
1

Automated re-prefabrication system for buildings using robotics 1

Cuong Kasperzyk a, Min-Koo Kim b, Ioannis Brilakisa 2

 aDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge, United 3

Kingdom 4

bDepartment of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, 5

Kowloon, Hong Kong 6

Abstract 7

Prefabrication has the advantages of simplicity, speed and economy but has been inflexible to 8

changes in design which is a primary reason behind its limited market share in the construction 9

industry. To tackle this drawback, this study presents a Robotic Prefabrication System (RPS) 10

which employs a new concept called “re-fabrication”: the automatic disassembly of a 11

prefabricated structure and its reconstruction according to a new design. The RPS consists of a 12

software module and a hardware module. First, the software employs the 3D model of a 13

prefabricated structure as input, and returns motor control command output to the hardware. 14

There are two underlying algorithms developed in the software module. First, a novel algorithm 15

automatically compares the old and new models and identifies the components which the two 16

models do not have in common in order to enable disassembly of the original structure and its 17

refabrication into the new design. In addition, an additional novel algorithm computes the 18

optimal refabrication sequence to transform one model into another according to the 19

differences identified. Meanwhile, the hardware module takes the motor control commands as 20

input and executes the appropriate assembly/disassembly operations, and returns the desired 21

refabricated structure in real-time. Validation tests on two lab-scaled prefabricated structures 22

 Corresponding author. Tel.: +852 2766 5819 Fax: +852 2764 5131

 E-mail address: minkoo.kim@polyu.edu.hk

mailto:minkoo.kim@

2

demonstrate that the system successfully generated the desired refabrication sequences and 23

performed all assembly operations with acceptable placement precision. 24

Key words: Robotic Prefabrication System (RPS), Robotics, Prefabrication, Disassembly, 25

Refabrication 26

1. Introduction 27

In theory, most common construction components can be decomposed to a combination of 28

parts and connectors, such as bricks and cement, wooden slabs and mating joints, or girders 29

and bolts. It follows that most construction activities can be broken down into a series of 30

assembly operations to form larger and larger assemblies from individual parts. Over the last 31

few decades, individual elements, also called prefabricated components, have become popular 32

in the construction industry. Prefabrication is a construction practice which manufactures the 33

majority of building´s sub-assemblies ranging from wall panels to complete rooms in a 34

controlled factory environment, before transporting the sub-assemblies to the construction site 35

for assembly [1]. Modular buildings and modular homes, which are recently getting more 36

popular in the construction industry, are a representative example of adopting the concept of 37

prefabrication [2]. Compared to site-cast (or in-situ) construction, precast concrete elements 38

offer faster production, lower cost, and more efficient assembly of elements [3]. For example, 39

it has been reported that replacing in-situ concrete casting panels with prefabricated elements 40

has resulted in a 70% reduction in construction time and a 43% reduction in labour cost [4]. 41

Moreover, the use of precast concrete elements leads to a cleaner and safer construction 42

environment [4-5]. 43

Despite these benefits, off-site construction methods are estimated to comprise only around 10% 44

of the construction market of UK [6]. There are numerous technical, financial and regulatory 45

barriers that contribute to such a slow adoption of prefabrication [7]. While the relative 46

3

prominence of most of these barriers is still open to debate, there seems to be a general 47

consensus within the industry as stated that “The main disadvantages of prefabrication are 48

inflexibility to changes in design.” [5]. This study focuses on tackling the main disadvantage 49

of prefabrication: the inflexibility of prefabrication to changes in design. 50

Current construction industry practice aims to increase flexibility by mass customization to 51

overcome the shortcoming [8]. This involves the mass production of certain core designs which 52

can later be customized using a catalogue of modules: a plain timber panel, for example, can 53

be switched for a panel with thermal insulation layers and window frame components pre-fitted. 54

This approach requires automation as a prerequisite since any change to the repetition of parts 55

slows down production until the entire process is fully automated, including assembly and not 56

just the making of the parts [2]. The need for an automated and mass-customisable construction 57

process thus motivates developments in the field of ‘robotic prefabrication’. It was argued that 58

the level of automation in making prefabricated building components using robots in the 59

precast concrete industry is high and this has mainly stemmed from the flexible production 60

system which could execute various tasks such as setting moulds and placing reinforcement 61

bars [9]. 62

Even though mass customization using robotic fabrication has improved flexibility during 63

the design process, design changes such as those arising from inspection failures or changes in 64

customer requirements can no longer be incorporated once the design has been physically built. 65

Flexibility can thus be further improved if it becomes possible to automatically disassemble a 66

prefabricated structure and reconstruct it according to a new design - a concept which shall 67

be referred to from here onwards as “refabrication”. 68

Not only will a solution to this problem associated with automation and refabrication help 69

accentuate the benefits of prefabrication over bespoke construction and increase its market 70

4

share, but also it will boost productivity levels. It was reported that approximately 40% of 71

construction projects experience more than 10% change [10]. It was also estimated that 72

productivity will drop below the estimated level for projects with more than 20% change, and 73

conversely productivity will increase when change is effectively dealt with and kept below 5% 74

[10]. Based on the statistical productivity estimation in the previous study, development of a 75

solution with the capability of automated refabrication can increase the productivity as changes 76

in design can be addressed in a timely and effective manner. Moreover, this solution will 77

provide positive environmental impact: When subjected to customers´ order changes or 78

inspection failures such as a joint failing under load or a component exceeding tolerance limit, 79

a modification of the original structure is much less wasteful than a complete demolition. In 80

this sense, an automated disassembly and refabrication solution in the prefabrication industry 81

can significantly contribute to the development of sustainable construction which attempts to 82

reuse the components and other resources needed for construction [11]. 83

This study presents a new concept and demonstrates the idea to increase the flexibility of 84

prefabrication through the early development of a refabrication system using robotics. A 85

Robotic Prefabrication System (RPS) that employs a new concept “refabrication” is presented 86

here. The RPS consists of a software module and a hardware module which are detailed in 87

Section 3. 88

The rest of this paper is organized as follows. Section 2 reviews current state-of-practice 89

and state-of-research into robot-aided construction. The proposed system and its modules are 90

then presented in Section 3. Validation tests are conducted and the results are reported and 91

analysed in Section 4. Finally, conclusions are drawn and recommendations for future work 92

are discussed in Section 5. 93

5

2. Related work 94

It is often argued that the construction industry has the features of a loosely coupled system 95

which favours productivity in projects while innovation suffers [12]. A number of researchers 96

have also argued that the construction industry has failed to adopt techniques that have 97

improved performance in other industries such as just-in-time [13] and ‘industrialization’ of 98

manufacturing processes [14]. In this regard, the construction industry particularly in the 99

prefabrication sector needs to revolutionize by embracing such advanced automation 100

techniques and systems. This section presents related studies and attempts that has been made 101

so far regarding robotic based automation in the construction industry to identify the needs and 102

gaps in knowledge in the current prefabrication domain. 103

2.1. Robot-aided automated construction in the building industry 104

Over the past few decades, automation systems using robot technologies has been less 105

favourably developed and applied in the construction and building industry compared to the 106

industrial and the manufacturing industry because of the dynamic and uncertain environments 107

of the industry [8, 15]. In an attempt to automate repetitive construction processes and increase 108

the productivity in construction, several robotic systems such as slab finishing robot system 109

and concrete formwork cleaning robot system, were developed in the 1980s [16-17]. 110

Skibnieswski also conducted the feasibility study on selected construction industry processes 111

in order to examine the possibility of using robots in the future construction industry [16]. 112

During the 1990s, Japanese companies and universities led the R&D activities in the field of 113

robot-aided automated construction and the focus was the development of new robotic systems 114

and the automation of existing machinery [9]. These robots developed for house buildings tried 115

to automate certain construction processes such as layering bricks, constructing building walls 116

and facades [18-21]. However, the ‘bubble economy’ crisis in Japan had reduced investment in 117

the research area, and only few construction robots had succeeded in the market. As the result 118

6

of the risk of high initial cost and the unsatisfactory return on investment, construction industry 119

had continued to be conservative in “tomorrow’s construction robots” [8]. 120

Regarding the recent development of construction robots for buildings, there are some 121

commercial systems available in the market such as SAM [22], Contour Crafting [23] and 122

Oversize 3D printing systems [24]. SAM is a semi-automated mason robotic bricklayer and 123

has a function of laying about 800 to 1,200 bricks a day while a human mason can lay about 124

300 to 500 bricks a day. This robot, however, still requires a human construction worker to tidy 125

up the mortar and place bricks in difficult area such as corners. Another innovative 126

development named Contour Crafting is a layered fabrication system designed for automating 127

the construction of whole structures. This system, however, has not reached the stage of 128

constructing a complete housing or building with a satisfactory accuracy. D-shape is a large 129

3D printer that uses a layer-by-layer printing process to create stone-like objects. It is reported 130

that the printer still needs to be further developed in order to make larger and more complex 131

buildings [24]. 132

In addition to the commercial systems mentioned above, several academic studies have 133

been conducted. Choi et al. [25] developed a construction robot using pneumatic actuator and 134

servo motor to support construction workers in mounting window glasses or fixing panels. A 135

cable-robot system called ‘SPIDERobot’ was also developed to perform assembly operations 136

in on-site architectural construction [26]. Chu et al. [27] presented the development of a robotic 137

beam assembly system consisting of a robotic bolting device that performs the main function 138

for the beam assembly work and a robotic transport mechanism that transports the robotic 139

bolting device to target bolting positions around a building under construction. However, it 140

seems that the recent studies have focused on development of robot systems with the purpose 141

of automating the construction or maintenance tasks, which has limitations in overcoming the 142

inflexibility problem mainly occurred in the design and manufacturing phase of a project. 143

7

2.2. Robotic prefabrication in the building industry 144

Robotic systems have been mainly employed in the prefabrication construction industry for 145

the production of modular and prefabricated housing components such as ceilings, walls and 146

roofs. Bock [17] detailed a robotic precast concrete panel factory that utilizes a multi-functional 147

formwork unit which allows flexible production of concrete floors, walls and roof panels. In 148

this factory, a precast manufacturing system, which integrates CAD with Computer-Aided 149

Manufacturing (CAM), controlled concrete distributor to spread the right amount of concrete 150

by taking into account the geometric position of window or door openings according to CAD 151

layout. 152

Three primary projects which illustrate the advances and the state of the art of the robotic 153

prefabrication in the building industry are: (1) ROCCO [18], (2) FutureHome [19-20], and (3) 154

ManuBuild [21]. 155

ROCCO [18] features two different robotic systems: one for erection of walls in residential 156

buildings with a reach of 4.5m and a payload of 400kg, and one for industrial buildings with a 157

reach of 8.5m and a payload of 500kg. It includes a software system that assists engineers in 158

wall partitioning, layout planning and logistics planning. The system is also capable of 159

automatically generating manufacturing commands and robot assembly tasks to produce 160

prefabricated elements. 161

FutureHome [19-20] aims to build fully-manufactured houses instead of only prefabricated 162

parts. The hardware now features both an off-site production plant and on-site assembly plant, 163

with a robotized gantry crane to perform on-site assembly tasks. The software system, 164

AUTOMOD3, generates assembly sequences and motion paths for robots to automatically 165

carry out the construction process. It also provides a simulation tool to allow the assembly 166

process to be visualized and inspected before execution. 167

8

ManuBuild [21] facilitates the adoption of mass customization in the construction industry. 168

This project targets a breakthrough from a “craft and resource-based construction” industry 169

into an “open and knowledge-based manufacturing” industry, leading to not only make 170

buildings as open systems equipped with flexible and scalable components but also offer 171

customers increased choice and design flexibility. 172

Recently, the group of Gramazio Kohler Research at ETH Zurich have developed numerous 173

automated robot systems including a mobile robotic brickwork system [28] and an aerial 174

robotic construction system [29]. These studies are recognized as a meaningful contribution to 175

the additive non-standard fabrication for the assembly of building components. 176

2.3. Robotic disassembly and reconstruction 177

Nevertheless there have been academic and practical studies aiming to develop robotics-178

based automated assembly systems as investigated in Sections 2.1 and 2.2, it has been found 179

that there is still no study available dealing with automated disassembly and reconstruction of 180

prefabricated structures in the construction industry. In order to tackle this limitation in the 181

current prefabrication industry, a new system that provides the capability of automated 182

disassembly and refabrication was proposed in this study. This study adopts the most common 183

assembly planning strategy ‘assembly-by-disassembly’. This is because (1) when only 184

geometric constraints are considered, an invertible disassembly sequence always leads to a 185

feasible assembly sequence; and (2) a structure in its assembled state has many more 186

constraints than in its disassembled state, which results in a smaller search space for the planner 187

[30-32]. For this reason, knowledge from the field of automated product assembly, which has 188

been widely researched since the late 1980s, is directly relevant to the disassembly and 189

refabrication of prefabricated structures. 190

9

The core algorithmic parts of the automated product assembly include geometrical 191

reasoning in assembly planning [33], stability analysis of assemblies [34] and assembly 192

sequencing using a path planning approach [31]. Recently, Rakshit and Akella [35] combined 193

stability and geometric constraints analysis to produce an algorithm capable of simulating the 194

entire assembly sequence by taking into account physical forces and part motion. This 195

algorithm is outlined below: 196

Assumptions: 197

- The sequence is two-handed and monotone 198

- Each part is moved by a gripper at constant velocity with perfect position control 199

- Part movement is modelled as quasi-static motion with finite translations 200

- Collision of gripper with assembly is not considered 201

Geometric analysis: 202

- Firstly, an enumeration of all possible sequences is generated using AND/OR graph [30] 203

- Secondly, geometrically feasible sequences are filtered out using Non-Directional 204

Blocking Graph [36] 205

Stability analysis: 206

- For frictionless cases, calculation of the relative movement in terms of the relative 207

acceleration between the parts in the assembly [37] is conducted 208

- For cases with friction, Baraff´s method [37] becomes ineffective and a different set of 209

complementary constraints must be used [38] 210

2.4. Gaps in knowledge and scope of this study 211

Even though the state-of-the-art algorithm developed by Rakshit and Akella [35] can be 212

used to generate a stable disassembly sequence for the majority of common structural 213

assemblies, this is only part of what is needed to realize the concept of “refabrication” which 214

10

also requires the refabrication sequence based on a new design. Therefore, the objective of this 215

study is to develop a RPS of prefabrication that provides the automatic disassembly and 216

reconstruction of a prefabricated structure. The concept is demonstrated using an automated 217

robotic system operating on a small-scale structure to provide the first stepping stone for future 218

researchers working towards the final goal: refabrication of arbitrary full-scaled structures. 219

Refabrication is an extension of the general assembly planning problem, which includes 220

many sub-problems such as connector design and manipulation, feeder and tool selection, 221

assembly sequencing, and robot path planning. However, since this study focuses on proving 222

the proof-of-concept of the RPS as a first stepping stone, a full treatment of all aspects above 223

is beyond the scope of this work. The simplifications made in this study are: 224

- The robot arm can only move in 2D (a vertical plane with respect to the ground) 225

- The path planner1 produces collision-free but non-optimal paths 226

- The assembly sequencer2 only takes into account: 227

+ “Stacking” operations (pure translations and no rotation) 228

+ Geometric constraints (ignore stability constraints) 229

+ Two-handed monotone assemblies. 230

- Only two types of connectors were considered: 231

+ Null connectors: where two parts are kept in contact purely by gravity (e.g. Jenga 232

blocks) 233

+ Permanent connectors: where two parts are connected through a joint which is 234

impractical to undo after the assembly operation is completed (e.g. cemented bricks). 235

1 A path planner calculates paths in space that a robot arm can take to execute a specific assembly sequence. These

paths are often subject to a certain set of constraints, such as collision-free or optimal-time.
2 An assembly sequencer produces a set of assembly operations and constraints on their ordering. Each operation

specifies a motion that combines two or more subassemblies to form a larger assembly. Any ordering of operations

that obey the sequence constraints is called an assembly sequence.

11

3. Development of Robotic Prefabrication System 236

3.1. System design 237

3.1.1. Top level 238

The RPS is designed with the capability of automatically building a 3D structure given its 239

digital model, as well as of deconstructing obsolete parts and updating the original structure 240

given a new design. This capability can be divided into two main functions, which are 241

‘assemble’ and ‘refabricate’ as illustrated in Figure 1. When the RPS implement the ‘assemble’ 242

function, the digital 3D model of a structure and raw material are fed into the RPS as inputs 243

and a 3D structure is assembled according to the original design. Meanwhile, when a new 3D 244

model comes into the RPS due to a change in design, the RPS implements the tasks of 245

disassembly and reconstruction according to the new design and finally results in a new 3D 246

structure. 247

Insert Figure 1 approximately here

 248

3.1.2. Second level 249

The RPS includes both a software module and a hardware module to meet top-level 250

functional requirements. The software module takes digital inputs and gives motor control 251

commands to the hardware module, while the hardware module takes the motor control 252

commands, manipulates the physical inputs, and returns physical outputs. In addition, to carry 253

and update information about motor states, a feedback loop from the hardware module to the 254

software module is included. 255

3.1.1 Third level 256

For the software module, there are four software sub-modules needed to carry out the 257

second-level function described above. Figure 2 illustrates the workflow of the software 258

module. The functions of each software sub-module are described as follows: 259

12

- Model analyser: Analyses an input 3D model and returns the its geometric data, such as the 260

size, shape and position of its individual parts. 261

- Models comparator: Takes in geometric data from two different 3D models, identifies all 262

those individual parts which the two models do not have in common, and returns the 263

geometric data of these parts. 264

- Assembly sequencer: Takes in geometric data of the entire model or set of specific parts, 265

depending on which top-level function the RPS needs to execute, returns the appropriate 266

(dis)assembly sequences. 267

- Hardware controller: Takes in (dis)assembly sequences and generates a set of motor 268

control commands such that the hardware will carry out the appropriate (dis)assembly 269

operations and create the desired 3D structure. The controller also needs to take in the 270

feedback signal containing the motor states from the hardware module, in order to 271

synchronize the execution of motor control commands. 272

Insert Figure 2 approximately here

More details of the design of the software sub-modules are presented in Section 3.3. 273

Since the task of the hardware module is common to many existing assembly systems in 274

industry, different types of systems were investigated to pick out one as a suitable template. 275

However, due to the limited variety of components available for construction of the hardware 276

system as well as the large number of motors required, it became clear that assembly design 277

typically employed in industry was impractical to pursue in this study. Therefore, a basic 278

hardware module was designed specifically for this study to fulfil our objectives. Figure 3 279

shows the hardware module designed in this study. The hardware module comprises four sub- 280

modules: 281

13

- Gripper: Securely holds a raw material block during its transportation from stock side to 282

assembly side, and vice versa. 283

- Lift drive: Enables vertical translation of the gripper 284

- Forward drive: Enables longitudinal translation of the gripper 285

- Support structure: Provides an elevated runway for the forward drive on top, as well as 286

stock space and assembly space at the bottom 287

Insert Figure 3 approximately here

More details of the design of the hardware sub-modules are presented in Section 3.4. 288

3.2. Choice of materials 289

Two constituent component options were considered for the choice of materials for this 290

study: 291

- Fully-customized components: Structural components could be designed using CAD 292

software packages, then either machined or manually created in a workshop. This enables 293

great flexibility in design, but it is relatively time and cost demanding during the 294

manufacturing and construction of the components. 295

- Standardized components: Structural components could be built directly out of LEGO 296

Duplo block and LEGO Mindstrom [39] components. Actuators are also available as 297

servo motors from the LEGO Mindstorms set. This gives limited flexibility in design, but 298

requires relatively little time during the construction of the sub-modules. 299

The use of standardized components to construct the entire hardware module can act as 300

supporting evidence for the philosophy advocated in this study that many structures can be 301

efficiently constructed through the assembly of modular components. For this reason, it was 302

decided that the hardware module would be constructed entirely out of LEGO Duplo and 303

LEGO Mindstorm components. This reasoning also applied to the choice of building block 304

14

used as input raw material to the hardware module; LEGO Duplo and Jenga blocks were 305

therefore chosen. Since Jenga blocks are held in contact by gravity alone, and Duplo blocks 306

are held in contact by fairly sturdy male-female connectors, they here represent null and 307

permanent connectors, respectively. 308

3.3. Software module 309

3.3.1. Model analyser 310

The model analyser is built to analyse an input 3D model and return the model’ geometric 311

data. Since the 3D structures which our system operates on are cuboid, the geometric data 312

extracted are: (1) The coordinates of each component’s centroid, (2) The size of each 313

component’s bounding box (width, length and height), and (3) The ID of each component 314

(which must contain the string “Lego” or “Jenga” so that the type of connector it possesses can 315

be later inferred). 316

Having identified the output requirements above, an algorithm was developed to take in a 317

file of 3D model and return an array containing three variables {id, boundBoxSize, centrePoint} 318

(see Algorithm 1). 319

Let <C> be an array containing individual components found in the input 3D model and <G> 320

be an array representing the geometric data of the components: 321

Algorithm 1: Model analyser 322

Input: A 3D model file, e.g. ‘model.ifc’ 323

 1: do <C> = ReadModel(); 324

 2: if <C> == ∅ then 325

 3: return NO COMPONENT FOUND 326

 4: end if 327

 5: for each C in <C> do 328

 6: G.id = C.GetName(); 329

 7: G.boundBoxSize = C.GetSize(); 330

 8: G.centrePoint = C.GetCentroid(); 331

 9: <G>.Add (G); 332

15

10: end for each 333

11: return <G> 334

3.3.2. Model comparator 335

The role of the model comparator is to take in geometric data of two different 3D models, 336

identify all individual parts which the two models do not share in common, and return the 337

geometric data of such parts. A function was created to do the tasks. It takes in two arrays 338

containing the geometric data of two different 3D models, loops through each member of the 339

first array, and checks if it also exists in the second array. Finally, it returns an array containing 340

all members of the first array that do not exist in the second array. However, this function itself 341

only returns true if the pair of array members being compared have the exact same variables 342

(i.e. fully identical). This means that given two 3D models which are identical in every aspect 343

except their position in space (i.e. partially identical), the models comparator will conclude that 344

these two models have zero common parts. 345

In order to tackle this issue, a new function that helps align the coordinates of the two input 346

models was created. It is, however, a non-trivial problem to align two arbitrarily different 347

models such that the alignment should lead to as few refabrication operations as possible. It is 348

also impractical to attempt every possible alignment of large models since the number of 349

checks is proportional to N2, where N is the number of partially identical parts and determined 350

from a brute-force alignment approach. Hence, assuming that it is focused on prefabrication of 351

building walls and the majority of design changes are either wall extensions while keeping the 352

door/window positioning or repositioning of door/window while keeping the wall dimensions, 353

the number of alignments attempted can be limited to three: (1) Alignment of lower left corner, 354

(2) Alignment of lower right corner, and (3) Alignment of door feature. Three sub-functions 355

were thus developed: ‘AlignLeft()’, ‘AlignRight()’ and ‘AlignDoor()’. 356

16

Let <G1> and <G2> be arrays representing the geometric data of components from two 357

different 3D models; <G2L>, <G2R> and <G2D> be arrays representing the geometric data of 358

components from the second model after left, right and door alignment respectively; and <L>, 359

<R> and <D> be arrays representing not-in-common components between <G1> and <G2L>, 360

<G2R>, <G2D> respectively: 361

Algorithm 2: Model Comparator 362

Input: <G1>, <G2> 363

 1: do <G2L> = AlignLeft (G2); 364

 2: do <G2R> = AlignRight (G2); 365

 3: do <G2D> = AlignDoor (G2); 366

 4: foreach G1 in <G1> do 367

 5: if <G2L>.Contains(G1) == false then 368

 6: <L>.Add(G1); 369

 7: end if 370

 8: if <G2R>.Contains(G1) == false then 371

 9: <R>.Add(G1); 372

10: end if 373

11: if <G2D>.Contains(G1) == false then 374

12: <D>.Add(G1); 375

13: end if 376

14: end foreach 377

15: return <L>, <R>, <D> 378

 379

Note that since the model comparator does not have the capability to evaluate the number 380

of refabrication operations required as a result of model alignment, it must pass on the 381

geometric data of not-in-common parts for all three alignment scenarios to the next sub-module, 382

the ‘Assembly sequencer’. 383

3.3.3. Assembly sequencer 384

The assembly sequencer can execute two functions, “Assemble” and “Refabricate”. If the 385

system is executing the “Assemble” function, the assembly sequencer takes in the geometric 386

data of the components previously extracted from the 3D model, and returns the appropriate 387

17

sequence of assemblage. Since it is already assumed that all raw material blocks are cuboids, 388

an effective stack-assembly sequencing algorithm is as follows: 389

- Search through all members of the input array containing geometric data 390

- Sort the members in ascending order according to the distance between ground and each 391

member’s bottom bound line 392

- Then proceed to sort the members in descending order according to the distance between 393

the stock side and each member’s right-hand-side bound line 394

This algorithm will thus return an array whose members are indexed in such a way that the 395

building blocks will be assembled from the bottom layer up and from the far end of the 396

assembly side towards the stock side. This is illustrated in Figure 4. 397

Insert Figure 4 approximately here

Let <G> be an array representing a set of all components of a 3D model and its geometric 398

data; <S> be an array representing the same components now indexed according to the desired 399

assembly sequence; and <bottomBoundLine> and <rightBoundLine> be arrays containing the 400

position of the bottom and right bounds of the components’ geometry: 401

Algorithm 3: Assembly Sequencer (executing the “Assemble” function) 402

Input: <G> 403

 1: foreach G in <G> do 404

 2: bottomBoundLine = G.centrePoint.Y – G.boundBoxSize.Y ÷ 2 405

 3: rightBoundLine = G.centrePoint.X + G.boundBoxSize.X ÷ 2 406

 4: <bottomBoundLine>.Add(bottomBoundLine) 407

 5: <rightBoundLine>.Add(rightBoundLine) 408

 4: end foreach 409

 5: do <S> = <G>.OrderBy(<bottomBoundLine>).ThenByDescend(<rightBoundLine>) 410

 6: return <S> 411

If the system is executing the “Refabricate” function, the purpose of the assembly 412

sequencer is to take in the geometric data of not-in-common parts for all three alignment 413

18

scenarios outlined above, evaluate which alignment is the most optimal, then return the 414

appropriate “refabrication sequence”. Here, the most optimal alignment is defined here as the 415

alignment which results in the minimum number of (dis)assembly operations required to 416

refabricate the existing structure and this in turn begs the question on how can one calculate 417

the number of (dis)assembly operations required? This question can be answered using the 418

Non Directional Blocking Graph (NDBG) technique developed by Wilson [33]. This technique 419

involves three main steps: Step 1 - the construction of directional blocking graphs (DBGs), 420

where each one indicates which parts within the assembly would collide given an instantaneous 421

displacement in a particular direction; Step 2 - the partitioning of space into regions which 422

share the same DBG; Step 3 - the combination of all DBGs to form the NDBG. 423

However, since this technique can be applied to assemblies of arbitrary polygons and 424

accounts for arbitrary linear motion in 3D space, it is too generalized for the purposes of this 425

study. Consequently, a stripped-down version of the NDBG technique was used to develop the 426

assembly sequencer. Figure 5 provides an example illustrating how the NDBG technique can 427

be simplified when all (dis)assembly operations are restricted to 2D stacking operations: 428

- The left hand side is an example stack assembly consisting of four subassemblies, P1, P2, 429

P3 and P4. 430

- The top right side shows the DBG whose nodes represent the subassemblies and where 431

each outgoing arrow indicates an expected collision when given an instantaneous 432

displacement in the vertically upwards direction. Since vertically upwards is the only 433

direction allowed for disassembly operations, the NDBG is the same as the DBG and steps 434

2 and 3 of the NDBG algorithm can be skipped. 435

- The bottom right side represents the DBG as a matrix. The matrix rows and columns 436

represent all possible origin and destination nodes of DBG, while the elements 0 and 1 of 437

the matrix represent the absence or presence of all possible DBGs. 438

19

Insert Figure 5 approximately here

 439

In order to calculate the number of disassembly operations required for any chosen sub-440

assembly, the values of the matrix elements must first be determined and the optimal 441

disassembly sequence be deduced. The values of matrix elements are determined using a 442

function called ‘CalcDBG()’ which takes an array with N members containing geometric 443

information of the assembly, and returns an N by N matrix which represents the DBG of the 444

assembly. 445

The algorithm implemented is outlined below: 446

1. Create an N by N matrix with all elements set to zero 447

2. For each subassembly (denoted as A), check the bounding box of any other 448

subassembly (denoted as B) and see if both of the following conditions are satisfied: 449

o The top line of the bounding box of A is at the same height as the bottom line of the 450

bounding box of B. 451

o The bounding box of B lies in the “collision zone”, which is defined as the 3D space 452

covered by the bounding box of A when extended in the vertical direction. 453

If yes, change the appropriate matrix element to one. 454

3. Terminate when step 2 has been performed for all subassemblies. 455

Let <G> be an array representing all components and their geometric data from a 3D model; 456

and dbg[] be a matrix which represents the DBG of the same model: 457

Algorithm 4: Function CalcDBG() 458

Input: <G> 459

 1: do N = <G>.GetLength() 460

 2: do dbg[] = NewZeroMatrix(N, N) 461

 3: for i = 1, 2...N do 462

 4: for j = 1, 2...N do 463

20

 5: if GjBottomLine == GiTopLine then 464

 6: if Collision (Gi, Gj) == true then 465

 7: dbg [i,j] = 1 466

 8: end if 467

 9: end if 468

10: end for 469

11: end for 470

12: return dbg 471

 472

Note that the above function is based on the original DBG technique, which assumes that all 473

subassemblies are free-flying and held together via null connectors. However, since our system 474

operates on assemblies with the presence of permanent connectors, another function called 475

‘CalcTruncatedDBG()’ was generated. This function takes the N by N matrix produced by the 476

CalcDBG() function and returns a M by M matrix, where M = (N - the number of permanent 477

connectors), using the algorithm below: 478

1. Find all matrix rows which contain “1” element 479

2. For each row found in step 1, check the following cases of its “1” elements: 480

o If the two subassemblies involved are not held together by a permanent connector, 481

skip to the next “1” element. 482

o Otherwise, perform the following operations on the rows and columns which 483

represent two subassemblies involved (here denoted as A and B): 484

+ Combine column of B and column of A using Boolean OR 485

+ Combine row of B and row of A using Boolean OR 486

+ Set all elements on the matrix diagonal to zero 487

3. Terminate when step 2 has been performed on all rows 488

Let <G> be an array representing all components and their geometric data from a 3D model 489

and let dbgTrunc[] be a matrix which represents the truncated DBG of this 3D model: 490

Algorithm 5: Function CalcTruncatedDBG() 491

21

Input: <G> 492

 1: do N = <G>.GetLength() 493

 2: do dbgTrunc[,] = CalcDBG(<G>) 494

 3: for i = 1, 2...N do 495

 4: for j = 1, 2...N do 496

 5: if dbgTrunc[i,j] = 1 then 497

 6: if PermCon (Gi, Gj) == true then 498

 7: combineOR(dbgTrunc[i,*], dbgTrunc[j,*]) 499

 8: combineOR(dbgTrunc[*,i], dbgTrunc[*,j]) 500

 9: dbgTrunc[i,i] = dbgTrunc[j,j] = 0 501

10: end if 502

11: end if 503

12: end for 504

13: end for 505

14: return dbgTrunc 506

An illustrative example of a transformation from the DBG matrix shown in Figure 5 to a 507

new truncated DBG matrix is provided in Figure 6. 508

Insert Figure 6 approximately here

Once all matrix elements are calculated, the optimal disassembly sequence for any chosen 509

subassembly are determined using a function called GetDisassemblyTree(). This function takes 510

in three pieces of information, (1) an array with N members containing the geometric 511

information of the assembly, (2) the M by M matrix produced by the CalcTruncatedDBG() 512

function and (3) the geometric information of the subassembly that needs to be removed, and 513

then returns an array with L members where L = the number of subassemblies that need to be 514

removed as a consequence. Members of the output array contain the geometric information of 515

the to-be-removed subassemblies and the ordering of these members represents the sequence 516

in which they need to be removed. The implemented algorithm is as follows: 517

1. Jump to the matrix row corresponding to the subassembly that needs to be removed 518

from the overall assembly, here denoted as subassembly A. 519

2. Search the current row for “1” elements: 520

o If one or more “1” elements are found, go to step 3. 521

22

o Otherwise, add the subassembly to disassembly tree and check: 522

+ If the added subassembly is not A, go to step 4. 523

+ Otherwise, terminate the algorithm. 524

3. Jump to the row whose index is equal to the column index of one of the “1” elements 525

found in step 2, and repeat step 2. 526

4. Jump to the row visited immediately before the current row, and repeat step 2. 527

Let <G> be an array representing all components and their geometric data from a 3D model; 528

dbgTrunc[] be a matrix which represents the truncated DBG of the 3D model; G* be a 529

representation of the component to be removed from the 3D model; and <T> be an array 530

representing the disassembly tree: 531

Algorithm 6: Function GetDisassemblyTree() 532

Input: <G>, G*, dbgTrunc[,] 533

 1: do N = <G>.GetLength() 534

 2: do index = CorrespondingRow (G*, dbgTrunc[,]) 535

 3: i = index 536

 4: if GetCountOnes(dbgTrunc[index,*]) > 0 then 537

 5: for j = 1, 2…N do 538

 6: if dbgTrunc[i,j] = 1 then 539

 7: i = j 540

 8: JUMP TO LINE 4 541

 9: end if 542

10: end for 543

11: end if 544

12: if GetCountOnes(dbgTrunc[index,*]) == 0 then 545

13: <T>.Add(Gi) 546

14: if i ≠ index then 547

15: i = GetPreviousI(i) 548

16: JUMP TO LINE 4 549

17: end if 550

18: if i = index then 551

19: return <T> 552

20: end if 553

21: end if 554

23

 555

Using this algorithm on the example in Figure 5, a request to remove P3 will return the 556

disassembly tree in the form of an array {P1, P2+4, P3}. 557

Now the optimal disassembly sequence can be calculated for any chosen subassembly and 558

the three arrays returned by the ‘Model Comparator’ sub-module can finally be evaluated. A 559

function ‘GetDisassemblyForest()’ was generated to compute the optimal alignment and return 560

the optimal disassembly sequence, which is outlined below: 561

1. For each of the three input arrays: 562

- Calculate the disassembly tree for each array member using GetDisassemblyTree() 563

- Concatenate all disassembly trees and remove duplicated members to obtain a new 564

disassembly sequence, here denoted as a “disassembly forest” 565

- Count the members of the disassembly forest 566

2. Compare the three counts obtained from step 1 and choose the alignment type which 567

resulted in the lowest count. 568

3. Return the disassembly forest associated with the alignment type chosen in step 2 569

Let <L>, <R> and <D> be arrays representing not-in-common components returned by the 570

‘Model Comparator’ sub-module; <fL>, <fR> and <fD> be arrays representing the 571

disassembly forests resulting from the three alignment scenarios: 572

Algorithm 7: Function GetDisassemblyForest() 573

Input: <L>, <R> and <D> 574

 1: foreach L in <L> do 575

 2: <fL>.Add(GetDisassemblyTree(L)) 576

 3: <fL>.RemoveDuplicates() 577

 4: end foreach 578

 5: do countLeft = <fL>.GetLength() 579

 6: foreach R in <R> do 580

 7: <fR>.Add(GetDisassemblyTree(R)) 581

24

 8: <fR>.RemoveDuplicates() 582

 9: end foreach 583

10: do countRight = <fR>.GetLength() 584

11: foreach D in <D> do 585

12: <fD>.Add(GetDisassemblyTree(D)) 586

13: <fD>.RemoveDuplicates() 587

14: end foreach 588

15: do countDoor = <fD>.GetLength() 589

16: do minCount = GetMinimum(countLeft, countRight, countDoor) 590

17: if minCount = countLeft then 591

18: return <fL> 592

19: end if 593

20: if minCount = countRight then 594

21: return <fR> 595

22: end if 596

23: if minCount = countDoor then 597

24: return <fD> 598

25: end if 599

 600

The original model with all the not-in-common subassemblies removed can now be compared 601

with the new model and the assembly sequence required to transform the former to the latter 602

can be computed. This is done using the ‘GetReassemblyForest()’ function which utilises the 603

following algorithm: 604

1. Subtract the array representing the disassembly forest from the array representing the 605

original model 606

2. Subtract the array obtained in step 1 from the array representing the new model 607

3. Compute an assembly sequence for the subassemblies contained in the output array of 608

step 2 using the AssemblySequencer() function, here denoted as “reassembly forest” 609

Let <GOrg> and <GNew> be arrays representing components from the orginal and the new 610

3D model respectively; <F> be an array representing the optimal disassembly forest returned 611

by the GetDisassemblyForest() function; and <R> be an array representing the optimal 612

reassembly forest: 613

Algorithm 8: Function GetReassemblyForest() 614

25

Input: <GOrg>, <GNew>, <F> 615

 1: do <R> = AssemblySequencer(<GNew> - <GOrg> + <F>) 616
 2: return <R> 617

 618

Finally, the “disassembly forest” and “reassembly forest” obtained above are concatenated 619

to produce the desired refabrication sequence at the output. 620

3.3.4. Hardware controllers 621

The purpose of the hardware controller is to take in assembly/refabrication sequences and 622

generate a set of motor control commands such that the hardware will carry out the appropriate 623

assembly/refabrication operations and create the desired 3D structure. The controller also needs 624

to take in the feedback signal from the hardware module which contains motors’ states in order 625

to synchronize the execution of motor control commands. Note that the hardware controller 626

incorporated an open-source library called “MindSqualls” [40], which acts as the interface 627

between the C# .NET environment and the microcontroller of the Lego Mindstorm kit. This 628

sub-module also incorporated an open-source program called “Motor Control” developed by 629

[41], which implements algorithms that lead to more precise motor movements compared to 630

those produced by the native LEGO Mindstorm firmware. 631

3.4. Hardware module 632

Regarding the design of gripper sub-module, there are two main types of grasping profiles, 633

namely (1) Encompassing grasp: Where the gripper provides an enclosure to secure the object; 634

and (2) Frictional grasp: Where the contact surfaces generate friction to secure the object. Since 635

the purpose of our gripper is to securely hold a Lego Duplo/Jenga block during its 636

transportation from stock side to assembly side, an encompassing grasp would not be suitable 637

as it would prevent direct contact between the block and the structure, making it difficult to 638

achieve a precise stack operation. Hence, as for the grasp selection, a frictional grasp with flat 639

plates was chosen as the gripper mechanism to generate the required contact surface area. 640

26

Meanwhile, since servo motors are the only type of actuator available in a Lego Mindstorm kit, 641

a mechanism which converts rotational motions into a “grasping motion” is needed. In this 642

study, a rotational grasping design was chosen for the gripper and an attempt was made to 643

“upgrade” the gripper by equipping it with the capability to undo the connection between two 644

Lego Duplo blocks, using the exact same rotational grasping motion. In addition, rectangular 645

patches of Egrips material [42] were glued to the surface of the flat plate to improve the 646

coefficient of friction. An additional fixture was also added to the gripper to provide an 647

attachment point for the lift drive. The realization of the final design of the gripper is shown in 648

Figure 7(a). 649

Regarding the design of forward drive sub-module, the number of wheel types available 650

were limited to two: cylindrical wheels or caterpillar tracks. It is desirable to have as much 651

contact with the ground as possible to spread out the load. Since the forward drive module also 652

has to carry both the lift drive and the gripper module, the caterpillar tracks coupled with one 653

servo motor were thus chosen for our forward drive. Its realization is shown in Figure 7(b). 654

Given that the purpose of our lift drive is to enable vertical translation of the gripper, and 655

that the only type of actuator available in a Lego Mindstorm kit is servo motors, one needs to 656

design a mechanism which converts rotational motion into a linear motion. There are two main 657

types of design for lift drive: (1) The crank-slider design and (2) The scissors design. In this 658

study, it was found that the maximum vertical translation of the crank-slider design was 659

insufficient by taking into account the height of the 3D structure that needs to be built. For this 660

reason, the scissors design was chosen for our lift drive. The realization of the lift drive design 661

is shown in Figure 7(c). 662

Insert Figure 7 approximately here

27

Finally, the support structure comprises an elevated runway with runway guards, as shown 663

in the right side of Figure 3, with the stock and assembly space. 664

4. Validation 665

In this section, two tests were designed and conducted to demonstrate the feasibility of the 666

proposed RPS. In the tests, the hardware and software were connected wirelessly using 667

Bluetooth to make the RPS automated. The test models created were an N-by-N stack of single 668

Jenga blocks and two wall designs as shown in Figure 8. 669

Insert Figure 8 approximately here

The first test consisted of two different structures to (1) assemble WallDesign1 (Figure 670

8(a)), and then to (2) refabricate WallDesign1 into WallDesign2 (Figure 8(b)). The first half of 671

the test was completed successfully, with the occasional difficulty in connecting the top Lego 672

bricks firmly to the Lego door due to placement inaccuracy. For the second half of the test, a 673

correct refabrication sequence was computed, with two key emphases: 674

1. The system recognized that the three Lego blocks from WallDesign1 must be treated 675

as a single entity during the disassembly process, since the Lego’s connectors are 676

assumed to be permanent connectors. 677

2. The system also recognized that even though WallDesign1 and WallDesign2 have both 678

the three Lego blocks and the Jenga blocks on the bottom right corner as common parts, 679

it must disassemble the Lego blocks so that the Jenga blocks on the bottom left corner 680

can be disassembled, and can only leave the bottom right corner as is. 681

The RPS computed correctly the disassembly sequence {1, 2, 3} of WallDesign1 and the 682

refabrication sequence {5, 2, 6} into WallDesign2 by taking into account the presence of the 683

permanent connectors and the common part numbered 4. 684

28

However, despite the correct refabrication sequence being computed, manual intervention 685

had to made to complete the second disassembly operation, in which the group of three Lego 686

blocks must be lifted over the group of 4 Jenga blocks on the bottom left corner, as the robot’s 687

maximum lift height was insufficient. 688

In the second test, the command to refabricate could come at any time during the 689

WallDesign1 assembly process. The system performed this test as successfully as the first test, 690

by keeping track of the assembly process and generating the correct refabrication sequence 691

regardless of what state the existing structure was in. A snapshot of the entire system after 692

having completed the final test is shown in Figure 9. 693

Insert Figure 9 approximately here

 694

5. Conclusion and future work 695

With the aim of increasing the design flexibility of current prefabrication methods, a system 696

called RPS consisting of hardware and software modules was developed to demonstrate a new 697

concept called “refabrication”: the automatic disassembly of a prefabricated structure and its 698

reconstruction according to a new design. 699

Two key algorithms within the software module were developed in this study for 700

implementing the RPS. An algorithm was developed to automatically compare the old and new 701

3D models and identify all components which the two models do not have in common. Upon 702

testing, this algorithm identified the correct differences between two non-trivial 3D models. In 703

addition, an algorithm was developed to automatically compute the optimal refabrication 704

sequence that would transform one model into another when given the differences between the 705

two design models. This desired function was broken down into two sub-functions. First, the 706

number of (dis)assembly operations required for the removal of any one single subassembly 707

29

must be calculated. In order to achieve this, the algorithm incorporated a stripped-down version 708

of the NDBG technique. Second, the smallest number of (dis)assembly operations required for 709

the removal of all not-in-common subassemblies must be calculated. This was achieved by 710

comparing three different alignment scenarios for the two models, calculating the total number 711

of (dis)assembly operations required in each scenario, and finally picking the scenario with the 712

smallest number of operations required. Upon testing, this algorithm also calculated the correct 713

(dis)assembly sequence for the two 3D models mentioned with two notable successes: (1) The 714

connectors between Lego blocks were assumed to be permanent connectors, and the system 715

successfully recognized that connected blocks must therefore be treated as a single entity 716

during the disassembly process; (2) The system also recognized that certain components which 717

are common to both models must still be removed if such components are blocking the 718

disassembly path of not-in-common components. 719

A hardware system was developed to demonstrate the working of the developed algorithms 720

in real-time. This system performs all assembly operations with successful placement precision 721

although some disassembly operations needed manual intervention due to insufficient 722

maximum lift height. The scope of this study was, however, restricted to the refabrication of 723

assemblies which employ only stacking operations (1D) and subassemblies of cuboid shapes. 724

The results from this study could therefore be scaled-up and applied to a more realistic problem 725

set by incorporating the full version of the NDBG technique, which accounts for 2D assembly 726

operations and subassemblies of arbitrary polygons. Future investigations are warranted to 727

extend the applicability of the proposed system as follows: 728

- Incorporating stability analysis algorithm to the assembly sequencer 729

- Adding a motion planner to ensure assembly operations are executed in optimal time 730

- Taking into account arbitrary placement of connectors as additional constraints on the 731

assembly sequencing process 732

30

- Incorporating computer vision techniques to achieve better placement precision for the 733

gripper arm 734

Acknowledgements 735

The first author would like to acknowledge the support of Dr. Andrew Gee and Mr. 736

Konstantinos for providing permission to use the Lego Mindstorm kit and generous amount of 737

Lego Duplo. 738

Reference 739

[1] G. Sparkman, A. Gibb, R. Neale, Standardization and preassembly: Adding value to construction 740

projects, Volume 176 of Report from Construction Industry Research and Information 741

Association, London, 1999, ISBN: 978-0-860-17498-1. 742

[2] J.M. Schoenborn, A case study approach to identifying the constraints and barriers to design 743

innovation for modular construction, Master of Science Thesis in Architecture, Faculty of the 744

Virginia Polytechnic institute and State University, 2012, Retrieved from 745

http://hdl.handle.net/10919/32397 (accessed at 14 August 2017) 746

[3] R. Sacks, C.M. Eastman, G. Lee, Process model perspectives on management and engineering 747

procedures in the precast/prestressed concrete industry, Journal of Construction Engineering and 748

Management ASCE 130 (2) (2004) 206–215. DOI:https://doi.org/10.1061/(ASCE)0733-749

9364(2004)130:2(206) 750

[4] L. Jaillon, C.S. Poon, Y.H. Chiang, Quantifying the waste reduction potential of using prefabrication 751

in building construction in Hong Kong, Waste Management 29 (1) (2009) 309–320. 752

DOI:https://doi.org/10.1016/j.wasman.2008.02.015 753

[5] V.W.Y.Tam, C.M. Tam, S.X. Zeng, W.C.Y Ng, Towards adoption of prefabrication in construction, 754

Building and Environment. 42 (2007) 3642-3654. 755

DOI:https://doi.org/10.1016/j.buildenv.2006.10.003 756

http://hdl.handle.net/10919/32397
https://doi.org/10.1061/(ASCE)0733-9364(2004)130:2(206)
https://doi.org/10.1061/(ASCE)0733-9364(2004)130:2(206)
https://doi.org/10.1016/j.wasman.2008.02.015
https://doi.org/10.1016/j.buildenv.2006.10.003

31

[6] E. Wright, Fast build nation: Richard Ogden on offsite construction. 2010. Retrieved from 757

http://www.building.co.uk/fast-build-nation-richard-ogden-on-offsite-758

construction/3160607.article, (accessed at 14 August 2017) 759

[7] D.A. Steinhardt, K. Manley, W. Miller, Reshaping Housing – The role of prefabricated systems. In 760

Proceedings of World Sustainable Building Conference (SB14), Barcelona, (2014), pp. 30–36. 761

Retrieved from <http://eprints.qut.edu.au/78400/> 14 August 2017. 762

[8] C. Balaguer, M. Abderrahim (Subcontractors), Trends in Robotics and Automation in Construction, 763

in: C. Balaguer and M. Abderrahim (Editors) ,Robotics and Automation in Construction, In-Tech, 764

Croatia, 2008, pp. 1–20 ISBN: 978-953-7619-13-8, DOI: 10.5772/5865. 765

[9] T. Bock (Subcontractor), Construction Automation and Robotics, in: C. Balaguer and M. 766

Abderrahim (Editors) ,Robotics and Automation in Construction, In-Tech, Croatia, 2008, pp. 21-767

42 ISBN: 978-953-7619-13-8, DOI: 10.5772/5861. 768

[10] W. Ibbs, Construction Change: Likelihood, Severity, and Impact on Productivity. J. Legal Affairs 769

and Dispute Resolution in Engineering and Construction, 4(3) (2012), 67-73 770

DOI:https://doi.org/10.1061/(ASCE)LA.1943-4170.0000089. 771

[11] C. Kibert, Sustainable Construction: Green Building Design and Delivery, Wiley, Hoboken, New 772

Jersey, 2016 ISBN: 978-1-119-05517-4. 773

[12] A. Dubois and L. E. Gadde, The construction industry as a loosely coupled system: implications 774

for productivity and innovation. Construction Management & Economics, 20(7) (2002) 621-631. 775

DOI:https://doi.org/10.1080/01446190210163543. 776

[13] S. P. Low and S. H. Mok, The application of JIT philosophy to construction: a case study in site 777

layout, Construction Management and Economics, 17 (1999), 657-668. 778

DOI:https://doi.org/10.1080/014461999371268. 779

http://www.building.co.uk/fast-build-nation-richard-ogden-on-offsite-construction/3160607.article
http://www.building.co.uk/fast-build-nation-richard-ogden-on-offsite-construction/3160607.article
http://eprints.qut.edu.au/78400/
https://doi.org/10.1061/(ASCE)LA.1943-4170.0000089
https://doi.org/10.1080/01446190210163543(ASCE)LA.1943-4170.0000089
https://doi.org/10.1080/014461999371268

32

[14] D. Gann, Construction as a manufacturing process? Similarities and differences between 780

industrialized housing and car production in Japan, Construction Management and Economics, 781

14 (1996), 437-450. DOI:https://doi.org/10.1080/014461996373304. 782

[15] K. Jung, B. Chu, D. Hong, Robot-based construction automation: An application to steel beam 783

assembly (Part II), Automation in Construction, 32 (2013) 62-79. 784

DOI:https://doi.org/10.1016/j.autcon.2012.12.011. 785

[16] M. J. Skibniewski, Robotics in civil engineering, Computational Mechanics Publications, 1988. 786

ISBN: 978-0-905-45177-0 787

[17] T. Bock, Construction robotics, Autonomous Robot 22 (2007) 201-209. 788

DOI:https://doi.org/10.1007/s10514-006-9008-5. 789

[18] E. Gambao, C. Balaguer, F. Gebhart, Robot assembly system for computer-integrated construction, 790

Automation in Construction, 9(5) (2000) 479–487. DOI:https://doi.org/10.1016/S0926-791

5805(00)00059-5. 792

[19] C. Balaguer, EU FutureHome project results. In Proceedings of the 20th International Symposium 793

on Robotics and Automation in Construction (ISARC’03), Eindhoven, Netherland, (2003), pp 794

49-54. Retrieved from 795

<http://www.iaarc.org/publications/proceedings_of_the_20th_isarc/eu_futurehome_project_res796

ults.html> (accessed at 14 August 2017) 797

[20] R. Wing, B. Atkin, FutureHome – A Prototype for Factory Housing, In Proceedings of the 798

19th International Symposium on Robotics and Automation in Construction (ISARC’02), 799

Washington, U.S.A, (2002), pp 173-179. Retrieved from 800

http://www.iaarc.org/publications/proceedings_of_the_19th_isarc/futurehomea_prototype_for_801

factory_housing.html> (accessed at 14 August 2017) 802

[21] T. Bock, The Integrated Project ManuBuild of the EU, In Proceedings of the 23rd International 803

Symposium on Robotics and Automation in Construction (ISARC’06), Tokyo, Japan, (2006), pp 804

https://doi.org/10.1080/014461996373304
https://doi.org/10.1016/j.autcon.2012.12.011
https://doi.org/10.1016/S0926-5805(00)00059-5
https://doi.org/10.1016/S0926-5805(00)00059-5
http://www.iaarc.org/publications/proceedings_of_the_20th_isarc/eu_futurehome_project_results.html
http://www.iaarc.org/publications/proceedings_of_the_20th_isarc/eu_futurehome_project_results.html
http://www.iaarc.org/publications/proceedings_of_the_19th_isarc/futurehomea_prototype_for_factory_housing.html
http://www.iaarc.org/publications/proceedings_of_the_19th_isarc/futurehomea_prototype_for_factory_housing.html

33

361-364. Retrieved from 805

<http://www.iaarc.org/publications/proceedings_of_the_23rd_isarc/the_integrated_project_man806

ubuild_of_the_eu.html> (accessed at 14 August 2017) 807

[22] J. Sklar, Robots lay three times as many bricks as construction workers, MIT Technology Review, 808

2017. Retrieved from <https://www.technologyreview.com/s/540916/robots-lay-three-times-as-809

many-bricks-as-construction-workers/> (accessed at 14 August 2017). 810

[23] B. Khoshnevis, Automated construction by contour crafting – related robotics and information 811

technologies, Automation in Construction, 13 (2004), 5-19. 812

DOI:https://doi.org/10.1016/j.autcon.2003.08.012. 813

[24] Enrico Dini, D_Shape, Retrieved from http://www.d-shape.com. (accessed at 14 August 2017). 814

[25] H.S. Choi, C.S. Han, K.Y. Lee, S.H. Lee, Development of hybrid robot for construction works 815

with pneumatic actuator. Automation in Construction, 14(4) (2005) 452–459. 816

DOI:https://doi.org/10.1016/j.autcon.2004.09.008. 817

[26] J.P. Sousa, C.G. Palop, E. Moreira, A.M. Pinto, J. Lima, P. Costa, G. Veiga, A. P. Moreira, The 818

SPIDERobot: A Cable-Robot System for On-site Construction in Architecture, Robotic 819

Fabrication in Architecture, Art and Design (2016) pp 230-239. DOI:https://doi.org/10.1007/978-820

3-319-26378-6_17 821

[27] B. Chu, K. Jung, M.T. Lim, D. Hong, Robot-based construction automation: An application to 822

steel beam assembly (Part I), Automation in Construction, 32 (2013) 46-61. 823

DOI:https://doi.org/10.1016/j.autcon.2012.12.016 824

[28] K. Dörfler, T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, J. Buchli, Mobile robotic brickwork, 825

Robotic fabrication in Architecture, art and design (2016) 204-217. 826

DOI:https://doi.org/10.1007/978-3-319-26378-6_15 827

[29] A. Mirjan, F. Gramazio, M. Kohler, Building with flying robots, in FABRICATE: negotiating 828

design and making (2014) 266-271. ISBN: 9783856763312 829

http://www.iaarc.org/publications/proceedings_of_the_23rd_isarc/the_integrated_project_manubuild_of_the_eu.html
http://www.iaarc.org/publications/proceedings_of_the_23rd_isarc/the_integrated_project_manubuild_of_the_eu.html
https://www.technologyreview.com/s/540916/robots-lay-three-times-as-many-bricks-as-construction-workers/
https://www.technologyreview.com/s/540916/robots-lay-three-times-as-many-bricks-as-construction-workers/
https://doi.org/10.1016/j.autcon.2003.08.012
http://www.d-shape.com./
https://doi.org/10.1016/j.autcon.2004.09.008
https://doi.org/10.1016/j.autcon.2012.12.016

34

[30] L. S. Homem de Mello, A. C. Sanderson, A Correct and Complete Algorithm for the Generation 830

of Mechanical Assembly Sequences, IEEE Transactions on Robotics and Automation, 7(2) 831

(1991) 228-240. DOI: https://doi.org/10.1109/70.75905 832

[31] D.T. Le, J. Cortes, T. Simeon, A path planning approach to (dis)assembly sequencing. In IEEE 833

International Conference on Automation Science and Engineering, Bangalore, India, (2009) pp 834

286–291. DOI: https://doi.org/10.1109/COASE.2009.5234177 835

[32] S. Sujay, R. Ian, M. A. Nancy, Disassembly sequencing using a motion planning approach, 836

Proceedings ICRA, IEEE International Conference on Robotics and Automation, In Proceedings 837

of IEEE International Conference of Robotics Automation Seoul, Korea, May (2001), pp. 1475-838

1480. DOI: https://doi.org/10.1109/ROBOT.2001.932818 839

[33] R. H. Wilson, On Geometric Assembly Planning. PhD thesis, Stanford Univ., Stanford Technical 840

Report STAN-CS-92-1416 (1992). Retrieved from <http://dl.acm.org/citation.cfm?id=143786> 841

(accessed at 14 August 2017). 842

[34] H. Mosemann, F. Rohrdanz, F.M. Wahl, Stability analysis of assemblies considering friction. IEEE 843

Transactions on Robotics and Automation, 13(6) (1997) 805–813. 844

DOI: https://doi.org/10.1109/70.650159 845

[35] S. Rakshit, S. Akella, The Influence of Motion Path and Assembly Sequence on the Stability of 846

Assemblies, IEEE Transactions on Automation Science and Engineering , 12(2) (2015) 615-627. 847

DOI: https://doi.org/10.1109/TASE.2014.2345569 848

[36] R.H. Wilson, J.C. Latombe, Geometric Reasoning About Mechanical Assembly, Artificial 849

Intelligence 71(2) (1994) 371-396. DOI: https://doi.org/10.1016/0004-3702(94)90048-5 850

[37] D. Baraff, R. Mattikalli, P. Khosla, Minimal Fixturing of Frictionless Assemblies: Complexity and 851

Algorithms, Algorithmica 19 (1997) 4-39. DOI: https://doi.org/10.1007/PL00014419 852

[38] D.E. Stewart, J.C. Trinkle, An implicit time-stepping scheme for rigid body dynamics with inelastic 853

collisions and Coulomb friction. International Journal of Numerical Methods Engineering, 39 854

https://doi.org/10.1109/70.75905
https://doi.org/10.1109/COASE.2009.5234177
https://doi.org/10.1109/ROBOT.2001.932818
http://dl.acm.org/citation.cfm?id=143786
https://doi.org/10.1109/70.650159
https://doi.org/10.1109/TASE.2014.2345569
https://doi.org/10.1016/0004-3702(94)90048-5

35

(1996) 2673-2691. DOI: https:// 10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-855

NME972>3.0.CO;2-I 856

[39] Mindstorm, Lego Inc., Retrieved from <http://www.lego.com/en-gb/mindstorms> (accessed at 14 857

August 2017). 858

[40] Mindsqualls, Lego Inc., Retrieved from <http://www.mindsqualls.net/Introduction.aspx> 859

(accessed at 14 August 2017). 860

[41] RWTH – Mindstorms NXT Toolbox: Motor Control, RWTH Aachen University, Retrieved from 861

<http://www.mindstorms.rwth-aachen.de/trac/wiki/MotorControl> (accessed at 14 August 862

2017). 863

[42] Erips, Egrips Inc., Retrieved from <https://egrips.com/> (accessed at 14 August 2017). 864

 865

http://www.lego.com/en-gb/mindstorms
http://www.mindsqualls.net/Introduction.aspx
http://www.mindstorms.rwth-aachen.de/trac/wiki/MotorControl
https://egrips.com/

36

 866

Figure 1. The two functions of RPS: (a) Assemble and (b) Refabricate 867

*Note: The blue and red arrows represent digital and physical quantities, respectively. 868

 869

RPS

{Assemble}

3D model

Raw material

3D structure

RPS

{Refabricate}

Original 3D model

Original 3D structure

New 3D structure

New 3D model

Raw material

(a)

(b)

37

 870

 871

Figure 2. Design of the RPS software module 872

 873

Model

analyzer

Software

Assembly

sequencer

Hardware

controller

Refabrication

sequence

Models comparator

(only used for

{Refabricate})

Geometric data

Not-common parts

geometric data
Geometric

data

Motor

control

command

Motors‘

states

Original 3D Model

New 3D Model

(only used for {Refabricate})

38

 874

 875

Figure 3. Design of the RPS hardware module 876

 877

39

 878
 879

Figure 4. An example assembly sequence calculated by the assembly sequencer 880

 881

3 2 1

6 5

Stock side

4

Assembled blocksAssembly side

40

 882

Figure 5. Example of a DBG & its matrix representation 883

 884

P1

P2

P4P3

P2

P1

P4P3

direction

P1 P2 P3 P4

P1 0 0 0 0

P2 1 0 0 0

P3 0 1 0 0

P4 0 1 0 0

41

 885

Figure 6. Example of a truncated DBG & its matrix representation 886

 887

P1

P2

P4P3

P1

P2+4P3

Permanent connector

direction

P1 P2 + P4 P3

P1 0 0 0

P2

+

P4

1 0 0

P3 0 1 0

42

 888

(a) Gripper

(c) Forward drive
(b) Lift drive (coupled with

the “gripper” sub-module)

 889
Figure 7. Hardware submodules: (a) gripper, (b) lift drive, and (c) forward drive. 890

 891

43

Figure 8. Real-life and digital versions of test model: (a) WallDesign1 and (b) WallDesign2 892

 893

 1

1

2

3 4

 1

5

2
6

4

(a)

(b)

44

 894

Figure 9. Snap-shot of the entire system after completing the final test 895

 896

