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Abstract 7 

Prefabrication has the advantages of simplicity, speed and economy but has been inflexible to 8 

changes in design which is a primary reason behind its limited market share in the construction 9 

industry. To tackle this drawback, this study presents a Robotic Prefabrication System (RPS) 10 

which employs a new concept called “re-fabrication”: the automatic disassembly of a 11 

prefabricated structure and its reconstruction according to a new design. The RPS consists of a 12 

software module and a hardware module. First, the software employs the 3D model of a 13 

prefabricated structure as input, and returns motor control command output to the hardware. 14 

There are two underlying algorithms developed in the software module. First, a novel algorithm 15 

automatically compares the old and new models and identifies the components which the two 16 

models do not have in common in order to enable disassembly of the original structure and its 17 

refabrication into the new design. In addition, an additional novel algorithm computes the 18 

optimal refabrication sequence to transform one model into another according to the 19 

differences identified. Meanwhile, the hardware module takes the motor control commands as 20 

input and executes the appropriate assembly/disassembly operations, and returns the desired 21 

refabricated structure in real-time. Validation tests on two lab-scaled prefabricated structures 22 
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demonstrate that the system successfully generated the desired refabrication sequences and 23 

performed all assembly operations with acceptable placement precision. 24 

Key words: Robotic Prefabrication System (RPS), Robotics, Prefabrication, Disassembly, 25 

Refabrication 26 

1. Introduction 27 

In theory, most common construction components can be decomposed to a combination of 28 

parts and connectors, such as bricks and cement, wooden slabs and mating joints, or girders 29 

and bolts. It follows that most construction activities can be broken down into a series of 30 

assembly operations to form larger and larger assemblies from individual parts. Over the last 31 

few decades, individual elements, also called prefabricated components, have become popular 32 

in the construction industry. Prefabrication is a construction practice which manufactures the 33 

majority of building´s sub-assemblies ranging from wall panels to complete rooms in a 34 

controlled factory environment, before transporting the sub-assemblies to the construction site 35 

for assembly [1]. Modular buildings and modular homes, which are recently getting more 36 

popular in the construction industry, are a representative example of adopting the concept of 37 

prefabrication [2]. Compared to site-cast (or in-situ) construction, precast concrete elements 38 

offer faster production, lower cost, and more efficient assembly of elements [3]. For example, 39 

it has been reported that replacing in-situ concrete casting panels with prefabricated elements 40 

has resulted in a 70% reduction in construction time and a 43% reduction in labour cost [4]. 41 

Moreover, the use of precast concrete elements leads to a cleaner and safer construction 42 

environment [4-5].  43 

Despite these benefits, off-site construction methods are estimated to comprise only around 10% 44 

of the construction market of UK [6]. There are numerous technical, financial and regulatory 45 

barriers that contribute to such a slow adoption of prefabrication [7]. While the relative 46 



3 

 

prominence of most of these barriers is still open to debate, there seems to be a general 47 

consensus within the industry as stated that “The main disadvantages of prefabrication are 48 

inflexibility to changes in design.” [5]. This study focuses on tackling the main disadvantage 49 

of prefabrication: the inflexibility of prefabrication to changes in design. 50 

Current construction industry practice aims to increase flexibility by mass customization to 51 

overcome the shortcoming [8]. This involves the mass production of certain core designs which 52 

can later be customized using a catalogue of modules: a plain timber panel, for example, can 53 

be switched for a panel with thermal insulation layers and window frame components pre-fitted. 54 

This approach requires automation as a prerequisite since any change to the repetition of parts 55 

slows down production until the entire process is fully automated, including assembly and not 56 

just the making of the parts [2]. The need for an automated and mass-customisable construction 57 

process thus motivates developments in the field of ‘robotic prefabrication’. It was argued that 58 

the level of automation in making prefabricated building components using robots in the 59 

precast concrete industry is high and this has mainly stemmed from the flexible production 60 

system which could execute various tasks such as setting moulds and placing reinforcement 61 

bars [9]. 62 

Even though mass customization using robotic fabrication has improved flexibility during 63 

the design process, design changes such as those arising from inspection failures or changes in 64 

customer requirements can no longer be incorporated once the design has been physically built. 65 

Flexibility can thus be further improved if it becomes possible to automatically disassemble a 66 

prefabricated structure and reconstruct it according to a new design - a concept which shall 67 

be referred to from here onwards as “refabrication”. 68 

Not only will a solution to this problem associated with automation and refabrication help 69 

accentuate the benefits of prefabrication over bespoke construction and increase its market 70 
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share, but also it will boost productivity levels. It was reported that approximately 40% of 71 

construction projects experience more than 10% change [10]. It was also estimated that 72 

productivity will drop below the estimated level for projects with more than 20% change, and 73 

conversely productivity will increase when change is effectively dealt with and kept below 5% 74 

[10].  Based on the statistical productivity estimation in the previous study, development of a 75 

solution with the capability of automated refabrication can increase the productivity as changes 76 

in design can be addressed in a timely and effective manner. Moreover, this solution will 77 

provide positive environmental impact: When subjected to customers´ order changes or 78 

inspection failures such as a joint failing under load or a component exceeding tolerance limit, 79 

a modification of the original structure is much less wasteful than a complete demolition. In 80 

this sense, an automated disassembly and refabrication solution in the prefabrication industry 81 

can significantly contribute to the development of sustainable construction which attempts to 82 

reuse the components and other resources needed for construction [11]. 83 

This study presents a new concept and demonstrates the idea to increase the flexibility of 84 

prefabrication through the early development of a refabrication system using robotics. A 85 

Robotic Prefabrication System (RPS) that employs a new concept “refabrication” is presented 86 

here. The RPS consists of a software module and a hardware module which are detailed in 87 

Section 3.  88 

The rest of this paper is organized as follows. Section 2 reviews current state-of-practice 89 

and state-of-research into robot-aided construction. The proposed system and its modules are 90 

then presented in Section 3. Validation tests are conducted and the results are reported and 91 

analysed in Section 4. Finally, conclusions are drawn and recommendations for future work 92 

are discussed in Section 5. 93 
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2. Related work 94 

It is often argued that the construction industry has the features of a loosely coupled system 95 

which favours productivity in projects while innovation suffers [12]. A number of researchers 96 

have also argued that the construction industry has failed to adopt techniques that have 97 

improved performance in other industries such as just-in-time [13] and ‘industrialization’ of 98 

manufacturing processes [14]. In this regard, the construction industry particularly in the 99 

prefabrication sector needs to revolutionize by embracing such advanced automation 100 

techniques and systems. This section presents related studies and attempts that has been made 101 

so far regarding robotic based automation in the construction industry to identify the needs and 102 

gaps in knowledge in the current prefabrication domain. 103 

2.1. Robot-aided automated construction in the building industry 104 

Over the past few decades, automation systems using robot technologies has been less 105 

favourably developed and applied in the construction and building industry compared to the 106 

industrial and the manufacturing industry because of the dynamic and uncertain environments 107 

of the industry [8, 15]. In an attempt to automate repetitive construction processes and increase 108 

the productivity in construction, several robotic systems such as slab finishing robot system 109 

and concrete formwork cleaning robot system, were developed in the 1980s [16-17]. 110 

Skibnieswski also conducted the feasibility study on selected construction industry processes 111 

in order to examine the possibility of using robots in the future construction industry [16]. 112 

During the 1990s, Japanese companies and universities led the R&D activities in the field of 113 

robot-aided automated construction and the focus was the development of new robotic systems 114 

and the automation of existing machinery [9]. These robots developed for house buildings tried 115 

to automate certain construction processes such as layering bricks, constructing building walls 116 

and facades [18-21]. However, the ‘bubble economy’ crisis in Japan had reduced investment in 117 

the research area, and only few construction robots had succeeded in the market. As the result 118 
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of the risk of high initial cost and the unsatisfactory return on investment, construction industry 119 

had continued to be conservative in “tomorrow’s construction robots” [8].  120 

Regarding the recent development of construction robots for buildings, there are some 121 

commercial systems available in the market such as SAM [22], Contour Crafting [23] and 122 

Oversize 3D printing systems [24]. SAM is a semi-automated mason robotic bricklayer and 123 

has a function of laying about 800 to 1,200 bricks a day while a human mason can lay about 124 

300 to 500 bricks a day. This robot, however, still requires a human construction worker to tidy 125 

up the mortar and place bricks in difficult area such as corners. Another innovative 126 

development named Contour Crafting is a layered fabrication system designed for automating 127 

the construction of whole structures. This system, however, has not reached the stage of 128 

constructing a complete housing or building with a satisfactory accuracy. D-shape is a large 129 

3D printer that uses a layer-by-layer printing process to create stone-like objects. It is reported 130 

that the printer still needs to be further developed in order to make larger and more complex 131 

buildings [24]. 132 

In addition to the commercial systems mentioned above, several academic studies have 133 

been conducted. Choi et al. [25] developed a construction robot using pneumatic actuator and 134 

servo motor to support construction workers in mounting window glasses or fixing panels. A 135 

cable-robot system called ‘SPIDERobot’ was also developed to perform assembly operations 136 

in on-site architectural construction [26]. Chu et al. [27] presented the development of a robotic 137 

beam assembly system consisting of a robotic bolting device that performs the main function 138 

for the beam assembly work and a robotic transport mechanism that transports the robotic 139 

bolting device to target bolting positions around a building under construction. However, it 140 

seems that the recent studies have focused on development of robot systems with the purpose 141 

of automating the construction or maintenance tasks, which has limitations in overcoming the 142 

inflexibility problem mainly occurred in the design and manufacturing phase of a project. 143 
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2.2. Robotic prefabrication in the building industry 144 

Robotic systems have been mainly employed in the prefabrication construction industry for 145 

the production of modular and prefabricated housing components such as ceilings, walls and 146 

roofs. Bock [17] detailed a robotic precast concrete panel factory that utilizes a multi-functional 147 

formwork unit which allows flexible production of concrete floors, walls and roof panels. In 148 

this factory, a precast manufacturing system, which integrates CAD with Computer-Aided 149 

Manufacturing (CAM), controlled concrete distributor to spread the right amount of concrete 150 

by taking into account the geometric position of window or door openings according to CAD 151 

layout. 152 

Three primary projects which illustrate the advances and the state of the art of the robotic 153 

prefabrication in the building industry are: (1) ROCCO [18], (2) FutureHome [19-20], and (3) 154 

ManuBuild [21]. 155 

ROCCO [18] features two different robotic systems: one for erection of walls in residential 156 

buildings with a reach of 4.5m and a payload of 400kg, and one for industrial buildings with a 157 

reach of 8.5m and a payload of 500kg. It includes a software system that assists engineers in 158 

wall partitioning, layout planning and logistics planning. The system is also capable of 159 

automatically generating manufacturing commands and robot assembly tasks to produce 160 

prefabricated elements. 161 

FutureHome [19-20] aims to build fully-manufactured houses instead of only prefabricated 162 

parts. The hardware now features both an off-site production plant and on-site assembly plant, 163 

with a robotized gantry crane to perform on-site assembly tasks. The software system, 164 

AUTOMOD3, generates assembly sequences and motion paths for robots to automatically 165 

carry out the construction process. It also provides a simulation tool to allow the assembly 166 

process to be visualized and inspected before execution. 167 
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ManuBuild [21] facilitates the adoption of mass customization in the construction industry. 168 

This project targets a breakthrough from a “craft and resource-based construction” industry 169 

into an “open and knowledge-based manufacturing” industry, leading to not only make 170 

buildings as open systems equipped with flexible and scalable components but also offer 171 

customers increased choice and design flexibility. 172 

Recently, the group of Gramazio Kohler Research at ETH Zurich have developed numerous 173 

automated robot systems including a mobile robotic brickwork system [28] and an aerial 174 

robotic construction system [29]. These studies are recognized as a meaningful contribution to 175 

the additive non-standard fabrication for the assembly of building components. 176 

2.3. Robotic disassembly and reconstruction 177 

Nevertheless there have been academic and practical studies aiming to develop robotics-178 

based automated assembly systems as investigated in Sections 2.1 and 2.2, it has been found 179 

that there is still no study available dealing with automated disassembly and reconstruction of 180 

prefabricated structures in the construction industry. In order to tackle this limitation in the 181 

current prefabrication industry, a new system that provides the capability of automated 182 

disassembly and refabrication was proposed in this study. This study adopts the most common 183 

assembly planning strategy ‘assembly-by-disassembly’. This is because (1) when only 184 

geometric constraints are considered, an invertible disassembly sequence always leads to a 185 

feasible assembly sequence; and (2) a structure in its assembled state has many more 186 

constraints than in its disassembled state, which results in a smaller search space for the planner 187 

[30-32]. For this reason, knowledge from the field of automated product assembly, which has 188 

been widely researched since the late 1980s, is directly relevant to the disassembly and 189 

refabrication of prefabricated structures. 190 
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The core algorithmic parts of the automated product assembly include geometrical 191 

reasoning in assembly planning [33], stability analysis of assemblies [34] and assembly 192 

sequencing using a path planning approach [31]. Recently, Rakshit and Akella [35] combined 193 

stability and geometric constraints analysis to produce an algorithm capable of simulating the 194 

entire assembly sequence by taking into account physical forces and part motion. This 195 

algorithm is outlined below: 196 

Assumptions: 197 

- The sequence is two-handed and monotone 198 

- Each part is moved by a gripper at constant velocity with perfect position control 199 

- Part movement is modelled as quasi-static motion with finite translations 200 

- Collision of gripper with assembly is not considered 201 

Geometric analysis: 202 

- Firstly, an enumeration of all possible sequences is generated using AND/OR graph [30] 203 

- Secondly, geometrically feasible sequences are filtered out using Non-Directional 204 

Blocking Graph [36] 205 

Stability analysis: 206 

- For frictionless cases, calculation of the relative movement in terms of the relative 207 

acceleration between the parts in the assembly [37] is conducted 208 

- For cases with friction, Baraff´s method [37] becomes ineffective and a different set of 209 

complementary constraints must be used [38] 210 

2.4. Gaps in knowledge and scope of this study 211 

Even though the state-of-the-art algorithm developed by Rakshit and Akella [35] can be 212 

used to generate a stable disassembly sequence for the majority of common structural 213 

assemblies, this is only part of what is needed to realize the concept of “refabrication” which 214 
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also requires the refabrication sequence based on a new design. Therefore, the objective of this 215 

study is to develop a RPS of prefabrication that provides the automatic disassembly and 216 

reconstruction of a prefabricated structure. The concept is demonstrated using an automated 217 

robotic system operating on a small-scale structure to provide the first stepping stone for future 218 

researchers working towards the final goal: refabrication of arbitrary full-scaled structures. 219 

Refabrication is an extension of the general assembly planning problem, which includes 220 

many sub-problems such as connector design and manipulation, feeder and tool selection, 221 

assembly sequencing, and robot path planning. However, since this study focuses on proving 222 

the proof-of-concept of the RPS as a first stepping stone, a full treatment of all aspects above 223 

is beyond the scope of this work. The simplifications made in this study are: 224 

- The robot arm can only move in 2D (a vertical plane with respect to the ground) 225 

- The path planner1 produces collision-free but non-optimal paths 226 

- The assembly sequencer2 only takes into account: 227 

+ “Stacking” operations (pure translations and no rotation) 228 

+ Geometric constraints (ignore stability constraints) 229 

+ Two-handed monotone assemblies. 230 

- Only two types of connectors were considered: 231 

+ Null connectors: where two parts are kept in contact purely by gravity (e.g. Jenga 232 

blocks) 233 

+ Permanent connectors: where two parts are connected through a joint which is 234 

impractical to undo after the assembly operation is completed (e.g. cemented bricks). 235 

                                                           
1 A path planner calculates paths in space that a robot arm can take to execute a specific assembly sequence. These 

paths are often subject to a certain set of constraints, such as collision-free or optimal-time. 
2 An assembly sequencer produces a set of assembly operations and constraints on their ordering. Each operation 

specifies a motion that combines two or more subassemblies to form a larger assembly. Any ordering of operations 

that obey the sequence constraints is called an assembly sequence. 
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3. Development of Robotic Prefabrication System 236 

3.1. System design 237 

3.1.1.  Top level 238 

The RPS is designed with the capability of automatically building a 3D structure given its 239 

digital model, as well as of deconstructing obsolete parts and updating the original structure 240 

given a new design. This capability can be divided into two main functions, which are 241 

‘assemble’ and ‘refabricate’ as illustrated in Figure 1. When the RPS implement the ‘assemble’ 242 

function, the digital 3D model of a structure and raw material are fed into the RPS as inputs 243 

and a 3D structure is assembled according to the original design. Meanwhile, when a new 3D 244 

model comes into the RPS due to a change in design, the RPS implements the tasks of 245 

disassembly and reconstruction according to the new design and finally results in a new 3D 246 

structure. 247 

Insert Figure 1 approximately here 

 248 

3.1.2. Second level 249 

The RPS includes both a software module and a hardware module to meet top-level 250 

functional requirements. The software module takes digital inputs and gives motor control 251 

commands to the hardware module, while the hardware module takes the motor control 252 

commands, manipulates the physical inputs, and returns physical outputs. In addition, to carry 253 

and update information about motor states, a feedback loop from the hardware module to the 254 

software module is included. 255 

3.1.1 Third level 256 

For the software module, there are four software sub-modules needed to carry out the 257 

second-level function described above. Figure 2 illustrates the workflow of the software 258 

module. The functions of each software sub-module are described as follows: 259 
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- Model analyser: Analyses an input 3D model and returns the its geometric data, such as the 260 

size, shape and position of its individual parts. 261 

- Models comparator: Takes in geometric data from two different 3D models, identifies all 262 

those individual parts which the two models do not have in common, and returns the 263 

geometric data of these parts. 264 

- Assembly sequencer: Takes in geometric data of the entire model or set of specific parts, 265 

depending on which top-level function the RPS needs to execute, returns the appropriate 266 

(dis)assembly sequences.   267 

- Hardware controller: Takes in (dis)assembly sequences and generates a set of motor 268 

control commands such that the hardware will carry out the appropriate (dis)assembly 269 

operations and create the desired 3D structure. The controller also needs to take in the 270 

feedback signal containing the motor states from the hardware module, in order to 271 

synchronize the execution of motor control commands. 272 

Insert Figure 2 approximately here 

More details of the design of the software sub-modules are presented in Section 3.3. 273 

Since the task of the hardware module is common to many existing assembly systems in 274 

industry, different types of systems were investigated to pick out one as a suitable template. 275 

However, due to the limited variety of components available for construction of the hardware 276 

system as well as the large number of motors required, it became clear that assembly design 277 

typically employed in industry was impractical to pursue in this study. Therefore, a basic 278 

hardware module was designed specifically for this study to fulfil our objectives. Figure 3 279 

shows the hardware module designed in this study. The hardware module comprises four sub- 280 

modules: 281 
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- Gripper: Securely holds a raw material block during its transportation from stock side to 282 

assembly side, and vice versa. 283 

- Lift drive: Enables vertical translation of the gripper 284 

- Forward drive: Enables longitudinal translation of the gripper 285 

- Support structure: Provides an elevated runway for the forward drive on top, as well as 286 

stock space and assembly space at the bottom 287 

Insert Figure 3 approximately here 

More details of the design of the hardware sub-modules are presented in Section 3.4. 288 

3.2. Choice of materials 289 

Two constituent component options were considered for the choice of materials for this 290 

study: 291 

- Fully-customized components: Structural components could be designed using CAD 292 

software packages, then either machined or manually created in a workshop. This enables 293 

great flexibility in design, but it is relatively time and cost demanding during the 294 

manufacturing and construction of the components. 295 

- Standardized components: Structural components could be built directly out of LEGO 296 

Duplo block and LEGO Mindstrom [39] components. Actuators are also available as 297 

servo motors from the LEGO Mindstorms set. This gives limited flexibility in design, but 298 

requires relatively little time during the construction of the sub-modules. 299 

The use of standardized components to construct the entire hardware module can act as 300 

supporting evidence for the philosophy advocated in this study that many structures can be 301 

efficiently constructed through the assembly of modular components. For this reason, it was 302 

decided that the hardware module would be constructed entirely out of LEGO Duplo and 303 

LEGO Mindstorm components. This reasoning also applied to the choice of building block 304 
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used as input raw material to the hardware module; LEGO Duplo and Jenga blocks were 305 

therefore chosen. Since Jenga blocks are held in contact by gravity alone, and Duplo blocks 306 

are held in contact by fairly sturdy male-female connectors, they here represent null and 307 

permanent connectors, respectively. 308 

3.3. Software module 309 

3.3.1.  Model analyser 310 

The model analyser is built to analyse an input 3D model and return the model’ geometric 311 

data. Since the 3D structures which our system operates on are cuboid, the geometric data 312 

extracted are: (1) The coordinates of each component’s centroid, (2) The size of each 313 

component’s bounding box (width, length and height), and (3) The ID of each component 314 

(which must contain the string “Lego” or “Jenga” so that the type of connector it possesses can 315 

be later inferred). 316 

Having identified the output requirements above, an algorithm was developed to take in a  317 

file of 3D model and return an array containing three variables {id, boundBoxSize, centrePoint} 318 

(see Algorithm 1).  319 

Let <C> be an array containing individual components found in the input 3D model and <G> 320 

be an array representing the geometric data of the components: 321 

Algorithm 1: Model analyser 322 

Input: A 3D model file, e.g. ‘model.ifc’ 323 

  1: do <C> = ReadModel( ); 324 

  2: if <C> ==  ∅ then 325 

  3:     return NO COMPONENT FOUND  326 

  4:  end if 327 

  5:    for each C in <C> do 328 

  6:        G.id = C.GetName( ); 329 

  7:  G.boundBoxSize = C.GetSize( ); 330 

  8:   G.centrePoint = C.GetCentroid( ); 331 

  9:   <G>.Add (G); 332 
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10:    end for each 333 

11:    return <G> 334 

3.3.2.  Model comparator 335 

The role of the model comparator is to take in geometric data of two different 3D models, 336 

identify all individual parts which the two models do not share in common, and return the 337 

geometric data of such parts. A function was created to do the tasks. It takes in two arrays 338 

containing the geometric data of two different 3D models, loops through each member of the 339 

first array, and checks if it also exists in the second array. Finally, it returns an array containing 340 

all members of the first array that do not exist in the second array. However, this function itself 341 

only returns true if the pair of array members being compared have the exact same variables 342 

(i.e. fully identical). This means that given two 3D models which are identical in every aspect 343 

except their position in space (i.e. partially identical), the models comparator will conclude that 344 

these two models have zero common parts.  345 

In order to tackle this issue, a new function that helps align the coordinates of the two input 346 

models was created. It is, however, a non-trivial problem to align two arbitrarily different 347 

models such that the alignment should lead to as few refabrication operations as possible. It is 348 

also impractical to attempt every possible alignment of large models since the number of 349 

checks is proportional to N2, where N is the number of partially identical parts and determined 350 

from a brute-force alignment approach. Hence, assuming that it is focused on prefabrication of 351 

building walls and the majority of design changes are either wall extensions while keeping the 352 

door/window positioning or repositioning of door/window while keeping the wall dimensions, 353 

the number of alignments attempted can be limited to three: (1) Alignment of lower left corner, 354 

(2) Alignment of lower right corner, and (3) Alignment of door feature. Three sub-functions 355 

were thus developed: ‘AlignLeft()’, ‘AlignRight()’ and ‘AlignDoor()’.  356 
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Let <G1> and <G2> be arrays representing the geometric data of components from two 357 

different 3D models; <G2L>, <G2R> and <G2D> be arrays representing the geometric data of 358 

components from the second model after left, right and door alignment respectively; and <L>, 359 

<R> and <D> be arrays representing not-in-common components between <G1> and <G2L>, 360 

<G2R>, <G2D> respectively:  361 

Algorithm 2: Model Comparator 362 

Input: <G1>, <G2> 363 

  1:    do <G2L> = AlignLeft (G2); 364 

  2:    do <G2R> = AlignRight (G2); 365 

  3:    do <G2D> = AlignDoor (G2); 366 

  4:    foreach G1 in <G1> do 367 

  5:     if <G2L>.Contains(G1) == false then  368 

  6:         <L>.Add(G1); 369 

  7:  end if 370 

  8:     if <G2R>.Contains(G1) == false then  371 

  9:         <R>.Add(G1); 372 

10:  end if 373 

11:     if <G2D>.Contains(G1) == false then  374 

12:         <D>.Add(G1); 375 

13:  end if 376 

14:    end foreach 377 

15:    return <L>, <R>, <D>  378 

 379 

Note that since the model comparator does not have the capability to evaluate the number 380 

of refabrication operations required as a result of model alignment, it must pass on the 381 

geometric data of not-in-common parts for all three alignment scenarios to the next sub-module, 382 

the ‘Assembly sequencer’. 383 

3.3.3.  Assembly sequencer 384 

The assembly sequencer can execute two functions, “Assemble” and “Refabricate”. If the 385 

system is executing the “Assemble” function, the assembly sequencer takes in the geometric 386 

data of the components previously extracted from the 3D model, and returns the appropriate 387 
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sequence of assemblage. Since it is already assumed that all raw material blocks are cuboids, 388 

an effective stack-assembly sequencing algorithm is as follows: 389 

- Search through all members of the input array containing geometric data 390 

- Sort the members in ascending order according to the distance between ground and each 391 

member’s bottom bound line 392 

- Then proceed to sort the members in descending order according to the distance between 393 

the stock side and each member’s right-hand-side bound line 394 

This algorithm will thus return an array whose members are indexed in such a way that the 395 

building blocks will be assembled from the bottom layer up and from the far end of the 396 

assembly side towards the stock side. This is illustrated in Figure 4. 397 

Insert Figure 4 approximately here 

Let <G> be an array representing a set of all components of a 3D model and its geometric 398 

data; <S> be an array representing the same components now indexed according to the desired 399 

assembly sequence; and <bottomBoundLine> and <rightBoundLine> be arrays containing the 400 

position of the bottom and right bounds of the components’ geometry:  401 

Algorithm 3: Assembly Sequencer (executing the “Assemble” function) 402 

Input: <G> 403 

  1:    foreach G in <G> do 404 

  2:     bottomBoundLine = G.centrePoint.Y – G.boundBoxSize.Y ÷ 2 405 

  3:     rightBoundLine = G.centrePoint.X + G.boundBoxSize.X ÷ 2 406 

  4:  <bottomBoundLine>.Add(bottomBoundLine) 407 

  5:   <rightBoundLine>.Add(rightBoundLine) 408 

  4:    end foreach 409 

  5:    do <S> = <G>.OrderBy(<bottomBoundLine>).ThenByDescend(<rightBoundLine>) 410 

  6:    return <S> 411 

If the system is executing the “Refabricate” function, the purpose of the assembly 412 

sequencer is to take in the geometric data of not-in-common parts for all three alignment 413 
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scenarios outlined above, evaluate which alignment is the most optimal, then return the 414 

appropriate “refabrication sequence”. Here, the most optimal alignment is defined here as the 415 

alignment which results in the minimum number of (dis)assembly operations required to 416 

refabricate the existing structure and this in turn begs the question on how can one calculate 417 

the number of (dis)assembly operations required? This question can be answered using the 418 

Non Directional Blocking Graph (NDBG) technique developed by Wilson [33]. This technique 419 

involves three main steps: Step 1 - the construction of directional blocking graphs (DBGs), 420 

where each one indicates which parts within the assembly would collide given an instantaneous 421 

displacement in a particular direction; Step 2 - the partitioning of space into regions which 422 

share the same DBG; Step 3 - the combination of all DBGs to form the NDBG. 423 

However, since this technique can be applied to assemblies of arbitrary polygons and 424 

accounts for arbitrary linear motion in 3D space, it is too generalized for the purposes of this 425 

study. Consequently, a stripped-down version of the NDBG technique was used to develop the 426 

assembly sequencer. Figure 5 provides an example illustrating how the NDBG technique can 427 

be simplified when all (dis)assembly operations are restricted to 2D stacking operations: 428 

- The left hand side is an example stack assembly consisting of four subassemblies, P1, P2, 429 

P3 and P4. 430 

- The top right side shows the DBG whose nodes represent the subassemblies and where 431 

each outgoing arrow indicates an expected collision when given an instantaneous 432 

displacement in the vertically upwards direction. Since vertically upwards is the only 433 

direction allowed for disassembly operations, the NDBG is the same as the DBG and steps 434 

2 and 3 of the NDBG algorithm can be skipped. 435 

- The bottom right side represents the DBG as a matrix. The matrix rows and columns 436 

represent all possible origin and destination nodes of DBG, while the elements 0 and 1 of 437 

the matrix represent the absence or presence of all possible DBGs. 438 
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Insert Figure 5 approximately here 

 439 

In order to calculate the number of disassembly operations required for any chosen sub-440 

assembly, the values of the matrix elements must first be determined and the optimal 441 

disassembly sequence be deduced. The values of matrix elements are determined using a 442 

function called ‘CalcDBG()’ which takes an array with N members containing geometric 443 

information of the assembly, and returns an N by N matrix which represents the DBG of the 444 

assembly.  445 

The algorithm implemented is outlined below: 446 

1. Create an N by N matrix with all elements set to zero 447 

2. For each subassembly (denoted as A), check the bounding box of any other 448 

subassembly (denoted as B) and see if both of the following conditions are satisfied: 449 

o The top line of the bounding box of A is at the same height as the bottom line of the 450 

bounding box of B. 451 

o The bounding box of B lies in the “collision zone”, which is defined as the 3D space 452 

covered by the bounding box of A when extended in the vertical direction.  453 

If yes, change the appropriate matrix element to one. 454 

3. Terminate when step 2 has been performed for all subassemblies. 455 

Let <G> be an array representing all components and their geometric data from a 3D model; 456 

and dbg[] be a matrix which represents the DBG of the same model:  457 

Algorithm 4: Function CalcDBG( ) 458 

Input: <G> 459 

  1:    do N = <G>.GetLength() 460 

  2:    do dbg[] = NewZeroMatrix(N, N) 461 

  3:    for i = 1, 2...N do 462 

  4:     for j = 1, 2...N do 463 
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  5:      if GjBottomLine == GiTopLine then  464 

  6:          if Collision (Gi, Gj) == true then 465 

  7:     dbg [i,j] = 1 466 

  8:    end if 467 

  9:      end if 468 

10:        end for 469 

11: end for 470 

12:    return dbg 471 

 472 

Note that the above function is based on the original DBG technique, which assumes that all 473 

subassemblies are free-flying and held together via null connectors. However, since our system 474 

operates on assemblies with the presence of permanent connectors, another function called 475 

‘CalcTruncatedDBG()’ was generated. This function takes the N by N matrix produced by the 476 

CalcDBG() function and returns a M by M matrix, where M = (N - the number of permanent 477 

connectors), using the algorithm below: 478 

1. Find all matrix rows which contain “1” element 479 

2. For each row found in step 1, check the following cases of its “1” elements: 480 

o If the two subassemblies involved are not held together by a permanent connector, 481 

skip to the next “1” element.  482 

o Otherwise, perform the following operations on the rows and columns which 483 

represent two subassemblies involved (here denoted as A and B): 484 

+ Combine column of B and column of A using Boolean OR 485 

+ Combine row of B and row of A using Boolean OR 486 

+ Set all elements on the matrix diagonal to zero  487 

3. Terminate when step 2 has been performed on all rows 488 

Let <G> be an array representing all components and their geometric data from a 3D model 489 

and let dbgTrunc[] be a matrix which represents the truncated DBG of this 3D model:  490 

Algorithm 5: Function CalcTruncatedDBG( ) 491 
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Input: <G> 492 

  1:    do N = <G>.GetLength() 493 

  2: do dbgTrunc[,] = CalcDBG(<G>) 494 

  3:    for i = 1, 2...N do 495 

  4:     for j = 1, 2...N do 496 

  5:      if dbgTrunc[i,j] = 1 then 497 

  6:       if PermCon (Gi, Gj) == true then  498 

  7:           combineOR(dbgTrunc[i,*], dbgTrunc[j,*]) 499 

  8:     combineOR(dbgTrunc[*,i], dbgTrunc[*,j]) 500 

  9:     dbgTrunc[i,i] = dbgTrunc[j,j] = 0 501 

10:       end if 502 

11:         end if 503 

12:  end for 504 

13:    end for 505 

14:    return dbgTrunc 506 

An illustrative example of a transformation from the DBG matrix shown in Figure 5 to a 507 

new truncated DBG matrix is provided in Figure 6. 508 

Insert Figure 6 approximately here 

Once all matrix elements are calculated, the optimal disassembly sequence for any chosen 509 

subassembly are determined using a function called GetDisassemblyTree(). This function takes 510 

in three pieces of information, (1) an array with N members containing the geometric 511 

information of the assembly, (2) the M by M matrix produced by the CalcTruncatedDBG() 512 

function and (3) the geometric information of the subassembly that needs to be removed, and 513 

then returns an array with L members where L = the number of subassemblies that need to be 514 

removed as a consequence. Members of the output array contain the geometric information of 515 

the to-be-removed subassemblies and the ordering of these members represents the sequence 516 

in which they need to be removed. The implemented algorithm is as follows:       517 

1. Jump to the matrix row corresponding to the subassembly that needs to be removed 518 

from the overall assembly, here denoted as subassembly A. 519 

2. Search the current row for “1” elements: 520 

o If one or more “1” elements are found, go to step 3.  521 
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o Otherwise, add the subassembly to disassembly tree and check: 522 

+ If the added subassembly is not A, go to step 4.  523 

+ Otherwise, terminate the algorithm.   524 

3. Jump to the row whose index is equal to the column index of one of the “1” elements 525 

found in step 2, and repeat step 2.  526 

4. Jump to the row visited immediately before the current row, and repeat step 2. 527 

Let <G> be an array representing all components and their geometric data from a 3D model; 528 

dbgTrunc[] be a matrix which represents the truncated DBG of the 3D model; G* be a 529 

representation of the component to be removed from the 3D model; and <T> be an array 530 

representing the disassembly tree: 531 

Algorithm 6: Function GetDisassemblyTree( ) 532 

Input: <G>, G*, dbgTrunc[,] 533 

  1:    do N = <G>.GetLength() 534 

  2:    do index = CorrespondingRow (G*, dbgTrunc[,])  535 

  3:    i = index  536 

  4: if GetCountOnes(dbgTrunc[index,*]) > 0  then  537 

  5:     for j = 1, 2…N do  538 

  6:      if dbgTrunc[i,j] = 1 then 539 

  7:       i = j  540 

  8:          JUMP TO LINE 4 541 

  9:   end if 542 

10:  end for 543 

11:    end if 544 

12:       if GetCountOnes(dbgTrunc[index,*]) == 0 then 545 

13:  <T>.Add(Gi) 546 

14:     if i ≠ index then 547 

15:      i = GetPreviousI(i) 548 

16:   JUMP TO LINE 4 549 

17:  end if 550 

18:  if i = index then 551 

19:   return <T> 552 

20:  end if 553 

21: end if 554 
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 555 

Using this algorithm on the example in Figure 5, a request to remove P3 will return the 556 

disassembly tree in the form of an array {P1, P2+4, P3}. 557 

Now the optimal disassembly sequence can be calculated for any chosen subassembly and 558 

the three arrays returned by the ‘Model Comparator’ sub-module can finally be evaluated. A 559 

function ‘GetDisassemblyForest()’ was generated to compute the optimal alignment and return 560 

the optimal disassembly sequence, which is outlined below: 561 

1. For each of the three input arrays: 562 

- Calculate the disassembly tree for each array member using GetDisassemblyTree() 563 

- Concatenate all disassembly trees and remove duplicated members to obtain a new 564 

disassembly sequence, here denoted as a “disassembly forest” 565 

- Count the members of the disassembly forest 566 

2. Compare the three counts obtained from step 1 and choose the alignment type which 567 

resulted in the lowest count. 568 

3. Return the disassembly forest associated with the alignment type chosen in step 2 569 

Let <L>, <R> and <D> be arrays representing not-in-common components returned by the 570 

‘Model Comparator’ sub-module; <fL>, <fR> and <fD> be arrays representing the 571 

disassembly forests resulting from the three alignment scenarios: 572 

Algorithm 7: Function GetDisassemblyForest( ) 573 

Input: <L>, <R> and <D>  574 

  1:    foreach L in <L> do 575 

  2:     <fL>.Add( GetDisassemblyTree(L)) 576 

  3:  <fL>.RemoveDuplicates() 577 

  4:    end foreach 578 

  5:    do countLeft = <fL>.GetLength() 579 

  6:    foreach R in <R> do 580 

  7:     <fR>.Add( GetDisassemblyTree(R)) 581 
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  8:  <fR>.RemoveDuplicates() 582 

  9:    end foreach 583 

10:    do countRight = <fR>.GetLength() 584 

11:    foreach D in <D> do 585 

12:     <fD>.Add( GetDisassemblyTree(D)) 586 

13:  <fD>.RemoveDuplicates() 587 

14:    end foreach 588 

15:    do countDoor = <fD>.GetLength() 589 

16: do minCount = GetMinimum(countLeft, countRight, countDoor)  590 

17: if minCount = countLeft then 591 

18:  return <fL> 592 

19: end if 593 

20: if minCount = countRight then 594 

21:  return <fR> 595 

22: end if 596 

23: if minCount = countDoor then 597 

24:  return <fD> 598 

25: end if 599 

 600 

The original model with all the not-in-common subassemblies removed can now be compared 601 

with the new model and the assembly sequence required to transform the former to the latter 602 

can be computed. This is done using the ‘GetReassemblyForest()’ function which utilises the 603 

following algorithm: 604 

1. Subtract the array representing the disassembly forest from the array representing the 605 

original model 606 

2. Subtract the array obtained in step 1 from the array representing the new model  607 

3. Compute an assembly sequence for the subassemblies contained in the output array of 608 

step 2 using the AssemblySequencer() function, here denoted as “reassembly forest” 609 

Let <GOrg> and <GNew> be arrays representing components from the orginal and the new 610 

3D model respectively; <F> be an array representing the optimal disassembly forest returned 611 

by the GetDisassemblyForest() function; and <R> be an array representing the optimal 612 

reassembly forest:  613 

Algorithm 8: Function GetReassemblyForest( ) 614 
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Input: <GOrg>, <GNew>, <F> 615 

  1:    do <R> = AssemblySequencer( <GNew> - <GOrg> + <F>) 616 
  2:    return <R> 617 

 618 

Finally, the “disassembly forest” and “reassembly forest” obtained above are concatenated 619 

to produce the desired refabrication sequence at the output. 620 

3.3.4.  Hardware controllers 621 

The purpose of the hardware controller is to take in assembly/refabrication sequences and 622 

generate a set of motor control commands such that the hardware will carry out the appropriate 623 

assembly/refabrication operations and create the desired 3D structure. The controller also needs 624 

to take in the feedback signal from the hardware module which contains motors’ states in order 625 

to synchronize the execution of motor control commands. Note that the hardware controller 626 

incorporated an open-source library called “MindSqualls” [40], which acts as the interface 627 

between the C# .NET environment and the microcontroller of the Lego Mindstorm kit. This 628 

sub-module also incorporated an open-source program called “Motor Control” developed by 629 

[41], which implements algorithms that lead to more precise motor movements compared to 630 

those produced by the native LEGO Mindstorm firmware.  631 

3.4. Hardware module 632 

Regarding the design of gripper sub-module, there are two main types of grasping profiles, 633 

namely (1) Encompassing grasp: Where the gripper provides an enclosure to secure the object; 634 

and (2) Frictional grasp: Where the contact surfaces generate friction to secure the object. Since 635 

the purpose of our gripper is to securely hold a Lego Duplo/Jenga block during its 636 

transportation from stock side to assembly side, an encompassing grasp would not be suitable 637 

as it would prevent direct contact between the block and the structure, making it difficult to 638 

achieve a precise stack operation. Hence, as for the grasp selection, a frictional grasp with flat 639 

plates was chosen as the gripper mechanism to generate the required contact surface area. 640 



26 

 

Meanwhile, since servo motors are the only type of actuator available in a Lego Mindstorm kit, 641 

a mechanism which converts rotational motions into a “grasping motion” is needed.  In this 642 

study, a rotational grasping design was chosen for the gripper and an attempt was made to 643 

“upgrade” the gripper by equipping it with the capability to undo the connection between two 644 

Lego Duplo blocks, using the exact same rotational grasping motion. In addition, rectangular 645 

patches of Egrips material [42] were glued to the surface of the flat plate to improve the 646 

coefficient of friction. An additional fixture was also added to the gripper to provide an 647 

attachment point for the lift drive. The realization of the final design of the gripper is shown in 648 

Figure 7(a). 649 

Regarding the design of forward drive sub-module, the number of wheel types available 650 

were limited to two: cylindrical wheels or caterpillar tracks. It is desirable to have as much 651 

contact with the ground as possible to spread out the load. Since the forward drive module also 652 

has to carry both the lift drive and the gripper module, the caterpillar tracks coupled with one 653 

servo motor were thus chosen for our forward drive. Its realization is shown in Figure 7(b). 654 

Given that the purpose of our lift drive is to enable vertical translation of the gripper, and 655 

that the only type of actuator available in a Lego Mindstorm kit is servo motors, one needs to 656 

design a mechanism which converts rotational motion into a linear motion. There are two main 657 

types of design for lift drive: (1) The crank-slider design and (2) The scissors design. In this 658 

study, it was found that the maximum vertical translation of the crank-slider design was 659 

insufficient by taking into account the height of the 3D structure that needs to be built. For this 660 

reason, the scissors design was chosen for our lift drive. The realization of the lift drive design 661 

is shown in Figure 7(c).  662 

Insert Figure 7 approximately here 
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Finally, the support structure comprises an elevated runway with runway guards, as shown 663 

in the right side of Figure 3, with the stock and assembly space.  664 

4. Validation 665 

In this section, two tests were designed and conducted to demonstrate the feasibility of the 666 

proposed RPS. In the tests, the hardware and software were connected wirelessly using 667 

Bluetooth to make the RPS automated. The test models created were an N-by-N stack of single 668 

Jenga blocks and two wall designs as shown in Figure 8.  669 

Insert Figure 8 approximately here 

The first test consisted of two different structures to (1) assemble WallDesign1 (Figure 670 

8(a)), and then to (2) refabricate WallDesign1 into WallDesign2 (Figure 8(b)). The first half of 671 

the test was completed successfully, with the occasional difficulty in connecting the top Lego 672 

bricks firmly to the Lego door due to placement inaccuracy. For the second half of the test, a 673 

correct refabrication sequence was computed, with two key emphases: 674 

1. The system recognized that the three Lego blocks from WallDesign1 must be treated 675 

as a single entity during the disassembly process, since the Lego’s connectors are 676 

assumed to be permanent connectors. 677 

2. The system also recognized that even though WallDesign1 and WallDesign2 have both 678 

the three Lego blocks and the Jenga blocks on the bottom right corner as common parts, 679 

it must disassemble the Lego blocks so that the Jenga blocks on the bottom left corner 680 

can be disassembled, and can only leave the bottom right corner as is. 681 

The RPS computed correctly the disassembly sequence {1, 2, 3} of WallDesign1 and the 682 

refabrication sequence {5, 2, 6} into WallDesign2 by taking into account the presence of the 683 

permanent connectors and the common part numbered 4. 684 
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However, despite the correct refabrication sequence being computed, manual intervention 685 

had to made to complete the second disassembly operation, in which the group of three Lego 686 

blocks must be lifted over the group of 4 Jenga blocks on the bottom left corner, as the robot’s 687 

maximum lift height was insufficient. 688 

In the second test, the command to refabricate could come at any time during the 689 

WallDesign1 assembly process. The system performed this test as successfully as the first test, 690 

by keeping track of the assembly process and generating the correct refabrication sequence 691 

regardless of what state the existing structure was in. A snapshot of the entire system after 692 

having completed the final test is shown in Figure 9.  693 

Insert Figure 9 approximately here 

 694 

5. Conclusion and future work 695 

With the aim of increasing the design flexibility of current prefabrication methods, a system 696 

called RPS consisting of hardware and software modules was developed to demonstrate a new 697 

concept called “refabrication”: the automatic disassembly of a prefabricated structure and its 698 

reconstruction according to a new design.  699 

Two key algorithms within the software module were developed in this study for 700 

implementing the RPS. An algorithm was developed to automatically compare the old and new 701 

3D models and identify all components which the two models do not have in common. Upon 702 

testing, this algorithm identified the correct differences between two non-trivial 3D models. In 703 

addition, an algorithm was developed to automatically compute the optimal refabrication 704 

sequence that would transform one model into another when given the differences between the 705 

two design models. This desired function was broken down into two sub-functions. First, the 706 

number of (dis)assembly operations required for the removal of any one single subassembly 707 
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must be calculated. In order to achieve this, the algorithm incorporated a stripped-down version 708 

of the NDBG technique. Second, the smallest number of (dis)assembly operations required for 709 

the removal of all not-in-common subassemblies must be calculated. This was achieved by 710 

comparing three different alignment scenarios for the two models, calculating the total number 711 

of (dis)assembly operations required in each scenario, and finally picking the scenario with the 712 

smallest number of operations required. Upon testing, this algorithm also calculated the correct 713 

(dis)assembly sequence for the two 3D models mentioned with two notable successes: (1) The 714 

connectors between Lego blocks were assumed to be permanent connectors, and the system 715 

successfully recognized that connected blocks must therefore be treated as a single entity 716 

during the disassembly process; (2) The system also recognized that certain components which 717 

are common to both models must still be removed if such components are blocking the 718 

disassembly path of not-in-common components.  719 

A hardware system was developed to demonstrate the working of the developed algorithms 720 

in real-time. This system performs all assembly operations with successful placement precision 721 

although some disassembly operations needed manual intervention due to insufficient 722 

maximum lift height. The scope of this study was, however, restricted to the refabrication of 723 

assemblies which employ only stacking operations (1D) and subassemblies of cuboid shapes. 724 

The results from this study could therefore be scaled-up and applied to a more realistic problem 725 

set by incorporating the full version of the NDBG technique, which accounts for 2D assembly 726 

operations and subassemblies of arbitrary polygons. Future investigations are warranted to 727 

extend the applicability of the proposed system as follows: 728 

- Incorporating stability analysis algorithm to the assembly sequencer  729 

- Adding a motion planner to ensure assembly operations are executed in optimal time 730 

- Taking into account arbitrary placement of connectors as additional constraints on the 731 

assembly sequencing process 732 
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- Incorporating computer vision techniques to achieve better placement precision for the 733 

gripper arm 734 
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 866 

Figure 1. The two functions of RPS: (a) Assemble and (b) Refabricate 867 

*Note: The blue and red arrows represent digital and physical quantities, respectively. 868 

  869 

RPS

{Assemble}

3D model

Raw material

3D structure

RPS

{Refabricate}

Original 3D model

Original 3D structure

New 3D structure

New 3D model

Raw material

(a)

(b)



37 

 

 870 

 871 

Figure 2. Design of the RPS software module 872 
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Figure 3. Design of the RPS hardware module 876 
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 879 

Figure 4. An example assembly sequence calculated by the assembly sequencer 880 
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Figure 5. Example of a DBG & its matrix representation 883 
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Figure 6. Example of a truncated DBG & its matrix representation 886 
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(a) Gripper 

 

(c) Forward drive 
(b) Lift drive (coupled with 

the “gripper” sub-module) 

 889 
Figure 7. Hardware submodules: (a) gripper, (b) lift drive, and (c) forward drive. 890 
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Figure 8. Real-life and digital versions of test model: (a) WallDesign1 and (b) WallDesign2 892 

  893 

 
 1 

1

2

3 4

 
 1 

5

2
6

4

(a)

(b)



44 

 

 
  894 

Figure 9. Snap-shot of the entire system after completing the final test 895 
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