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Abstract In the human brain, a default mode or task-negative network shows reduced activity

during many cognitive tasks and is often associated with internally-directed processes, such as mind

wandering and thoughts about the self. In contrast to this task-negative pattern, we show increased

activity during a large and demanding switch in task set. Furthermore, we employ multivoxel pattern

analysis and find that regions of interest within default mode network are encoding task-relevant

information during task performance. Activity in this network may be driven by major revisions of

cognitive context, whether internally or externally focused.

DOI: 10.7554/eLife.06481.001

Introduction
Functional magnetic resonance imaging (fMRI) has repeatedly demonstrated that cognitive tasks of

many kinds decrease activity in a large-scale cortical network, variously termed the task-negative or

default mode network (DMN) (Shulman et al., 1997; Raichle et al., 2001; Andrews-Hanna et al.,

2010). The DMN consistently shows reduced activity during task performance compared to rest

(Raichle and Snyder, 2007) and often reduced activity for harder compared to easier task versions

(Gilbert et al., 2012). In contrast to this general pattern, increased activity has been reported in

a cluster of mental states involving thinking about the self, one’s own perspective, or the perspective

of others (Buckner and Carroll, 2007). Examples include recollecting previous experiences (Vincent

et al., 2006) or imagining future ones (Addis et al., 2007), mind-wandering (Mason et al., 2007), and

theory of mind tasks (Young et al., 2010). The DMN has thus been linked to a number of high-level

cognitive processes, such as self-referential processing (Gusnard et al., 2001) and imaginary scene

construction (Hassabis and Maguire, 2007).

Recently, Andrews-Hanna et al. (2010) have argued that the DMN separates into three sub-

networks. Using graph theoretical analytic approaches to resting-state fRMI data, Andrews-Hanna

et al. identified a core sub-network comprising bilateral posterior cingulate cortex (PCC) and anterior

medial prefrontal cortex (AMPFC) a medial temporal lobe (MTL) sub-network made up of

ventromedial prefrontal cortex (VMPFC), bilateral hippocampal formation (HF), parahippocampus

(PHC), retrosplenial cortex (Rsp), and posterior inferior parietal lobule (pIPL) and a dorsomedial

prefrontal cortex (DMPFC) sub-network which includes the DMPFC, bilateral temporal parietal

junction (TPJ), lateral temporal cortex (LTC), and the temporal Pole (TempP). Andrews-Hanna et al.

argue for a degree of functional segregation between these sub-networks, with the MTL sub-network

especially linked to construction of mental scenes based on memory, and the DMPFC network more

involved in mentalising. These segregations, however, are likely to be relative, with many experiments,

for example, linking all three DMN sub-networks to conscious recollection (Vilberg and Rugg, 2012).

Here, we consider a simple conceptualisation of DMN function and apply it within the Andrews-

Hanna framework. Arguably, imagination, mind-wandering, and taking another’s perspective have in
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common a substantial change from the current cognitive context. Similarly, conscious recollection is

typically conceived as reactivation of a previously-experienced episode, with components linked into

a complex surrounding, context. Substantial shifts of context may be common in everyday activity, for

example, a shift from cooking dinner to giving directions to guests over the phone, but less common

in the constrained setting of typical laboratory tasks. For example, in a recent review of neuroimaging

studies of task switching (Kim et al., 2011), tasks that they argue required a contextual switch

involved either a change in simple attended features or binary categorization rules using a fixed, small

set of possible stimuli. Irrespective of specific high-level processes involved, we reasoned that the

DMN may be involved in any large switch of cognitive context—an operation presumably calling for

relaxation of many aspects of a current attentional focus, with concomitant activation of

representations and processes relevant to the new context.

To test this hypothesis, we used a novel experimental paradigm that required participants to switch

between similar and dissimilar tasks, within a relatively large set of six tasks (Figure 1). The six tasks

were each associated with a different rule, as determined by the colour border surrounding the task

stimulus. The tasks were split into three groups defined by stimulus category, with two possible tasks

per stimulus type. A no-switch trial occurred when participants had to apply the same rule that was

applied on the previous trial. A similar-task-switch trial—resembling switches in typical neuroimaging

studies—occurred when participants had to apply the other rule from the same category as the

previous trial. A dissimilar-task-switch occurred when participants had to apply a rule from a different

category compared to the previous trial.

Contrary to the common concept of a task-negative system, we predicted increased DMN

recruitment for the most difficult condition of switching between dissimilar tasks. We found this to be

the case and furthermore, that the activity increase was selectively found in the Core and MTL sub-

networks. In addition, we provide evidence that all sub-networks of the DMN represented task-

related information during task performance.

Results

Behavioral results
Accuracy on all tasks was high (median accuracy for all tasks >95%, inter quartile range <6%). As

predicted, response time (RT) was significantly longer when switching between dissimilar tasks (2043

ms) compared both to trials when no task switch occurred (1670 ms; t17 = 8.6, p < 0.001), and to trials

eLife digest The default mode network is a network in the brain that is often active when we

think about ourselves, reminiscence about the past or just let our minds wander. However, this

network—which involves many different regions of the brain—usually becomes inactive when we

focus on a specific cognitive task.

Now Crittenden et al. have used a technique called functional MRI to show that the default mode

network can become active again if we switch from one task to another. Functional MRI works by

measuring the blood flow in the brain: regions of the brain that are active have more blood flow than

regions that are not active.

Crittenden et al. studied the brains of human subjects as they performed a series of different

tasks. These experiments showed that the activity of the default mode network does not change

when the subject is focused on a single task. This is also true for when the subject switches between

two similar tasks. However, when the subject switches between two very different tasks, the network

becomes significantly more active. Moreover, the patterns of activity in the network seem to reflect

the nature of the tasks.

The work of Crittenden et al. strongly suggests that in order to successfully switch between two

different tasks, the brain needs to engage the default mode network and allow the mind to wander.

Future studies will involve exploring how different the two tasks need to be in order to activate the

default mode network, and studying how brain damage within the network may impair patients

ability to switch between different tasks.

DOI: 10.7554/eLife.06481.002
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with switches between similar tasks (1746 ms; t17 = 8.1, p < 0.001). Switches between similar tasks also

produced significantly longer RTs compared to no-switch trials (t17 = 2.8, p = 0.006).

Task-switch related activity in the DMN
Preprocessing steps for fMRI data included realignment of the raw echo-planar images (EPI), slice-

time correction, coregistration of the EPI images with the structural image, normalisation to the

Montreal Neurological Institute (MNI) template brain, smoothing with an 8 mm full-width at half-

maximum Gaussian kernel and filtering with a high-pass filter (see ‘Materials and methods’). Univariate

analysis of fMRI data was used to compare dissimilar-task-switch with no-switch trials through the

Figure 1. Task description. The experiment required participants to learn six tasks prior to scanning. (A) The six tasks

were each associated with a different rule, as determined by the colour border. The tasks were split into three

groups defined by stimulus category, with two possible tasks per stimulus type. (B) Experimental design. Within each

run, trials using the six tasks occurred in random order. A no-switch trial occurred when participants had to apply the

same task that was applied on the previous trial. A similar-task-switch trial occurred when participants had to apply

the other task from the same category as the previous trial. A dissimilar-task-switch occurred when participants had

to apply a task from a different category compared to the previous trial.

DOI: 10.7554/eLife.06481.003
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standard general linear model (GLM) approach. A regressor was constructed for each switch type with

events modelled from stimulus onset until response and convolved with the haemodynamic response

function. The resulting beta values for each switch type were compared and thresholded at p < 0.05,

correcting for the false discovery rate. We identified widespread activation predominantly in regions

of in the DMN (Figure 2A), with peaks found in bilateral HF, PHC, Rsp, PCC, AMPFC, and left pIPL

(Table 1). It is worth noting that all of these regions fall within either the Core or MTL sub-networks. In

comparison, no regions from the DMPFC sub-network showed significant activation at the whole-

brain level. A contrast of similar-task-switch against no-switch trials revealed no significant activation

across the whole brain.

To examine changes in activation from the perspective of the DMN sub-networks, we used

individual DMN regions of interest (ROIs) previously defined (Buckner et al., 2009; Andrews-Hanna

et al., 2010). The mean beta value was extracted from each ROI following each switch type. Planned,

paired two-tailed t-tests revealed significant increase in activity during dissimilar-task-switch

compared to no-switch in core (bilateral AMPFC, PCC) and MTL (Rsp, PHC) sub-networks, with

a tendency to de-activation in the DMPFC sub-network (significant in right TPJ) (Figure 2C). Again, no

ROIs revealed a significant difference between the similar-task-switch trials and no-switch trials. Two-

way repeated measures ANOVAs were performed separately for each sub-network, with factors of

ROI (Core: 4, MTL: 9, DMPFC: 7) and switch type (no-switch, dissimilar-task-switch). Main effects of

task-switching were found for the Core (F(1,17) = 16.7, p = 0.001) and MTL (F(1,17) = 6.1, p = 0.03) sub-

networks, showing increased activity for dissimilar switches. In contrast, the DMPFC sub-network

Figure 2. Activation of the default mode network (DMN) for dissimilar task switches. Region labels and regions of interest (ROIs) are color-coded

according to the sub-network to which they belong: yellow for Core, green for medial temporal lobe (MTL), blue for dorsomedial prefrontal cortex

(DMPFC). (A) Whole brain rendering in axial slices: the numbers above each slice indicate z-coordinate of that slice. The contrast of dissimilar-task-switch >
no-switch (T = 3.23, p < 0.05, FDR corrected) shows activations in regions previously identified as the DMN. (B) Locations of DMN ROIs distinguished by

Andrews-Hanna et al. (C) Change in activation of similar-task-switch (darker colours) and dissimilar-task-switch (lighter colours) relative to no-switch trials in

the DMN ROIs. APMFC: anterior medial prefrontal cortex, PCC: posterior cingulate cortex, pIPL: posterior inferior parietal lobe, Rsp: retrosplenial cortex,

PHC: parahippocampal cortex, HF: hippocampal formation, VMPFC: ventromedial prefrontal cortex, TPJ: temporoparietal junction, LTC: lateral temporal

cortex, TempP: temporal pole, DMPFC: dorsomedial prefrontal cortex. * indicates p < 0.05.

DOI: 10.7554/eLife.06481.004
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showed a marginally significant de-activation

(F(1,17) = 4.1, p = 0.06). Corresponding ANOVAs

were performed to test for the difference

between similar-task-switch and no-switch, but

these revealed no main effect in any sub-

network. To investigate differences at the sub-

network level, beta values were averaged across

the ROIs within each sub-network each of the

three trial types, and a two-way repeated

measures ANOVA (factors of sub-network and

switch type) was performed on the mean beta

values. This analysis revealed a main effect of

sub-network (F(2,34) = 18.9, p < 0.001) and an

interaction of switch type and sub-network (F(4,68)
= 17.8, p < 0.001). These data therefore show

a dissociation within the DMN: While the DMPFC

sub-network displayed the characteristic pattern

of reduced activity during executive control,

switching between dissimilar tasks showed an

opposite pattern of increased activity in Core and

MTL sub-networks.

In an exploratory analysis, we looked at the

univariate activation associated with dissimilar

switches between specific categories compared

to no-switch trials, in the three DMN sub-

networks, for example, from a semantic task to a lexical task, compared with repetition of the lexical

task. This was performed for all six between category switch types. Figure 3 shows that all types of

switch showed a relative increase in Core sub-network activation and decrease in DMFPC sub-network

activation. The MTL sub-network shows increases for 4 of the 6 switch types and a marginal decrease

when switching from the perceptual task. Especially for the Core and DMPFC sub-networks, these

data suggest little variation in the pattern of results across different task types.

Multivariate decoding demonstrates task representation across the
DMN
For the multivariate analysis, the same preprocessing pipeline was followed with the omission of the

smoothing step. We reasoned that if the DMN was involved in switching between tasks, then the

differences between tasks might be represented within the network. To test this hypothesis, we

performed a multivariate pattern analysis on the same ROIs. For each ROI, classifiers were trained to

discriminate between the voxel-wise pattern of activation for each task pair (6 tasks, therefore 15 task

pairs) and these classifiers were subsequently tested on independent data using leave-one-run-out

cross-validation (see ‘Materials and methods’). The matrices in Figure 4A show the classification

accuracy (CA) for each task pair in each ROI, averaged across participants. The strongest decoding of

task was found in bilateral HF, pIPL and the PCC, while bilateral TPJ, Rsp, AMPFC, and DMPFC on the

midline showed weaker but still significant decoding.

Decoding of task between dissimilar task pairs is likely driven by many differences in task features.

In contrast, differences between similar tasks will be predominantly driven by the internal

representation of the specific decision rule. To quantify the extent to which rule and other features

were driving the CA scores, CAs for ROIs within the Core, MTL and DMPFC sub-networks were

averaged separately for similar task pairs and dissimilar task pairs. This analysis (Figure 4B) revealed

significant decoding of dissimilar task pairs in all DMN sub-networks, and weaker but significant

decoding of similar task pairs in the DMPFC sub-network.

Recently concern has arisen that differences in RT may be driving differences in CA (Todd et al.,

2013; for contrary arguments see; Woolgar et al., 2014). We performed a regression analysis of CA

against absolute difference in RT in each of the three sub-networks separately. First, we extracted the

CA associated with each task pair in each ROI in each subject. We then calculated the mean CA across

the component ROIs of the Core, MTL, and DMPFC sub-networks in each individual, producing

Table 1. Peak coordinates of DMN regions that

showed significantly greater activation for

dissimilar-task-switch over no-switch

ROI hemisphere x y z t-statistic

HF left −30 −36 −6 3.64

right 33 −36 −9 3.73

PHC left −21 −42 9 4.87

right 30 −39 6 6.81

Rsp left −9 −48 12 3.97

right 9 −51 12 3.89

PCC left −12 −54 24 5.12

right 12 −51 24 5.16

AMPFC left −9 51 −6 3.24

right 9 48 −3 3.72

pIPL left −39 −75 33 3.58

Coordinates are in MNI space. HF = hippocampal

formation, PHC = parahippocampus, Rsp = retrosplenial

cortex, PCC = posterior cingulate cortex, AMPFC =
anterior medial prefrontal cortex, pIPL = posterior

inferior parietal lobe.

DOI: 10.7554/eLife.06481.005
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a 3-dimensional matrix of CA values for 3 sub-networks × 18 subjects × 15 task pairs. A similar matrix

was produced for absolute RT differences. We segregated the dissimilar–task pairs and similar–task

pairs and conducted a Spearman’s correlational analysis of RT against CA for each task-pair type

within each sub-network. The results showed strong discrimination of dissimilar task pairs, and weak

discrimination of similar task pairs, irrespective of RT difference (Figure 5A).

A second analysis considered data from each subject separately, with a separate regression

analysis for similar and dissimilar task pairs in each ROI. A general linear model was constructed with

a regressor for the absolute RT difference for either the similar-task-pairs or dissimilar-task-pairs,

which was fit to the corresponding CA data. This produced a beta estimate for similar and dissimilar-

task-pairs in each ROI, in each subject. Beta estimates were subsequently averaged across the

component ROIs of each sub-network. Figure 5B shows the mean beta estimate for the similar and

dissimilar task pairs in each subject for the Core, MTL, and DMPFC sub-networks. Within each graph,

data from the 18 subjects are sorted in ascending order. Overall, the graphs suggest that RT does not

systematically predict CA across participants, especially for the dissimilar task pairs (bottom row) for

which CA was highest.

Together these analyses demonstrate that simple RT differences were not strongly driving the

classification accuracies.

Discussion
In previous work, DMN activity has been associated with a variety of complex, often self-referential

mental processes, such as retrieving past events from one’s life, imagining possible future events, or

considering the beliefs of oneself and others (Buckner and Carroll, 2007). Here, we argue that

a simple variable may relate these complex processes—the degree of change in cognitive context.

Figure 3. Activation associated with each between category switch. An exploratory analysis looking at the

activation/deactivation associated with switching between each of the three task categories. Core and MTL sub-

networks predominantly show increased activation following a dissimilar task switch across switch types, whereas

DMPFC shows a relative decrease in activation. Abbreviations: sem = semantic category, per = perceptual, lex =
lexical. * denotes p < 0.05 from a paired, two-tailed t-test.

DOI: 10.7554/eLife.06481.006
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To address this hypothesis we modified a typical task switching study to include both small

shifts—similar to those of many previous studies—and much larger shifts. In contrast to the common

idea of the DMN as a task-negative system, the activity of which progressively decreases with

increasing task difficulty, our results show the opposite for a large change of cognitive context, in

particular for Core and MTL sub-networks.

As cognitive context is changed, elements of the old context must be suppressed and elements of

the new context must be retrieved or activated, producing a reconfiguration appropriate to the new

circumstances. Our data suggest DMN activation only when the change is sufficiently large, perhaps

analogous to many of the shifts taking place in everyday cognition. It is uncertain whether large and

small shifts differ qualitatively or only quantitatively. In our task, for example, a shift between rules

within the same category may have been executed without reference to the link between frame color

and categorization rule; to perform such a switch, it was necessary only to see that frame color had

changed and to retrieve the other rule relevant to the current set of stimuli. In contrast, a shift

between categories likely required reference back to a broader set of task rules, including the

remembered list of color–rule combinations. More broadly, one possibility is that the DMN is involved

in relaxing a current attentional focus, allowing new cognitive contents to arise. When cognitive

operations are largely similar across successive trials, the DMNmay be suppressed, but as increasingly

more of the current focus must be dissolved, suppression may shift to activation.

Figure 4. Classification accuracy (CA) within the DMN sub-network ROIs. (A) Classification accuracies between different task pairs in all DMN ROIs. Large

correlation matrix used as example is the same as left HF. The colour of the circle in the key matches with the colour borders used to indicate each task in

Figure 1A: Red for ‘bigger than a shoebox?’, blue for ‘living?’, brown for ‘same shape?’, pink for ‘same height?’, green for ‘does adding A make a word?’,

purple for ‘does adding I make a word’? Matrices show the classification accuracy of decoding each task pair; values below the diagonal show

classification accuracy for all task pairs, while non-grey values above the diagonal show only decoding that survived the threshold for statistical

significance. The colour borders indicate the sub-network that the ROIs belong to: core (yellow), MTL (green), and DMPFC (blue). ROIs on the left side of

each box are from the left hemisphere, those on the right are from the right hemisphere. (B) All three sub-networks demonstrated above-chance

classification accuracy when decoding dissimilar tasks, while only the DMPFC sub-network demonstrated significant decoding of similar task pairs. Error

bars indicate standard error. * indicates p < 0.05.

DOI: 10.7554/eLife.06481.007
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Thus, it is the magnitude of switch involved that distinguishes this study from much of the previous

work in the literature. The point is illustrated by a detailed consideration of the task-switching review by

Kim et al. (2011), as described in the introduction. Kim et al. (2011) identified three major types of

task-switch found in the literature: perceptual switch, response switch, and contextual switch, the latter

of which is the most comparable to the current work. Of the 20 tasks that they identified as involving

a contextual switch, 17 used fixed small stimulus sets, with the switches (like our within-category

switches) concerning just the relevant stimulus feature such as colour or shape. Two studies used a task

that required participants to make one of two possible binary decisions on serially presented letter

strings. The remaining task was essentially our semantic task, using text instead of images. Unlike these

studies, we propose that it is our use of much more substantial switches, requiring larger revisions of

cognitive context and operations, that leads to the novel finding of DMN activation.

Figure 5. The influence of response time (RT) on classification accuracy. (A) Correlation between classification accuracy and RT difference in the three DMN

sub-networks. Each point represents data for a single task pair in a single subject, with mean CA across ROIs of the named sub-network plotted against absolute RT

difference. The darker shades in each graph are taken from the similar task pairs, while the lighter shades are taken from the dissimilar task pairs. (B) Beta estimates

for the association of CA and RT in each subject for similar and dissimilar task pairs of the three DMN sub-networks. In each graph subjects’ beta estimates are

sorted is in ascending order. Top row, a–c, displays beta estimates for similar task pairs in the Core, MTL and DMPFC, respectively. Bottom row, d–f, shows beta

estimates for dissimilar task pairs in the Core, MTL and DMPFC, respectively. The p-value from a 2-tailed, 1-way t-test of each graph’s beta values is shown.

DOI: 10.7554/eLife.06481.008
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Much previous work links activity in the DMN to conscious recollection, commonly defined by the

ability to link a remembered item to the surrounding context of a specific event. A role in memory for

individual events fits well with the proposal that the DMN binds together the components of

a complex cognitive context. Beyond traditional studies of episodic and autobiographical memory,

our results show the importance of DMN context processing in cognitive control. In contrast to the

common finding of deactivation linked to executive control, our findings show increased activity when

the change of context is sufficiently large. Establishing a new, complex context, we suggest, may be

common to recollection of specific previous events and to major revisions of complex task rules.

An intriguing aspect of the present results is the difference between the regions that show switch-

related activity and those that encoded task-related information. The regions that demonstrate switch-

related activity show relatively strong correspondence to the pattern of DMN fractionation presented

by Andrews-Hanna et al. In contrast, the DMN regions that show strong encoding extend across all

three sub-networks, suggesting only partial functional segregation. Encoding analysis is likely more

sensitive than univariate activity analysis, reflecting both overall activity within a broad region, and the

exact pattern of activity within that region (Davis et al., 2014). Though DMPFC showed no univariate

signal linked to switching task category, our results suggest some involvement in task representation.

Our results show very different levels of CA for discrimination of similar vs dissimilar tasks. For the

comparison of similar tasks, other than the different colour of border surrounding the task item, the

only difference is the internal representation of task rule. In contrast, comparing dissimilar tasks

involves a myriad of differences such as visual properties of the stimuli, cognitive domain (semantic

knowledge, lexicon, visual discrimination) as well as task rule. Correspondingly, much stronger

decoding is seen across the DMN between dissimilar tasks. This is unsurprising for a network of

regions hypothesised to link components of a broad cognitive context.

Many studies suggest sustained DMN activity in rest compared to active task performance. It is

unclear how such sustained activity relates to the switch-related activity we have shown here. On the

one hand, it is plausible that, when a participant lies in a scanner at rest, there are periodic large shifts

in the content of cognition, and in part, ‘sustained’ DMN activity may reflect averaging across shifts

occurring at variable, unknown times. Indeed, traditional studies of resting state functional

connectivity depend on temporal variation in network activity, as expected for a signal in part linked

to transient cognitive events. That said, if a core aspect of DMN function is relaxing an attentional

focus, sustained enhancement is plausible during a period of relatively unfocused cognitive activity.

An unexpected aspect of our results is the lack of switch-associated activity when changing

between similar tasks, which does show a robust behavioral cost compared to no-switch trials. In

previous studies, apparently similar cases of task switching have been associated with widespread

recruitment of a fronto-parietal, executive control network (Sohn et al., 2000; Braver et al., 2003;

Monsell, 2003; Yeung et al., 2006; Kim et al., 2011), and it is unclear why no similar activity was seen

in our data. One contributing factor may be our explicit modelling of RT differences between

conditions, convolving the canonical haemodynamic response with the duration of each trial from

stimulus presentation until response. As this procedure is designed to correct for activation

differences due simply to longer RT on switch trials, it may reduce or remove differences seen in

studies that do not adopt such a correction. Our results also raise the possibility, however, that

traditional task-switching results may not generalise to the more complex conditions of our

experiment. Future work will be needed to resolve this discrepancy.

Conclusion
In conclusion, we propose that the DMN may be recruited whenever large changes of cognitive

context are required. This may apply in complex cases of self-referential processing, mind wandering

etc, but also in relatively simple acts of cognitive or executive control. The DMN, widely seen as

a ‘task-negative’ network, may respond positively to any task which demands a switch from one broad

context to another.

Materials and methods

Participants
18 right-handed participants (10 females) aged between 18 and 40 were recruited from the Medical

Research Council Cognition and Brain Sciences Unit subject panel. Of 21 original subjects scanned,
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three had to be removed for excessive head-movements (over 10 mm translation and/or 6˚ rotation).

No participant had a history of neurological or psychiatric illness. Participants were reimbursed for

their time. Ethics approval was given by the Cambridge Psychology Research Ethics Committee.

Task description
All three tasks were created using the Psychophysics Toolbox for MATLAB (Brainard, 1997). Within

the scanner, the stimulus display was projected onto a mirror mounted to a 32-channel head-coil.

Participants were required to learn six different tasks (Figure 1A). Each task was associated with

a different rule, with the appropriate rule determined by the colour border in which the task stimulus

appeared. The six tasks rules are shown in Figure 1A. Prior to scanning, participants practised the task

until they had completed at least 20 trials with an accuracy exceeding 80%. Importantly, the six tasks

were grouped into three categories of two tasks each, where the stimuli within a category could be

relevant to either rule within that category, but not to rules of other categories. Furthermore, all

categories included trials which required a positive answer for both rules, for one rule but not the

other, or for neither rule; therefore subjects needed to remember and apply the correct rule on all

trials. All questions were framed in a true/false format, so that arbitrary response mappings for each

rule did not have to be learned in addition to the rules themselves.

Each trial began with the simultaneous appearance of the colour border (visual angle = 7.9˚) and the task

stimulus (Figure 1B). Participants were requested to respond as quickly as possible with a true or false

answer (right thumb button press = true, left thumb button press = false). The border and stimulus

remained on screen until the subject had made their response. A low tone was played to participants if they

made an incorrect response. There was a jittered interval between the response to one trial and the onset of

the next. Interval jittering followed an exponential distribution between 1 s and 11 s, with a mean of 4.1 s.

Participants learned the tasks prior to scanning. An event-related design was adopted, with 73 trials

per run. Each run had at least 12 trials of each of the six task types. Task switch type was also balanced

within a run: 24 no-switch trials, 24 similar-task-switches, and 24 dissimilar-task-switches. Post scanning,

when questioned, no participants reported having any sense of what task to expect on a given trial.

fMRI acquisition
Scans were acquired with a 3T Siemens Trim Trio scanner. 32 3-mm slices (0.75 mm interslice gap) in

axial orientation gave an in-plane resolution of 3 × 3 mm and were acquired using a TR of 2 s. T2*-

weighted EPI capturing blood oxygen level dependent contrast was employed with a flip angle of 78˚.

For both experiments, the first eight images were discarded to avoid T1 equilibration effects.

Univariate analysis
For the univariate analysis, images were preprocessed and analysed with SPM5 (Wellcome

Department of Cognitive Neurology). In the first preprocessing step, data were checked for obvious

artefacts, and all images were realigned to the first image. Next we performed slice time correction

and coregistration of the structural with the functional EPI images. Finally, data were normalized to the

standard MNI template, smoothed with an 8 mm full-width at half-maximum Gaussian kernel and

subjected to a high-pass filter with cut-off at 128 s.

Fixed-effects analyses were performed on each individual’s data using a general linear model. In

the first univariate analysis investigating switching related activity three regressor functions were used

(no-switch trials, similar-task-switch trials, and dissimilar-task-switch trials). Each regressor was

modelled as a rectangular function from the onset of each stimulus to the moment of response and

convolved with the canonical hemodynamic response function. Beta weight images were contrasted

for the conditions dissimilar-task-switch > no-switch and similar-task-switch > no-switch. Contrasts

were further examined by random-effects analysis. Activation maps (threshold 0.05, FDR-corrected)

were visualised using MRIcroGL (Rorden et al., 2007).

For ROI analysis, mean contrast values within each ROI were extracted for each subject, using the

MarsBaR SPM toolbox (Brett et al., 2002). ROIs were spherical, with 8 mm radius, based around peak

coordinates (Figure 2B) taken from Andrews-Hanna et al. (2010).

For the exploratory analysis into the activation associated with switches between specific

categories a separate GLM was constructed. 36 regressors were used (one regressor for each possible

switch type) and modelled as before. The resulting beta estimates were then processed using the

same ROI analysis method as before with the same ROIs.
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Multivoxel pattern analysis
Multivoxel pattern analysis was performed using the Decoding Toolbox (Christophel et al., 2012;

Görgen et al., 2012). Preprocessing of the data was the same as for the univariate whole-brain

analysis, except for the omission of the smoothing step. Again, a fixed effects analysis was performed

on each participant’s data using a general linear model. For this GLM, each task was modelled as

a separate regressor, constructed as a rectangular function from the onset of each stimulus to the

moment of response and convolved with the canonical hemodynamic response function. The same

ROIs as previously (Figure 2B) were used.

Prior to pattern analysis within each ROI, beta values were Z-scored across all voxels within the ROI,

separately for each task. This step was intended to reduce any impact of task differences in overall ROI

activity. Pattern discrimination between tasks was then estimated using pairwise classification, that is,

only 1 of the 15 possible task pairs was decoded at a time. A support vector machine (LIBSVM) (Fan

et al., 2005) was used to train and classify data from three of the four runs, with the remaining run

used to test the classifier. Test and training runs were always kept separate and each run was used to

test the classifier once, that is, fourfold cross-validation. The CA for a given ROI was averaged across

test-train splits, yielding a single CA for each ROI, in each individual, for each task pair.

Acknowledgements
This work was funded by the Medical Research Council (UK) intramural program MC_US_A060_0001.

Additional information

Funding

Funder Grant reference Author

Medical Research Council (MRC) MC_US_A060_0001 John Duncan

The funder had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

BMC, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; DJM, Analysis and interpretation of data, Drafting or revising the article; JD,

Conception and design, Analysis and interpretation of data, Drafting or revising the article

Author ORCIDs
Daniel J Mitchell, http://orcid.org/0000-0001-8729-3886

Ethics

Human subjects: Informed consent, and consent to publish, was obtained through the University of

Cambridge ethics committee: CPREC (Cambridge Psychology Research Ethics) 2010.16.

References
Addis DR, Wong AT, Schacter DL. 2007. Remembering the past and imagining the future: common and distinct
neural substrates during event construction and elaboration. Neuropsychologia 45:1363–1377. doi: 10.1016/j.
neuropsychologia.2006.10.016.

Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. 2010. Functional-anatomic fractionation of the
brain’s default network. Neuron 65:550–562. doi: 10.1016/j.neuron.2010.02.005.

Brainard DH. 1997. The psychophysics toolbox. Spatial Vision 10:433–436. doi: 10.1163/156856897X00357.
Braver TS, Reynolds JR, Donaldson DI. 2003. Neural mechanisms of transient and sustained cognitive control
during task switching. Neuron 39:713–726. doi: 10.1016/S0896-6273(03)00466-5.

Brett M, Anton JL, Valabregue R, Poline JB. 2002. Region of interest analysis using an SPM toolbox. Neuroimage
16:497.

Buckner RL, Carroll DC. 2007. Self-projection and the brain. Trends in Cognitive Sciences 11:49–57. doi: 10.1016/j.
tics.2006.11.004.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson
KA. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and
relation to Alzheimer’s disease. The Journal of Neuroscience 29:1860–1873. doi: 10.1523/JNEUROSCI.
5062-08.2009.

Crittenden et al. eLife 2015;4:e06481. DOI: 10.7554/eLife.06481 11 of 12

Research article Neuroscience

Prior to pattern analysis, beta values were Z-scored across tasks within each voxel of the ROI. This 
step was intended to reduce any impact of task differences in overall ROI activity. Pattern discrimina-
tion between tasks was then estimated using pairwise classification, that is, only 1 of the 15 possible 
task pairs was decoded at a time. A support vector machine (LIBSVM) (Fan et al., 2005) was used to 
train and classify data from three of the four runs, with the remaining run used to test the classifier. 
Test and training runs were always kept separate and each run was used to test the classifier once, 
that is, fourfold cross-validation. The CA for a given ROI was averaged across test-train splits, yielding 
a single CA for each ROI, in each individual, for each task pair.

http://orcid.org/0000-0001-8729-3886
http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.016
http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.016
http://dx.doi.org/10.1016/j.neuron.2010.02.005
http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.1016/S0896-6273(03)00466-5
http://dx.doi.org/10.1016/j.tics.2006.11.004
http://dx.doi.org/10.1016/j.tics.2006.11.004
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.7554/eLife.06481


Christophel TB, Hebart MN, Haynes JD. 2012. Decoding the contents of visual short-term memory from human
visual and parietal cortex. The Journal of Neuroscience 32:12983–12989. doi: 10.1523/JNEUROSCI.0184-12.2012.

Davis T, LaRocque KF, Mumford JA, Norman KA, Wagner AD, Poldrack RA. 2014. What do differences between
multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.
NeuroImage 97:271–283. doi: 10.1016/j.neuroimage.2014.04.037.

Fan RE, Chen PH, Lin CJ. 2005. Working set selection using second order information for training support vector
machines. The Journal of Machine Learning Research 6:1889–1918.

Gilbert SJ, Bird G, Frith CD, Burgess PW. 2012. Does ‘task difficulty’ explain ‘Task-Induced deactivation’? Frontiers
in Psychology 3:125. doi: 10.3389/fpsyg.2012.00125.

Görgen K, Hebart MN, Haynes JD. 2012. The decoding toolbox (TDT): a new fMRI analysis package for SPM and
Matlab. In: 18th International conference on functional mapping of the human brain (HBM). 5812.

Gusnard DA, Akbudak E, Shulman GL, Raichle ME. 2001. Medial prefrontal cortex and self-referential mental
activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences of USA 98:
4259–4264. doi: 10.1073/pnas.071043098.

Hassabis D, Maguire EA. 2007. Deconstructing episodic memory with construction. Trends in Cognitive Sciences
11:299–306. doi: 10.1016/j.tics.2007.05.001.

Kim C, Cilles SE, Johnson NF, Gold BT. 2011. Domain general and domain preferential brain regions associated with
different types of task switching: a meta-analysis. Human Brain Mapping 142:130–142. doi: 10.1002/hbm.21199.

Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. 2007. Wandering minds: the default
network and stimulus-independent thought. Science 315:393–395. doi: 10.1126/science.1131295.

Monsell S. 2003. Task switching. Trends in Cognitive Sciences 7:134–140. doi: 10.1016/S1364-6613(03)00028-7.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain
function. Proceedings of the National Academy of Sciences USA 98:676–682. doi: 10.1073/pnas.98.2.676.

Raichle ME, Snyder AZ. 2007. A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:
1083–1090. discussion 1097–9. doi: 10.1016/j.neuroimage.2007.02.041.

Rorden C, Karnath HO, Bonilha L. 2007. Improving lesion-symptom mapping. Journal of Cognitive Neuroscience
19:1081–1088. doi: 10.1162/jocn.2007.19.7.1081.

Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE. 1997. Common blood flow
changes across visual tasks: II. decreases in cerebral cortex. Journal of Cognitive Neuroscience 9:648–663.
doi: 10.1162/jocn.1997.9.5.648.

Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. 2000. The role of prefrontal cortex and posterior parietal
cortex in task switching. Proceedings of the National Academy of Sciences USA 97:13448–13453. doi: 10.1073/
pnas.240460497.

Todd MT, Nystrom LE, Cohen JD. 2013. Confounds in multivariate pattern analysis: theory and rule representation
case study. Neuroimage 77:157–165. doi: 10.1016/j.neuroimage.2013.03.039.

Vilberg KL, Rugg MD. 2012. The neural correlates of recollection: transient versus sustained FMRI effects. The
Journal of Neuroscience 32:15679–15687. doi: 10.1523/JNEUROSCI.3065-12.2012.

Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL. 2006. Coherent spontaneous
activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology 96:3517–3531. doi: 10.
1152/jn.00048.2006.

Woolgar A, Golland P, Bode S. 2014. Coping with confounds in multivoxel pattern analysis: what should we do
about reaction time differences? a comment on todd, nystrom & cohen 2013. NeuroImage 98:506–512. doi: 10.
1016/j.neuroimage.2014.04.059.

Yeung N, Nystrom LE, Aronson JA, Cohen JD. 2006. Between-task competition and cognitive control in task
switching. The Journal of Neuroscience 26:1429–1438. doi: 10.1523/JNEUROSCI.3109-05.2006.

Young L, Dodell-Feder D, Saxe R. 2010. What gets the attention of the temporo-parietal junction? an fMRI
investigation of attention and theory of mind. Neuropsychologia 48:2658–2664. doi: 10.1016/j.
neuropsychologia.2010.05.012.

Crittenden et al. eLife 2015;4:e06481. DOI: 10.7554/eLife.06481 12 of 12

Research article Neuroscience

http://dx.doi.org/10.1523/JNEUROSCI.0184-12.2012
http://dx.doi.org/10.1016/j.neuroimage.2014.04.037
http://dx.doi.org/10.3389/fpsyg.2012.00125
http://dx.doi.org/10.1073/pnas.071043098
http://dx.doi.org/10.1016/j.tics.2007.05.001
http://dx.doi.org/10.1002/hbm.21199
http://dx.doi.org/10.1126/science.1131295
http://dx.doi.org/10.1016/S1364-6613(03)00028-7
http://dx.doi.org/10.1073/pnas.98.2.676
http://dx.doi.org/10.1016/j.neuroimage.2007.02.041
http://dx.doi.org/10.1162/jocn.2007.19.7.1081
http://dx.doi.org/10.1162/jocn.1997.9.5.648
http://dx.doi.org/10.1073/pnas.240460497
http://dx.doi.org/10.1073/pnas.240460497
http://dx.doi.org/10.1016/j.neuroimage.2013.03.039
http://dx.doi.org/10.1523/JNEUROSCI.3065-12.2012
http://dx.doi.org/10.1152/jn.00048.2006
http://dx.doi.org/10.1152/jn.00048.2006
http://dx.doi.org/10.1016/j.neuroimage.2014.04.059
http://dx.doi.org/10.1016/j.neuroimage.2014.04.059
http://dx.doi.org/10.1523/JNEUROSCI.3109-05.2006
http://dx.doi.org/10.1016/j.neuropsychologia.2010.05.012
http://dx.doi.org/10.1016/j.neuropsychologia.2010.05.012
http://dx.doi.org/10.7554/eLife.06481


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'eLife'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


