changed Changed Changed 

Bold type indicates a likely pathogenic effect or a change in splicing predicted by each in silico algorithm. Predictions are on GPR35 protein with Uniprot identifier Q9HC97 



 

Supplementary Table 2. Additional GPR35 coding variants identified by sequencing 

Variant Position MAF Function 

rs138283952 chr2:241569810 0.007 Synonymous 

rs142918765 chr2:241570284 0.007 Synonymous 

rs147336244 chr2:241569669 0.006 Synonymous 

rs34778053 chr2:241569742 0.01 Missense (p.Arg156Ser) 

rs35155396 chr2:241569585 0.02 Synonymous 

rs61734453 chr2:241569745 0.006 Missense (p.Gly157Arg) 

rs763867971 chr2:241570132 0.007 Missense (p.Arg286Cys) 

Chromosome positions are based on Genome Reference Consortium Human Build 37 

(GRCh37/hg19). Abbreviations: MAF, minor allele frequency 



 

Supplementary Table 3. Functional Annotation Clustering from the DAVID tool (Enrichment score ≥ 1.3). 

Annotation cluster 1 Enrichment score: 3.1 

Category Term Count P Genes P-
Benjamini 

SP_PIR_KEYWORDS Glycoprotein 125 9.2x10-7 

FSTL4, OR8S1, GRIN3B, SLC7A4, MMRN2, LPHN2, OR4D2, 
CHRNA9, CD44, LRRC52, PI16, ODZ3, GRID1, CLCA1, OR10S1, 
SLCO4A1, SPARCL1, PTPRN2, PLXNB2, CDHR2, SLC22A20, 
HLA-C, PNPLA3, TNFAIP6, LRP11, OR8B4, CHGB, DST, FGFR4, 
PANX1, AMTN, OR2T1, KEL, ENPP3, ITGAM, CRB2, P2RY2, 
ENTPD7, BAI2, SFTPD, B3GNT3, EGF, GCNT1, ADAM28, 
EPB41, ITGA3, OR5AC2, GPR35, SLC4A11, P2RX3, NOTCH4, 
TSC2, OR51A7, UTP14C, COL20A1, CHRNG, ARSB, ARSD, 
CLSTN2, CLSTN3, TMEM161A, CDSN, FCRL3, RSPO4, 
C14ORF135, SMPDL3A, NMUR2, POMT1, OR6P1, ANO2, CTBS, 
USH2A, OR2AE1, OR10J1, NCR3, CD86, TNFRSF10C, CLECL1, 
TAS2R19, ZPBP2, GRM6, ERN1, KCNH8, C4ORF29, PLA2G3, 
WFIKKN2, LRRC32, CPN2, NUP214, C1QTNF6, FCN2, COL6A2, 
FUT3, UGT2A1, COL6A1, CCBP2, HRG, PLA2R1, DKKL1, 
SLC39A4, QSOX1, SOAT1, TMC6, MOGAT1, CES1, OR8G2, 
FBN1, FUCA2, MAN1C1, COL5A1, PLG, OR51M1, CDH13, 
PROM2, GPR110, SLC17A2, ANXA11, GPR113, MEP1B, 
GPR111, MEGF6, ABCC8, GFRA2, ABCC6, GPR116 

1.7x10-4 

UP_SEQ_FEATURE N-linked glycosylation 
sites (GlcNAc...) 116 1.7x10-5 

FSTL4, OR8S1, GRIN3B, SLC7A4, MMRN2, LPHN2, OR4D2, 
CHRNA9, CD44, LRRC52, PI16, ODZ3, GRID1, CLCA1, OR10S1, 
SPARCL1, SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, 
HLA-C, PNPLA3, TNFAIP6, LRP11, OR8B4, DST, FGFR4, 
PANX1, OR2T1, KEL, ENPP3, ITGAM, CRB2, P2RY2, ENTPD7, 
BAI2, SFTPD, B3GNT3, EGF, GCNT1, ADAM28, ITGA3, OR5AC2, 
GPR35, SLC4A11, P2RX3, NOTCH4, OR51A7, UTP14C, 
COL20A1, CHRNG, ARSB, ARSD, CLSTN2, CLSTN3, 
TMEM161A, CDSN, FCRL3, RSPO4, C14ORF135, SMPDL3A, 
NMUR2, POMT1, OR6P1, ANO2, CTBS, USH2A, OR2AE1, 

1.2x10-2 



OR10J1, NCR3, CD86, CLECL1, TAS2R19, ZPBP2, GRM6, 
ERN1, KCNH8, C4ORF29, PLA2G3, WFIKKN2, LRRC32, CPN2, 
C1QTNF6, FCN2, COL6A2, FUT3, UGT2A1, COL6A1, CCBP2, 
HRG, PLA2R1, DKKL1, SLC39A4, QSOX1, TMC6, MOGAT1, 
CES1, OR8G2, FBN1, FUCA2, MAN1C1, PLG, OR51M1, CDH13, 
PROM2, GPR110, SLC17A2, GPR113, MEP1B, GPR111, MEGF6, 
ABCC8, GFRA2, ABCC6, GPR116 

SP_PIR_KEYWORDS Receptor 55 3.3x10-5 

TRPV3, GRIN3B, OR8S1, FCRL3, LPHN2, OR4D2, CHRNA9, 
CD44, NMUR2, OR6P1, GRID1, OR10S1, PLXNB2, PTPRN2, 
PPARGC1A, OR2AE1, OR10J1, TRPM2, NCR3, TNFRSF10C, 
CD86, TAS2R19, LILRB4, GRM6, LRP11, GPR50, OR8B4, 
FGFR4, OR2T1, PAQR7, ITGAM, P2RY2, BAI2, CCBP2, PLA2R1, 
TRIP11, OR8G2, ITGA3, PTPN12, OR5AC2, OR51M1, GPR35, 
EPS8, GPR110, P2RX3, NOTCH4, GPR113, GPR111, MS4A10, 
ABL1, ABCC8, OR51A7, GFRA2, CHRNG, GPR116 

2.5x10-3 

GOTERM_CC_FAT Plasma membrane 107 5.3x10-5 

LMO7, OR8S1, GRIN3B, LPHN2, OR4D2, CHRNA9, CD44, 
WNK4, GRID1, CLCA1, OR10S1, MYH1, PTPRN2, CDHR2, HLA-
C, CTNNA3, LILRB4, GPR50, OR8B4, KBTBD10, DST, SNTG2, 
HDLBP, FGFR4, PANX1, AMTN, OR2T1, KEL, ENPP3, MAP4K2, 
PAQR7, ITGAM, KCNS3, CRB2, PLCH2, P2RY2, TRO, BAI2, 
B3GNT3, EGF, SLC28A3, ADAM28, EPB41, LPP, KCNB1, ITGA3, 
OR5AC2, GPR35, SLC4A11, EPS8, P2RX3, NOTCH4, TSC2, 
MAP7, OR51A7, PLA2G4E, CHRNG, TM7SF4, CLSTN2, CLSTN3, 
KCNJ12, CDSN, FCRL3, NMUR2, SDPR, OR6P1, KCNG4, RHOF, 
USH2A, OR2AE1, TRPM2, OR10J1, NCR3, CD86, TNFRSF10C, 
CLECL1, SLC26A9, GRM6, PLA2G3, NKD2, LRRC32, TAP2, 
COL6A2, COL6A1, CCBP2, PLA2R1, SLC39A4, OR8G2, 
PPP1R9B, COG4, OR51M1, CDH13, PROM2, ERBB2IP, NRAP, 
GPR110, SLC17A2, GPR113, MEP1B, ANXA13, GPR111, SYNM, 
TAPBPL, ABCC8, GFRA2, ABCC6, GPR116 

1.5x10-2 

UP_SEQ_FEATURE 

 

Topological domain: 
cytoplasmic 

94 2.3x10-4 

TM7SF4, CLSTN2, CLSTN3, TRPV3, TMEM161A, GRIN3B, 
OR8S1, KCNJ12, FCRL3, LPHN2, OR4D2, CHRNA9, CD44, 
NMUR2, LRRC52, OR6P1, ANO2, PI16, KCNG4, ODZ3, USH2A, 
GRID1, OR10S1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
OR2AE1, PNPLA3, OR10J1, TRPM2, NCR3, CD86, TAS2R19, 
CLECL1, LILRB4, LRP11, GRM6, ERN1, GPR50, KCNH8, OR8B4, 

0.078 



 FGFR4, PANX1, OR2T1, LRRC32, ENPP3, KEL, PAQR7, ITGAM, 
KCNS3, CRB2, P2RY2, ENTPD7, TAP2, BAI2, FUT3, UGT2A1, 
B4GALNT3, CCBP2, B3GNT3, PLA2R1, EGF, SLC39A4, GCNT1, 
SLC28A3, ADAM28, TMC6, OR8G2, KCNB1, SPPL2A, ITGA3, 
MAN1C1, OR5AC2, CPT1A, OR51M1, GPR35, SLC4A11, 
PROM2, PLSCR4, GPR110, P2RX3, NOTCH4, GPR113, MEP1B, 
MS4A10, GPR111, TAPBPL, OR51A7, ABCC8, ABCC6, GPR116, 
CHRNG 

SP_PIR_KEYWORDS Cell membrane 65 5.6x10-4 

TM7SF4, CLSTN2, CLSTN3, GRIN3B, OR8S1, FCRL3, LPHN2, 
OR4D2, CHRNA9, NMUR2, OR6P1, ANO2, RHOF, KCNG4, 
USH2A, GRID1, CLCA1, OR10S1, CDHR2, HLA-C, OR2AE1, 
OR10J1, NCR3, TNFRSF10C, CLECL1, LILRB4, GRM6, GPR50, 
OR8B4, PLA2G3, SNTG2, NKD2, PANX1, OR2T1, KEL, MAP4K2, 
PAQR7, KCNS3, CRB2, P2RY2, PLCH2, BAI2, CCBP2, PLA2R1, 
SLC39A4, ADAM28, OR8G2, LPP, OR5AC2, OR51M1, CDH13, 
GPR35, PROM2, SLC4A11, GPR110, NOTCH4, GPR113, 
ANXA13, GPR111, MAP7, TAPBPL, OR51A7, GFRA2, CHRNG, 
GPR116 

0.030 

UP_SEQ_FEATURE Topological domain: 
extracellular 76 1.1x10-3 

LSTN2, CLSTN3, TRPV3, TMEM161A, GRIN3B, OR8S1, KCNJ12, 
FCRL3, LPHN2, OR4D2, CHRNA9, CD44, NMUR2, LRRC52, 
OR6P1, ANO2, PI16, ODZ3, USH2A, GRID1, OR10S1, PLXNB2, 
PTPRN2, CDHR2, HLA-C, SLC22A20, OR2AE1, TRPM2, OR10J1, 
NCR3, CD86, TAS2R19, CLECL1, LILRB4, LRP11, GRM6, 
GPR50, OR8B4, FGFR4, PANX1, OR2T1, LRRC32, ENPP3, KEL, 
PAQR7, ITGAM, CRB2, P2RY2, BAI2, UGT2A1, CCBP2, PLA2R1, 
SLC39A4, EGF, SLC28A3, ADAM28, OR8G2, ITGA3, OR5AC2, 
OR51M1, GPR35, SLC4A11, PROM2, PLSCR4, GPR110, P2RX3, 
NOTCH4, GPR113, MEP1B, GPR111, MS4A10, ABCC8, OR51A7, 
CHRNG, GPR116, ABCC6 

0.245 

SP_PIR_KEYWORDS Transmembrane 

 

116 

 

 

0.017 

 

OR8S1, GRIN3B, SLC7A4, SLC26A10, LPHN2, OR4D2, CHRNA9, 
CD44, LRRC52, PI16, ODZ3, GRID1, SMCR7, OR10S1, 
SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
PPP1R3A, PNPLA3, RNF133, LILRB4, LRP11, GPR50, OR8B4, 
AKAP1, FGFR4, PANX1, OR2T1, SLC38A8, KEL, ENPP3, 
PAQR7, ITGAM, KCNS3, CRB2, P2RY2, ENTPD7, BAI2, B3GNT3, 
EGF, GCNT1, SLC28A3, ADAM28, KCNB1, SPPL2A, ITGA3, 

0.37 



OR5AC2, GPR35, SLC4A11, P2RX3, NOTCH4, MS4A10, 
OR51A7, UTP14C, CHRNG, LRIT3, TM7SF4, CLSTN2, CLSTN3, 
TRPV3, TMEM161A, KCNJ12, FCRL3, C14ORF135, NMUR2, 
POMT1, OR6P1, ANO2, KCNG4, USH2A, OR2AE1, TRPM2, 
OR10J1, NCR3, CD86, CLECL1, TAS2R19, GRM6, SLC26A9, 
ERN1, KCNH8, C6ORF191, LRRC32, C2ORF85, TAP2, FUT3, 
UGT2A1, B4GALNT3, ILVBL, CCBP2, PLA2R1, SLC39A4, 
QSOX1, SOAT1, TMC6, SOAT2, MOGAT1, OR8G2, MAN1C1, 
CPT1A, OR51M1, PROM2, PLSCR4, CYP26C1, GPR110, 
SLC17A2, GPR113, MEP1B, GPR111, TAPBPL, ABCC8, ABCC6, 
GPR116 

UP_SEQ_FEATURE Transmembrane 
region 

 

116 

 

 

0.019 

 

OR8S1, GRIN3B, SLC7A4, SLC26A10, LPHN2, OR4D2, CHRNA9, 
CD44, LRRC52, PI16, ODZ3, GRID1, SMCR7, OR10S1, 
SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
PPP1R3A, PNPLA3, RNF133, LILRB4, LRP11, GPR50, OR8B4, 
FGFR4, PANX1, OR2T1, SLC38A8, KEL, ENPP3, PAQR7, 
ITGAM, KCNS3, CRB2, P2RY2, ENTPD7, BAI2, B3GNT3, EGF, 
GCNT1, SLC28A3, ADAM28, KCNB1, SPPL2A, ITGA3, OR5AC2, 
GPR35, SLC4A11, P2RX3, NOTCH4, MS4A10, OR51A7, 
UTP14C, CHRNG, LRIT3, TM7SF4, CLSTN2, CLSTN3, TRPV3, 
TMEM161A, KCNJ12, FCRL3, C14ORF135, NMUR2, POMT1, 
OR6P1, ANO2, KCNG4, USH2A, OR2AE1, TRPM2, OR10J1, 
NCR3, CD86, CLECL1, TAS2R19, GRM6, SLC26A9, ERN1, 
KCNH8, C6ORF191, LRRC32, C2ORF85, TAP2, FUT3, UGT2A1, 
B4GALNT3, ILVBL, CCBP2, PLA2R1, SLC39A4, QSOX1, SOAT1, 
TMC6, SOAT2, MOGAT1, OR8G2, MAN1C1, CPT1A, OR51M1, 
PROM2, PLSCR4, CYP26C1, GPR110, SLC17A2, GPR113, 
MEP1B, GPR111, TAPBPL, ABCC8, ABCC6, GPR116 

0.802 

 

SP_PIR_KEYWORDS 

 

Membrane 140 

 

0.029 

 

OR8S1, GRIN3B, SLC26A10, SLC7A4, LPHN2, OR4D2, CHRNA9, 
CD44, LRRC52, PI16, ODZ3, GRID1, SMCR7, CLCA1, OR10S1, 
SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
PPP1R3A, PNPLA3, RNF133, PITPNM3, LILRB4, LRP11, USO1, 
GPR50, OR8B4, AKAP1, SNTG2, FGFR4, PANX1, SLC38A8, 
OR2T1, KEL, ENPP3, MAP4K2, PAQR7, ITGAM, KCNS3, CRB2, 
PLCH2, P2RY2, ENTPD7, BAI2, B3GNT3, EGF, GCNT1, 
SLC28A3, ADAM28, LPP, KCNB1, SPPL2A, ITGA3, OR5AC2, 

0.41 

 



GPR35, SLC4A11, P2RX3, TSC2, NOTCH4, MS4A10, MAP7, 
ABL1, OR51A7, PLA2G4E, UTP14C, CHRNG, UQCRC2, LRIT3, 
TM7SF4, CLSTN2, CLSTN3, TRPV3, TMEM161A, KCNJ12, 
FCRL3, C14ORF135, SDPR, POMT1, NMUR2, OR6P1, ANO2, 
KCNG4, RHOF, USH2A, OR2AE1, TRPM2, OR10J1, NCR3, 
TNFRSF10C, CD86, CLECL1, TAS2R19, GRM6, SLC26A9, ERN1, 
KCNH8, PLA2G3, C6ORF191, NKD2, LRRC32, NLRX1, 
C2ORF85, TAP2, COL6A2, FUT3, UGT2A1, B4GALNT3, ILVBL, 
CCBP2, PLA2R1, SLC39A4, QSOX1, TRIP11, SOAT1, SOAT2, 
TMC6, MOGAT1, OR8G2, MAN1C1, CPT1A, CDH13, OR51M1, 
COG4, PROM2, CYP26C1, PLSCR4, GPR110, SLC17A2, 
GPR113, MEP1B, ANXA13, GPR111, TAPBPL, ABCC8, GFRA2, 
ABCC6, GPR116 

GOTERM_CC_FAT 

 
 

Integral to membrane 
 

123 

0.036 

 

OR8S1, GRIN3B, SLC7A4, SLC26A10, LPHN2, OR4D2, CHRNA9, 
CD44, LRRC52, PI16, ODZ3, GRID1, SMCR7, CLCA1, OR10S1, 
SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
PPP1R3A, PNPLA3, RNF133, PITPNM3, LILRB4, LRP11, GPR50, 
OR8B4, AKAP1, FGFR4, PANX1, OR2T1, SLC38A8, KEL, ENPP3, 
PAQR7, ITGAM, KCNS3, CRB2, TRO, P2RY2, ENTPD7, BAI2, 
B3GNT3, EGF, GCNT1, SLC28A3, ADAM28, KCNB1, SPPL2A, 
ITGA3, OR5AC2, GPR35, SLC4A11, EPS8, P2RX3, NOTCH4, 
MS4A10, OR51A7, UTP14C, CHRNG, LRIT3, TM7SF4, CLSTN2, 
CLSTN3, TRPV3, TMEM161A, KCNJ12, FCRL3, C14ORF135, 
NMUR2, POMT1, OR6P1, ANO2, KCNG4, USH2A, OR2AE1, 
TRPM2, OR10J1, NCR3, CD86, TNFRSF10C, CLECL1, TAS2R19, 
NUP205, GRM6, SLC26A9, ERN1, KCNH8, C6ORF191, LRRC32, 
C2ORF85, NUP214, TAP2, FUT3, UGT2A1, B4GALNT3, ILVBL, 
CCBP2, PLA2R1, SLC39A4, QSOX1, SOAT1, TMC6, SOAT2, 
MOGAT1, OR8G2, MAN1C1, CPT1A, OR51M1, PROM2, 
CYP26C1, PLSCR4, GPR110, SLC17A2, GPR113, MEP1B, 
GPR111, TAPBPL, ABCC8, ABCC6, GPR116 

0.58 

 

GOTERM_CC_FAT Intrinsic to membrane 125 0.059 

OR8S1, GRIN3B, SLC7A4, SLC26A10, LPHN2, OR4D2, CHRNA9, 
CD44, LRRC52, PI16, ODZ3, GRID1, SMCR7, CLCA1, OR10S1, 
SLCO4A1, PTPRN2, PLXNB2, CDHR2, SLC22A20, HLA-C, 
PPP1R3A, PNPLA3, RNF133, PITPNM3, LILRB4, LRP11, GPR50, 
OR8B4, AKAP1, FGFR4, PANX1, OR2T1, SLC38A8, KEL, ENPP3, 

0.58 



PAQR7, ITGAM, KCNS3, CRB2, TRO, P2RY2, ENTPD7, BAI2, 
B3GNT3, EGF, GCNT1, SLC28A3, ADAM28, KCNB1, SPPL2A, 
ITGA3, OR5AC2, GPR35, SLC4A11, EPS8, P2RX3, NOTCH4, 
MS4A10, OR51A7, UTP14C, CHRNG, LRIT3, TM7SF4, CLSTN2, 
CLSTN3, TRPV3, TMEM161A, KCNJ12, FCRL3, C14ORF135, 
NMUR2, POMT1, OR6P1, ANO2, KCNG4, USH2A, OR2AE1, 
TRPM2, OR10J1, NCR3, CD86, TNFRSF10C, CLECL1, TAS2R19, 
NUP205, GRM6, SLC26A9, ERN1, KCNH8, C6ORF191, LRRC32, 
C2ORF85, NUP214, TAP2, FUT3, UGT2A1, B4GALNT3, ILVBL, 
CCBP2, PLA2R1, SLC39A4, QSOX1, SOAT1, TMC6, SOAT2, 
MOGAT1, OR8G2, MAN1C1, CPT1A, OR51M1, CDH13, PROM2, 
CYP26C1, PLSCR4, GPR110, SLC17A2, GPR113, MEP1B, 
GPR111, TAPBPL, ABCC8, GFRA2, ABCC6, GPR116 

Annotation cluster 2 Enrichment score: 2.35 

Category Term Count P Genes P-
Benjamini 

UP_SEQ_FEATURE Domain:GPS 6 6.3x10-4 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.17 

INTERPRO GPS 6 8.8x10-4 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.45 

PIR_SUPERFAMILY 

PIRSF800007:secretin 
receptor-like G 
protein-coupled 

receptors 

6 9x10-4 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.13 

SMART GPS 6 1.3x10-3 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.21 

INTERPRO GPCR, family 2, 
secretin-like 6 2.1x10-3 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.51 

INTERPRO GPCR, family 2, 
secretin-like, 

conserved site 
6 2.6x10-3 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116 0.44 

INTERPRO GPCR, family 2-like 6 6.3x10-3 LPHN2, GPR110, GPR113, BAI2, GPR111, GPR116      0.65 



GOTERM_BP_FAT Neuropeptide 
signaling pathway 7 0.011 LPHN2, GPR110, NMUR2, GPR113, BAI2, GPR111, GPR116 1.00 

INTERPRO GPCR, family 2, 
extracellular region 3 0.10 LPHN2, GPR113, BAI2 0.95 

SMART HormR 3 0.12 LPHN2, GPR113, BAI2 0.94 

Annotation cluster 3 Enrichment score: 2.19 

Category Term Count P Genes P-
Benjamini 

SP_PIR_KEYWORDS Glycoprotein 125 9.2x10-7 

FSTL4, OR8S1, GRIN3B, SLC7A4, MMRN2, LPHN2, OR4D2, 
CHRNA9, CD44, LRRC52, PI16, ODZ3, GRID1, CLCA1, 
OR10S1, SLCO4A1, SPARCL1, PTPRN2, PLXNB2, CDHR2, 
SLC22A20, HLA-C, PNPLA3, TNFAIP6, LRP11, OR8B4, CHGB, 
DST, FGFR4, PANX1, AMTN, OR2T1, KEL, ENPP3, ITGAM, 
CRB2, P2RY2, ENTPD7, BAI2, SFTPD, B3GNT3, EGF, GCNT1, 
ADAM28, EPB41, ITGA3, OR5AC2, GPR35, SLC4A11, P2RX3, 
NOTCH4, TSC2, OR51A7, UTP14C, COL20A1, CHRNG, ARSB, 
ARSD, CLSTN2, CLSTN3, TMEM161A, CDSN, FCRL3, RSPO4, 
C14ORF135, SMPDL3A, NMUR2, POMT1, OR6P1, ANO2, 
CTBS, USH2A, OR2AE1, OR10J1, NCR3, CD86, TNFRSF10C, 
CLECL1, TAS2R19, ZPBP2, GRM6, ERN1, KCNH8, C4ORF29, 
PLA2G3, WFIKKN2, LRRC32, CPN2, NUP214, C1QTNF6, 
FCN2, COL6A2, FUT3, UGT2A1, COL6A1, CCBP2, HRG, 
PLA2R1, DKKL1, SLC39A4, QSOX1, SOAT1, TMC6, MOGAT1, 
CES1, OR8G2, FBN1, FUCA2, MAN1C1, COL5A1, PLG, 
OR51M1, CDH13, PROM2, GPR110, SLC17A2, ANXA11, 
GPR113, MEP1B, GPR111, MEGF6, ABCC8, GFRA2, ABCC6, 
GPR116

1.7x10-4 

UP_SEQ_FEATURE N-linked glycosylation 
sites (GlcNAc...) 116 1.7x10-5 

FSTL4, OR8S1, GRIN3B, SLC7A4, MMRN2, LPHN2, OR4D2, 
CHRNA9, CD44, LRRC52, PI16, ODZ3, GRID1, CLCA1, 
OR10S1, SPARCL1, SLCO4A1, PTPRN2, PLXNB2, CDHR2, 
SLC22A20, HLA-C, PNPLA3, TNFAIP6, LRP11, OR8B4, DST, 

1.2x10-2 



FGFR4, PANX1, OR2T1, KEL, ENPP3, ITGAM, CRB2, P2RY2, 
ENTPD7, BAI2, SFTPD, B3GNT3, EGF, GCNT1, ADAM28, 
ITGA3, OR5AC2, GPR35, SLC4A11, P2RX3, NOTCH4, 
OR51A7, UTP14C, COL20A1, CHRNG, ARSB, ARSD, CLSTN2, 
CLSTN3, TMEM161A, CDSN, FCRL3, RSPO4, C14ORF135, 
SMPDL3A, NMUR2, POMT1, OR6P1, ANO2, CTBS, USH2A, 
OR2AE1, OR10J1, NCR3, CD86, CLECL1, TAS2R19, ZPBP2, 
GRM6, ERN1, KCNH8, C4ORF29, PLA2G3, WFIKKN2, 
LRRC32, CPN2, C1QTNF6, FCN2, COL6A2, FUT3, UGT2A1, 
COL6A1, CCBP2, HRG, PLA2R1, DKKL1, SLC39A4, QSOX1, 
TMC6, MOGAT1, CES1, OR8G2, FBN1, FUCA2, MAN1C1, 
PLG, OR51M1, CDH13, PROM2, GPR110, SLC17A2, GPR113, 
MEP1B, GPR111, MEGF6, ABCC8, GFRA2, ABCC6, GPR116 

SP_PIR_KEYWORDS Signal 83 6.1x10-3 

ARSB, ARSD, CLSTN2, CLSTN3, TMEM161A, FSTL4, 
GRIN3B, CDSN, MMRN2, FCRL3, APOA4, LPHN2, RSPO4, 
CHRNA9, CD44, SMPDL3A, LRRC52, PI16, CTBS, USH2A, 
GRID1, CLCA1, SPARCL1, PLXNB2, PTPRN2, CDHR2, HLA-C, 
CECR5, NCR3, TNFAIP6, AMBN, TNFRSF10C, CD86, ZPBP2, 
TXNDC5, LILRB4, LRP11, GRM6, ERN1, C4ORF29, PLA2G3, 
CHGB, WFIKKN2, FGFR4, AMTN, LRRC32, ITGAM, CPN2, 
C1QTNF6, CRB2, FCN2, SFTPD, BAI2, COL6A2, UGT2A1, 
COL6A1, HRG, PLA2R1, SLC39A4, DKKL1, EGF, QSOX1, 
DEFB119, ADAM28, FGFBP3, CES1, FBN1, ITGA3, FUCA2, 
COL5A1, PLG, CDH13, PROM2, GPR110, NOTCH4, GPR113, 
MEP1B, TAPBPL, MEGF6, GFRA2, COL20A1, GPR116, 
CHRNG       

0.23 

UP_SEQ_FEATURE Signal peptide 83 7.2x10-3 

ARSB, ARSD, CLSTN2, CLSTN3, TMEM161A, FSTL4, 
GRIN3B, CDSN, MMRN2, FCRL3, APOA4, LPHN2, RSPO4, 
CHRNA9, CD44, SMPDL3A, LRRC52, PI16, CTBS, USH2A, 
GRID1, CLCA1, SPARCL1, PLXNB2, PTPRN2, CDHR2, HLA-C, 
CECR5, NCR3, TNFAIP6, AMBN, TNFRSF10C, CD86, ZPBP2, 
TXNDC5, LILRB4, LRP11, GRM6, ERN1, C4ORF29, PLA2G3, 
CHGB, WFIKKN2, FGFR4, AMTN, LRRC32, ITGAM, CPN2, 
C1QTNF6, CRB2, FCN2, SFTPD, BAI2, COL6A2, UGT2A1, 
COL6A1, HRG, PLA2R1, SLC39A4, DKKL1, EGF, QSOX1, 
DEFB119, ADAM28, FGFBP3, CES1, FBN1, ITGA3, FUCA2, 

0.61 



COL5A1, PLG, CDH13, PROM2, GPR110, NOTCH4, GPR113, 
MEP1B, TAPBPL, MEGF6, GFRA2, COL20A1, GPR116, 
CHRNG   

GOTERM_CC_FAT Extracellular region 
part 28 0.052 

DLBP, AMTN, MMRN2, APOA4, CD44, SMPDL3A, FCN2, 
COL6A2, SFTPD, COL6A1, PLA2R1, EGF, DKKL1, QSOX1, 
USH2A, CLCA1, SPARCL1, FBN1, COL5A1, PLG, CDH13, 
AMBN, ERBB2IP, NOTCH4, MEP1B, PLA2G3, DST, COL20A1 

0.59 

SP_PIR_KEYWORDS Disulfide bond 67 0.10 

ARSB, LRIT3, FSTL4, OR8S1, MMRN2, FCRL3, LPHN2, 
RSPO4, OR4D2, CHRNA9, CD44, NMUR2, OR6P1, ODZ3, 
USH2A, OR10S1, SPARCL1, HLA-C, OR2AE1, OR10J1, NCR3, 
TNFAIP6, TNFRSF10C, CD86, TXNDC5, LILRB4, LRP11, 
ERN1, GPR50, OR8B4, PLA2G3, CHGB, WFIKKN2, FGFR4, 
OR2T1, ENPP3, KEL, CPN2, ITGAM, CRB2, FCN2, P2RY2, 
SFTPD, BAI2, HRG, CCBP2, PLA2R1, EGF, GCNT1, DEFB119, 
ADAM28, FGFBP3, CES1, OR8G2, FBN1, ITGA3, OR5AC2, 
PLG, OR51M1, GPR35, NOTCH4, MEP1B, TAPBPL, MEGF6, 
OR51A7, CHRNG, GPR116 

0.67 

GOTERM_CC_FAT Extracellular region 49 0.12 

WFIKKN2, HDLBP, AMTN, TUFT1, ENPP3, FSTL4, CDSN, 
CPN2, MMRN2, APOA4, RSPO4, C1QTNF6, CD44, CRB2, 
SMPDL3A, FCN2, SFTPD, COL6A2, COL6A1, HRG, PLA2R1, 
PI16, EGF, CASP1, DKKL1, QSOX1, USH2A, DEFB119, 
FGFBP3, ADAM28, CLCA1, SPARCL1, FBN1, HLA-C, FUCA2, 
COL5A1, PLG, CDH13, AMBN, ERBB2IP, ZPBP2, NOTCH4, 
MEP1B, C4ORF29, PLA2G3, MEGF6, DST, CHGB, COL20A1 

0.76 

SP_PIR_KEYWORDS Secreted 39 0.19 

WFIKKN2, AMTN, TUFT1, ENPP3, FSTL4, CDSN, CPN2, 
MMRN2, APOA4, RSPO4, C1QTNF6, CRB2, SMPDL3A, FCN2, 
COL6A2, SFTPD, COL6A1, HRG, PLA2R1, DKKL1, QSOX1, 
USH2A, DEFB119, FGFBP3, ADAM28, CLCA1, SPARCL1, 
FBN1, HLA-C, FUCA2, COL5A1, PLG, AMBN, ZPBP2, 
C4ORF29, PLA2G3, MEGF6, CHGB, COL20A1 

0.77 

GOTERM_CC_FAT Extracellular space 18 0.23 
HDLBP, CLCA1, FBN1, PLG, MMRN2, APOA4, CDH13, 
SMPDL3A, FCN2, NOTCH4, SFTPD, MEP1B, PLA2G3, 
PLA2R1, EGF, DKKL1, QSOX1, COL20A1    

0.86 

Annotation cluster 4 Enrichment score: 1.79 



Category Term Count P Genes P-
Benjamini 

GOTERM_CC_FAT Plasma membrane 
part 64 2.2x10-3 

LMO7, GRIN3B, KCNJ12, CDSN, CHRNA9, CD44, WNK4, 
SDPR, RHOF, KCNG4, GRID1, CLCA1, MYH1, PTPRN2, 
CDHR2, HLA-C, CTNNA3, OR10J1, TRPM2, NCR3, 
TNFRSF10C, CD86, GRM6, SLC26A9, GPR50, KBTBD10, 
DST, SNTG2, FGFR4, PANX1, AMTN, LRRC32, ENPP3, KEL, 
ITGAM, KCNS3, P2RY2, TRO, TAP2, CCBP2, B3GNT3, 
PLA2R1, SLC39A4, LPP, KCNB1, ITGA3, PPP1R9B, COG4, 
CDH13, GPR35, SLC4A11, ERBB2IP, EPS8, NRAP, P2RX3, 
TSC2, SLC17A2, NOTCH4, MEP1B, MAP7, SYNM, PLA2G4E, 
CHRNG, ABCC6       

0.26 

GOTERM_CC_FAT Integral to plasma 
membrane 34 0.039 

FGFR4, LRRC32, KEL, ENPP3, GRIN3B, ITGAM, KCNS3, 
CHRNA9, CD44, P2RY2, TAP2, TRO, B3GNT3, CCBP2, 
PLA2R1, KCNG4, CLCA1, PTPRN2, KCNB1, ITGA3, HLA-C, 
TRPM2, OR10J1, NCR3, GPR35, TNFRSF10C, EPS8, P2RX3, 
NOTCH4, SLC17A2, GRM6, MEP1B, GPR50, CHRNG   

0.55 

GOTERM_CC_FAT Intrinsic to plasma 
membrane 34 0.050 

FGFR4, LRRC32, KEL, ENPP3, GRIN3B, ITGAM, KCNS3, 
CHRNA9, CD44, P2RY2, TAP2, TRO, B3GNT3, CCBP2, 
PLA2R1, KCNG4, CLCA1, PTPRN2, KCNB1, ITGA3, HLA-C, 
TRPM2, OR10J1, NCR3, GPR35, TNFRSF10C, EPS8, P2RX3, 
NOTCH4, SLC17A2, GRM6, MEP1B, GPR50, CHRNG        

0.60 

Annotation cluster 5 Enrichment score: 1.62 

Category Term Count P Genes P-
Benjamini 

SP_PIR_KEYWORDS Cell adhesion 16 0.019 
CLSTN2, AMTN, CLSTN3, LPP, CDHR2, ITGA3, ITGAM, 
CTNNA3, CDH13, TNFAIP6, CD44, TRO, COL6A2, COL6A1, 
ABL1, DST    

0.36 

GOTERM_BP_FAT Cell-cell adhesion 12 0.025 OA4, CDH13, CLSTN2, CD44, CLSTN3, TRO, CDHR2, 
COL6A2, LMO7, CDSN, ITGAM, CTNNA3 1.00 

GOTERM_BP_FAT Biological adhesion 23 0.026 
CLSTN2, AMTN, CLSTN3, LPP, CDHR2, LMO7, ITGA3, CDSN, 
COL5A1, ITGAM, CTNNA3, APOA4, CDH13, TNFAIP6, AMBN, 
ERBB2IP, CD44, TRO, COL6A2, COL6A1, ABL1, DST, 

1.00 



COL20A1 

GOTERM_BP_FAT Cell adhesion 23 0.027 

CLSTN2, AMTN, CLSTN3, LPP, CDHR2, LMO7, ITGA3, CDSN, 
COL5A1, ITGAM, CTNNA3, APOA4, CDH13, TNFAIP6, AMBN, 
ERBB2IP, CD44, TRO, COL6A2, COL6A1, ABL1, DST, 
COL20A1 

1.00 

Annotation cluster 6 Enrichment score: 1.61 

Category Term Count P Genes P-
Benjamini 

INTERPRO Kinesin, motor region, 
conserved site 5 9.5x10-3 KIF1B, KIF6, KIF17, CENPE, KIF16B 0.66 

INTERPRO Kinesin, motor region 5 9.5x10-3 KIF1B, KIF6, KIF17, CENPE, KIF16B 0.66 
UP_SEQ_FEATURE Domain: kinesin-motor 5 9.7x10-3 KIF1B, KIF6, KIF17, CENPE, KIF16B 0.69 

SMART KISc 5 0.013 KIF1B, KIF6, KIF17, CENPE, KIF16B 0.68 
SP_PIR_KEYWORDS Motor protein 8 0.015 DNALI1, KIF1B, DNAI1, MYH1, KIF6, KIF17, CENPE, KIF16B 0.35 

GOTERM_MF_FAT Microtubule motor 
activity 6 0.020 DNALI1, KIF1B, KIF6, KIF17, CENPE, KIF16B 0.59 

GOTERM_MF_FAT Motor activity 8 0.026 DNALI1, KIF1B, DNAI1, MYH1, KIF6, KIF17, CENPE, KIF16B 0.62 

GOTERM_BP_FAT Microtubule-based 
movement 7 0.027 KIF1B, KIF6, KIF17, CENPE, KIF16B, DST, HAP1 1.00 

GOTERM_CC_FAT Microtubule 
cytoskeleton 19 0.031 

KIF17, CENPE, AKAP9, VPS41, WRN, AKAP11, KIF16B, 
KIAA1009, DNALI1, CDC45, KIF1B, DNAI1, KIF6, ANXA11, 
NINL, MAP4, MAP7, MAP9, DST    

0.55 

SP_PIR_KEYWORDS Microtubule 10 0.037 KIF1B, DNAI1, KIF6, KIF17, NINL, MAP4, CENPE, MAP7, 
KIF16B, MAP9 0.45 

GOTERM_CC_FAT Microtubule 11 0.053 KIF1B, DNAI1, KIF6, KIF17, NINL, MAP4, VPS41, CENPE, 
MAP7, KIF16B, MAP9 0.57 

GOTERM_CC_FAT Microtubule 
associated complex 6 0.056 DNALI1, KIF1B, DNAI1, KIF17, MAP4, MAP7 0.58 

GOTERM_BP_FAT Microtubule-based 
process 9 0.14 KIF1B, KIF6, KIF17, CENPE, MAP7, KIF16B, TACC3, DST, 

HAP1 1.00 

Annotation cluster 7 Enrichment score: 1.59 



Category Term Count P Genes P-
Benjamini 

INTERPRO Forkhead-associated 4 0.023 KIF1B, MKI67, KIF16B, FHAD1 0.86
UP_SEQ_FEATURE Domain: FHA 4 0.024 KIF1B, MKI67, KIF16B, FHAD1 0.84 

SMART FHA 4 0.030 KIF1B, MKI67, KIF16B, FHAD1 0.83 

Annotation cluster 8 Enrichment score: 1.42 

Category Term Count P Genes P-
Benjamini 

GOTERM_CC_FAT Basolateral plasma 
membrane 11 8.5x10-3 SLC4A11, NRAP, MYH1, ERBB2IP, CD44, LPP, P2RY2, 

NOTCH4, MAP7, KBTBD10, DST       0.38 

GOTERM_CC_FAT Cell junction 20 9.2x10-3 
PANX1, AMTN, MYH1, LPP, CDHR2, LMO7, GRIN3B, CDSN, 
CTNNA3, PPP1R9B, NRAP, CHRNA9, ERBB2IP, CD44, WNK4, 
SYNM, KBTBD10, DST, GRID1, CHRNG 

0.35 

GOTERM_CC_FAT Anchoring junction 9 0.024 NRAP, MYH1, CD44, LPP, LMO7, SYNM, KBTBD10, CDSN, 
CTNNA3 0.58 

GOTERM_CC_FAT Cell-substrate junction 7 0.026 NRAP, MYH1, ERBB2IP, CD44, LPP, KBTBD10, DST 0.57 
GOTERM_CC_FAT Adherens junction 8 0.04 NRAP, MYH1, CD44, LPP, LMO7, SYNM, KBTBD10, CTNNA3     0.57 

GOTERM_CC_FAT Cell-substrate 
adherens junction 5 0.17 NRAP, MYH1, CD44, LPP, KBTBD10   0.79 

GOTERM_CC_FAT Focal adhesion 4 0.34 MYH1, CD44, LPP, KBTBD10 0.92 

Annotation cluster 9 Enrichment score: 1.39 

Category Term Count P Genes P-
Benjamini 

GOTERM_CC_FAT Basement membrane 7 5x10-3 AMTN, ERBB2IP, FBN1, DST, COL5A1, USH2A, MMRN2 0.37

GOTERM_CC_FAT Extracellular matrix 
part 8 9.7x10-3 AMTN, ERBB2IP, FBN1, COL6A1, DST, COL5A1, USH2A, 

MMRN2 0.33 

GOTERM_CC_FAT Extracellular matrix 13  0.049 AMBN, AMTN, ERBB2IP, CD44, SPARCL1, FBN1, COL6A2, 
SFTPD, COL6A1, DST, COL5A1, USH2A, MMRN2 0.61 

GOTERM_CC_FAT Proteinaceous 
extracellular matrix 12 0.061 AMBN, AMTN, ERBB2IP, SPARCL1, FBN1, COL6A2, SFTPD, 

COL6A1, DST, COL5A1, USH2A, MMRN2 0.57 



 

 

SP_PIR_KEYWORDS Extracellular matrix 9 0.098 AMBN, SPARCL1, FBN1, COL6A2, SFTPD, COL6A1, DST, 
COL5A1, MMRN2 0.67 

GOTERM_MF_FAT Integrin binding 3 0.34 ERBB2IP, DST, COL5A1    0.98 

Annotation cluster 10 Enrichment score: 1.31 

Category Term Count P Genes P-
Benjamini 

SP_PIR_KEYWORDS Hydroxyproline 5 5.5x10-3 FCN2, COL6A2, SFTPD, COL6A1, COL5A1 0.23 

INTERPRO Collagen triple helix 
repeat 7 6.5x10-3 C1QTNF6, FCN2, COL6A2, SFTPD, COL6A1, COL5A1, 

COL20A1 0.59 

SP_PIR_KEYWORDS Collagen 7 0.010 C1QTNF6, FCN2, COL6A2, SFTPD, COL6A1, COL5A1, 
COL20A1 0.28 

SP_PIR_KEYWORDS Hydroxylysine 4 0.022 COL6A2, SFTPD, COL6A1, COL5A1 0.39 
UP_SEQ_FEATURE Domain: collagen-like 4 0.033 C1QTNF6, FCN2, SFTPD, COL20A1 0.89 

SP_PIR_KEYWORDS Hydroxylation 5 0.049 FCN2, COL6A2, SFTPD, COL6A1, COL5A1 0.52 

KEGG_PATHWAY ECM-receptor 
interaction 5 0.059 CD44, COL6A2, COL6A1, ITGA3, COL5A1 1.00 

UP_SEQ_FEATURE Region of interest: 
triple-helical region 3 0.073 COL6A2, COL6A1, COL5A1   0.94 

SP_PIR_KEYWORDS Trimer 3 0.09 COL6A2, COL6A1, COL5A1 0.65 
SP_PIR_KEYWORDS Triple helix 3 0.12 COL6A2, COL6A1, COL5A1 0.7X 
SP_PIR_KEYWORDS Pyroglutamic acid 3 0.22 COL6A2, COL6A1, COL5A1 0.82 
SP_PIR_KEYWORDS Blocked amino end 4 0.26 COL6A2, SFTPD, COL6A1, ANXA13 0.83 

KEGG_PATHWAY Focal adhesion 6 0.28 COL6A2, COL6A1, ITGA3, EGF, COL5A1, MYLK 0.99 
Gene-set enrichment analysis of gene-based P-values from SKAT-O was performed using the functional annotation clustering analysis module of the bioinformatic tool DAVID. The DAVID tool 

provides a comprehensive set of functional annotation tools to understand biological meaning (i.e, to discover enriched functional-related gene groups, enriched biological themes) from large list of 

genes. Each annotation term group is assigned an enrichment score (ES) to rank overall importance. Only annotation clusters with ES≥1.3 (indicating biological significance) are shown. The 

significance of gene-term enrichment was assessed with a modified Fisher´s exact test and P-values are corrected using Benjamini-Hochberg’s by false discovery rate (FDR-BH) procedure. 



 

 

 

 

 

 

 

 

Supplementary Table 4. Clinical information recorded from anthracycline-treated 
pediatric cancer patients 

Clinical information 
Age at diagnosis (years)* 
Gender 
Primary tumor site 
Metastasis at diagnosis 
Metastasis during/after completion of treatment 
Relapse 
Family history of cardiovascular disease 
Anthracycline type 
Cumulative anthracycline dose (mg/m2)a* 
Radiotherapy involving the heartb 
Concomitant therapyc 
Pre-existing cardiac risk factorsd 
Hematopoietic progenitor cell transplantation 
Echocardiographic information 
Status (alive/dead) 
Last date of follow-up 

Information regarding patient demographic and clinical characteristics and therapy was abstracted 

from medical records. Clinical factors with associated P<0.05 in univariable analyses are indicated 

in bold type. * Covariates for single-variant, gene-based and pathway tests. a Cumulative 

anthracycline dose was calculated using doxorubicin equivalents according to the Children's 

Oncology Group Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and 

Young Adult Cancers [48]. b Radiotherapy involving the heart includes mediastinal and mantle 

radiation and total body irradiation. c Bleomycin concomitant administration was significantly 

associated in univariable analysis. d Pre-existing cardiac risk factors include hypertension, 

diabetes and obesity. 
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