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Abstract

The computation of Schrödinger equations in the semiclassical regime presents

several enduring challenges due to the presence of the small semiclassical pa-

rameter. Standard approaches for solving these equations commence with spa-

tial discretisation followed by exponentiation of the discretised Hamiltonian

via exponential splittings.

In this thesis we follow an alternative strategy—we develop a new technique,

called the symmetric Zassenhaus splitting procedure, which involves directly

splitting the exponential of the undiscretised Hamiltonian. This technique al-

lows us to design methods that are highly efficient in the semiclassical regime.

Our analysis takes place in the Lie algebra generated by multiplicative opera-

tors and polynomials of the differential operator.

This Lie algebra is completely characterised by Jordan polynomials in the dif-

ferential operator, which constitute naturally symmetrised differential opera-

tors. Combined with the Z2-graded structure of this Lie algebra, the symmetry

results in skew-Hermiticity of the exponents for Zassenhaus-style splittings, re-

sulting in unitary evolution and numerical stability.

The properties of commutator simplification and height reduction in these Lie

algebras result in a highly effective form of asymptotic splitting: exponential

splittings where consecutive terms are scaled by increasing powers of the small

semiclassical parameter. This leads to high accuracy methods whose costs

grow quadratically with higher orders of accuracy.

Time-dependent potentials are tackled by developing commutator-free Magnus

expansions in our Lie algebra, which are subsequently split using the Zassen-

haus algorithm. We present two approaches for developing arbitrarily high-

order Magnus–Zassenhaus schemes—one where the integrals are discretised

using Gauss–Legendre quadrature at the outset and another where integrals

are preserved throughout.

These schemes feature high accuracy, allow large time steps, and the quadratic

growth of their costs is found to be superior to traditional approaches such as

Magnus–Lanczos methods and Yoshida splittings based on traditional Magnus

expansions that feature nested commutators of matrices.

An analysis of these operatorial splittings and expansions is carried out by

characterising the highly oscillatory behaviour of the solution.
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Chapter 1

Introduction

Equations of quantum mechanics are notoriously difficult to solve. Under most circum-

stances it is not possible to solve them with pen and paper, and even computational

methods encounter several enduring challenges. Depending on the equation of quantum

mechanics under consideration, the development of effective numerical methods might

require overcoming considerable technical hurdles presented by high-dimensionality, non-

linearity, unboundedness, stochasticity and time-dependence of potentials, for instance.

The focus of this thesis is the one-dimensional, linear, semiclassical Schrödinger equa-

tions. Some results of this thesis, in particular the analysis of size of commutators and

the analysis of error, can be extended to the case of Schrödinger equations in multiple

dimensions and non-semiclassical regime, while others, such as the analysis of cost, will

not translate directly.

The aim of this thesis will be to lay down some algorithmic procedures, algebraic

observations and analysis approaches that can be used for developing and analysing a

series of high order methods, some of which may be found to be inferior to existing

methods while others are clearly superior. Thus, the techniques developed here can be

understood to be as much, if not more, of a central part of the results as the concrete

numerical methods presented. The extension of these techniques to more general cases,

however, is beyond the scope of this thesis.

Even when we consider a single dimension and time-independent potentials, efficient

computational solution of these equations is far from simple due to the presence of the small

semiclassical parameter, ε, which plays a role similar to the reduced Planck’s constant,

~ ≈ 1.054 × 10−34 J · s, and which is a source of numerous difficulties. In principle, it is

possible to scale ε = ~ = 1 by working in atomic units, but this restricts us to length, time

and mass scales that are exceedingly small (10−11m, 10−17s and 10−30kg, respectively).

When simulations for even moderately larger scales are required, ε can take very small

values, and the range 10−8 ≤ ε ≤ 10−2 is not unrealistic.

Small values of ε result in rapid oscillations of frequency O (1/ε) in both space and
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time. Resolving these oscillations typically requires fine grids and small time steps of

size O (ε), making standard methods like Strang splitting prohibitively expensive1 and

inaccurate. Higher-order methods such as Yoshida splittings allow larger time steps while

maintaining reasonable accuracy. However, their costs grow exponentially as O (3n) once

we consider higher orders of accuracy. In this thesis we demonstrate an approach for

overcoming this exponential blow-up by resorting to some algebraic techniques.

1.1 Zassenhaus splittings

Instead of working in the language of matrices, following the discretisation of the Hamil-

tonian, our narrative develops directly in the Lie algebra generated by the infinite dimen-

sional operators V and ∂2
x, which are the constituents of the Hamiltonian. The resulting

methods, called the symmetric Zassenhaus splittings, can be designed to arbitrarily high-

order accuracies with costs that grow quadratically, not exponentially.

In Chapters 4 and 6, we will develop asymptotic exponential splittings of the form

Zn,σ = e
1
2
W [0]

e
1
2
W [1] · · · e

1
2
W [n]

eW
[n+1]

e
1
2
W [n] · · · e

1
2
W [1]

e
1
2
W [0]

,

where consecutive exponents are scaled by increasing powers of ε,

W [0] = O
(
εσ−1

)
,

W [k] = O
(
ε(2k−1)σ−1

)
, k = 1, . . . , n,

W [n+1] = O
(
ε(2n+1)σ−1

)
,

and where the size of the exponents and the accuracy are analysed in the currency of the

inherent semiclassical parameter ε after tying the choice of spatial grid resolution ∆x and

the time step h to ε using the power laws,

∆x = O (ε) , h = O (εσ) , σ > 0.

Zn,σ is called a symmetric Zassenhaus splitting and features an O
(
ε(2n+3)σ−1

)
accuracy.

At this stage the splitting is in an operatorial form—W [k]s are still infinite dimensional

and unbounded operators. The O
(
ε(2k−1)σ−1

)
size of W [k], thus, is merely an indication

of how large this term will be upon discretisation (typically via spectral collocation) where

1 (Jin, Markowich & Sparber 2011) note that when we are only concerned with observables, the time step
in the Strang splitting has no restrictions on account of ε. However, as will become evident in Figure 6.8,
higher order methods such as Yoshida and Zassenhaus splitting do outperform the Strang splitting. This
is because they are higher order in time. Thus, even when time steps are not constrained by ε, higher
order methods do remain desirable.
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1.1. Zassenhaus splittings

∂x is replaced by the skew-symmetric differentiation matrix K, whose spectral radius is

ρ(K) = O
(
(∆x)−1

)
= O

(
ε−1
)
.

Although ∂x is an unbounded operator, we abuse notation and write

K = O
(
ε−1
)
, ∂x = O

(
ε−1
)
,

to indicate that it is eventually replaced by a matrix of size2 O
(
ε−1
)
. In Chapter 9 we

will see how this notation can be made rigorous without discretisation considerations.

After discretisation, the outermost exponent W [0] in the Zassenhaus splitting is expo-

nentiated by using two FFTs since it typically happens to be circulant matrix, while W [1]

is typically a diagonal matrix and exponentiated directly. The remaining exponents do

not posses a structure that lends them to direct exponentiation. However, they are very

small, W [k] = O
(
ε(2k−1)σ−1

)
, and we find that very few Lanczos iterations are required

to exponentiate them to the required accuracy of O
(
ε(2n+3)σ−1

)
.

Much like the comparable order 2n+2 Yoshida splitting, which will be shown to feature

an O
(
ε(2n+3)σ−1

)
accuracy under these scaling choices, the cost of Zn,σ is dominated by

the O (M logM) cost of FFTs where M = O
(
(∆x)−1

)
= O

(
ε−1
)

is the number of grid

points in spatial discretisation. However, unlike the 2× 3n FFTs required in the Yoshida

splitting, the number of FFTs in the Zassenhaus splittings grow quadratically in n.

While the complexity results are theoretically very satisfactory, the appearance of

a larger constant in the growth of costs for Zassenhaus splittings means that Yoshida

splittings remain more effective for moderately high orders.

Note: It is natural to question why the reference method (as far as cost is concerned) is

taken to be the Yoshida splitting, since it is far from the most efficient high-order

method. The choice is motivated by the fact that (i) on the one hand, the quadratic

growth of cost for Zassenhaus splittings will not be matched by more optimised

Yoshida type splittings in terms of complexity and (ii) on the other hand, as we

will note in Section 6.7, for moderately high order, even the unoptimised Yoshida

splitting is more inexpensive than the Zassenhaus splittings due to the constants

in the costs.

Nevertheless, as we see in its application to splitting the Magnus expansions, the

Zassenhaus splitting proves to be highly flexible and efficient, significantly improv-

ing upon the Yoshida splitting. Here the choice of Yoshida splitting as a reference

2In Section 9.3.3, we will challenge the scaling of ∆x with ε, arguing for a slightly finer spatial resolution.
However, due to considerations that become clear only in Chapter 9, ∂x will still scale as O

(
ε−1

)
and the

analysis of size and error essentially remains unaffected, therefore. The only consequence is that the cost of
each FFT works out to be a bit higher. For the sake of simplicity, we will continue to assume ∆x = O (ε)
till Chapter 9 since it makes analysing sizes and errors easier.
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makes sense for a different reason—the absence of any optimised high order split-

ting that can be directly applied to the Magnus expansion.

1.2 Algebraic structures

The remarkable features of Zassenhaus methods are due to the structural properties of

the Lie algebra G of symmetrised differential operators discussed in Chapter 5. These

symmetrised operators are of the form

〈f〉k = 1
2(f ◦ ∂kx + ∂kx ◦ f),

and discretise directly to the form

〈f〉k ; 1
2(DfKk +KkDf ),

where Df is the diagonal matrix with values of f along the diagonal and Kk is the kth

differentiation matrix. Assuming that f is real valued, it can be seen that this form is

skew-symmetric for odd k and symmetric for even k.

We will find that once the Schrödinger equation is re-written in the language of this

algebra, the nested commutators that arise in the development of symmetric Zassenhaus

splittings can be solved in G by using the simplification rule,

[〈f〉k , 〈g〉l] =

k+l−1
2∑

n=0

2n+1∑
i=0

λk,ln,i
〈
(∂ixf)(∂2n+1−i

x g)
〉
k+l−2n−1

,

where the coefficients λ are known.

A crucial property of this algebra is the height reduction that is evident in the simpli-

fication rule. Since 〈f〉k is discretised as 1
2(DfKk + KkDf ), and ρ(K) = O

(
ε−1
)

we use

the shorthand

〈f〉k = O
(
ε−k
)
.

In the simplification rule, we find that the commutator of the O
(
ε−k
)

and O
(
ε−l
)

terms,

〈f〉k and 〈g〉l, is simplified to a linear combination of terms where the largest term is of

the form 〈 〉k+l−1, which is of size O
(
ε−k−l+1

)
. This is a tighter estimate than one can

obtain by using simple commutator bounds such as

‖[X,Y ]‖ ≤ 2 ‖X‖ ‖Y ‖ .

This property of height reduction lends an extra power of ε to each commutator, making

the asymptotic splittings possible.

Moreover, we find that the Lie algebra G possesses a Z2-graded structure which, when
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combined with the symmetrised structure of its elements ensures that the exponents ap-

pearing in Zassenhaus-style splittings are always skew-Hermitian. This proves crucial for

unitary evolution and the numerical stability of our methods.

1.3 Magnus–Zassenhaus schemes

In the case of semiclassical Schrödinger equations featuring time-dependent potentials,

direct exponentiation of the Hamiltonian, whether discretised or undiscretised, is not an

option. In principle one must resort to the Magnus expansion, whose exponential gives us

the formal solution.

The Magnus expansion is an infinite series of nested integrals of nested commutators

of the Hamiltonian. Thus, unlike the case of time-independent potentials, where the

commutators are encountered only when we develop Zassenhaus splittings and do not

appear when we resort to Yoshida splittings, a few nested commutators are inevitable

here.

In standard practice, one truncates the Magnus expansion, discretises the integrals via

quadrature rules and discretises the Hamiltonian via spectral collocation. This results in

Magnus expansions that feature nested commutators of matrices. These expansions are

then exponentiated via Lanczos iterations, leading to Magnus–Lanczos schemes, or via

Yoshida splittings. We find that both these approaches become very expensive in the case

of the semiclassical Schrödinger equation.

Instead, we once again resort to working with the undiscretised Hamiltonian in the

language of the Lie algebra G, whereby we benefit from commutator simplification and

height reduction. Consequently we arrive at Magnus expansions in Chapter 7 that are free

of nested commutators and which feature terms that are asymptotically smaller in powers

of ε. This allows us to use Magnus expansions with relatively larger time steps.

These Magnus expansions, when combined with traditional approaches for computing

the exponential, remain expensive, even though they are less expensive than the Mag-

nus expansions featuring nested matrix commutators. Directly exponentiating these via

Lanczos iterations is highly expensive due to the large number of iterations resulting from

the large spectral radius of the exponent. Splitting the Magnus expansion with Yoshida

splittings, followed by Lanczos iterations, on the other hand, allows us to separate large

but structurally favourable exponents from the small but structurally unfavourable ex-

ponents and, therefore, seems like a reasonable approach. However, even this requires

(8n2 + 8n+ 4)× 3n FFTs for a method with O
(
ε(2n+3)σ−1

)
accuracy.

Fortunately, the Zassenhaus splitting algorithm proves to be flexible enough to be

combined with the Magnus expansion, resulting in the highly efficient Magnus–Zassenhaus

schemes presented in Chapter 8. These benefit from all the favourable properties of the

Zassenhaus splittings—they feature the same number of exponents, which are of the same
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size and which posses nearly the same structure. Consequently, these are very efficient

methods whose implementation follows along the same lines and whose costs are only

marginally higher but still quadratic in n for O
(
ε(2n+3)σ−1

)
accuracy. Even for moderately

high orders, these turn out to be more inexpensive than the alternatives. Moreover,

working in the Lie algebra of symmetrised differential operators once again guarantees

unitary evolution and numerical stability of the schemes.

We present two versions of the Magnus–Zassenhaus schemes—the splittings ZΘ[I]
n,σ that

preserve integrals in the Magnus expansion and throughout the subsequent application

of the Zassenhaus splitting algorithm, and the splittings ZΘ[M ]
n,σ that commence from the

integral-free Magnus expansion of (Munthe–Kaas & Owren 1999), where the integrals have

been approximated by Gauss–Legendre quadrature at the outset. The former requires

more involved mathematics, particularly as we go towards higher orders, but has the

advantage of flexibility—the integrals appearing in this splitting could be computed exactly

for some potentials which are known analytically or could be approximated using a variety

of quadrature rules.

1.4 Outline of the thesis

In Chapter 2, we summarise some well known numerical methods which can be skipped by

a reader familiar with the subject, referring to it for the finer details of our methods and

derivations as needed. Section 2.1 gives an introduction of the various spatial discretisa-

tion options available to us, while the discretisation choices that we will use throughout

this work are described in Section 2.1.6. Section 2.2 describes some methods for approxi-

mating the matrix exponential, including the standard exponential splitting methods. An

introduction to the Magnus expansions, with an emphasis on some properties that prove

useful in our applications, are provided in Section 2.3. Of particular note are the practical

numerical methods based on these expansions, which are discussed in Section 2.3.5.

In Chapter 3, we introduce the semiclassical Schrödinger equations with time-dependent

and time-independent potentials. In Section 3.2, we note that the semiclassical parameter

induces spatio-temporal oscillations with wavelength of O (ε). Some standard high-order

methods such as Yoshida splittings and the Magnus–Lanczos schemes are also discussed

briefly in this chapter.

We commence upon the development of our symmetric Zassenhaus splittings in Chap-

ter 4 by resorting to a recursive application of the sBCH formula. These methods are

discussed in Section 4.1.1 after making the choice of spatial discretisation in accordance

with the oscillatory nature of the solution and allowing the time step to scale with powers

of the semiclassical parameter ε as h = O (εσ) , σ > 0. In order to arrive at commutator-

free splittings, however, we have to resort to working with undiscretised operators.

In Section 4.2, we see how commutators occurring in these expansions can be systemat-
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ically solved, leading to the first observation of height reduction. However, in Section 4.3

we find that these methods suffer from a major flaw—the exponents arrived at by fol-

lowing commutator simplifications lose skew-Hermiticity upon discretisation via standard

methods. A remedy is explored in Section 4.3.1.

The full resolution of this problem, however, is only achieved after the theoretical

results of Chapter 5 have been established. This chapter marks a break from the narrative

of the thesis, taking place in a highly abstract and algebraic setting. We develop the

theory of the Lie algebra of the Jordan polynomials that appear as the symmetrised

differential operators in the context of the Schrödinger equation. We study the properties

of commutator simplification, height reduction, and Z2-grading in this highly abstract

setting. These structural properties, when translated to the Schrödinger equation, are

responsible for the remarkable properties of the Zassenhaus splittings.

Having established the necessary algebraic tools, the symmetric Zassenhaus splittings

are developed in Chapter 6. The implementation of these splittings requires computation

of various exponentials, the details of which are discussed in Section 6.4. We analyse the

local (per time step) costs of these splittings as we approach higher orders in Section 6.7

and the global costs for various choices of σ in Section 6.8. Since the Magnus–Zassenhaus

schemes of Chapter 8 are structurally very similar, most of the details of implementation

as well as the cost analysis remain similar.

In Chapter 7, we develop commutator-free Magnus expansions by working in the Lie

algebra of symmetrised differential operators. In Section 7.2, we develop integral-free

and commutator-free Magnus expansions Θ̃
ε[M ]
p . Integral-preserving Magnus expansions

Θ̃
ε[I]
p are developed in Section 7.3. In Section 7.4 we find that the cost of these Magnus

expansions, when combined with standard methods for exponentiation, remains high.

In order to exponentiate the Magnus expansions Θ̃
ε[M ]
p and Θ̃

ε[I]
p efficiently, we split

their exponentials using the Zassenhaus splitting algorithm in Chapter 8, arriving at the

Magnus–Zassenhaus schemes ZΘ[M ]
n,σ and ZΘ[I]

n,σ in Section 8.1 and Section 8.2, respectively.

Integral-preserving Magnus expansions suffer from one drawback—they feature terms

of size O
(
ε4σ−1

)
,O
(
ε6σ−1

)
,O
(
ε8σ−1

)
, . . . that don’t feature in the integral-free versions

ZΘ[M ]
n,σ . Consequently, the exponentiation of these becomes more expensive. In Section 8.4,

we develop a method for discarding such terms by exploiting the time symmetry of the

truncated Magnus expansions. We analyse the costs of the resulting Magnus–Zassenhaus

schemes in Section 8.5 and find that these methods are more cost effective than standard

methods for high, as well as low, orders of accuracy.

Working directly with undiscretised operators is crucial for the results presented in this

thesis. However, shorthand notations such as ∂x = O
(
ε−1
)

inherently seem to assume

discretisation. Moreover the accuracy of the Magnus expansion and the various splittings

has, in general, only been studied for the case of matrices, when solving ODEs. When

solving PDEs like the Schrödinger equation, we need a greater degree of rigour. In Chap-

7



Introduction

ter 9 we attempt to present such an analysis for the operatorial splittings and expansions

presented in this thesis. In Section 9.1, we proceed by exploiting the property of energy

preservation in order to show the emergence of highly oscillatory behaviour in the semi-

classical regime, which allows us to make the notation ∂x = O
(
ε−1
)

and the analysis of

errors more rigorous. Following the approach of (Hochbruck & Lubich 2003), we are then

able to derive very favourable error bounds for the Magnus expansion in Section 9.3. This

analysis is then used in Section 9.4 for the analysis of symmetric Zassenhaus splittings by

expressing the sBCH series in terms of the Magnus expansion.

In Chapter 10, we summarise the results of the thesis. We briefly outline some future

work and research directions that seem appealing in light of our results.
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Chapter 2

Numerical tools

2.1 Spatial discretisation strategies

Consider the discretisation of a smooth periodic function u ∈ C∞p [−1, 1] with period 2

over a uniform grid. Let un = u(xn) be the value of u at the nth grid point,

xn = n∆x, n = −N, . . . , 0, . . . , N,

where ∆x = 2/(2N+1). The first derivative of u at xn, u′n = u′(xn), can be approximated

un−1

un+1
un

xn−1 xn+1xn︸ ︷︷ ︸
∆x

Figure 2.1: Discretisation on an equispaced grid

as

u′n ≈
1

∆x
(un − un−1), n = −N, . . . , 0, . . . , N, (2.1)

indicated by the dotted red arrow in Figure 2.1, or through the (more symmetric) central

differences,

u′n ≈
1

2∆x
(un+1 − un−1), n = −N, . . . , 0, . . . , N, (2.2)
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indicated by the dashed red arrow in Figure 2.1.

Note: In this section, since u is a function of x alone, we use u′ to denote the first

derivative of u with respect to x,

u′ = ∂xu =
du

dx
.

When we study numerical methods for the Schrödinger equation, we encounter

dependence on both time t and position x. In such cases we will reserve u′ for the

derivative with respect to t and use ∂xu for the derivative with respect to x.

The methods (2.1, 2.2) approximate the derivative using differences of the nodal values

at neighbouring nodes and are called finite difference methods. The approximation of the

second derivative using central finite difference method,

u′′n ≈
1

(∆x)2
(un+1 − 2un + un−1), n = −N, . . . , 0, . . . , N, (2.3)

is also well known.

Depending on the boundary conditions, matters could become more complicated for

n = −N and n = N where the values of un−1 or un+1 may not be defined. However we

will always work with periodic boundaries at ±1 for the purpose of spatial discretisation.

In this case

u−N−1 = u(−1 + (∆x)/2−∆x) = u(1− (∆x)/2) = uN

and

uN+1 = u(1− (∆x)/2 + ∆x) = u(−1 + (∆x)/2) = u−N ,

since uN = u(2N/(2N + 1)) = u(1 − (∆x)/2) and u−N = u(−2N/(2N + 1)) = u(−1 +

(∆x)/2).

Let u and u′ be the vector of values of u and the exact derivative u′ = ∂xu on the

equispaced grid, respectively,

u =



u−N
...

u0

...

uN


, u′ =



u′−N
...

u′0
...

u′N


.

10



2.1. Spatial discretisation strategies

(2.1) can be written as

u′−N
...

u′0
...

u′N


≈ 1

∆x



1 0 . . . −1

−1 1 . . . 0

0
...

. . . 0

0
...

. . . 0

0 . . . −1 1





u−N
...

u0

...

uN


,

or

u′ ≈ K1u,

where

K1 =
1

∆x


1 0 . . . −1

−1 1 . . . 0

0
...

. . . 0

0 . . . −1 1


is a differentiation matrix that approximates the differential operator ∂x,

K1 ≈ ∂x =
d

dx
.

We say that K1 is a discretisation of ∂x and write ∂x ; K1 to indicate this. Of course, the

discretisation is not unique. Let K̃1 be the differentiation matrix corresponding to (2.2),

then ∂x ; K̃1 is an alternative discretisation of ∂x. Similarly the differentiation matrix

K2 =
1

(∆x)2


−2 1 0 . . . 0 1

1 −2 1 . . . 0 0

0
...

...
. . .

...
...

1 0 . . . 0 1 −2


approximates ∂2

x using the scheme (2.3).

Note:

K2 6= (K1)2, K2 6= (K̃1)2.

K1, K̃1 and K2 are sparse circulant matrices of size M × M , where M = 2N + 1.

We can approximate the first or second derivative of u at the grid points by evaluating

the matrix–vector product K1u or K2u, respectively. These matrices are sparse, and the

evaluation of K1u, for instance, merely requires the evaluation of (2.1) for n = −N, . . . , N
at a total cost of O (M) operations.
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Figure 2.2: `∞ error in the approximation of ∂xu by K1u and K̃1u (which correspond to
the methods (2.1) and (2.2), respectively), and the approximation of ∂2

xu by K2u (which
corresponds to the method (2.3)) where we take u(x) = sin(2π(x−1/7))4+sin(5π(x−1/3))2

(left) and u(x) = exp(sin(πx)) (right). The method (2.1) is seen to be a first order
approximation, while the central difference methods (2.2) and (2.3) are second order.

As evident in Figure 2.2, (2.1) is an order one method,

u′n =
1

∆x
(un − un−1) +O (∆x) ,

while (2.2) and (2.3) are second order methods,

u′n =
1

2∆x
(un+1 − un−1) +O

(
(∆x)2

)
u′′n =

1

(∆x)2
(un+1 − 2un + un−1) +O

(
(∆x)2

)
.

The method (2.1) is characterised by the stencil

1
∆x

−1 1 .

The stencils for (2.2) and (2.3) are

1
∆x

−1
2 0 1

2

12



2.1. Spatial discretisation strategies

and
1

(∆x)2 1 −2 1 ,

respectively. Since the stencils of (2.2) and (2.3) span three grid points, they are said to

have a bandwidth of three, while (2.1) has a bandwidth of two. We refer the reader to

(Iserles 2008) for detailed analysis of these methods.

2.1.1 Norms and inner products

Note that the differentiation matrices K̃1 and K2 are skew-symmetric and symmetric,

respectively. This preserves an important characteristic of ∂x and ∂2
x, which are skew-

adjoint and self-adjoint, respectively, with respect to the L2 inner product. The L2 inner

product of complex valued functions on [−1, 1] is defined as

〈u, v〉L2([−1,1],C) =

ˆ 1

−1
u(x)v(x) dx.

Since we will be working, for the most part, with the domain [−1, 1] and with complex

valued functions, we will write 〈u, v〉 to denote 〈u, v〉L2([−1,1],C).

Using integration by parts, it can be seen that

〈∂xu, v〉 =

ˆ 1

−1
u′(x)v(x) dx = u(x)v(x)

∣∣∣1
−1
−
ˆ 1

−1
u(x)v′(x) dx = −〈u, ∂xv〉

so that ∂∗x = −∂x and, consequently, (∂2
x)∗ = (∂∗x)2 = (−∂x)2 = ∂2

x. Here A∗ stands for

the adjoint of the operator A, defined as the operator that satisfies

〈Au, v〉 = 〈u,A∗v〉

for all u, v in L2([−1, 1],C).

We say that ∂2
x is self-adjoint or Hermitian since it is its own adjoint, while an operator

like ∂x whose adjoint is its additive inverse is called a skew-adjoint or skew-Hermitian

operator. The crucial property of skew-Hermiticity of ∂x is not shared by the one-sided

difference method (2.1) since the matrix K1 is not skew-symmetric. The loss of symmetry

reflects in the blow up of the exponential of K1, seen in Figure 2.3. Such concerns of

symmetry will play a dominant role in the development of our methods.

Corresponding to the L2 inner product, we also introduce the discrete `2 inner product

on the grid,

〈u,v〉 = u∗v∆x =
N∑

n=−N
unvn∆x

13
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t

∥ ∥ etK
∥ ∥ 2

K1

K̃1

Figure 2.3: The exponential of K1 blows up even for small values of t while the exponen-
tial of K̃1 is of unit norm as expected out of a reasonable discretisation of ∂x on a periodic
grid.

where u∗ is the conjugate transpose of u,

u∗ = uT .

The L2 norm and the `2 norm are obtained from this inner product since every inner

product 〈·, ·〉 defines a norm ‖u‖ =
√
〈u, u〉. In general, the Lp norm is defined as

‖u‖p = ‖u‖Lp =

(ˆ 1

−1
|u(x)|p dx

) 1
p

, 1 ≤ p <∞,

and the `p norm as

‖u‖p = ‖u‖`p =

(∑
n

|un|p∆x

) 1
p

, 1 ≤ p <∞.

For p =∞, we need separate definitions,

‖u‖∞ = ‖u‖L∞ = ess sup
x∈[−1,1]

|u(x)|

and

‖u‖∞ = ‖u‖`∞ = max
n=−N,...,N

|un|.

We note that

‖u‖∞ ≤
√
M

2
‖u‖2 ≤

√
M ‖u‖∞ . (2.4)
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2.1. Spatial discretisation strategies

A norm on vectors induces a norm on matrices,

‖A‖p = max
u∈CM

‖Au‖p
‖u‖p

= max
‖u‖p=1

u∈CM

‖Au‖p ,

and a norm on functions induces a norm on linear operators,

‖A‖p = sup
u∈Lp(X,C)

‖Au‖p
‖u‖p

= sup
‖u‖p=1

u∈Lp(X,C)

‖Au‖p .

The spectral radius ρ(A) of the matrix A is its largest eigenvalue (by magnitude),

ρ(A) = max{|λ1|, . . . , |λM |},

where λi are the eigenvalues of the M×M matrix A. In the case of a normal matrix A, i.e.

AA∗ = A∗A, ρ(A) = ‖A‖2. Unitary matrices, skew-Hermitian matrices and Hermitian

matrices are normal and, therefore, the spectral radius and the `2 norms coincide. We

often judge the ‘size’ of A by its spectral radius (this is not to be confused with the

dimensions of A, which are M ×M).

2.1.2 Higher order finite difference methods

To derive arbitrarily high-order differentiation matrices for ∂x, ∂2
x, or higher degree differ-

ential operators, we need to ensure that the method is exact for polynomial interpolants of

a sufficiently high degree. Consider the interpolation of u by Lagrangian cardinal functions

at m (not necessarily equidistant) grid points {xi}mi=0 given by the polynomial

pm,u(x) =
m∑
i=0

u(xi)`i(x),

with pm,u ∈ Pm(x)—the space of degree m polynomials in x with Lagrangian cardinal

functions {`i}mi=0 as basis. The Lagrangian cardinal functions,

`i(x) =
m∏
j=0
j 6=i

x− xj
xi − xj

satisfy `i(xj) = δij and give rise to orthonormal vectors—in fact, the natural basis

{ei}mi=0—upon discretisation to the grid {xj}mj=1. It should be noted that, as a conse-

quence, the coordinate vector of pm,u in the basis {`i}mi=0 is exactly the vector of values at

the grid points, u = (u(x0), . . . , u(xm))T .
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The first derivative of u at xj can be approximated by differentiating the interpolant,

p′m,u(x)
∣∣∣
x=xj

=

m∑
i=0

u(xi)`
′
i(x)

∣∣∣
x=xj

=

m∑
i=0

cj,iu(xi), cj,i = `′i(xj). (2.5)

The values cj,i give us a stencil for approximating the first derivative at the point xj by

a linear combination of finite number of neighbouring values, leading to finite difference

methods. In this manner one can obtain stencils for higher derivatives, effective algorithms

for which are discussed by Fornberg (1998). In this way we can discretise any linear

differential operator L. In particular for L = ∂2
x,

p′′m,u(x)
∣∣∣
x=xj

=

m∑
i=0

u(xi)`
′′
i (x)

∣∣∣
x=xj

=

m∑
i=0

c̃j,iu(xi), c̃j,i = `′′i (xj), (2.6)

and we merely need to evaluate `′′i (xj).

In principle one interpolates locally at each point xj by a reasonably high degree

polynomial, taking equal number of interpolation points to the left and the right, where

possible. On an equispaced and periodic grid this gives us the same stencil for each point

and leads to the central difference methods such as (2.2) and (2.3), which feature higher

orders of accuracy and preserve symmetry (Fornberg 1998, Iserles 2008).

The accuracy of approximation of u′ by p′m,u is a consequence of the approximation

properties of the underlying approximation space Pm = span {`0, . . . , `m} and the linear

interpolation method. Larger values of m lead to higher order finite difference methods

and result in larger bandwidth (longer stencil) methods. For instance, the order eight

central difference stencil for the second derivative has a bandwidth of nine,

1
(∆x)2 − 1

560
8

315 −1
5

8
5 −205

72
8
5 −1

5
8

315 − 1
560

,

which represents the scheme

u′′n =
1

(∆x)2

(
− 1

560
un−4 +

8

315
un−3 −

1

5
un−2 +

8

5
un−1 −

205

72
un +

8

5
un+1

−1

5
un+2 +

8

315
un+3 −

1

560
un+4

)
+O

(
(∆x)8

)
. (2.7)

Taylor analysis reveals that the error in this approximation for u ∈ C∞p [−1, 1] is∥∥∥u′′ − K̃2u
∥∥∥ ≤ C(∆x)8

∥∥∥u(10)
∥∥∥ +O

(
(∆x)10

)
, (2.8)

where C is some constant that does not depend on u, u′′ is the vector of values of ∂2
xu on

the grid, and u(10) is the 10th derivative of u.
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2.1. Spatial discretisation strategies

As a consequence of the bandwidth being nine, we end up with an M ×M matrix

which is nine-diagonal except for the wrapping around that comes with being a circulant.

The matrix–vector product K̃2u is still evaluated in O (M) operations, although there is

a linear growth of cost with the bandwidth.

The eigenvalues of anM×M circulant, the first row of which is (c0, cM−1, cM−2, . . . , c1),

are given by

λj = c0 + cM−1ωj + cM−2ω
2
j + . . .+ c1ω

M−1
j , ωj = exp

(
i
2πj

M

)
,

where ωj is the jth root of unity. Noting that |λj | ≤
∑M

n=1 |cn| for any j, the spectral

radius of K̃2 is bounded above by

ρ
(
K̃2

)
= max

j
|λj | ≤

M∑
n=1

|cn| =
2048

315
(∆x)−2.

Since the central difference matrix is Hermitian,
∥∥∥K̃2

∥∥∥
2

= ρ
(
K̃2

)
, and for short we say

K̃2 = O
(
M2
)
,

keeping in mind (∆x)−2 = O
(
M2
)
. In general, the order k differentiation matrix Kk,

which approximates ∂kx , scales as O
(
Mk
)
. For short, we abuse notation and write

∂x = O (M) , ∂kx = O
(
Mk
)
, (2.9)

when it is evident that ∂x and ∂kx would be eventually discretised and replaced by K and

Kk, even though ∂x and ∂kx are, in truth, unbounded operators.

Additional notation

We write Dan to denote the diagonal M × M matrix whose diagonal entries form the

sequence {an}Nn=−N . Since this case arises frequently, we write Df to denote the diagonal

matrix corresponding to pointwise multiplication by f on the grid {xn}Nn=−N , xn = n∆x,

∆x = 2
2N+1 , where the underlying sequence is {f(xn)}Nn=−N .

Spectral radius of this matrix is bounded trivially as ρ (Df ) = max{f(xn)}Nn=−N ≤
‖f‖∞. Evaluation of the matrix–vector product Dfu is carried out through trivial point-

wise multiplication in O (M) cost.

After spatial discretisation, the advection equation ∂tu(x, t) = ∂xu(x, t) results in

∂tu(t) = K1u while ∂tu(x, t) = ∂xu(x, t) + f(x)u(x, t) discretises as ∂tu(t) = K1u+Dfu.
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2.1.3 Spectral collocation and pseudospectral methods

Collocation is the idea of approximating the solution of a partial differential equation such

as the advection equation ∂tu = ∂xu by a linear combination of basis functions {φi}mi=1,

u(x, t) ≈
m∑
i=1

ai(t)φi(x),

substituting the approximation into the differential equation,

m∑
i=1

a′i(t)φi(x) =
m∑
i=1

ai(t)φ
′
i(x), (2.10)

and solving for the coefficients a(t) while ensuring that (2.10) is satisfied precisely at a set

of ‘collocation’ points {xj}m̃j=1 in the domain (Kreiss & Oliger 1972, Orszag 1972). Collo-

cation with a spectral set of basis such as the Fourier basis is called spectral collocation.

We will restrict our discussions to spectral collocation with Fourier basis on equispaced

and periodic grids. On such grids, this method effectively amounts to interpolation by

Fourier cardinal functions (Hesthaven, Gottlieb & Gottlieb 2007), and the development

of these methods following (Fornberg 1998), therefore, turns out to be along very similar

lines as the one just performed in Section 2.1.2 for finite difference methods. Here the

approximation space is Tm—the space of trigonometric polynomials of degree ≤ m.

Fourier cardinal functions {φn}Nn=−N on the grid xn = n∆x, n = −N, . . . , N , (∆x =

2/M where M = 2N + 1) are given by φn(x) = φ̂(x− xn), where

φ̂(x) =
2

M

{
1

2
+ cosπx+ cos 2πx+ . . .+ cosNπx

}
. (2.11)

 

 

Figure 2.4: The Fourier cardinal function φ̂(x) on a grid with N = 10,M = 21 (values
at grid points are shown as dots).

Since φ̂(xj) = δ0j we have φn(xj) = δnj and these are seen directly to be cardinal

functions. Our trigonometric interpolant to u is

sM,u(x) =
N∑

n=−N
u(xn)φn(x). (2.12)
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Following the same procedure as Section 2.1.2 we arrive at a stencil for the second deriva-

tive, given by cj,n = φ′′n(xj) = φ̂′′(xj − xn) = φ̂′′(xj−n) =: cj−n,

s′′M,u(x)
∣∣∣
x=xj

=

N∑
n=−N

u(xn)φ′′n(x)
∣∣∣
x=xj

=

N∑
n=−N

cj,nu(xn), cj,n = φ′′n(xj), (2.13)

The Fourier cardinal function is, equivalently, given by the Dirichlet kernel,

φ̂(x) =
sin(Mπx/2)

M sin(πx/2)
, (2.14)

which, upon twice differentiation and evaluation at xj , gives us

cj = φ̂′′(xj) =
(−1)j+1π2

2

(
cos(jπ/M)

sin2(jπ/M)

)
, j 6= 0. (2.15)

For j = 0, we differentiate (2.11) to get

c0 = − 2

M

N∑
n=1

n2π2 = −π2N(N + 1)

3
. (2.16)

As the coefficients must also satisfies
∑N

n=−N cn = 0, we can instead derive c0 from this

relation. The spectral collocation differentiation matrix (K2,SC)i,j = ci−j is a circulant

matrix just like K2,FD, the finite difference differentiation matrices discretising ∂2
x. This

time, however, the symbol c = (c−N , . . . , cN )T is not of a limited bandwidth and conse-

quently K2,SC is a full matrix. The advantage of this approach, however, is that we inherit

the spectral accuracy of the Fourier approximation space.

Since we use interpolation with cardinal functions here, the discretisation of u is again

the vector of values at the grid points, u = (u(x−N ), . . . , u(xN ))T . K2,SC, being a circulant,

is diagonalisable using Fourier transforms. Thus K2,SC u is evaluated using a couple of

Fast Fourier Transforms (FFTs) at an O (M logM) cost,

K2,SC u = F−1DĉFu,

where F is the Fourier transform matrix, F−1 is its inverse and

ĉ = Fc

is the Fourier transform of the stencil vector c = (c−N , . . . , cN )T . Since the discretisation

is on a grid, multiplication by a function f is once again achieved via the diagonal matrix

Df and the cost of evaluating Dfu remains O (M).

We remind the reader that, in general, the differentiation matrix K2 need not equal

(K1)2. However, in the context of equispaced and periodic grids with odd number of grid
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Figure 2.5: The stencil c = (c−N , . . . , cN )T (plotted for N = 500 here) does not decay
rapidly enough away from the centre to allow for an early truncation, leading to a dense
circulant matrix.

points, it holds true for spectral collocation methods. In fact, in general, Kk,SC = (K1,SC)k

and we may unambigously write KkSC for the degree k spectral collocation differentiation

matrix.

An interesting observation by Fornberg (1998) is that one could take a very high-order

finite difference scheme with a bandwidth larger than the number of grid points and, with

the underlying function being periodic, we could extend the data as far off as we need to go

along with the stencil coefficients. Equivalently we could wrap the stencil around and add

up the overlapping coefficients. Nothing, in principle, stops us from letting the size of such

a stencil go to infinity. Such a method is called a pseudospectral method. Pseudospectral

methods, in this way, can be seen as infinite order finite difference schemes.

Fornberg (1998) notes that, on an equispaced and periodic grid, wrapping the stencil

of an infinite order finite difference scheme in this way leads to the same the differentiation

matrix as obtained in the spectral collocation method. It can be shown that, in the context

of such grids, the pseudospectral and spectral collocation methods are equivalent. Since

equispaced and periodic grids are what concern us for the purpose of this thesis, we will

use the names pseudospectral and spectral collocation interchangeably.

2.1.4 Spectral methods

Spectral methods (Orszag 1969, Orszag 1972, Hesthaven et al. 2007, Trefethen 2000)

again involve approximation in the space of trigonometric polynomials, TM . Consider the

20



2.1. Spatial discretisation strategies

approximation

u(x, t) ≈
N∑

n=−N
ûn(t)eiπnx ∈ TM [−1, 1],

where the scalar coefficients û = (û−N , . . . , ûN )T = Fu are the Fourier coefficients of

u. Substituting the approximation in a differential equation, one arrives at a differential

equation in the Fourier coefficients—in other words, the frequency domain. Considering

the advection equation, for instance, we require

N∑
n=−N

ûn(t)′eiπnx =
N∑

n=−N
ûn(t)iπneiπnx

to hold for each x ∈ [−1, 1], whereby we can deduce the simpler differential equation

ûn(t)′ = iπnûn(t), n ∈ {−N, . . . , N}.

The vector representing the approximation of the solution at time t here is the vector

of Fourier coefficients, û(t) = (û−N (t), . . . , ûN (t))T . If the initial value for solving a

differential equation is given by u(0), one takes the FFT of the vector of values at uniform

grid points u(0) to arrive at the vector of Fourier coefficients û(0), which acts as the initial

value in the frequency domain.

It is evident at once that the first derivative matrix is a diagonal matrix given by

the entries iπn and the second derivative K2,S (where S stands for spectral), by similar

reasoning, is found to be given by diagonal entries (K2,S)n,n = −π2n2. In our notation,

K2,S = D−π2n2 ,

and, in general,

Kk,S = (K1,S)k = D(iπn)k .

We remind the reader that this is a consequence of taking odd number of grid points,

M = 2N+1, which allows us to take equal number of frequencies on either side (note that

n ranges from −N to N). Since K2,S is a diagonal, the cost of evaluating the matrix–vector

product K2,S û is O (M).

Pointwise multiplication of a function u by the function f in spatial domain is equiva-

lent to convolution of Fourier coefficients of the two in the frequency domain. The matrix

Mf representing multiplication by f , therefore, is a circulant matrix with the Fourier

coefficients of f as its symbol. Since we can easily go back and forth between spatial and

frequency representations using Fourier transforms, in practice we often choose to realise
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the application of Mf,S via FDfF−1,

Mf û = FDfF−1û = FDfu,

where F is the Fast Fourier Transform matrix and F−1 is its inverse—i.e. we go back

into the spatial domain and perform a pointwise multiplication with f . The cost of this

operation is two FFTs, each of which costs O (M logM).

The spectral radius of Mf is ρ(FDfF−1) = ρ(Df ) ≤ ‖f‖∞ as F is unitary and does

not effect the norm. The spectral radius for K2,S is trivially seen to be N2π2.

2.1.5 Comparisons

We note that the matrices discretising pointwise multiplication by f and the differential

operator K2 in the three cases (order eight finite differences (FD8), spectral collocation

(SC) and spectral (S)) are either diagonal or circulant.

FD8 SC S

multiplication by f Df Df FDfF−1

structure diagonal diagonal circulant
cost of Dfu O (M) O (M) O (M logM)

differentiation matrix K2 K2,FD8 = F−1DĉFD8
F F−1DĉSC

F D−n2π2

structure 9 diagonal circulant circulant diagonal
cost of K2u O (M) O (M logM) O (M)

accuracy of K2u O
(
(∆x)8

)
spectral spectral

Table 2.1: Comparison of order eight finite differences (FD8), spectral collocation (SC)
and spectral (S) methods.

This is not where the similarity ends, though. Under the grid choices we work with,

it can be seen shown that FKk,SCF−1 = Kk,S. We already know that FDfF−1 =Mf,S,

so that our spectral collocation methods are precisely the fourier transformations of the

spectral method.

The main appeal of spectral (and spectral collocation) methods is that they exhibit

spectral convergence: for sufficiently large M the error decays faster than O (M−α) for

any α > 0. The spectral accuracy of spectral collocation methods is evident in Figure 2.7,

where they are seen to converge much more rapidly than the order seven central difference

finite difference methods.
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Figure 2.6: The functions v1 (left) and v2 (right) used for testing the accuracy of dis-
cretisation schemes.
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Figure 2.7: Error in approximating the second derivative using Spectral Collocation
(SC) and Finite Difference (FD8) scheme of order eight for v1 (left) and v2 (right).
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In Figure 2.6, we show the error in approximating the second derivative of the functions,

v1(x) = exp(sin(πx)),

v2(x) = expbumpp(x) exp(i20πx),

where expbumpp(x) is a periodic bump function that will occur frequently in our examples,

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

Figure 2.8: The expbumpp(x) function is a periodic bump function which is ‘active’
between −0.5 and 0.5 and attains a maximum of ∼ 0.37.

expbumpp(x) = expbump(1− sin(π(x+ 1/2))), (2.17)

expbump(x) =

{
exp

(
− 1

1−x2

)
|x| < 1,

0 |x| ≥ 1.
(2.18)

2.1.6 Our discretisation choices

Spectral collocation (and spectral) methods are able to resolve high frequency oscillations

much faster than finite difference methods. In Section 3.3.1 we find that finite difference

methods are not particularly effective under the semiclassical regime. This has also been

noted by (Bao, Jin & Markowich 2002, Jin et al. 2011). For these reasons, spectral

collocation will form our weapon of choice for spatial discretisation.

In practice, we will typically work with the vector of values u = (u(x−N ), . . . , u(xN ))T

(instead of the Fourier coefficients û) on the equispaced periodic grid on [−1, 1],

xn = n∆x, n = −N, . . . , 0, . . . , N, ∆x = 2/M, M = 2N + 1,

and will use Fourier transforms, where needed, to move between spatial and frequency
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2.1. Spatial discretisation strategies

representations in order to implement differentiation operators via pointwise multiplication

in the frequency domain. Thus the differential operator ∂x will be discretised as K,

K = F−1DiπnF ,

to be written as

∂x ; K.

As noted before, knowing that

K = O (M) ,

we abuse notation and write

∂kx = O
(
Mk
)
,

even though ∂kx is an unbounded operator. This is justified as long as eventual discretisa-

tion on a grid of resolution M follows.

Although an odd number of grid points are not the most efficient choice for FFTs1,

which work most efficiently when the input length is in powers of 2, such grids give us the

advantage of simpler differentiation matrices.
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ti
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Figure 2.9: The difference in time taken for MATLAB’s fft when the input length is in
powers of 2 (radix 2) and when it is in powers of 3 (radix 3) is not significant.

On such grids higher order differentiation matrices ∂kx ; Kk can be obtained simply

via

Kk = Kk = F−1D(iπn)kF .

We note that this property helps in making notation simpler but is in no way crucial to

1Radix 2 implementations of FFTs were the most common in the early years of linear algebra and signal
processing packages. However, working in a radix 3 implementation, for instance, does not make matters
much worse and most modern implementations of the FFT are able to deal with such inputs reasonably
efficiently (see Figure 2.9).
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our analysis or efficacy of our methods.

Since we work with nodal values, multiplication by a function f is discretised as the

diagonal matrix Df . We will term this method the spectral collocation method to indicate

that we are working with nodal values. As we have noted previously, however, this is

equivalent to the approach where we work with the vector of Fourier coefficients û, K is

a diagonal and multiplication with f is diagonalised via FFTs.

The Zassenhaus splittings developed in this thesis are not necessarily tied to the choice

of spectral collocation, however, and any spatial discretisation method that is able to cor-

rectly resolve oscillations and respects skew-symmetry of ∂x can, in principle, be combined

with these splittings.

2.2 Approximation of matrix exponentials

Once discretised in space, a partial differential equation such as ∂tu = ∂xu or ∂tu = ∂2
xu

is replaced by a system of ordinary differential equations (ODEs),

∂tu(t) = Au(t), t ≥ 0, u(0) = u0 ∈ RM , (2.19)

where A is an M ×M matrix. Solving this equation typically involves discrestised time-

stepping. Two simple time-stepping methods for solving (2.19) are Forward Euler (FE),

un+1 = un + hAun, (2.20)

and Backward Euler (BE),

un+1 − hAun+1 = un. (2.21)

Here un is the numerical approximation of the exact solution of (2.19), u(tn), at the nth

time step and h is the time step such that tn+1 = tn + h.

In principle, (2.19) can be solved exactly by exponentiating the matrix A,

u(t) = etAu(0),

which can be a very effective approach when methods for efficient evaluation of the matrix

exponential are available (Golub & Van Loan 1996, Higham & Al-Mohy 2010, Moler &

Loan 1978). Here the matrix exponential is defined as

eA = exp(A) =
∞∑
k=0

1

k!
Ak. (2.22)

When the dimension of the matrixA is large (as happens when the spatial discretisation

is fine and M is large), the exact evaluation of its exponential to machine precision can be
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2.2. Approximation of matrix exponentials

very expensive and the need for approximation methods arises. In such cases it is typical

to time step,

un+1 = ehAun,

in order to keep approximation sufficiently accurate and inexpensive. Since our motiva-

tion for approximating the exponential is to perform one time step of these iterations,

methods that directly approximate matrix–vector products of the form exp(hA)v are also

of relevance. Krylov methods, in particular, are methods of this type.

The simplest method for approximating the exponential is to truncate (2.45), the

Taylor series expansion of exp(z). In this case we approximate exp(z) by the analytical

function pm(z) =
∑m

k=0
1
k!z

k and approximate exp(A) ≈ pm(A). These methods, called

the Taylor methods, are highly sensitive to floating point rounding errors and have to be

used with great care especially when ‖A‖2 is large. For all purposes, we will avoid using

this method. In this section we encounter a few different techniques for the approximation

of the matrix exponential. An excellent review article for such techniques is (Moler &

Loan 1978).

2.2.1 Padé methods

Padé methods for exponentiation of a matrix (Golub & Van Loan 1996, Moler & Loan

1978) are rational methods based on the Padé approximation of exp(z) around the origin.

Among all the rational approximations to exp(z) with numerator of degree p and denom-

inator of degree q, the Padé approximation of exp(z), Rpq are of the highest order. They

are defined by Rpq(z) = Dpq(z)
−1Npq(z) where

Npq(z) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

zj ,

and

Dpq(z) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−z)j .

The most interesting methods of these sort are the diagonal Padé methods, Rqq(A). For

p < q, roughly qM3 operations are required to evaluate Rpq(A) which is of order p + q,

while for the same effort Rqq gives a method of order 2q > p + q. However, for large q,

Nqq(A) starts looking like the series for eA/2 and Dqq(A) the series for e−A/2. In such a

case, the denominator matrix Dqq(A) can be very poorly conditioned (Moler & Loan 1978),

cond(Dqq(A)) ≈ cond(e−A/2) ≥ e(α1−αn)/2,

where α1 ≥ . . . ≥ αn are the real parts of the eigenvalues of A. This is because if

A = VΛV∗ is the spectral decomposition of A, then e−A/2 = Ve−Λ/2V∗ and the condition

27



Numerical tools

number would be given by the ratio of the highest and the smallest modulii of eigenvalues,

which are given by the exponential of the largest and smallest real parts eα1/2 and eαn/2.

A workaround for this problem is the scaling and squaring method which relies on the

property eA = (eA/k)k. Usually, in this method k is chosen to be a power of 2, say k = 2p.

After evaluating eA/k, repeated squaring (in this case p times) yields eA. The motivation

for this is to evaluate the exponential of a matrix with a smaller norm since this is likely

to be more stable. A commonly used criterion for choosing p is to make it the smallest

value for which ‖A‖2/k ≤ 1. Thus one could use a method like the diagonal Padé method

for evaluating eA/k without being effected by the condition number, before squaring the

approximation repeatedly.

This algorithm is highly effective and is, in fact, the method employed in the expm

function of MATLAB. The overall expense of such a method, when combined with diagonal

Padé methods, is O
(
M3 log ρ

)
due to the matrix–matrix multiplications, where ρ = ρ(A)

is the spectral radius of A dictating the amount of squaring required. MATLAB’s expm

is frequently utilised for generating reference solutions in our work—although it usually

features an exorbitant cost, it can be relied upon for exponentiation accurate up to machine

precision.

The Padé methods can be very effective when ‖A‖2 is small, for example in the case

of unitary matrices U , where ‖U‖2 = 1. In such cases, since ρ(A) ≤ ‖A‖2, α1 cannot not

be too positive and αn cannot be too negative. In the case of skew-Hermitian matrices,

these methods become even more effective since the real components of the eigenvalues

vanish and the condition number is 1 (alternatively, the matrix e−A/2 is unitary and its

condition number is 1). In these cases, where the condition number does not cause much

trouble, scaling and squaring is not required and one can directly use the diagonal Padé

methods, whose expense is O
(
M3
)

due to the matrix–matrix multiplications involved.

2.2.2 Krylov subspace methods

Krylov methods are iterative methods applicable to situations where one needs to estimate

matrix–vector products of the form exp(A)v and computing exp(A) is not essential. Such

methods have undergone many enhancements since the pioneering work of Tal Ezer &

Kosloff (1984): in this thesis we adopt the approach in (Hochbruck & Lubich 1997).

Given an M ×M matrix A and v ∈ CM , the mth Krylov subspace is

Km(A,v) = span {v,Av,A2v, . . . ,Am−1v}, m ∈ N.

It is well known that dimKm−1(A,v) ≤ dimKm(A,v) ≤ min{m,M} and we refer to

(Golub & Van Loan 1996) for other properties of Krylov subspaces. In the Krylov sub-

space method, exp(A)v is approximated by projecting into the m dimensional Krylov

subsace Km(A,v) spanned by the orthonormal basis {vi}mi=1, where typically m � M .
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2.2. Approximation of matrix exponentials

The Arnoldi process

v1 = v/‖v‖2
for j = 1, . . . ,m− 1 do
t = Avj
for i = 1, . . . , j do
hi,j = v∗i t, t = t− hi,jvi

end for
hj+1,j = ‖t‖2; vj+1 = t/hj+1,j

end for

The Lanczos process

v1 = v/‖v‖2
for j = 1, . . . ,m− 1 do
t = Avj
if i > 1 then
t = t− hj−1,jvj−1

end if
hj,j = v∗j t

t = t− hj,jvj
hj+1,j = ‖t‖2 ; hj,j+1 = −‖t‖2
vj+1 = t/hj+1,j

end for

Table 2.2: The Arnoldi and Lanczos iteration algorithms.

We approximate

eAv ≈ VmeHmV∗mv, (2.23)

where Vm and Hm are M ×m and m ×m, respectively, and the columns of Vm are the

orthonormal vectors {vi}mi=1. The matrix Hm is upper Hessenberg. This approximation is

motivated by two observations. The first observation is that, for a particular m and any

polynomial pm−1(z) of degree m− 1, the relation

pm−1(A)v = Vmpm−1(Hm)V∗mv

is exact (Hochbruck & Lubich 1997). Secondly, a full decomposition brings us to A =

VMHMV∗M with VM being unitary. This allows us to express exp(A) = VM exp(HM )V∗M .

SubstitutingHM byHm, which is the m×m upper left subpart of the matrixHM , amounts

to projecting to a much smaller subspace. The matrices Hm turn out to be very effective

at approximating the spectrum of HM and, therefore, of A as well. With m�M , we can

exponentiate Hm at a much lower computational cost using the MATLAB function expm,

described in section 2.2.1.

In the particular case of skew-Hermitian matrices A ∈ uM (C)—the type of matrices

we must exponentiate in the context of the symmetric Zassenhaus splittings—Hm turns

out to be skew-Hermitian as well and, being upper Hessenberg, is reduced to a tridiagonal.

This is easy to see because Hm forms the upper left part of HM , which is in uM (C) owing

to

H∗M = (V∗MAVM )∗ = V∗MA∗VM = −V∗MAVM = −HM .

The matrices Vm and Hm are generated by the Arnoldi process which reduces to the

Lanczos process (see Table 2.2) for skew-Hermitian matrices (Golub & Van Loan 1996,

Hochbruck & Lubich 1997).
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An advantage of Hm ∈ uM (C) is

‖Vm exp(Hm)e1‖22 = e∗1 exp(Hm)∗V∗mVm exp(Hm)e1 = v∗v = ‖v‖22 ,

which holds because exp(Hm)∗ = exp(H∗m) = exp(−Hm). Here the unit vector ei is the

ith column of the N ×N identity matrix

The exponential of A ∈ uM (C) is a unitary matrix exp(A) ∈ UM (C) and, in particular,

the action of exp(A) on v preserves the norm of v. That our numerical solution is also

able to conserve norm precisely, is a very desirable aspect. This property has been used in

chemical physics earlier (Park & Light 1986, Tal Ezer & Kosloff 1984). Unitary evolution,

on the other hand, is not strictly preserved.

As the Hessenberg matrix obtained here is m× (m− 1) and not the full Hm required,

we run the Lanczos process for an additional iteration. After m iterations the invariant

AVm = VmHm + hm+1,mvm+1e
∗
1

holds, where ei is the ith column of the N×N identity matrix. The additional basis vector

vm+1 can be incorporated in a slightly modified approximation but this should make only

modest improvements in our case and is not explored further. Since V∗mv = ‖v‖2e1, it

follows that eHmV∗mv is merely the first column of eHm , scaled by ‖v‖2. To compute the

approximation (2.23) we thus need to evaluate a small exponential and calculate a single

matrix–vector product, at overall cost of O (mM) operations.

All but the first of these iterations require a matrix–vector product of the form Avi.
These methods are particularly effective when A is large and sparse. They can be even

more effective for structured sparse matrices which we encounter here and where we often

do not need to store the matrix explicitly. On the other hand, exp(A) is likely to be

dense even if A is sparse, and computing it is undesirable since it would require large

storage space. This, of course, is in addition to the undesirable O
(
M3
)

computational

time associated with matrix–matrix products involved in explicitly computing exp(A).

Krylov methods are found to be particularly effective on GPUs as they are well suited to

parallelisation and the tighter memory constraints are not an issue.

A very tight bound on the error committed in the approximation of the exponential

of A ∈ uM (C) is given by

∥∥eAv − VmeHmV∗mv
∥∥

2
≤ 12e−ρ

2/(4m)
( eρ

2m

)m
, m ≥ ρ, (2.24)

where ρ = ρ(A) (Hochbruck & Lubich 1997). This error decay is super-linear in m. The

condition m ≥ ρ is, of course, not to be scoffed at and significant decrease in error starts

happening only after this range, often dramatically as seen in Figure 2.10.
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Figure 2.10: The Lanczos approximation to the matrix exponential for a random skew-
Hermitian matrix A starts converging rapidly after m ≥ ρ.

2.2.3 Trotter splitting and the BCH formula

The general idea behind splitting methods is to approximate the exponential of a matrix

A = X + Y via exponentials of its constituents X and Y , chosen in a way that they are

easier to exponentiate than exponentiating A directly. While

ex+y = exey, x, y ∈ C,

we know that the equality

eX+Y = eXeY , X, Y ∈ CM×M

only holds when X and Y commute, i.e. their (matrix) commutator disappears,

[X,Y ] = XY − Y X = 0.

Although eX+Y 6= eXeY in general, eXeY can, nevertheless, be considered an approxi-

mation of eX+Y due to the Trotter product formula (Trotter 1959),

eX+Y = lim
k→∞

(eX/keY/k)k.

Since eXeY is not the exponential of X + Y in general, a natural question is “what is

it the exponential of?”. In other words, we seek the matrix Z such that

eZ = eXeY .
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The answer to this is provided by the matrix logarithm,

Z = log(eXeY ).

This exponent is also written in the form

Z = BCH(X,Y ),

where BCH stands for the Baker–Campbell–Hausdorff formula (Hall 2003), expressed as

an infinite series of commutators of X and Y ,

BCH(hX, hY ) = hX + hY + 1
2h

2[X,Y ]

−h3( 1
24 [[Y,X], X] + 1

12 [[Y,X], Y ]) +O
(
h4
)
, (2.25)

for a sufficiently small h. The coefficients occurring in this series can be evaluated algo-

rithmically (Casas & Murua 2009, Dynkin 1947, Oteo 1991). However, for our purposes

here including the first non trivial term, 1
2h

2[X,Y ], will suffice.

Using the BCH formula,

eBCH(hX,hY ) = ehXehY ,

the accuracy of the Trotter splitting can now be ascertained. We conclude that

ehX+hY = ehXehY +O
(
h2
)
, (2.26)

since we have dropped the O
(
h2
)

term 1
2h

2[X,Y ] (and smaller terms) from the BCH

formula on the left hand side.

We have used the O
(
h2
)

difference in the exponents hX + hY and BCH(hX, hY ) to

conclude that the error in the corresponding exponentials is O
(
h2
)

without any explana-

tion. This, however, can be made more precise. The relative perturbation in the matrix

exponential of hA,

φ(h) =

∥∥eh(A+E) − ehA
∥∥

2

‖ehA‖2
can be bounded by

φ(h) ≤ h ‖E‖2 eh(µ(A)−η(A)−‖E‖2), (2.27)

where µ(A) is the largest eigenvalue of (A+A∗)/2 (also called the logarithmic norm) and

η(A) = max{Re (λ) : λ an eigenvalue of A}

(Golub & Van Loan 1996, Moler & Loan 1978, Sheng 1994). In other words,∥∥∥eh(A+E) − ehA
∥∥∥

2
≤ h

∥∥∥ehA
∥∥∥

2
‖E‖2 eh(µ(A)−η(A)−‖E‖2) (2.28)
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or ∥∥eA+E − eA
∥∥

2
≤
∥∥eA

∥∥
2
‖E‖2 eµ(A)−η(A)−‖E‖2 (2.29)

for small enough A and E .

In particular, for A = hX + hY and

E = BCH(hX, hY )− hX − hY = 1
2h

2[X,Y ] +O
(
h3
)

= O
(
h2
)
,

∃C ≥ 0, ‖E‖ ≤ Ch2,

and, therefore,∥∥∥eBCH(hX,hY ) − ehX+hY
∥∥∥ ≤ ∥∥∥ehX+hY

∥∥∥
2
‖E‖2 eµ(A)−η(A)−‖E‖2

≤ Ch2e−‖E‖2
∥∥∥ehX+hY

∥∥∥
2

eµ(hX+hY )−η(hX+hY )

≤ Ch2
∥∥∥ehX+hY

∥∥∥
2

eµ(hX+hY )−η(hX+hY ). (2.30)

For skew-Hermtian matrices X and Y , whose exponentials we will mostly be concerned

with, µ(A) = 0 since A∗ = −A and η(A) = 0 since all eigenvalues are imaginary. In such

cases, ∥∥∥ehX
∥∥∥

2
=
∥∥∥ehY

∥∥∥
2

=
∥∥∥ehX+hY

∥∥∥
2

= 1

since the exponential of a skew-Hermitian matrix is unitary. The error bound (2.30) now

reduces to ∥∥∥eBCH(hX,hY ) − ehX+hY
∥∥∥

2
≤ Ch2e−‖E‖2 ≤ Ch2. (2.31)
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Figure 2.11: The `2 difference in the exponential of randomised 100×100 skew-Hermitian
matrices hZ and hZ̃ compared to the error bounds of Lemma 2.2.1. Note that these
bounds only hold in the asymptotic sense—i.e. when h is small enough.
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Lemma 2.2.1. For skew-Hermitian matrices Z and Z̃ which are close enough,∥∥∥eZ̃ − eZ
∥∥∥

2
≤
∥∥∥Z̃ − Z∥∥∥

2
e−‖Z̃−Z‖2 ≤

∥∥∥Z̃ − Z∥∥∥
2

The proof for Lemma 2.2.1 follows directly from (2.29) and noting the skew-Hermiticity.

In particular, if
∥∥∥Z̃ − Z∥∥∥

2
≤ Chp, then

∥∥∥eZ̃ − eZ
∥∥∥

2
≤ Chp as well.

This observation will be inherently assumed throughout this thesis in estimating the

error in the exponentials as a consequence of the error in exponents. A careful reader

will note, however, that we work with unbounded operators, not matrices. The rigorous

analysis that will allow us to make the relevant conclusions in case of unbounded operators

will only be presented in Chapter 9.

2.2.4 Strang splitting and the symmetric BCH

Given complex numbers x and y, we know that the symmetric version ex+y = ex/2eyex/2

also holds. In the pursuit of a symmetric splitting of this sort for matrix exponentials, we

seek a Z such that

eZ = e
1
2
XeY e

1
2
X .

Such an exponent, Z, is called the symmetric BCH (sBCH) of X and Y (Casas & Murua

2009, Dynkin 1947, Hall 2003),

Z = log
(

e
1
2
XeY e

1
2
X
)

= sBCH(X,Y ),

e
1
2
XeY e

1
2
X = esBCH(X,Y ), (2.32)
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where

sBCH(hX, hY ) (2.33)

= h(X + Y )− h3( 1
24 [[Y,X], X] + 1

12 [[Y,X], Y ]) + h5( 7
5760 [[[[Y,X], X], X], X]

+ 7
1440 [[[[Y,X], X], X], Y ] + 1

180 [[[[Y,X], X], Y ], Y ]

+ 1
720 [[[[Y,X], Y ], Y ], Y ] + 1

480 [[[Y,X], X], [Y,X]]

− 1
360 [[[Y,X], Y ], [Y,X]]) + h7(− 31

967680 [[[[[[Y,X], X], X], X], X], X]

− 31
161280 [[[[[[Y,X], X], X], X], X], Y ]− 13

30240 [[[[[[Y,X], X], X], X], Y ], Y ]

− 53
120960 [[[[[[Y,X], X], X], Y ], Y ], Y ]− 1

5040 [[[[[[Y,X], X], Y ], Y ], Y ], Y ]

− 1
30240 [[[[[[Y,X], Y ], Y ], Y ], Y ], Y ]− 53

161280 [[[[[Y,X], X], X], X], [Y,X]]

− 11
12096 [[[[[Y,X], X], X], Y ], [Y,X]]− 3

4480 [[[[[Y,X], X], Y ], Y ], [Y,X]]

− 1
10080 [[[[[Y,X], Y ], Y ], Y ], [Y,X]]− 1

4032 [[[[Y,X], X], [Y,X]], [Y,X]]

− 1
6720 [[[[Y,X], Y ], [Y,X]], [Y,X]]− 19

80640 [[[[Y,X], X], X], [[Y,X], X]]

− 1
10080 [[[[Y,X], X], Y ], [[Y,X], X]] + 17

40320 [[[[Y,X], Y ], Y ], [[Y,X], X]]

− 53
60480 [[[[Y,X], X], X], [[Y,X], Y ]]− 19

13440 [[[[Y,X], X], Y ], [[Y,X], Y ]]

− 1
5040 [[[[Y,X], Y ], Y ], [[Y,X], Y ]]) +O

(
h9
)
.

The expansion (2.33) can be computed to an arbitrary power of h using an algorithm from

(Casas & Murua 2009). Because (2.32) is palindromic, only odd powers of h feature in

the expansion.

Consequently, and following the development of the Trotter splitting, we introduce the

Strang splitting (Strang 1968)

ehX+hY = e
1
2
hXehY e

1
2
hX +O

(
h3
)
, (2.34)

which features an O
(
h3
)

error due to the omission of the O
(
h3
)

terms occurring in the

sBCH expansion (2.33). Here, once again, (2.29) and Lemma 2.2.1 come to our rescue,

making it possible to analyse error by comparing the exponents. Another version of the

(second order) Strang splitting is

ehX+hY = e
1
2
hY ehXe

1
2
hY +O

(
h3
)
, (2.35)

which can be obtained by interchanging the letters X and Y .

If a matrix X ∈ CM×M can be split into several components,

X =
m∑
i=1

Xi, (2.36)
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the exponentials of which are easier to evaluate, we can approximate its exponential via a

generalised form of the Strang splitting,

exp(hX) = e
1
2
hXm e

1
2
hXm−1 . . . e

1
2
hX2 ehX1e

1
2
hX2 . . . e

1
2
hXm−1 e

1
2
hXm +O

(
h3
)
. (2.37)

2.2.5 Yoshida splittings

An interesting question is whether, by combining exponentials of X and Y in different

ways, we can obtain splittings with greater degree of accuracy— i.e. are there coefficients

ci, di, i = 1, . . . , n such that

n∏
i=1

ehciXehdiY = ehc1Xehd1Y . . . ehcnXehdnY = ehX+hY +O (hp) (2.38)

for p > 3?

This question was first answered by Yoshida (1990) in the form of a recursive procedure

for developing arbitrarily high-order symmetric splittings by composing lower order meth-

ods. The technique, called the Yoshida device, can take any order 2n splitting, S2n(h),

and compose it to form an order 2n+ 2 splitting,

S2n+2(h) = S2n(a2nh)S2n(b2nh)S2n(a2nh), (2.39)

where the coefficients a2n and b2n are

a2n =
1

2− 21/(2n+1)
, b2n =

−21/(2n+1)

2− 21/(2n+1)
. (2.40)

In such a procedure, it is typical to commence from the Strang splitting (2.34) as the

order two splitting,

S2(h) = e
1
2
hXehY e

1
2
hX ,

and recursively define higher order splittings. The first of these is the 4th-order Yoshida

splitting S4(h), obtained by choosing

a2 =
1

2− 21/3
, b2 =

−21/3

2− 21/3
,

S4(h) = S2(a2h)S2(b2h)S2(a2h)

=
(

e
1
2
a2hXeha2Y e

1
2
ha2X

)(
e

1
2
b2hXehb2Y e

1
2
hb2X

)(
e

1
2
a2hXeha2Y e

1
2
ha2X

)
= e

1
2
a2hXeha2Y e

1
2
h(a2+b2)Xehb2Y e

1
2
h(a2+b2)Xeha2Y e

1
2
ha2X (2.41)

= ehX+hY +O
(
h5
)
.
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2.2. Approximation of matrix exponentials

Yoshida splittings are not the only splittings of the type (2.38) and a variety of other high-

order splittings of this form have been developed (Blanes, Casas & Murua 2008, McLachlan

& Quispel 2002).

Number of exponents

Let’s assume that the order 2k splitting, S2k(h), involves si exponentials of Xi, i =

1, . . . ,m, and, without loss of generality, let’s further assume that the outermost exponen-

tials on both sides in S2k(h) are exponentials of Xm.

The recursive procedure (2.39) then dictates that in the order 2k+2n Yoshida splitting

S2k+2n(h), we will encounter 3nsi exponentials of Xi, i = 1, . . . ,m − 1. The outermost

exponentials are of Xm and two of these can be combined every time, thus we have two

fewer exponent for each recursion of (2.39). A simple induction shows that the number of

exponentials of Xm are 3n(sm − 1) + 1. In general, the number of exponentials grow at

the rate O (3n).

In the case where we start with S2(h) as a Strang splitting (2.34) featuring X1 and

X2 (i.e. m = 2), we encounter 3n−1 exponentials of X1 and 3n−1 + 1 exponentials of the

outer exponent X2 for an order 2n Yoshida splitting. When starting from a more general

version of the Strang splitting (2.37) which features two exponentials each of X2, . . . , Xm

and one exponential of X1, the order 2n Yoshida splitting features 3n−1 exponentials of

X1, 3n−1 + 1 exponentials of Xm and 2× 3n−1 exponentials of Xi, i = 2, . . . ,m− 1.

2.2.6 Lie groups, Lie algebras and the exponential map

It should be remarked that, although the splitting methods have been developed here in

the context of matrices, the ideas extend to the splitting of the exponential map from a Lie

algebra to its Lie group. We provide a very brief introduction to some of the Lie algebraic

concepts required for the development of the numerical methods in this thesis and refer

the reader to (Hall 2003, Khesin & Wendt 2009, Lee 2012) for more details.

Definition 2.2.2. A Lie group is a smooth manifold G that is also an algebraic group

where the multiplication map m : G×G→ G and the inversion map i : G→ G,

m(g, h) = gh, i(g) = g−1,

are both smooth.

Example 2.2.3 (Lie Groups). Each of the following is a Lie group. The most common

examples that we encounter are those of matrix Lie groups, which are manifolds in the

vector space ofm×mmatrices, M(m,R) and M(m,C). Note that the matrix multiplication

and inversion maps are smooth maps.
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(i) The general linear group GL(m,R) and the complex general linear group GL(m,C),

which are the sets of invertible m×m matrices in the matrix vector spaces M(m,R)

and M(m,C), respectively, are Lie groups.

(ii) The special linear group SL(m,R) and the complex special linear group SL(m,C)

are the Lie groups of m×m matrices with determinant 1.

(iii) The special orthogonal group SO(m), which is the group of real orthogonal matrices

with determinant 1.

(iv) U(m) is the group of unitary matrices in M(m,C).

Definition 2.2.4. A Lie algebra g is a linear space equipped with a bilinear skew-symmetric

operator called the Lie bracket [., .] : g×g→ g that satisfies the Jacobi identity. The axioms

that the Lie bracket must satisfy are listed in Table 2.3.

[ax+ by, z] = a[x, z] + b[y, z], (bilinearity)
[z, ax+ by] = a[z, x] + b[z, y], (bilinearity)

[x, x] = 0, (alternativity)
[[x, y], z] = [x, [y, z]] + [y, [x, z]]. (Jacobi identity)

Table 2.3: Axioms of the Lie bracket [., .] : g× g→ g that must hold for all x, y ∈ g and
all a, b ∈ F (the field over which g is a vector space).

An important property that is implied by these axioms (and can be taken as an axiom

instead of alternativity in the case of fields F whose characteristic is not 2) is the property

of anti-commutativity of the Lie bracket,

[x, y] = −[y, x]. (2.42)

The Lie algebra of the Lie group G is the tangent space at the identity of G, g = T1G.

Being a tangent space, g is also a vector space and its linearity is of significance in Lie

group methods.

The flow ϕ[A] : G×R→ G of A ∈ g is a map that describes the evolution of u from 0

to t,

u(t) = ϕ[A](u0, t), ∀t ≥ 0.

under the vector field A,

u′(t) = Au(t), u(0) = u0 ∈ G. (2.43)

We note that ϕ[A](u0, 0) = u0. If the one parameter subgroup ϕ[A](e, ·), generated by A,

exists for all A ∈ g, where e is the group identity of G, we define the exponential map
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2.3. The Magnus expansion

exp : g→ G as

exp(A) = ϕ[A](e, 1) (2.44)

and

exp(tA) = ϕ[A](e, t).

In other words, the exponential map is the integral curve of A starting at the identity.

Example 2.2.5 (Lie Algebras). Each of the following is a Lie algebra.

(i) gl(n,R) = M(m,R), consisting of all n×n matrices, is the Lie algebra of the general

linear group GL(m,R).

(ii) The vector space of matrices with vanishing trace sl(m,R) is the Lie algebra of the

special linear group SL(m,R).

(iii) The vector space of skew-symmetric matrices so(m,R) is the Lie algebra of the

special orthogonal group SO(m).

(iv) The vector space of skew-Hermitian matrices u(m) is the Lie algebra of the group of

unitary matrices U(m).

The above examples are of matrix Lie groups and algebras. In these cases, the Lie

bracket reduces to the matrix commutator,

[A1,A2] = A1A2 −A2A1,

and the exponential map from the Lie algebra to the Lie group, exp : g → G, is simply

the matrix exponential,

exp(A) =
∞∑
k=0

1

k!
Ak. (2.45)

In the case of operator algebras, such as the Lie algebra of skew-Hermitian operators,

the obvious Lie bracket arises from the commutator of operators,

[A1,A2] = A1 ◦ A2 −A2 ◦ A1,

where ◦ is operator composition and Ai are linear operators.

2.3 The Magnus expansion

In this section we introduce methods for solving differential equations featuring time-

dependent vector fields,

u′(t) = A(t)u(t), u(0) = u0 ∈ G, (2.46)
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where G is a Lie group and A(t) resides in its Lie algebra, g. The solution of (2.46) remains

in G for all times t ≥ 0,

u(t) ∈ G, t ≥ 0,

and (2.46) is, therefore, a Lie group equation.

The Magnus expansion introduced in this section is a powerful Lie group method,

which are a class of geometric integration methods (Hairer, Lubich & Wanner 2006) well

suited to solving Lie group equations such as (2.46) (Iserles, Munthe-Kaas, Nørsett &

Zanna 2000). This method is utilised in Chapter 7 for solving Schrödinger equations with

time-dependent interaction potentials.

Lie group methods are numerical methods that exploit the properties of the Lie group

and its Lie algebra, and are designed to keep the numerical solution un on G for all n ∈ N,

where un is an approximation to the true solution u(tn) at time tn. The broad idea of

these methods is to perform the approximation in the Lie algebra g—the linearity of which

is also better suited to discretisation—and use the exponential map to map back to the

Lie group G.

For sufficiently small time step h, the flow can be expressed as

u(h) = exp(Θ(h))u(0),

where Θ(h) ∈ g is a suitable function with Θ(0) = 0. In the case where there is no

time dependence in A(t), A(t) = A ∈ g and we have u(t) = exp(tA)u(0) for all t ∈ R+.

Therefore Θ(h) = hA works in this case. In the general case, however, the solution becomes

much more complicated and straightforward attempts at generalisation such as

u(h) = exp

(ˆ h

0
A(ξ) dξ

)
u(0)

do not work. In fact, this is an approximation which only holds as equality when

[A(t0),A(t1)] = 0, ∀t0, t1 ∈ R+,

in which case

Θ(h) =

ˆ h

0
A(ξ) dξ

suffices. For general A(t) that do not satisfy this criterion, the approach is to make

approximations to Θ using methods like Magnus expansions which will be discussed in

this section.

If Θ̃ ∈ g is the approximation to Θ at tn+1 and if un ∈ G, the exponential exp(Θ̃)

applied to un gives un+1 = exp(Θ̃)un ∈ G since exp(Θ̃) ∈ G. Thus the exact evaluation of

the exponential ensures that the solution always stays on the Lie group G, in which case

the error in approximation stems from the approximation of Θ.
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2.3. The Magnus expansion

In Lie group methods, such as the Magnus expansion (Iserles et al. 2000), the problem

thus boils down to making approximation to Θ in g and then approximating the exponen-

tial map from g to G (Crouch & Grossman 1993, Iserles & Nørsett 1999, Munthe–Kaas

1999). We blur the boundaries by denoting the exponential map exp(Θ(h)) by eΘ(h), even

though we might not always be working with matrix Lie algebras.

2.3.1 Magnus expansion

Consider the Lie group equation,

u′(t) = A(t)u(t), u(0) = u0 ∈ G, (2.46)

where A : R+ → g and, consequently,

u(t) ∈ G, ∀t ≥ 0.

For the purpose of this section it would suffice to think of G as a matrix Lie group in

M(m,C), A(t) as a time-dependent m×m matrix and u(t) ∈ Cm.

As noted earlier, the vector field described by A(t) is time-dependent and the exact

solution of (2.46), u(t), can no longer be obtained by a straightforward exponentiation,

u(t) 6= exp(tA(t))u0,

u(t) 6= exp

(ˆ t

0
A(ξ) dξ

)
u0.

These, however, turn out to be O
(
t2
)

and O
(
t3
)

approximations to the exact solution,

respectively. Let ϕ
[A]
t2,t1

be the flow of (2.46), which describes the evolution of u from t1 to

t2,

u(t2) = ϕ
[A]
t2,t1

u(t1), ∀t2 ≥ t1.

In previous notation we would have written ϕ[A](u(t1), t2, t1) but we will stick to the more

compact notation ϕ
[A]
t2,t1

u(t1) going forward.

The central idea of the Magnus expansion (Magnus 1954) is to seek a solution for the

exact flow ϕ
[A]
t2,t1

as the exponential of some element Θ(t2, t1) in the Lie algebra g,

ϕ
[A]
t2,t1

= eΘ(t2,t1),

or

u(t2) = eΘ(t2,t1)u(t1). (2.47)
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As we will see shortly, Θ(t2, t1) can be expressed as an infinite series

Θ(t2, t1) =

∞∑
k=1

Θ[k](t2, t1),

where Θ[k](t2, t1) features k nested integrals of grade k commutators of A(ξ) at different

times ξ ∈ [t1, t2]. This series is known as the Magnus expansion and its convergence is only

guaranteed for sufficiently small time steps, |t2−t1| (Blanes, Casas, Oteo & Ros 1999, Moan

& Niesen 2008). Additionally, in practice we work with finite truncations of this series.

In order to keep truncation errors small and keeping the convergence criteria in mind, it

is customary to evolve the solution in small time steps h,

u(t+ h) = eΘ(t+h,t)u(t), (2.48)

starting from the initial step,

u(h) = eΘ(h,0)u(0). (2.49)

The flow ϕ
[A]
t+h,t = exp (Θ(t+ h, t)) is the operator that evolves the solution from t to

t+h. Since Θ(t+h, t) encodes the flow at time t under A, it is recovered from Θ(h, 0) by

replacing all occurrences of A(ζ) with A(t+ ζ). For all intents and purposes, therefore, it

will suffice to restrict the analysis to the first step (2.49) and the corresponding expressions

for (2.48), when required, can be easily obtained by a straightforward translation of A.

For narrative ease, we further hide the dependence on the initial time, shortening Θ(h, 0)

to Θ(h).

Thus, we seek Θ(h) such that

u(h) = eΘ(h)u(0), (2.50)

is a solution of (2.46) for all h, subject to convergence of Θ(h). Differentiation of (2.50)

together with elementary algebra (Iserles et al. 2000) shows that the exponent has to

satisfy the dexpinv equation,

Θ′(h) = dexp−1
Θ(h)A(h) =

∞∑
m=0

Bm
m!

admΘ(h)A(h), (2.51)

where the powers of the adjoint map ,

adX(Y ) = [X,Y ],

are recursively defined by

ad0
X(Y ) = Y, adk+1

X (Y ) = [X, adkX(Y )],
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2.3. The Magnus expansion

and Bm are Bernoulli numbers (Abramowitz & Stegun 1964), the first few of which are

B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 . (2.52)

Apart from B1, all odd-indexed Bernoulli numbers vanish.

Magnus (1954) resorted to solving the dexpinv equation (2.51) via Picard iteration,

Ω0(h) = 0,

Ωk+1(h) =

ˆ h

0
dexp−1

Ωk(ξ)A(ξ)dξ =
∞∑
m=0

Bm
m!

ˆ h

0
admΩk(ξ)A(ξ)dξ,

whereby Θ(h) = limk→∞Ωk(h). The series Ωk(h) is known as the Magnus expansion.

For computational reasons, however, we adopt another version of this expansion de-

scribed by Iserles & Nørsett (1999) where the operator Θ(h) is presented as an infinite

series:

Θ(h) =

∞∑
k=1

Θ[k](h), (2.53)

where the first few terms are

Θ[1](h) =

ˆ h

0
A(ξ1)dξ1,

Θ[2](h) = −1

2

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]
dξ1,

Θ[3](h) =
1

12

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]]
dξ1

+
1

4

ˆ h

0

[ˆ ξ1

0

[ˆ ξ2

0
A(ξ3)dξ3,A(ξ2)

]
dξ2,A(ξ1)

]
dξ1,

Θ[4](h) = − 1

24

ˆ h

0

[ˆ ξ1

0

[ˆ ξ2

0
A(ξ3)dξ3,

[ˆ ξ2

0
A(ξ3)dξ3,A(ξ2)

]]
dξ2,A(ξ1)

]
dξ1

− 1

24

ˆ h

0

[ˆ ξ1

0

[ˆ ξ2

0
A(ξ3)dξ3,A(ξ2)

]
dξ2,

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]]
dξ1

− 1

24

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,

[ˆ ξ1

0

[ˆ ξ2

0
A(ξ3)dξ3,A(ξ2)

]
dξ2,A(ξ1)

]]
dξ1

− 1

8

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,

[ˆ ξ1

0
A(ξ2)dξ2,

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]]]
dξ1.

2.3.2 Graphical representation of the Magnus expansion

The terms in the Magnus expansion can be obtained through a recursive procedure,

whereby they can be easily coded as binary rooted trees. Let C be a mapping from
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trees to terms. We recursively define the set of trees T̂k and the corresponding terms:

(1) Let T̂1 = {τ0}, and Cτ0(h) = A(h).

(2) If τ1 ∈ T̂m1 and τ2 ∈ T̂m2 then there exists τ ∈ T̂m1+m2 such that

Cτ (h) =

[ˆ h

0
Cτ1(ξ)dξ, Cτ2(h)

]
.

We depict the inverse of the bijection C as ;, so that Cτ ; τ for any tree τ . A graphical

representation for these terms is obtained by representing the atomic expression A(h) as

a single vertex, τ0 = •,
A(h) ; r ,

representing the unary operator of integration by a vertical line,

ˆ h

0
Cτ (ξ) dξ ; rτ ,

and the Lie bracket—a binary operator—by a fork,

[Cτ1(h), Cτ2(h)] ; r@�τ1 τ2

.

This results in a more transparent representation of Magnus expansion and what is far

more comfortable for investigation of the terms. The first three sets of trees formed in

this way, T̂1, T̂2 and T̂3, are,

A(h) ; r ∈ T̂1,[ˆ h

0
A(ξ2)dξ2,A(h)

]
;
@�rr rr

∈ T̂2,

[ˆ h

0
A(ξ2)dξ2,

[ˆ h

0
A(ξ2)dξ2,A(h)

]]
; @�

@�rrr rr rr
∈ T̂3,

[ˆ h

0

[ˆ ξ2

0
A(ξ3)dξ3,A(ξ2)

]
dξ2,A(h)

]
;

@�

@�rr rrr rr
∈ T̂3.

It should be evident that trees in T̂k have k− 1 vertical lines. Finally, we define the set of

trees which actually appear in the Magnus expansion: Tk,

τ = rτ̂ ∈ Tk, Cτ (h) =

ˆ h

0
Cτ̂ (ξ) dξ, ∀τ̂ ∈ T̂k,
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so that every tree τ in Tk is obtained by adding an integral to a tree τ̂ from the auxiliary

set T̂k.
Each tree in Tk possesses k integrals. For a general smooth A, A(h) = O

(
h0
)
, and

τ ∈ Tk, it immediately follows that Cτ (h) = O
(
hk
)
. We say that the tree τ is O

(
hk
)
,

for short. Similarly, every τ ∈ T̂k is O
(
hk−1

)
. Each component of the Magnus expansion

Θ[k](h) is composed solely of trees from the corresponding set Tk,

Θ[1](h) = rr ,
Θ[2](h) = −1

2

@�rrr rr
,

Θ[3](h) = 1
12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
,

Θ[4](h) = − 1
24 rrr rrrr rr rr
@�

@�
�@

− 1
24 rrr rrr rr r rr
QQ ��

@�
@�

− 1
24 rrrr rr rrr rr
@�
@�

@�

− 1
8 rr r r rr r rr r r
@
@
@

�
�
�

.

The set of all trees that appear in the Magnus expansion is
⋃
k≥1 Tk and the Magnus

expansion can be written in the form

Θ(h) =
∞∑
k=1

Θ[k](h) =
∞∑
k=1

∑
τ∈Tk

α(τ)Cτ (h), h ≥ 0, (2.54)

where α(τ) is the scalar coefficient for the tree τ which can be recursively obtained (Iserles

et al. 2000, Iserles & Nørsett 1999). The reader is forewarned about certain conflict

of notation: the sets Tk in (Iserles et al. 2000, Iserles & Nørsett 1999) correspond to

our auxiliary sets T̂k+1 and the last integral occurs explicitly in the Magnus expansion

corresponding to (2.54). A few discrepancies will, therefore, be found in numbering of

trees and truncations of the Magnus expansion when directly comparing with these texts.

2.3.3 Power truncation

A tree τ is said to be of power k in h if k is the greatest integer such that Cτ (h) = O
(
hk
)

for every smooth A. We define Fk ⊆
⋃
j≥1 Tj as the set of all trees of power k in h which

appear in the Magnus expansion. It is clear that τ ∈ Tk implies that τ ∈ Fm for some

m ≥ k since a tree with k integrals is, at the very least, O
(
hk
)
. The two sets are not
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identical, however. For instance, it can be shown that the tree

@�rrr rr

belongs to T2 and F3. Such a gain in power occurs wherever we encounter a pattern of

the form
[´ h

0 Cτ (ξ) dξ, Cτ (h)
]

with τ ∈ T̂k, which corresponds to the tree structure

@�rr τ
τ

.

Upon expanding Cτ (h) as
∑∞

i=k−1 h
iCi we find that the largest term in the above tree,[

1
kh

kCk−1, h
k−1Ck−1

]
, vanishes since Ck−1 commutes with itself (Iserles et al. 2000).

The power truncated Magnus expansion, which is based on truncation by the sets Fk,
is defined as

Θp(h) =

p∑
k=1

∑
τ∈Fk

α(τ)Cτ (h). (2.55)

The largest terms that have been discarded in this truncation correspond to trees from

Fp+1, which are O
(
hp+1

)
, so that this truncated expansion incurs an error of

Θp(h) = Θ(h) +O
(
hp+1

)
,

where Θ(h) is the full Magnus series.

The power truncated Magnus expansion Θ4(h) looks no different from the regular

truncated version,

Θ4(h) = rr − 1
2

@�rrr rr
+ 1

12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
, (2.56)

However, in the power truncated expansion Θ5(h),

Θ5(h) = Θ4(h)− 1
24 rrr rrrr rr rr
@�

@�
�@

− 1
24 rrrr rr rrr rr
@�
@�

@�

− 1
8 rr r r rr r rr r r
@
@
@

�
�
�

, (2.57)
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the tree

− 1
24 rrr rrr rr r rr
QQ ��

@�
@�

(2.58)

drops out since it is too small when analysed correctly using Taylor analysis.

2.3.4 Time symmetry and gain of power

The flow of the equation (2.46),

ϕ
[A]
t2,t1

= eΘ(t2,t1),

satisfies

ϕ
[A]
t1,t2
◦ ϕ[A]

t2,t1
= id.

The Magnus expansion thus satisfies

Θ(t2, t1) = −Θ(t1, t2).

It is advantageous to use the power truncated Magnus expansion (2.55) since they have

the desirable characteristic of preserving the time symmetry. That is, their flow

Φ
[A]
t2,t1

= eΘp(t2,t1),

also satisfies

Φ
[A]
t1,t2
◦ Φ

[A]
t2,t1

= id.

Consequently,

Θp(t2, t1) = −Θp(t1, t2)

and thus the power-truncated Magnus expansions are odd in h (Iserles et al. 2000, Iserles

& Nørsett 1999, Iserles, Nørsett & Rasmussen 2001). Odd-indexed methods of this form

consequently gain an extra power of h,

Θ2p−1(h) = Θ(h) +O
(
h2p+1

)
. (2.59)

This means that if we aim for a numerical method of order six it suffices to consider the

truncation of the Magnus expansion only to the terms listed in (2.57).

2.3.5 Discretisation of integrals

In general it is not possible to evaluate the nested integrals of the commutators appear-

ing in the Magnus expansion exactly. We resort to numerical quadrature methods for
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approximating the integral of f ,

ˆ h

0
f(ξ) dξ ≈

n∑
k=1

wkf(tk),

where wk are the quadrature weights and tk are the quadrature knots. Some of the simplest

approximations are,

ˆ h

0
f(ξ) dξ ≈ hf(0), (2.60)

ˆ h

0
f(ξ) dξ ≈ hf(h), (2.61)

ˆ h

0
f(ξ) dξ ≈ hf(h/2), (2.62)

ˆ h

0
f(ξ) dξ ≈ hf(0) + f(h)

2
, (2.63)

ˆ h

0
f(ξ) dξ ≈ hf(h/2− ζ) + f(h/2 + ζ)

2
, ζ ∈ (0, h/2). (2.64)

By using merely two Gauss–Legendre knots, tk = h
2 (1 + k/

√
3), k = −1, 1, and weights

wk = h
2 , however, we can approximate the integral

´ h
0 f(ξ) dξ to O

(
h4
)

accuracy (Davis

& Rabinowitz 1984, Hildebrand 1987),

ˆ h

0
f(ξ) dξ = h

(
f(t1) + f(t−1)

2

)
+O

(
h4
)
. (2.65)

This is equivalent to (2.64) with ζ = h
2
√

3
.

Note: In the context of the power truncated Magnus expansions these quadrature meth-

ods gain a power of h, becoming O
(
h5
)

in accuracy. This gain is due to the fact

that such Magnus expansions are time-symmetric and, therefore, odd in h (see

Section 2.3.4). Consequently, the even powers of h in its Taylor series, including

error terms, vanish. Thus, any O
(
h2n
)

accuracy quadrature method automatically

becomes an O
(
h2n+1

)
accuracy method in this context.

Some simple Magnus expansion methods

Truncating the Magnus expansion to the first integral,

Θ1(h) =

ˆ h

0
A(ξ) dξ = Θ(h) +O

(
h3
)
,

and using the mid point rule (2.62) for approximating the integral, the Magnus expansion

reduces simply to hA(h/2). Its exponential leads to the well known exponential midpoint
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rule, whose first step is

u1 = exp
(
hA
(
h
2

))
u0.

Of course, as noted earlier, further steps are obtained by a simple translation of time,

un+1 = exp
(
hA
(
tn + h

2

))
un. (2.66)

Since (2.62) is an O
(
h3
)

approximation in the context of a power truncated Magnus

expansion, the entire exponential midpoint rule is an order two method.

Pairing the Gauss–Legendre quadrature (2.65) with the first non-trivial Magnus ex-

pansion,

Θ3(h) =

ˆ h

0
A(ξ1)dξ1 −

1

2

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]
dξ1 = Θ(h) +O

(
h5
)
,

we arrive at the approximation of the Magnus expansion

Θ3(h) h
2 (A(t−1) +A(t1)) +

√
3h2

12 [A(t−1),A(t1)],

which results in the fourth order method

un+1 = exp
(
h
2 (A(tn,−1) +A(tn,1)) +

√
3h2

12 [A(tn,−1),A(tn,1)]
)
un, (2.67)

where tn,k = tn + h
2 (1 + k/

√
3), k = −1, 1. Here, Θ3(h)  Ω indicates the temporal

discretisation of the integrals appearing in Θ3 using quadrature methods.

The approximation of these exponentials, of course, is an important aspect that cannot

be ignored. Typically a combination of methods available for approximating matrix expo-

nentials are applied in conjunction. Where splitting methods are employed, it makes sense

to combine the order two Strang splitting with the exponential midpoint rule (2.66) and

the fourth order Yoshida splitting with (2.67). Krylov methods such as Lanczos iterations

provide viable alternatives, leading to Magnus–Lanczos methods, however each iteration

requires the approximation of Θ3(h)u which can prove to be expensive.

These methods have been studied extensively (Blanes, Casas, Oteo & Ros 2009, Blanes,

Casas & Ros 2000) and have found various applications in the solution of Schrödinger

equations (Hochbruck & Lubich 2003, Tal-Ezer, Kosloff & Cerjan 1992). They have also

been found to be effective for handling stochastic ODEs (Lord, Malham & Wiese 2008).

Multidimensional quadratures

Consider the interpolant of A(t) at a set of knots {tk}nk=1,

Ã(t) =
n∑
k=1

`k(t)A(tk), (2.68)
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where `k(t) are the Lagrange interpolation functions,

`i(t) =

n∏
j=1
j 6=k

t− tj
tk − tj

, k = 1, . . . , n.

Then
´ h

0 A(ξ) dξ can be approximated by the integral of the interpolant,

ˆ h

0
Ã(ξ) dξ =

n∑
k=1

A(tk)

ˆ h

0
`k(ξ) dξ. (2.69)

Thus,

wk =

ˆ h

0
`k(ξ) dξ

are the weights in the quadrature formula,

ˆ h

0
A(ξ) dξ ≈

n∑
k=1

wkA(tk). (2.70)

When the knots {tk}nk=1 are the roots of Gauss–Legendre polynomials, we end up with

the Gauss–Legendre quadrature which features O
(
h2n+1

)
error for n knots2 (Hildebrand

1987).

Even though a multi-dimensional integral is typically expensive to evaluate, the special

form of the terms occurring in the Mangus expansion lends them to simple and efficient

approximation via one-dimensional techniques (Iserles et al. 2000, Iserles & Nørsett 1999).

Specifically, this is due to the multilinear nature of the nested commutators and the fact

that they only involve A. Having found the interpolant of A using (2.70), a functional of

the sort ˆ h

0

ˆ ξ

0
L(A(ξ),A(ζ)) dζ dξ,

for instance, where L is some bilinear functional, can once again, be approximated by

substituting the interpolant (2.69),

ˆ h

0

ˆ ξ

0
L(A(ξ),A(ζ)) dζ dξ ≈

n∑
i=1

n∑
j=1

L(A(ti),A(tj))

ˆ h

0

ˆ ξ

0
`i(ξ)`j(ζ) dζ dξ

=

n∑
i=1

n∑
j=1

L(A(ti),A(tj))wi,j ,

where wi,j are the weights. Once the weights are known via the integral of the basis

2These methods have an accuracy of O
(
h2n

)
, in general. However, as noted earlier in this section, due

to time-symmetry, these methods always have an odd order of accuracy in the context of power-truncated
Magnus expansions and thus gain one order of accuracy.
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functions, we only need to combine the values of A at n knots. Unlike typical two-

dimensional integrals, therefore, the cost (in terms of evaluations of A) does not grow

as n2. In this way, the multi-dimensional integrals appearing in the Magnus expansion

are also approximated using the evaluations of A at t1, . . . , tn. A more detailed discourse

about the discretisation of these multivariate integrals using simple univariate quadrature

rules can be found in (Iserles et al. 2000).

The self-adjoint basis of Munthe–Kaas & Owren

We will evaluate A at the Gauss–Legendre quadrature points (for n = 3, these are tk =
h
2

(
1 + k

√
3
5

)
, k = −1, 0, 1), which leads to a far less costly quadrature.

Nevertheless, higher order Magnus expansions derived in a direct and näıve way can

feature far too many commutators. Many techniques for reducing the number of terms

for high-order Magnus expansions have been explored (Blanes et al. 2009). A particular

strategy that we will resort to is the highly optimised version of the Magnus expansion

following discretisation at the Gauss–Legendre quadrature developed by Munthe–Kaas &

Owren (1999). To obtain order six approximation, all the effort of approximation of the

Magnus expansion boils down to the following formula

Θ
[M ]
5 (h) = J1 + 1

12J3 − 1
12 [J1, J2] + 1

240 [J2, J3] + 1
360 [J1, [J1, J3]]

− 1
240 [J2, [J1, J2]] + 1

720 [J1, [J1, [J1, J2]]] (2.71)

where

J1 = hA(t0), (2.72)

J2 =
√

15
3 h(A(t1)−A(t−1)),

J3 = 10
3 h(A(t1)− 2A(t0) +A(t−1)),

are the so called self-adjoint basis. These turn out to be centred finite difference approxi-

mations of ∂jtA(t) at t = h
2 for j = 0, 1, 2 on the grid tk = h

2

(
1 + k

√
3
5

)
, k = −1, 0, 1.

See (Iserles et al. 2000) and (Blanes et al. 2009) for comprehensive information and

ways to approximate the Magnus expansion using different quadrature rules and to higher

orders. The former could be relevant if the time-dependent potential is only known at

certain grid-points, as might be the case in some control setups.
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Numerical results

To summarise, the order two, order four and order six (discretised) Magnus expansions

discussed earlier are

Θ(h) = hA
(
h
2

)
+O

(
h3
)
, (2.73)

= h
2 (A(t−1) +A(t1)) +

√
3h2

12 [A(t−1),A(t1)] +O
(
h5
)
, (2.74)

= J1 + 1
12J3 − 1

12 [J1, J2] + 1
240 [J2, J3] + 1

360 [J1, [J1, J3]]

− 1
240 [J2, [J1, J2]] + 1

720 [J1, [J1, [J1, J2]]] +O
(
h7
)
. (2.75)

where tk = h
2 (1 + k/

√
3), k = −1, 1, and Jk are as defined in (2.72). The numerical

performance of these schemes is compared in Figure 2.12.
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Figure 2.12: The errors for the order two exponential midpoint rule (MID), the fourth
order Gauss–Legendre scheme (GL4) and the sixth order Munth-Kass & Owren scheme
(MKO) are compared for h → 0. Reference solution is obtained by brute force using the
midpoint rule with a very fine time step. Here A(t) = t3 cos(t)X2 + t4X + t6 cos(X) +
sin(t) sin(X), where X is a randomised 100× 100 matrix with norm ≈ 5.
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Chapter 3

Schrödinger equations and their

numerical solutions

3.1 The time-dependent Schrödinger equation

Schrödinger equations are fundamental equations of quantum mechanics (Griffiths 2004).

They describe the state of a quantum system in the wave picture of Erwin Schrödinger.

The large family of Schrödinger equations can be broadly divided into two categories: the

time-independent Schrödinger equations (TISEs) of the form

Hu(x) = Eu(x), x ∈ Rd, (3.1)

and the time-dependent Schrödinger equations (TDSEs),

i~∂tu(x, t) = Hu(x, t), u(x, 0) = u0(x), x ∈ Rd, t ≥ 0. (3.2)

The wave-function, u, is a complex-valued wave that resides in a Hilbert space such as

L2(Rd,C)—the space of square integrable complex-valued functions over Rd. It describes

the state of the quantum system. H is the Hamiltonian operator which models the dynam-

ics of the quantum system and governs the evolution of the wave-function u . Depending

on the system under consideration, the Hamiltonian takes various forms, resulting in many

different variants of the Schrödinger equation.

A common form of the Hamiltonian is

H =
p̂2

2m
+ V (x) = − ~2

2m
∆ + V (x), (3.3)

where p̂ = i~∇ is the momentum operator and V is a real valued function acting as

the potential operator. The parameter ~, the reduced Planck constant , is truly minute,

~ ≈ 1.05457168 × 10−34 Joule secs. The mass of the underlying particle, m, is a small
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quantity, although substantially larger than ~. The Hamiltonian (3.3) has a kinetic part,

−~2∆/(2m), and a potential part, V (x). The notation here is not coincidental—using the

classical idea of momentum, p = mv, this form results in the total energy 1
2mv

2 + V (x).

The time-independent equation (3.1) is an eigenvalue problem. It is typical to denote

the eigenvalues of the Hamiltonian as E since these are the energy levels of the quantum

systems. The solutions of this partial differential equation allow us to deduce the structure

of a quantum system—the ground state energy, absorption spectrum and orbital shapes

for an atom, for instance.

The time-dependent equation (3.4), on the other hand, is an initial value problem

whose solutions allow us to predict the dynamics of a quantum system. Every solution

uE(x) of the time-independent problem,

HuE = EuE,

also gives us a solution of the time-dependent problem since the wave-function

v(x, t) = e−itEuE(x)

satisfies the corresponding time-dependent equation (3.4) with initial condition v(x, 0) =

uE(x).

When the potential V in (3.4) is dependent on u, we end up with non-linear Schrödinger

(NLS) equations such as the cubic Schrödinger equations,

i~∂tu(x, t) = − ~2

2m
∆u(x, t)± |u(x, t)|2u(x, t), x ∈ Rd, t ≥ 0.

We will, however, be concerned only with linear versions where the potential is independent

of u,

i~∂tu(x, t) = − ~2

2m
∆u(x, t) + V (x)u(x, t), x ∈ Rd, t ≥ 0. (3.4)

If u(x, t) and v(x, t) are solutions of (3.4) (with initial conditions u(x, 0) and v(x, 0),

respectively), so is au(x, t) + bv(x, t) for any a, b ∈ C (with initial conditions au(x, 0) +

bv(x, 0)). This is called the principle of superposition which can be easily explained by

looking at the formal solution of (3.4), written using the exponential map,

u(x, t) = exp(−itH)u(x, 0). (3.5)

The Hamiltonian H is a linear self-adjoint operator (H∗ = H) on the Hilbert space H =

L2(Rd,C) under the L2 inner product,

〈Hu, v〉 = 〈u,Hv〉, ∀u, v ∈ L2(Rd,C).
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itH is a skew-Hermitian operator and its exponential is therefore a unitary operator. Since

exp(itH) is the evolution operator (or the flow), its unitarity implies the unitary evolution

of the wave-function,

〈u(x, t), v(x, t)〉 = 〈u(x, 0), v(x, 0)〉, t ≥ 0, (3.6)

where u(x, t) = exp(−itH)u(x, 0) is the solution of the TDSE with u(x, 0) as the ini-

tial condition and v(x, t) = exp(−itH)v(x, 0) is the solution with v(x, 0) as the initial

condition. The proof for this relation follows by noting that exp(A)∗ = exp (A∗) and thus,

〈u(x, t), v(x, t)〉 = 〈exp(−itH)u(x, 0), exp(−itH)v(x, 0)〉

= 〈u(x, 0), exp(itH∗) exp(−itH)v(x, 0)〉

= 〈u(x, 0), v(x, 0)〉.

Taking v = u in (3.6), we find that ‖u(t)‖2 = ‖u(0)‖2 holds for all t. This means

that the L2 norm of the wave-function does not change under evolution. It is typical to

normalise the wave-function so that ‖u(t)‖2 = ‖u(0)‖2 = 1, whereby |u(x, t)|2 can be

interpreted as a probability density function. This probability density function—called

the amplitude of the wave-function—describes the probability of finding a particle at the

location x at time t. In its general form, the unitary evolution described by the invariant

(3.6) says that the angle between the two wave-function u and v does not change under

evolution by the same Hamiltonian.

3.2 The semiclassical parameter

The reduced Planck’s constant, ~ ≈ 1.054 × 10−34 J · s, appearing in (3.4) is a truly

minute number which would typically result in considerable difficulties as far as numerical

solutions are concerned. When working in atomic units, however, ~ = 1. In these units

the typical length scales are 10−11 m, while typical time and mass scales are 10−17s and

10−30 kg, respectively.

In other words, when working in the atomic units, simulations over a spatial domain

of [−1, 1] and temporal domain of [0, 1] are simulations for 10−17s over a domain of size

2 × 10−11 m, which is incredibly small. On the other extreme, working in the standard

units (where ~ ≈ 1.054× 10−34 J · s), spatial domains of [−1, 1] and temporal domains of

[0, 1] correspond to simulations lasting for a second over a range of two metres, which is

far too large.

The semiclassical limit, where the Planck’s constant approaches zero, is very interesting

from a theoretical point of view since it ought to explain the emergence of Newtonian
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mechanics from quantum mechanics as we approach macroscopic scales. We will, however,

concern ourselves with spatio-temporal windows which are somewhere in between, albeit

much closer to the molecular and atomic scales than macroscopic scales. In these cases

we arrive at the Schrödinger equation (TDSE) under the semiclassical scaling,

iε∂tu(x, t) = H(x)u(x, t), x ∈ R, t ≥ 0, u(x, 0) = u0(x), (3.7)

where the Hamiltonian is

H(x) = −ε2∂2
x + V (x), (3.8)

and the factor 2m has been conveniently absorbed in ε through scaling. The standard

form in which we will write the semiclassical Schrödinger equation is,

∂tu(x, t) = −iε−1H(x)u(x, t),

or, effectively,

∂tu(x, t) = iε∂2
xu(x, t)− iε−1V (x)u(x, t), x ∈ R, t ≥ 0, u(x, 0) = u0(x). (3.9)

As noted previously, we are typically concerned with simulation over the spatial domain

[−1, 1] and the temporal domain [0, 1]. The semiclassical parameter ε plays a role similar

to the reduced Planck’s constant. Although it is very small, 0 < ε� 1, the semiclassical

parameter is considerably larger than the Planck’s constant and the range 10−8 ≤ ε ≤ 10−2

isn’t unrealistic.

The equation (3.9) also arises out of the Born–Oppenheimer approximation of the

molecular Schrödinger equation. In this case it describes the evolution of the nuclei in

the potential energy surface (PES) of the electrons, V (x). The semiclassical parameter,

ε, here, is the square root of the ratio of the mass of an electron and the heaviest nucleus.

Even working in the atomic units, ε can be fairly small. Depending on the molecule under

consideration, ε can be in the range 10−4 ≤ ε ≤ 10−2.

The two effects can be combined—when larger spatio-temporal windows are required

in the simulation of the motion of nuclei following the Born–Oppenheimer approximation,

ε can decrease further in size as before. However, a fact to keep in mind is that the Born–

Oppenheimer approximation itself entails an error of O ((1 + t)ε) and there is a limit to the

temporal windows over which it stays valid. An excellent introduction to the derivation of

the semiclassical Schrödinger equation, starting from the molecular Schrödinger equation,

using the Born–Oppenheimer approximation (while keeping numerical methods in mind)

can be found in (Lubich 2008).
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3.2.1 Rapid oscillations

Regardless of the origin of the semiclassical parameter in the semiclassical Schrödinger

equation (3.9), the solutions exhibit high oscillations that increase in the semiclassical

limit as ε→ 0. This can be variously interpreted as the consequence of zooming out as we

consider larger spatio-temporal domains, as an increase in momentum (which corresponds

to high oscillations in the wavefunction) due to the scaling of mass, or a combination of

the two.
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Figure 3.1: For small ε, even when starting from highly smooth initial data, we
quickly get to a highly oscillatory solution at T = 1. The initial wave-function used
here is u(x, 0) = sin(πx), which is made to evolve under the potential function V (x) =
exp(sin(πx)). The solution at time T = 1 is shown for two values of ε: ε = 1 on the left
and ε = 0.01 on the right.

The rapid (spatial) oscillations caused by the small semiclassical parameter are evident

in Figure 3.1. It turns out that the oscillations in the solution grow as O
(
ε−1
)

in both

space and time. This is evident from Figure 3.2, where we observe the growth of the kth

derivative of the solution at time T = 1 and find that
∥∥∂kxu∥∥2

= O
(
ε−k
)
. The solution at

time T = 1 in these figures is found by discretising in space at a fine enough resolution

and directly exponentiating −iε−1TH via MATLAB’s expm function.

(Bao et al. 2002, Jin et al. 2011) note that the solution of the semiclassical equation

develops oscillations with wavelength of O (ε) in both space and time, and a grid resolu-

tion of ∆x = O (ε) is, therefore, essential in the discretisation in order to resolve these

oscillations correctly. This observation is made rigorous in Section 9.1. Following the

assumptions in (Bao et al. 2002, Jin et al. 2011) and the conclusions of Section 9.1, we

assume that there exist Ck > 0, independent of ε, for every k ≥ 0 such that the spatial
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derivatives of the solution of (3.9) grow as∥∥∥∂kxu(t)
∥∥∥

2
≤ Ckε−k, k ∈ Z+, t ≥ 0. (3.10)
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Figure 3.2: The kth spatial derivative of u(x, T ) at time T = 1 grows as O
(
ε−k
)
. Here,

once again, we start from the initial wavefunction u(x, 0) = sin(πx), evolving under the
potential function V (x) = exp(sin(πx)).

3.3 Traditional methods for the semiclassical TDSE

The numerical solution of the semiclassical time-dependent Schrödinger equation presents

several enduring challenges. Various alternatives for solving this equation have been anal-

ysed by Jin et al. (2011).

As remarked earlier, we are interested in solving this equation on a spatial domain

[−1, 1] and temporal domain [0, T ] where, typically, we would be interested in T = 1.

Moreover, as noted by (Bao et al. 2002, Jin et al. 2011) and shown in Section 9.1, the

solutions of the semiclassical Schrödinger equation are highly oscillatory and we need to

resolve oscillations with wavelengths of the order O (ε). Finite difference methods, in this

case, require a much higher grid resolution (Markowich, Pietra & Pohl 1999) than spectral

methods (Bao et al. 2002). In the spatial discretisation of these equations, it is therefore

typical to resort to spectral methods such as spectral collocation while imposing periodic

boundaries at [−1, 1].

Thus the equation we wish to solve is the linear one-dimensional semiclassical Schrödinger
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equation over the torus,

∂tu(x, t) = iε∂2
xu(x, t)− iε−1V (x)u(x, t), x ∈ [−1, 1], t ≥ 0, (3.9)

where u and V are both periodic with period 2 and the wave-function u = u(x, t) is

given with a periodic initial condition u(x, 0) = u0(x). The solution, in general, resides

in the Hilbert space L2([−1, 1],C) but we make further assumptions, assuming that u ∈
C∞p ([−1, 1],C) and V ∈ C∞p ([−1, 1],R) are both smooth and periodic with period 2, and

that the derivatives of u are bounded by∥∥∥∂kxu(t)
∥∥∥

2
≤ Ckε−k, k ∈ Z+, t ≥ 0, (3.10)

while V does not depend on ε in any way. Following (Jin et al. 2011) we assume that

M = O
(
ε−1
)

grid points are sufficient (and in general necessary) when approximating via

spectral collocation1.

3.3.1 Discretisation

As we have just noted, reasonable approximation of the solution necessitates a grid reso-

lution of ∆x = O (ε) or M = O
(
ε−1
)

grid points at the very least for resolving the spatial

oscillations. Consequently, keeping in mind the scaling (2.9), the differentiation matrix K
scales as O

(
ε−1
)

and in general,

Kk = O
(
ε−k
)
. (3.11)

A quick look at the error bounds for finite differences reveals a major stumbling block

for these methods. The order eight finite difference method (2.7) discussed in Section 2.1.2

features an error ∥∥∥∂2
xu− K̃2,FDu

∥∥∥ ≤ C(∆x)8
∥∥∥u(10)

∥∥∥ +O
(
(∆x)10

)
, (2.8)

where u(10) is the 10th derivative of u and ∆x = 2/M is the grid resolution. From here it

could be considered obvious that the error in this approximation is O
(
(∆x)8

)
= O

(
ε8
)
.

However, this misses the crucial point that, under the semiclassical scaling, u is highly

oscillatory and u(10) can hardly be considered O (1) with respect to ε. In fact, due to

O
(
ε−1
)

oscillations in u, u(10) is closer to O
(
ε−10

)
as we have assumed in (3.10) and

as the trend in Figure 3.2 suggests. Even multiplication by (∆x)8 in (2.8) only manages

1The scaling of spatial discretisation is revisited in Section 9.3.3, where we note that the actual degree of
discretisation required is slightly higher. However, due to the analysis in Section 9.1, the size of exponents
as well as the error of our methods remains very much in line with the results we obtain by working under
the assumption M = O

(
ε−1

)
. The difference only appears in the cost of each FFT. Thus we stick with

this assumption till Chapter 9.
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to bring the overall error to O
(
ε−2
)

which is as large as the norm of the discretised

Laplacian—the term we are trying to approximate!

It is possible to coax and cajole finite differences to work with M = O (ε−ρ) for ρ > 1,

but the O
(
ε−1 log ε−1

)
cost of spectral collocation cannot be improved upon in this way

and the superior accuracy of these methods means that spectral collocation remains the

method of choice.

3.3.2 Direct exponentiation

A similar trend appears in temporal evolution—under the semiclassical scaling, finite

difference time stepping schemes such as Crank–Nicholson have been found to be unable

to compete with spectral approximation followed by approximation of the exponential via

exponential splittings such as the Strang splitting (Jin et al. 2011).

As we have seen previously in Section 3.1, the solution of the semiclassical Schrödinger

equation (3.9) can be written formally as

u(x, t) = exp (−itH/ε)u(x, 0). (3.12)

One approach for solving the Schrödinger equation, therefore, could be to perform spatial

discretisation whereby the discretised Hamiltonian H could be exponentiated directly in

order to find a solution,

u(t) = exp (−itH/ε)u(0). (3.13)

Such a solution would approximate the exact solution to the degree of accuracy of the

spatial discretisation. A spectral discretisation, for instance, would result in an exponen-

tially accurate approximation of the solution. Note that the exponential map in (3.13) is

given by the matrix exponential.

More specifically, following spatial discretisation via spectral collocation, the Schrödinger

equation (3.9) reduces to a system of ODEs,

u′(t) = (iεK2 − iε−1DV ) u(t), t ≥ 0, u(0) = u0, (3.14)

where u(t) ∈ CM is a vector of values that represent the approximate solution at time

t, M is the number of degrees of freedom (number of grid points or fourier modes) in

the spatial discretisation, K2 is the second order differentiation matrix approximating the

infinite-dimensional operator ∂2
x, and DV is the matrix that represents multiplication by

the potential.

The exact solution of this equation can be written via direct exponentiation (3.13),

u(t) = exp(itεK2 − itε−1DV ) u0. (3.15)
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A natural temptation is to approximate this by any of the many methods to compute the

matrix exponential discussed in Section 2.2. We recall that K2 and DV are discretised as

Hermitian matrices, and the exponent in (3.15) is, consequently, skew-Hermitian. Direct

exponentiation via diagonal Padé methods of Section 2.2.1 requires O
(
M3
)

operations.

This is in contrast to the O
(
M3 logM

)
cost of MATLAB’s expm which involves scaling

and squaring—rendered redundant in this case since the exponent is skew-Hermitian.

Such an approach is able to preserve the unitary evolution of the wave function which

is crucial, both, because of its physical significance and since it implies stability of the

numerical method. Nevertheless, these methods are out of consideration since a cost of

O
(
ε−3
)

is prohibitive. This observation will form the starting point of exponential split-

ting methods which attempt to break down the problem of exponentiating the discretised

Hamiltonian into the problem of exponentiating matrices that are much easier to expo-

nentiate due to their structure or their size.

3.3.3 Lanczos iterations

Park & Light (1986) proposed Lanczos iterations for solving the Schrödinger equation. Un-

der spectral collocation, K2 is a Hermitian matrix with spectral radius ρ(K2) = O
(
M2
)

=

O
(
ε−2
)
. The exponent in (3.15) or (3.13), therefore, ends up being a skew-Hermitian

matrix with a very large spectral radius,

ρ(−itH/ε) = ρ(itεK2 − itε−1DV ) ≤ tερ(K2) + tε−1 ‖V ‖∞ = O
(
tε−1

)
.

We recall that for substantial error decrease via Lanczos iterations, the error bound

(2.24) requires m ≥ ρ = O
(
tε−1

)
iterations. If we consider large time steps, t =

O (1), the spectral radius is indeed very large and we require O
(
ε−1
)

Lanczos itera-

tions. Each of these iterations require the evaluation of a matrix–vector product of the

form
(
itεK2 − itε−1DV

)
v. While DV v is evaluated in O (M) = O

(
ε−1
)

operations via

point-wise multiplication, K2v is evaluated via two FFTs following Section 2.1.6,

K2v = F−1D−π2n2Fv,

at a cost of O
(
ε−1 log ε−1

)
. The overall cost of the Lanczos iterations is, therefore

O
(
ε−2 log ε−1

)
. This still leaves us with an upper Hessenberg matrix of size m × m =

O
(
ε−1
)
×O

(
ε−1
)

that needs to be exponentiated. The only methods that seem suited for

this task are the diagonal Padé methods which entail a cost of O
(
m3
)

= O
(
ε−3
)
. Using

Lanczos iterations in this way does not make matters better!

To reduce the spectral radius of the exponent, and thereby the exorbitant expense of

the Lanczos iterations, we resort to propagating (3.15) with small time steps t = h� 1,

un+1 = eih(εK2−ε−1DV )un, n ∈ Z+,
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where

un ≈ u(nh).

However, in order to reduce the spectral radius sufficiently, we require exceedingly small

time step h. With h = O (ε), for instance, we require constant number of iterations m =

O (1) that do not depend on ε. The cost of exponentiating the upper Hessenberg matrix

is also O (1) in ε and the overall cost per time step is O
(
ε−1 log ε−1

)
. However, since we

now need O
(
ε−1
)

time steps, the overall cost of simulations over [0, T ] is O
(
ε−2 log ε−1

)
.

Using the intermediate value, h = O (
√
ε), we end up at the same cost. We now

need m = O
(
ε−1/2

)
and the cost of exponentiating the Hessenberg matrix amounts to

O
(
ε−3/2

)
. This is dominated by the overall cost of O

(
ε−3/2 log ε−1

)
for the Lanczos

iterations. The number of time steps required are now O
(
ε−1/2

)
and thus the cost of

simulation over [0, T ] is once again O
(
ε−2 log ε−1

)
.

3.3.4 Splitting methods

The alternative is to separate scales by means of an exponential splitting method such as

the Trotter splitting (2.26),

exp(ihεK2 − ihε−1DV ) = exp(ihεK2) exp(−ihε−1DV ) +O
(
h2
)
,

or the Strang splittings (2.34) and (2.35),

exp(ihεK2 − ihε−1DV ) = exp
(

1
2 ihεK2

)
exp(−ihε−1DV ) exp

(
1
2 ihεK2

)
+O

(
h3
)
, (3.16)

exp(ihεK2 − ihε−1DV ) = exp(−1
2 ihε−1DV ) exp

(
1
2 ihεK2

)
exp(−1

2 ihε−1DV ) +O
(
h3
)
.

(3.17)

This has the clear virtue of separating scales (powers of ε) and components of different

structures—as we have seen in Section 2.1.6, under the choice of spectral collocation K2

is circulant and DV is a diagonal.

K2 = F−1D−π2n2F

is diagonalised via Fourier transforms, whereby the exponential of the outer component

in (3.16) is evaluated to machine precision using two FFTs,

e
1
2

ihεK2
= F−1Dexp(− 1

2
ihπ2n2)F ,
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at O (M logM) = O
(
ε−1 log ε−1

)
cost, while the inner component, being diagonal, is

exponentiated directly,

e−ihε−1DV = Dexp(−ihε−1V ).

Strang splittings are the most standard splitting methods used for the solution of

Schrödinger equations under the semiclassical scaling (Jin et al. 2011). Although the

accuracy of the Strang splittings is usually derived for ODEs and exponential splittings of

matrices, the error analysis can be extended for PDEs such as the Schrödinger equation

which involve unbounded operators (Jahnke & Lubich 2000) or by following the analysis

in Section 9.4.

Yet the order of approximation seems to be unacceptably low when we take into account

the large constant that is hiding within the O
(
h3
)

accuracy of these methods—we find

that this constant scales in inverse powers of the small semiclassical parameter, ε � 1.

The error analysis for the Strang splitting (2.34), which was done by considering the size of

the largest commutators discarded from the sBCH formula (2.33), shows that the highest

order terms we have discarded are

ih3( 1
24ε[[DV ,K

2],K2] + 1
12ε
−1[[DV ,K2],DV ]).

Going by

‖[X,Y ]‖ = ‖XY − Y X‖ ≤ 2 ‖X‖ ‖Y ‖

and keeping in mind the fact that
∥∥K2

∥∥
2

= O
(
ε−2
)
, the discarded terms ought to be

O
(
h3ε−3

)
. Thus the error of the Strang splitting, analysed in this way, is much higher

and the hidden constant ε−3 is truly enormous. The consequence for this splitting is that

we need h� ε� 1 in order to achieve reasonable accuracy.

The standard high-order generalisation of the Strang splitting bears the form

eiα1hεK2
eiβ1hε−1DV eiα2hεK2 · · · eiαrhεK2

eiβrtε−1DeiαrhεK2 · · · eiα2hεK2
eiβ1hε−1DV eiα1hεK2

.

The palindromic form of this splitting (it reads the same from the left and from the right),

which is referred to as symmetric splitting in much of the literature, is not accidental, since

it guarantees higher order. The coefficients αi and βi are typically chosen to ensure either

higher order (because of palindromy, the order is always even) or smaller error constants

or both (Blanes, Casas & Murua 2006, McLachlan & Quispel 2002).

In Section 2.2.5, we have discussed the most standard approach for achieving arbitrarily

high-orders of accuracy—the Yoshida device. The cost for these splittings, however, grows

exponentially in the order desired, as we have seen previously in Section 2.2.5. In this

thesis we seek exponential splittings whose costs grow polynomially in the order desired,

ending up with Zassenhaus splittings which feature a quadratic growth in costs.

Similar analysis of commutator sizes extended to an order 2n Yoshida splitting shows
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that the error expected should be O
(
h2n+1ε−(2n+1)

)
, which imposes the same restriction

upon us (in terms of the time step) as the Strang splitting. This is very unlike the case

of the regular Schrödinger equation where ε = 1 and a severe depression of the time step

isn’t required.

Deeper analysis performed in Section 6.1.4 and Section 6.7 using the algebra of undis-

cretised operators, however, improves upon these error estimates, which are found to be

overly pessimistic, and the constant in the error term is shown to grow as O
(
ε−1
)
. How-

ever, in order to analysis this rigourously and in an elegant fashion, we first develop the

algebraic theory of the Lie algebra generated by the undiscretised operators, ∂2
x and V ,

which is introduced first in a rudimentary form in Chapter 4, and which forms the central

theme of Chapter 5. Rigorous analysis of these bounds in the semiclassical regime are

discussed in Section 9.1.

3.4 Time-dependent potentials

Historically, the time-independent Schrödinger equation (TISE) preceded the development

of the time-dependent Schrödinger equation (TDSE). Although the most well known form

of the TDSE is with the Hamiltonian (3.3), Briggs & Rost (2001) note that Schrödinger

considered time dependence in the TDSE as arising from time-dependent potentials, in a

classical treatment of the external environment. One of the first applications of the TDSE

that Schrödinger considered was to the interaction of an atom with a classical electric field,

resulting in a time-dependent potential, V (t). Time-dependent potentials, in this way, can

be considered to have a fundamental relevance to the TDSE, resulting in time-dependent

Hamiltonians of the form,

H(t) = − ~2

2m
∆ + V (x, t). (3.18)

The one-dimensional, linear, semiclassical, time-dependent Schrödinger equation for a

single particle moving in a time-dependent electric field is

iε∂tu(x, t) = H(x, t)u(x, t), x ∈ R, t ≥ 0,

where the Hamiltonian now features a time-dependent electric potential,

H(x, t) = −ε2∂2
x + V (x, t),

and the wave-function u = u(x, t) is given with an initial condition u(x, 0) = u0(x). We

write this equation in our standard form as

∂tu(x, t) = iε∂2
xu(x, t)− iε−1V (x, t)u(x, t), x ∈ R, t ≥ 0. (3.19)
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As typical, we impose periodic boundaries at x = ±1,

∂tu(x, t) = i
(
ε∂2
x − ε−1V (x, t)

)
u(x, t), x ∈ [−1, 1], t ≥ 0, (3.20)

and assume that the initial conditions are periodic and smooth, i.e. the potential V (·, t)
lives in C∞p ([−1, 1];R), the space of smooth real-valued functions with period 2, and u(·, 0)

lives in C∞p ([−1, 1];C), the space of smooth complex-valued functions with period 2. In

addition, we assume that u has oscillations of O (ε) wavelength in space and M = O
(
ε−1
)

grid points are sufficient (and generally necessary) for correct resolution of the oscillations.

3.4.1 Magnus expansions

Considering (3.20) as a PDE evolving in a Hilbert space, say H = L2([−1, 1],C) (the

Hilbert space of complex-valued square-integrable functions over [−1, 1]), and suppressing

the dependence on x,

∂tu(t) =
(
iε∂2

x − iε−1V (t)
)
u(t), u(0) = u0, (3.21)

is seen to be of the ‘ODE-like’ form

∂tu(t) = A(t)u(t), u(0) = u0, (3.22)

with A(t) = −iH(t)/ε = iε∂2
x − iε−1V (t) acting as a scaled version of the Hamiltonian,

H(t) = −ε2∂2
x + V (t).

The form of (3.22) is the same as (2.46) and, despite A(t) being an infinite-dimensional

and unbounded operator, a Magnus expansion can be developed along the same lines,

u(h) = eΘ(h)u(0), (3.23)

where u is the undiscretised wave-function and Θ(h) is an infinite-dimensional operator

that features nested integrals of nested commutators of the operator A(ξ). The application

of Magnus expansion based methods for the solution of PDEs such as the Schrödinger

equation, which feature unbounded operators, have been analysed by (Hochbruck & Lubich

2003). The algebraic structure of the Magnus expansion has been elaborated in greater

detail in Section 2.3.

The real-valued potential, V , and the Laplacian, ∂2
x, are Hermitian operators on H,

which makes A = −iH/ε a skew-Hermitian operator on H. The time-independent Hamil-

tonians generate a one-parameter unitary group, {e−itH/ε : t ≥ 0}, where the flow resides.

However, here we have a time-dependent Hamiltonian. Such Hamiltonians do not gen-

erate a one-parameter unitary group. The solution for Schrödinger equations featuring
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time-dependent potentials is obtained via the Magnus expansion, Θ(s, t). The Magnus

expansion (2.53) respects Lie algebra structures (Iserles et al. 2000), so that Θ(s, t) is a

skew-Hermitian operator as well. The flow of (3.22), ϕ
[A]
s,t , therefore, resides in the two

parameter unitary group {eΘ(s,t) : s, t ≥ 0}.
As we have noted previously, unitary evolution of the wave-function, u(t), under this

flow is a central aspect of quantum mechanics. Preservation of this property under dis-

cretisation is a desirable aspect of any numerical method which naturally comes about

when working in the appropriate Lie-algebraic framework such as the Magnus expansion.

As we will see in Section 6.9, unitarity automatically guarantees stability of a consistent

numerical scheme.

Traditionally, the first step in approximating (3.21) is spatial discretisation along the

lines of (3.14),

u′(t) = i(εK2 − ε−1DV (·,t))u(t), t ≥ 0, (3.24)

where the vector u(t) ∈ CM represents an approximation to the solution at time t, u(0) is

derived from the initial conditions, while K2 and DV (·,t) are M ×M matrices which repre-

sent (discretisation of) second derivative and a multiplication by the interaction potential

V (·, t), respectively.

Although a direct exponentiation of the scaled Hamiltonian is no longer possible, the

system of ODEs (3.24) can be solved via the Magnus expansion,

u(h) = eΘ(h)u(0),

where Θ(h) ∈ u(M) is a time-dependent M ×M skew-Hermitian matrix obtained as an

infinite series
∑∞

k=1 Θ[k](h) with each Θ[k](h) composed of k nested integrals and commu-

tators of the matrices iεK2 and iε−1DV .

Magnus based methods have been effectively utilised in computational chemistry for

solving TDSEs with time-dependent Hamiltonians (Tal Ezer & Kosloff 1984). Following

Section 2.3.5, the lowest order truncation of the Magnus expansion is

Θ1(h) =

ˆ h

0
A(ξ) dξ = Θ(h) +O

(
h3
)
,

whose approximation using the mid point rule (2.62) results in the exponential mid point

method,

u1 = exp
(
hA
(
h
2

))
u0.

In the case of the semiclassical Schrödinger equation, this translates to

u1 = exp
(
iεhK2 − iε−1hDV (h/2)

)
u0,

which requires the evaluation of the potential at the midpoint of the interval [0, h]. Since
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this is an order two method in h, it can be combined with a Strang splitting to obtain the

order two method

u1 = exp
(

1
2 iεhK2

)
exp

(
−iε−1hDV (h/2)

)
exp

(
1
2 iεhK2

)
u0. (3.25)

The first non-trivial Magnus based method encountered in Section 2.3.5 was the fourth

order Magnus expansion,

Θ3(h) =

ˆ h

0
A(ξ1)dξ1 −

1

2

ˆ h

0

[ˆ ξ1

0
A(ξ2)dξ2,A(ξ1)

]
dξ1 = Θ(h) +O

(
h5
)
,

which is combined with Gauss–Legendre quadrature (2.65), resulting in the method

u1 = exp
(
h
2 (A(t−1) +A(t1)) +

√
3h2

12 [A(t−1),A(t1)]
)
u0,

where tk = h
2 (1 + k/

√
3), k = −1, 1. For the semiclassical Schrödinger equation, this

translates to

Θ3(h) h
2 (A(t−1) +A(t1)) +

√
3h2

12 [A(t−1),A(t1)]

= iεhK2 − iε−1hV + h2
√

3h2

12 [K2, Ṽ ],

where V = V (t−1)+V (t1)
2 and Ṽ = V (t−1)−V (t1). The exponential of Θ3 needs to be evalu-

ated up to an accuracy of O
(
h5
)

to make the fourth order Magnus expansion worthwhile.

The second order Strang splitting,

eΘ3(h) = e
1
2

iεhK2
e−

1
2

iε−1hDV eh
2
√

3h2

12
[K2,D

Ṽ
] e−

1
2

iε−1hDV e
1
2

iεhK2
+O

(
h3
)
,

therefore, does not quite suffice. The lowest order splitting that would do is a fourth order

splitting such as the fourth order Yoshida splitting obtained by composing three order-two

Strang splittings.

The first issue that we face here is the fact that the number of terms in the Yoshida split-

ting grow rapidly as we go towards higher accuracy Magnus expansions—for the fourth

order Magnus expansion, the Yoshida splitting requires the evaluation of 13 exponen-

tials. Secondly, unlike the case of Schrödinger equations with time-independent potentials,

the exponentials involved are not merely of K2 and DV , which possess a nice structure

that makes them amenable to effective exponentiation, but also of the commutator term

[K2,D
Ṽ

] which can be problematic to exponentiate for many reasons.

The exponent featuring [K2,D
Ṽ

] can not be efficiently diagonalised. Even after solving

the matrix commutator [K2,D
Ṽ

] at a cost of O
(
M2 logM

)
using FFTs, we end up at an

M×M matrix whose exponentiation via diagonal Padé methods costs O
(
M3
)

operations.

As far as Lanczos based methods are concerned, we could get away without solving the
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matrix commutator since [K2,D
Ṽ

]v in each Lanczos iteration could be evaluated using

four FFTs,

F−1D−π2n2FDṼ v −DṼ F
−1D−π2n2Fv.

The number of Lanczos iterations required, however, seems very large when we estimate

∥∥[K2,D
Ṽ

]
∥∥

2
≤ 2

∥∥D
Ṽ

∥∥
2

∥∥K2
∥∥

2
≤ C 2√

3
h ‖∂tV ‖∞ ε

−2,

whereby the spectral radius of the exponent seems to be O
(
h3ε−2

)
. This analysis suggests

that we require very small time-steps for effective exponentiation via Lanczos methods.

An alternative approach is to skip exponential splittings altogether and directly utilise

Lanczos iterations to exponentiate the truncated Magnus expansion Θ3. We recall that the

cost of exponentiating the time-independent Hamiltonian turned out to be O
(
ε−2 log ε−1

)
.

This certainly cannot be improved upon for the case of time-dependent Hamiltonians.

Here, we additionally encounter commutators of the form [K2,D
Ṽ

] which seem to make

the spectral radius larger (except when we take very small time steps) and make the

computation of the matrix–vector product Θ3v more expensive since [K2,D
Ṽ

]v requires

four more FFTs.

Additionally, we have to take into account the fact that the O
(
h3
)

accuracy of the

Strang splitting, the O
(
h5
)

accuracy of the Yoshida splitting and even the O
(
h3
)

and

O
(
h5
)

accuracies of the two truncated Magnus expansions, Θ1 and Θ3, hide large constants

in powers of ε−1. Direct analysis of commutator sizes using

‖[X,Y ]‖ = ‖XY − Y X‖ ≤ 2 ‖X‖ ‖Y ‖

suggests that these hidden constants are very high negative powers of ε. However, these

estimates, much like the previously mentioned hidden error constant in the Strang splitting

for the semiclassical Schrödinger equation, turn out to be highly pessimistic.

Among others, Hochbruck & Lubich (2003) have previously noted that such commu-

tator bounds are indeed pessimistic (even in the case of Schrödinger equations with ε = 1)

and that a more reasonable bound is presented by estimates of the form

∥∥[K2,DV ]
∥∥

2
≤ CV ‖K‖2 ,

where CV is some constant depending on V . In Chapter 4 we will encounter this phe-

nomenon in a slightly different way when working in the Lie algebra generated by ∂2
x and

V—this leads to the systematic reduction of spectral radius for nested commutators.

It is also worth considering the convergence of the Magnus expansion in the context of

the Schrödinger equation. Iserles & Nørsett (1999) showed that the Magnus expansions for

ODEs converge so long as h ‖A‖ → 0. Moan & Niesen (2008) improved upon this bound

and showed convergence of the Magnus expansion for
´ h

0 ‖A(ξ)‖ dξ < π. Hochbruck &
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Lubich (2003) note that in the case of PDEs such as the Schrödinger equation (under

ε = 1), where we encounter unbounded operators, the Magnus expansion does not meet

the convergence criteria. Nevertheless, in practice, Magnus expansion based methods

have been found to be effective for much larger time steps than those suggested by the

convergence bounds of (Moan & Niesen 2008).

This phenomenon has been explained by Hochbruck & Lubich (2003), who conclude

that even for h ‖K‖2 ≤ c, where c is some constant, the fourth order Magnus expansion

based methods are indeed able to achieve order four accuracy. This should be compared to

the constraint h
∥∥K2

∥∥
2
< c implied by (Moan & Niesen 2008), which needs to be met for

the convergence of the Magnus expansion, beyond which the order of accuracy should make

sense (to be fair, though, these more restrictive convergence constraints were obtained for

a general A(t) and milder constraints might well be possible for a specific case).

For the case of the semiclassical Schrödinger equation, ‖A‖2 = O
(
ε−1
)

and the conver-

gence constraints imposed by (Moan & Niesen 2008) translate to very small time steps of

size h = O (ε). As such, a direct application of the constraint h ‖K‖2 ≤ c of (Hochbruck &

Lubich 2003) does not seem to improve upon the time step restriction. It seems plausible

but not immediately obvious that appropriately accounting for powers of ε in the analysis

of (Hochbruck & Lubich 2003) will allow milder constraints.

Moreover, the error bound obtained by Hochbruck & Lubich (2003) suggest that the

fourth order Magnus expansion results in an error,

‖un − u(tn)‖2 ≤ Ch
5tn max

0≤t≤tn

∥∥∂4
xu(t)

∥∥
2
,

which was noted by the authors as being worrisome due to the presence of ∂4
xu(t). In the

semiclassical case, this scales as O
(
ε−4
)

due to (3.10), leading to an error of O
(
h5ε−4

)
and necessitating very small time steps for achieving reasonable accuracy. A translation

of these results to the semiclassical regime, therefore, needs to be done more carefully.

In Chapter 7 and Chapter 8 we develop Magnus–Zassenhaus schemes where we combine

truncated Magnus expansions with Zassenhaus splittings. It turns out that, unlike the

case of Yoshida splittings, the number of exponents and the overall cost of the Zassenhaus

splittings does not increase much when combined with higher order Magnus expansions.

Moreover, the error for the fourth order Magnus–Zassenhaus scheme turns out to be

O
(
h5ε−1

)
, allowing higher accuracies with less restrictive time steps. This analysis is

carried out in Section 9.3 and is summed up in Theorem 9.3.5 and Theorem 9.3.6. In

particular, this involves proving

‖[A(τk), [. . . , [A(τ1),A(τ0)] . . .]‖2 = O
(
ε−1
)
, τi ∈ [0, T ], i = 0, . . . , k, k ∈ Z+, (3.26)

which results from observations made in Chapter 4, 5 and 6, summarised in Lemma 6.6.1

and formally proven in Corollary 9.1.6.
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Chapter 4

Commutator-free asymptotic

splittings

In Chapter 3 we saw that the semiclassical Schrödinger equation,

∂tu(x, t) = iε∂2
xu(x, t)− iε−1V (x)u(x, t), x ∈ [−1, 1], t ≥ 0, u(x, 0) = u0(x), (3.9)

is discretised via spectral collocation as

∂tu(t) = (iεK2 − iε−1DV ) u(t), t ≥ 0, u(0) = u0. (3.14)

The exact solution of (3.14) is obtained via an exponential,

u(h) = exp(ihεK2 − ihε−1DV ) u0, (3.15)

which is approximated to order two accuracy using the Strang splitting,

eihεK2−ihε−1DV = e
1
2

ihεK2
e−ihε−1DV e

1
2

ihεK2
+O

(
h3
)
. (3.16)

Higher order splittings of the form

eiα1hεK2
e−iβ1hε−1DV eiα2hεK2 · · · eiαrhεK2

e−iβrhε−1DV eiαrhεK2 · · · eiα2hεK2
e−iβ1hε−1DV eiα1hεK2

retain the main virtues of (3.16), namely separation of scales and the ease of computation of

individual exponentials. However, an inordinately large number of exponentials is typically

required to attain significant order. The simplest means toward a high-order splitting, the

Yoshida method (McLachlan & Quispel 2002, Yoshida 1990), calls for r = 3p−1 (which

translates to 2×3p−1 + 1 exponentials) to attain order 2p. Consequently, the cost of these

methods grows exponentially with the order of the method, as seen in Section 2.2.5.

Our aim is to develop alternative high-order splitting schemes that require far fewer
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Commutator-free asymptotic splittings

exponentials to attain a given order. In particular, we wish the number of exponentials

to grow linearly, rather than exponentially, with order. Moreover, once the number of

exponentials becomes large, ideally we do not want all of them to fit into the same scale

but wish for them to become increasingly smaller. Such a splitting can be termed an

asymptotic splitting.

In this chapter we lay the groundwork for a family of exponential splittings called the

symmetric Zassenhaus schemes which posses these favourable features. More specifically,

we will work towards exponential splittings of the form

eih(εK2−ε−1DV ) = e
1
2
W [0]

e
1
2
W [1] · · · e

1
2
W [s]

eW
[s+1]

e
1
2
W [s] · · · e

1
2
W [1]

e
1
2
W [0]

+O
(
ε2s+2

)
, (4.1)

where

W [0] = W [0](h, ε,K) = O
(
ε0
)
,

W [k] = W [k](h, ε,K) = O
(
ε2k−2

)
, k = 1, . . . , s,

W [s+1] =W [s+1](h, ε,K) = O
(
ε2s
)
,

and variations on this theme. As always, K and DV are matrices that approximate the

differential operator and multiplication by the potential V , respectively. There are a

number of critical differences between (4.1) and standard exponential splittings.

Firstly, we quantify the error not in terms of the step-size h but of the small semi-

classical parameter ε. There are three small quantities at play: the parameter ε intrin-

sic to the semiclassical Schrödinger equation (3.9), and the two parameters of numerical

discretisation—h and ∆x. By letting power laws govern the relationship between ε and

the choices of h and ∆x, we express the error in the single quantity ε.

Secondly, the number of individual terms in (4.1) is remarkably small and it grows

linearly with s—compare with the exponential growth, as a function of order, in the

number of components of familiar splittings. The reason is that the arguments of the

exponentials in (4.1) decay increasingly more rapidly in ε.

Thirdly, each of these exponentials can be computed fairly easily. Some of the ex-

ponents are diagonal matrices, whereby computing the exponential is trivial. Other are

circulants and can be computed with FFT. Finally, because of the minute spectral radius

of the arguments for sufficiently large k, the remaining exponentials can be evaluated up

to the requisite power of ε using a very low-dimensional Krylov subspace method. All in

all, the cost of these splittings ends up being quadratic in the desired order in contrast

with the exponential cost of the Yoshida method.

The asymptotic splitting (4.1) is possible because we have deliberately breached the

consensus in the design of exponential splittings: the terms W [k] and W [s+1] arise from

computation of nested commutators. The use of commutators is usually frowned upon
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4.1. Zassenhaus splitting

because of their cost, and also because they are believed to increase in norm. Powerful tools

like Zassenhaus splitting were historically avoided in splitting methods due to the large

computational cost of nested commutators. However, as we demonstrate in Section 4.2,

choosing the correct, infinite-dimensional Lie algebra in case of the Schrödinger vector field,

these commutators lose their unwelcome features and enable the derivation of effective,

asymptotic splittings.

The first idea is to forego the standard step of semidiscretising (3.9) to (3.14) before

splitting the exponential: we semidiscretise only once the splitting has been done! Thus,

the entire narrative takes place within the Lie algebra of ∂2
x and V , g = LA{∂2

x, V }, where

∂x is the differential operator and V is the operation of multiplying with the interaction

potential: since we have not yet discretised, both are infinite-dimensional linear operators.

We demonstrate in Section 4.2 that g can be embedded in a larger Lie algebra S, where

commutation has simple, straightforward interpretation. To all intents and purposes,

commutators are replaced by simple linear combinations of powers of ∂x. Moreover—and

this is what lets all this procedure work in a beneficial manner—these are smaller powers

of ∂x than näıvely expected.

Our splittings build on the standard, non-symmetric, Zassenhaus splittings (Oteo 1991)

by simplifying commutators of undiscretised operators in the Lie algebra S and correctly

accounting for powers of ε. Although the underlying algebra is time consuming, it need

be done just once.

In Section 4.1 we introduce the standard Zassenhaus splittings and explore their ex-

tension to symmetrised splittings under the semiclassical scaling. At this stage the Zassen-

haus splittings are not commutator-free. We remedy this in Section 4.2 by introducing

the rules of the Lie algebra S, which contains the Lie algebra generated by V and ∂2
x.

However, the structures that emerge from these algebraic computations lose the crucial

property of preserving skew-Hermiticity under discretisation. We discuss this problem and

a work-around in Section 4.3. A formal investigation of the Lie algebra of the symmetrised

differential operators responsible for maintaining skew-Hermiticity and stability is carried

out in Chapter 5. We only resume the full construction of the symmetric Zassenhaus

splittings for the semiclassical Schrödinger equation in Chapter 6, having established the

necessary theoretical results in Chapter 5.

4.1 Zassenhaus splitting

Unless X and Y commute, eh(X+Y ) = ehXehY generally does not hold. As we saw earlier

in Section 2.2.4, the discrepancy in these two formulas is quantified by the BCH formula

ehXehY = eBCH(hX,hY ). (2.25)
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An alternative way of quantifying the discrepancy is the Zassenhaus splitting (Oteo 1991),

eh(X+Y ) = etXehY eh
2U2(X,Y )eh

3U3(X,Y )eh
4U4(X,Y ) · · · , (4.2)

where

U2(X,Y ) = 1
2 [Y,X],

U3(X,Y ) = 1
3 [[Y,X], Y ] + 1

6 [[Y,X], X],

U4(X,Y ) = 1
24 [[[Y,X], X], X] + 1

8 [[[Y,X], X], Y ] + 1
8 [[[Y,X], Y ], Y ],

and the focus is shifted to eh(X+Y ) as the primary object of interest instead of the splitting

ehXehY . More terms in the regular Zassenhaus splitting can be generated using the (non-

symmetric) BCH formula.

4.1.1 Symmetrisation of Zassenhaus

The splitting (4.2) is not well known and seldom used in computation. The natural

temptation is to symmetrise it and consider a palindromic splitting of the form

eh(X+Y ) = · · · eh5Q5(X,Y )eh
3Q3(X,Y )e

1
2
hXehY e

1
2
tXeh

3Q3(X,Y )eh
5Q5(X,Y ) · · · , (4.3)

where we can deduce by inspection of the sBCH formula (2.33),

sBCH(hX, hY )

= h(X + Y )− h3( 1
24 [[Y,X], X] + 1

12 [[Y,X], Y ]) + h5( 7
5760 [[[[Y,X], X], X], X]

+ 7
1440 [[[[Y,X], X], X], Y ] + 1

180 [[[[Y,X], X], Y ], Y ]

+ 1
720 [[[[Y,X], Y ], Y ], Y ] + 1

480 [[[Y,X], X], [Y,X]]

− 1
360 [[[Y,X], Y ], [Y,X]]) +O

(
h7
)
,

that, for example,

Q3(X,Y ) = 1
48 [[Y,X], X] + 1

24 [[Y,X], Y ].

Rather than engaging in increasingly tedious calculations to compute Q5, we replace (4.3)

by a more computation-friendly splitting. We commence from the symmetric BCH formula

(2.33),

e−
1
2
hXeh(X+Y )e−

1
2
hX = esBCH(−hX,h(X+Y )),

which we rewrite in the form

eh(X+Y ) = e
1
2
hXesBCH(−hX,h(X+Y ))e

1
2
hX . (4.4)
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4.1. Zassenhaus splitting

It follows from (2.33) that

sBCH(−hX, h(X + Y )) = hY +O
(
h3
)
,

and we note that we have extracted the outer term hX from the exponent h(X + Y )

in (4.4). We iterate (4.4) to further split the resulting central exponent and continue to

symmetrically pull out the lowest order terms, one by one, until the central exponent

reaches the desired high order,

exp(h(X + Y )) = e
1
2
hXesBCH(−hX,h(X+Y ))e

1
2
hX

= e
1
2
hXe

1
2
hY esBCH(−hY,sBCH(−hX,h(X+Y )))e

1
2
hY e

1
2
hX = · · · .

Notice that by pulling terms out, we essentially subtract a term and add higher order

corrections. It is important to observe that the order of the central exponent (in terms of

h) given by the sBCH formula in (4.4) is never decreased by this procedure1. With the

notation

W [k+1] = sBCH(−W [k],W [k]), W [0] = h(X + Y ), (4.5)

the result after s steps can be written as

exp(h(X + Y )) = e
1
2
W [0]

e
1
2
W [1] · · · e

1
2
W [s]

eW
[s+1]

e
1
2
W [s] · · · e

1
2
W [1]

e
1
2
W [0]

.

We emphasise that, in principle, we can freely choose the elements W [k] that we want to

extract. This choice can afford a great deal of flexibility—it could be based on some struc-

tural property that allows for trivial exponentiation of W [k] when extracted separately, a

small spectral radius which makes the term amenable to effective exponentiation through

Krylov subspace methods, a combination of both, or some other criteria.

So long as the terms are decreasing in size, the convergence of the procedure is guar-

anteed. This can lead to many variants of the splitting, some of which could prove to

have more favourable properties than others. Moreover, this flexibility will allow us to

commence our splitting from more complicated exponents such as the Magnus expansion.

The first and the most obvious approach is to choose W [k] = O
(
h2k−1

)
for k > 0

and W [0] = O (h), which yields a separation of powers analogous to (4.3) and leads to an

asymptotic splitting in h with s stages, where W [s+1] = W [s+1] +O
(
h2s+3

)
. This leads to

a symmetrised Zassenhaus splitting of order 2s+ 2 in h. Working in this way, we require

very few stages to obtain a high-order splitting: in fact, the number of stages required can

be shown to grow linearly in the order.

1unless a non-existing term is subtracted and thus newly introduced instead of removed.
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4.1.2 Zassenhaus under semiclassical scaling

The symmetrised Zassenhaus splitting procedure discussed above, however, is still a few

steps away from (4.1).

Firstly, while such an asymptotic splitting in powers of h would prove useful for the

analysis of ODEs, for (3.9) we also need to contend with the semiclassical parameter ε

as well as the size of differentiation matrices resulting from semidiscretisation. In order

to use the symmetric Zassenhaus algorithm for developing a splitting along the lines of

(4.1), therefore, we need to correctly account for the size of exponents and the error in the

currency of ε.

Secondly, starting from the discretised Schrödinger equation (3.14), the symmetric

Zassenhaus splitting results in exponents W [k] that feature nested commutators of matrices

such as [[DV ,K2],K2] (as a natural consequence of the sBCH expansion) that cannot

be simplified and are very expensive to exponentiate unless the time step is sufficiently

depressed, h � 1. In order to develop an effective splitting along the lines of (4.1),

therefore, it becomes crucial to solve commutators and find techniques for reducing their

(spectral) size. Techniques for accomplishing this are explored in Section 4.2.1.

As always, taking into account the O
(
ε−1
)

oscillations characteristic of the semiclas-

sical Schrödinger equation, the spatial discretisation choice is governed by

∆x = O (ε) , M = O
(
ε−1
)
.

While being aware that ∂x is an unbounded infinite-dimensional operator, we abuse nota-

tion and use the shorthand

∂x = O
(
ε−1
)

since ∂x is eventually replaced by the differentiation matrix K which scales2 as O (M) =

O
(
ε−1
)
. Similarly, we use the shorthand

∂kx = O
(
ε−k
)
.

Additionally, in order to express errors in terms of ε, we let the time step be governed by

the power law3,

h = O (εσ) , σ > 0.

Larger values of σ correspond to extremely small time steps and, for this reason, methods

that work effectively despite smaller σ are preferable.

2 In Section 9.3.3 we find that we require a slightly faster scaling of M with ε. Nevertheless, the analysis
of the size of ∂x and its powers that we carry out holds and, in fact, can be made more rigorous due to the
observations of Section 9.1. Thus, we can safely postpone the discussion of this anomaly till Chapter 9.

3As will become evident in the analysis presented in Section 9.3 and Section 9.4, we can, in fact, analyse
our methods without scaling h with ε. However, the scaling proves very convenient in judging the size of
terms in a uniform manner.
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As a consequence of using the sBCH series, the O
(
h3
)

terms in the symmetrised

Zassenhaus splittings derived using the algorithm (4.5) of Section 4.1.1 end up being of the

form εh3[[DV ,K2],K2] and ε−1h3[[DV ,K2],DV ] in the case of the semiclassical Schrödinger

equation, where a splitting of (3.15) is required. Taking the scaling K2 = O
(
ε−2
)

into

account, these are estimated to be O
(
h3ε−3

)
= O

(
ε3(σ−1)

)
, just as we noted in the error

analysis of Strang splitting in Section 3.3.4. The O
(
h5
)

terms, which arise from grade five

commutators, are, similarly, O
(
ε5(σ−1)

)
. Following this analysis, it seems that σ > 1 is

crucial for convergence and certainly for reasonable accuracy. The only way to achieve an

asymptotic splitting of the kind (4.1), in fact, seems to be to choose σ = 2. In contrast, the

range of σ we are interested in achieving is σ ≤ 1. Once again, this follows the conclusions

we drew about Strang and Yoshida splittings in Section 3.3.4.

In Section 4.2.2 we find that these estimates are overly pessimistic. Keeping the scaling

laws in mind, we will seek splittings of the kind

eih(εK2−ε−1DV ) = e
1
2
W [0]

e
1
2
W [1] · · · e

1
2
W [s]

eW
[s+1]

e
1
2
W [s] · · · e

1
2
W [1]

e
1
2
W [0]

+O
(
ε(2s+3)σ−1

)
,

(4.6)

where

W [0] = W [0](h, ε,K) = O
(
εσ−1

)
,

W [k] = W [k](h, ε,K) = O
(
ε(2k−1)σ−1

)
, k = 1, . . . , s,

W [s+1] =W [s+1](h, ε,K) = O
(
ε(2s+1)σ−1

)
.

We denote the splitting (4.6) as Zs,σ. In the first instance, we will consider the scaling

σ = 1 or h = O (ε), which is the choice that leads us to (4.1).

4.2 Splitting the undiscretised Hamiltonian

We recall that the formal solution of

∂tu(x, t) = −iε−1H(x)u(x, t), x ∈ [−1, 1], t ≥ 0, u(x, 0) = u0(x), (3.2)

with the Hamiltonian,

H = −ε2∂2
x + V (x), (3.8)

is

u(x, t) = e−itH/εu(x, 0). (3.12)

In Chapter 3, we commence our analysis by discretising the Schrödinger equation, ef-

fectively replacing the problem of exponentiating the Hamiltonian operator (3.8) by the

problem of approximating the exponential of its discretised form using exponential split-
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ting schemes. In this section we attempt to perform a splitting directly on the exponential

(3.12) of the undiscretised Hamiltonian (3.8).

The vector field in the semiclassical Schrödinger equation (3.2) is a linear combination

of the action of two operators, ∂2
x and multiplication by the interaction potential V . Since

the development of exponential splittings entails nested commutation, the focus of our

interest is on the Lie algebra generated by V and ∂2
x ,

g = LA{V, ∂2
x},

i.e. the linear-space closure of all nested commutators generated by ∂2
x and V . The elements

of g are operators, acting on sufficiently smooth functions including the initial value of

(3.2): for the purpose of this thesis and for simplicity sake we assume that the solution of

(3.2) is a periodic function in C∞p ([−1, 1],C), but our results should extend to functions

of lower smoothness.

4.2.1 Solving commutators

To compute commutators we need, in principle, to describe their action on functions, e.g.

[V, ∂2
x]u = V (∂2

xu)− ∂2
x(V u) = −(∂2

xV )u− 2(∂xV )∂xu

implies that [V, ∂2
x] = −(∂2

xV )− 2(∂xV )∂x. This algebra necessitates knowing derivatives

of the interaction potential, which are assumed for the scope of this chapter to be given

exactly but in practice can be obtained via differentiation matrices. The derivatives of V

appearing in our splitting need to be known only to a certain accuracy, and finite difference

methods of fairly reasonable orders suffice since V is assumed to be independent of ε and

not highly oscillatory. It must be noted that these derivatives, if not given exactly, need

be derived only once and the overhead is bearable.

In Table 4.1, we list all nested commutators of V and ∂2
x up to grade 7 that appear in

the sBCH formula. Here the ‘grade’ of a commutator refers to the number of ‘letters’ V

and ∂2
x in it, while χj is the coefficient of this commutator in the symmetric BCH formula,

(2.33). There are a number of ways of forming such a basis, e.g. the Hall basis, Lyndon

basis and Dynkin basis (Reutenauer 1993): here we will use the most popular one, the

Hall basis (Murua 2010).

As it turns out, the 41 commutators listed in Table 4.1 are the ones we would need to

solve when seeking a splitting with O
(
ε9σ−1

)
error. For our purposes, where the highest

order splitting discussed will feature an O
(
ε7σ−1

)
error, much fewer commutators will

suffice (upto grade 5).
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Table 4.1: The terms of the Hall basis of g of grade ≤ 7.

j Nested commutator χj grade

S1 ∂2
x 1 1

S2 V 1 1

S3 [V, ∂2
x] 0 2

S4 [[V, ∂2
x], ∂2

x] − 1
24 3

S5 [[V, ∂2
x], V ] − 1

12 3

S6 [[[V, ∂2
x], ∂2

x], ∂2
x] 0 4

S7 [[[V, ∂2
x], ∂2

x], V ] 0 4

S8 [[[V, ∂2
x], V ], V ] 0 4

S9 [[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x] 7
5760 5

S10 [[[[V, ∂2
x], ∂2

x], ∂2
x], V ] 7

1440 5

S11 [[[[V, ∂2
x], ∂2

x], V ], V ] 1
180 5

S12 [[[[V, ∂2
x], V ], V ], V ] 1

720 5

S13 [[[V, ∂2
x], ∂2

x], [V, ∂2
x]] 1

480 5

S14 [[[V, ∂2
x], V ], [V, ∂2

x]] − 1
360 5

S15 [[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], ∂2
x] 0 6

S16 [[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], V ] 0 6

S17 [[[[[V, ∂2
x], ∂2

x], ∂2
x], V ], V ] 0 6

S18 [[[[[V, ∂2
x], ∂2

x], V ], V ], V ] 0 6

S19 [[[[[V, ∂2
x], V ], V ], V ], V ] 0 6

S20 [[[[V, ∂2
x], ∂2

x], ∂2
x], [V, ∂2

x]] 0 6

S21 [[[[V, ∂2
x], ∂2

x], V ], [V, ∂2
x]] 0 6

S22 [[[[V, ∂2
x], V ], V ], [V, ∂2

x]] 0 6

S23 [[[V, ∂2
x], V ], [[V, ∂2

x], ∂2
x]] 0 6

S24 [[[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], ∂2
x], ∂2

x] − 31
967680 7

S25 [[[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], ∂2
x], V ] − 31

161280 7

S26 [[[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], V ], V ] − 13
30240 7

S27 [[[[[[V, ∂2
x], ∂2

x], ∂2
x], V ], V ], V ] − 53

120960 7

S28 [[[[[[V, ∂2
x], ∂2

x], V ], V ], V ], V ] − 1
5040 7

S29 [[[[[[V, ∂2
x], V ], V ], V ], V ], V ] − 1

30240 7

S30 [[[[[V, ∂2
x], ∂2

x], ∂2
x], ∂2

x], [V, ∂2
x]] − 53

161280 7

S31 [[[[[V, ∂2
x], ∂2

x], ∂2
x], V ], [V, ∂2

x]] − 11
12096 7

S32 [[[[[V, ∂2
x], ∂2

x], V ], V ], [V, ∂2
x]] − 3

4480 7
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Table 4.1 (contd)

S33 [[[[[V, ∂2
x], V ], V ], V ], [V, ∂2

x]] − 1
10080 7

S34 [[[[V, ∂2
x], ∂2

x], [V, ∂2
x]], [V, ∂2

x]] − 1
4032 7

S35 [[[[V, ∂2
x], V ], [V, ∂2

x]], [V, ∂2
x]] − 1

6720 7

S36 [[[[V, ∂2
x], ∂2

x], ∂2
x], [[V, ∂2

x], ∂2
x]] − 19

80640 7

S37 [[[[V, ∂2
x], ∂2

x], V ], [[V, ∂2
x], ∂2

x]] − 1
10080 7

S38 [[[[V, ∂2
x], V ], V ], [[V, ∂2

x], ∂2
x]] 17

40320 7

S39 [[[[V, ∂2
x], ∂2

x], ∂2
x], [[V, ∂2

x], V ]] − 53
60480 7

S40 [[[[V, ∂2
x], ∂2

x], V ], [[V, ∂2
x], V ]] − 19

13440 7

S41 [[[[V, ∂2
x], V ], V ], [[V, ∂2

x], V ]] − 1
5040 7

Computing the first few commutators explicitly, we find

S3 = −(∂2
xV )− 2(∂xV )∂x,

S4 = (∂4
xV ) + 4(∂3

xV )∂x + 4(∂2
xV )∂2

x,

S5 = −2(∂xV )2,

S6 = −(∂6
xV )− 6(∂5

xV )∂x − 12(∂4
xV )∂2

x − 8(∂3
xV )∂3

x,

S7 = 4[(∂xV )(∂3
xV ) + (∂2

xV )2] + 8(∂xV )(∂2
xV )∂x,

S8 = 0.

4.2.2 The Lie algebra S and reduction of height

We note that the terms S1, . . . , S8 all belong to the set

S =

{
n∑
k=0

fk(x)∂kx : n ∈ Z+, f0, . . . , fn ∈ C∞p ([−1, 1],R)

}
.

It is trivial to observe that S is itself a Lie algebra. Since ∂2
x and V reside in this Lie

algebra, so does the Lie algebra they generate,

g = LA{V, ∂2
x} ⊆ S.

There are numerous cancellations, similar to S8 = 0, because of the special structure

induced by the letters ∂2
x and V (x). Nevertheless, for our exposition it is more appropriate

to directly operate in the larger Lie-algebra S, where all cancellations will be taken care
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4.2. Splitting the undiscretised Hamiltonian

of by simple computation of the commutators according to n∑
i=0

fi(x)∂ix,

m∑
j=0

gj(x)∂jx

 =

n∑
i=0

m∑
j=0

i∑
`=0

(
i

`

)
fi(x)

(
∂i−`x gj(x)

)
∂`+jx

−
m∑
j=0

n∑
i=0

j∑
`=0

(
j

`

)
gj(x)

(
∂j−`x fi(x)

)
∂`+ix . (4.7)

Once we begin to simplify commutators of terms in the Lie algebra S using the above

simplification procedure, we encounter systematic reduction in the degree of differential

operators, which is summarised in the observation of height reduction. This observation is

what justifies working directly in the undiscretised operators—it leads to a reduction in

the spectral radius of terms, eventually allowing an effective asymptotic splitting.

Definition 4.2.1. The height of a term in the Lie algebra S is defined as the degree of

the highest-degree differential operator occurring in the term,

ht

(
n∑
k=0

fk(x)∂kx

)
= n.

We note that the height of (∂3
xV )∂x +V ∂2

x, defined in this way, is two, not three, since

∂3
x is not acting as an operator but instead describes the third derivative of V . The term

0 ∈ S is assigned a height of −1, making it the only term with negative height.

We extend the notion of height to commutators in the Lie algebra g by defining it as the

height of the term in S to which the commutator reduces upon applying the simplification

rule (4.7). Additionally, we may extend the notion of height to other algebras including

the algebra generated by ∂2
x and V under operatorial composition ◦ and the Jordan algebra

generated by them (which is the algebra generated by them under the Jordan product,

A •B = 1
2(A ◦B +B ◦A)).

Lemma 4.2.2 (Height reduction in S). For all C1, C2 ∈ S, such that C1, C2 6= 0,

ht([C1, C2]) ≤ ht(C1) + ht(C2)− 1. (4.8)

Proof. Let ht(C1) = n and ht(C2) = m, so that for some fi and gj , C1 =
∑n

i=0 fi(x)∂ix

and C2 =
∑m

j=0 gj(x)∂jx. The commutator [C1, C2] is then described exactly by (4.7),

where the terms featuring ∂n+m
x in the two summations cancel out. The highest degree

differential operator, therefore, has a degree not exceeding n+m− 1.

We note that in general the terms corresponding to ∂n+m−1
x do not cancel out and,

with the exception of some special cases, (4.8) holds as an equality.

The observation of height reduction allows us to study a systematic decrease in the

highest degree differential operator occurring in a term. Upon eventual spatial discretisa-
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tion the differential operators occurring in each expression are replaced by matrices, the

spectral radius of which is largely governed by the highest degree differential operator.

The notion of height provides a direct estimate of the spectral radius in this way. For

instance, the term with height n,

ht

(
n∑
k=0

fk(x)∂kx

)
= n,

is O (ε−n) in size (provided fk = O
(
ε0
)
) since ∂kx = O

(
ε−k
)
. To be more precise, once

such a term is discretised, it yields a matrix whose spectral radius is O (ε−n),

ρ

(
n∑
k=0

DfkK
k

)
= O

(
ε−n

)
.

In particular, due to height reduction,

ht
(
[[V, ∂2

x], ∂2
x]
)

= 2, ht
(
[[V, ∂2

x], V ]
)

= 0.

Consequently, once these commutators are simplified in S,

[[V, ∂2
x], ∂2

x] = (∂4
xV ) + 4(∂3

xV )∂x + 4(∂2
xV )∂2

x, [[V, ∂2
x], V ] = −2(∂xV )2,

and subsequently discretised,

[[V, ∂2
x], ∂2

x] ; 4D∂2
xV
K2 + 4D∂3

xV
K +D∂4

xV
, [[V, ∂2

x], V ] ; −2D(∂xV )2 ,

they result in matrices that are O
(
ε−2
)

and O
(
ε0
)

in size, respectively.

Due to the spectral accuracy of our discretisation, the direct discretisations of these

commutators, [[DV ,K2],K2] and [[DV ,K2],DV ], are not very far away from the discretisa-

tions of the simplified commutators either (see Figure 4.1, for instance). Therefore, these

commutators are also O
(
ε−2
)

and O
(
ε0
)
, respectively, not O

(
ε−4
)

and O
(
ε−2
)

as might

be estimated by using standard bounds for commutators.

In Section 3.3.4, we analysed the error for the Strang splitting by considering the

size of nested commutators of the form εh3[[DV ,K2],K2] and ε−1h3[[DV ,K2],DV ] that

are discarded from the sBCH. Using our latest estimates, however, these turn out to be

O
(
h3ε−1

)
, not O

(
h3ε−3

)
as pessimistically estimated previously. Similar terms appear

when using the symmetrised Zassenhaus algorithm of Section 4.1.1 to split the discretised

Hamiltonian. As a consequence of the reduction of the negative powers of ε, it turns

out that we do not need σ = 2 for achieving asymptotic splittings of the kind (4.1) and

σ = 1 will, in fact, suffice. These observations are presented in a more generalised form

in Chapter 6 and will apply to Yoshida splittings and Magnus expansions in addition to
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4.2. Splitting the undiscretised Hamiltonian

symmetric Zassenhaus splittings.

4.2.3 The first stage of Zassenhaus splitting

Having established the techniques for solving commutators and noting the correct scaling

laws, we commence upon the first stage of the symmetric Zassenhaus splitting. We aim

to devise an asymptotic splitting scheme of the form (4.1) (which results from (4.6) under

the scaling σ = 1) with s = 2, i.e. bearing the error of O
(
ε6
)
. Given that ε > 0 is very

small, this presents a method which is very accurate—arguably, of higher accuracy than

required in standard numerical computations.

We will expand the commutators in powers of ε and successively remove them from the

core of our expansion, aiming for W [k] = O
(
ε2k−2

)
except for W [0] which will be O

(
ε0
)
.

Note that ihε∂2
x = O

(
ε0
)

and −ihε−1V = O
(
ε0
)

under h = O (ε), or more generally

h`εmf(x)∂nx = O
(
ε`+m−n

)
, ε→ 0. (4.9)

We can now commence the algorithm (4.5), setting

W [0] = ihε∂2
x − ihε−1V, W [0] = −ihε−1V.

With the help of (2.33), we compute the commutators in W [1] = sBCH(−W [0],W [0])

according to (4.7). This task faces us with long and tedious algebra, but can, however

be automatised with a computer algebra program. It is worth pointing out, that all

simplifications, such as [[[V, ∂2
x], V ], V ] = 0 are automatically performed once we work in

the larger Lie algebra S with differential operators and scalar functions. Likewise, there

is no need for a tedious representation of expansion elements in, say the Hall basis.

Substituting W [0] and W [0], and aggregating terms of the same order of magnitude,

we obtain

W [1] =

O(ε0)︷ ︸︸ ︷
ihε∂2

x−

O(ε2)︷ ︸︸ ︷
1
12 ih3ε−1(∂xV )2 − 1

3 ih3ε(∂2
xV )∂2

x−

O(ε3)︷ ︸︸ ︷
1
3 ih3ε(∂3

xV )∂x (4.10)

−

O(ε4)︷ ︸︸ ︷
1
60 ih5ε−1(∂2

xV )(∂xV )2 − 1
12 ih3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
ih5ε{ 4

45(∂2
xV )2 − 1

90(∂3
xV )(∂xV )}∂2

x − 1
45 ih5ε−3(∂4

xV )∂4
x

+

O(ε5)︷ ︸︸ ︷
ih5ε{1

6(∂3
xV )(∂2

xV )− 1
90(∂4

xV )(∂xV )}∂x

−

O(ε5)︷ ︸︸ ︷
2
45 ih5ε−3(∂5

xV )∂3
x +O

(
ε6
)
.
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4.3 Loss of stability

Unfortunately, we run into a problem at the very first stage: (4.10) contains terms of size

O
(
ε3
)

and O
(
ε5
)

that are both due to the presence of odd powers of ∂x. This presence

is worrisome for an important reason, namely stability. Both ∂2
x and multiplication by

V are Hermitian operators, therefore ih(ε∂2
x − ε−1V ) is a skew-Hermitian operator: its

exponential is thus unitary (see Chapter 3). This survives under eventual discretisation,

because any reasonable approximation of ∂2
x preserves Hermitian structure. However, ∂x

(and, in general, odd powers of ∂x) is a skew-Hermitian operator, hence i∂x is Hermitian

and so are its reasonable approximations.

The introduction of odd powers of ∂x seems fraught with loss of unitarity and stabil-

ity. However, even the terms −1
3 ih3ε(∂2

xV )∂2
x and − 1

45 ih5ε−3(∂4
xV )∂4

x that do feature even

derivatives seem to be cause for concern—they are neither Hermitian nor skew-Hermitian.

We should clarify that, having arisen from nested commutators of skew-Hermitian op-

erators, the operator W [1] ought to be skew-Hermitian (since the linear space of skew-

Hermitian operators is a Lie algebra), and it indeed is! The trouble is two-fold.

Firstly, when such an operator is discretised in the usual way, the occurrences of the

differential operator are replaced by corresponding differentiation matrices. While any

reasonable discretisation strategy does maintain skew-Hermiticity of ∂x under discretisa-

tion, it does not preserve the skew-Hermiticity of all skew-Hermitian operators such as

W [1].

This problem is easily demonstrated by using a simple example. In Section 4.2.1 we

commence by noting

[∂2
x, V ] = 2(∂xV )∂x + (∂2

xV ).

When the differential operators are replaced by differentiation matrices, these two forms,

which are equivalent in the undiscretised case, lead to two different matrices,

AC = [K2,DV ], ANS = 2D∂xVK +D∂2
xV
.

Here AC is the form where the commutator is directly discretised and ANS is the non-

symmetric form where the Lie bracket has first been simplified using the rules of Sec-

tion 4.2.1. In Figure 4.1, we find that, while the skew-Hermiticity of [∂2
x, V ] is preserved

when discretised directly to AC , the non-symmetric form ANS does not preserve this cru-

cial feature and consequently its exponential blows up. This is despite the fact that the

action of AC and ANS when applied to the wave-function u = exp(sin(πx)) is not all that

different.

As it turns out, the strategy for replacing odd derivatives pursued in the next section
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Figure 4.1: `∞ difference in the computation of Au as compared to ACu for different
grid resolutions, where u = exp(sin(πx)) and V (x) = expbumpp(x). This shows that both
ANS and AS are accurate approximations and, in fact, ANS is somewhat better (left).
The exponential exp(tANS) blows up due to the loss of skew-Hermiticity, leading to loss
of stability (right).

suffices for restoring skew-Hermiticity. The theoretical reasons for the success of this

strategy, however, are deeper and are pursued in a much more abstract way in Chapter 5.

The symmetrised form obtained by following this strategy,

[∂2
x, V ] = (∂xV )∂x + ∂x ◦ (∂xV ),

results in a symmetrised discretisation,

AS = D∂xVK +KD∂xV ,

which is skew-Hermitian and whose exponential doesn’t blow up.

Secondly, in the Zassenhaus splitting algorithm we will discard at each stage terms that

are smaller than our error tolerance (O
(
ε6
)

in the example considered here). Discarding

certain terms that might otherwise be small, however, can again lead to loss of skew-

Hermiticity. In light of this, we would require a more reliable way of knowing when a term

can be discarded.

The approach pursued in the following section is a way to overcome this hurdle of

instability that threatens to derail the usability of our splitting schemes.
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4.3.1 Restoring skew-Hermiticity

Let f be a C1 function. The starting point for our current construction is the operatorial

identity

f(x)∂x = −1
2

[ˆ x

x0

f(ξ) dξ

]
∂2
x − 1

2∂xf(x) + 1
2∂

2
x

[ˆ x

x0

f(ξ) dξ ·
]
, (4.11)

where x0 is arbitrary: its direct proof is trivial. Here

∂kx [f ·] = ∂kx ◦ f,

and its action on u is ∂kx(fu). Note that, while we have ∂x on the left, the right-hand side

features ∂0
x and ∂2

x, both even powers of the differentiation operator. The challenge is thus

to generalise (4.11) and express f(x)∂2s+1
x , s ∈ Z+, solely by means of even derivatives.

Theorem 4.3.1. Let s ∈ Z+, define the real sequence {βk}k≥0 by

∞∑
k=0

(−1)kβk
(2k + 1)!

T k =
1

T

(
1− T 1/2

sinhT 1/2

)

and set

Qk(x) = (−1)s−k+1βs−k

(
2s+ 1

2k

)
∂2s−2k+1
x f(x), k = 0, 1, . . . , s, (4.12)

Qs+1(x) =
1

2s+ 2

ˆ x

x0

f(ξ) dξ, (4.13)

Pk(x) = −
s+1∑
`=k

(
2`

2k

)
∂2`−2k
x Q`(x), k = 1, 2, . . . , s+ 1. (4.14)

Then

f(x)∂2s+1
x =

s+1∑
k=0

Pk(x)∂2k
x +

s+1∑
k=0

∂2k
x [Qk(x) · ]. (4.15)

Proof. We act on the second sum on the right of (4.15) with the Leibnitz rule, whereby

f∂2s+1
x =

s+1∑
k=1

Pk∂
2k
x +

s+1∑
`=0

2∑̀
k=0

(
2`

k

)
(∂2`−k
x Q`)∂

k
x

=
s+1∑
k=1

Pk∂
2k
x +

s+1∑
k=0

[
s+1∑
`=k

(
2`

2k

)
(∂2(`−k)
x Q`)

]
∂2k
x

+

s∑
k=0

[
s+1∑
`=k+1

(
2`

2k + 1

)
(∂2(`−k)−1
x Q`)

]
∂2k+1
x .
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Equating powers of ∂x on both sides, we obtain (4.13), (4.14) and the equations

s+1∑
`=k+1

(
2`

2k + 1

)
∂2(`−k)−1
x Q` = 0, k = s− 1, s− 2, . . . , 0. (4.16)

Our contention is that there exist coefficients {βk}k≥0 such that (4.12) is true. Indeed,

substituting (4.12) in (4.16) yields, after simple algebra, the triangular linear system

s∑
`=k+1

(−1)s−`
(

2s− 2k

2s+ 1− 2`

)
βs−` =

1

2s− 2k + 1
, k = 0, 1, . . . , s− 1.

We deduce that
k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β` =

1

2k + 1
, k ∈ N.

Finally, we multiply the last equation by T k−1/(2k)! and sum up for k ∈ N. On the left

we have

∞∑
k=1

1

(2k)!

k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β`T

k−1 =
∞∑
`=0

(−1)`β`
(2`+ 1)!

∞∑
`=k+1

T k−1

(2k − 2`− 1)!

=
∞∑
`=0

(−1)`β`
(2`+ 1)!

T `
∞∑
k=0

T k

(2k + 1)!

=
sinhT 1/2

T 1/2

∞∑
`=0

(−1)`β`
(2`+ 1)!

T `,

while on the right we obtain

∞∑
k=1

T k−1

(2k + 1)!
=

1

T

(
sinhT 1/2

T 1/2
− 1

)
.

This confirms (4.12) and completes the proof.

First few values are β0 = 1
6 , β1 = 7

60 , β2 = 31
126 , β3 = 127

120 , β4 = 511
66 , β5 = 1414477

16380 and

β6 = 8191
6 . Since

text

(et − 1)
=

∞∑
k=0

Bk(x)

k!
tk,

where Bk is the kth Bernoulli polynomial, it is easy to confirm that

βk =
(−1)k+122k+1B2k+2(1

2)

k + 1
, k ∈ Z+.
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Practically, just

f∂x = −1
2

[ˆ x

0
f(ξ) dξ

]
∂2
x − 1

2∂xf + 1
2∂

2
x

[ˆ x

0
f(ξ) dξ ·

]
,

f∂3
x = −(∂xf)∂2

x − 1
4

[ˆ x

0
f(ξ) dξ

]
∂4
x + 1

4∂
3
xf − 1

2∂
2
x[(∂xf) · ] + 1

4∂
4
x

[ˆ x

0
f(ξ) dξ ·

]
,

f∂5
x = 4

3(∂3
xf)∂2

x − 5
3(∂xf)∂4

x − 1
6

[ˆ x

0
f(ξ) dξ

]
∂6
x − 1

2∂
5
xf + 7

6∂
2
x[(∂3

xf) · ]

− 5
6∂

4
x[(∂xf) · ] + 1

6∂
6
x

[ˆ x

0
f(ξ) dξ ·

]
,

are likely to be needed in our computations.

These replacement rules might seem concerning from the point of view of height—the

operator f∂2s+1
x on the left hand side has the height 2s+ 1 but its replacement involves a

term whose height is 2s+ 2. It can be proven that the replacement rules only need to be

applied to the second largest or smaller terms in any commutator appearing the sBCH,

whereby the effective height in the context that concerns us is not changed. However, the

proof is unwieldy, and the more abstract and rigourous approach pursued in Chapter 5

handles the concepts of height and skew-Hermiticity more elegantly, obviating the need

for such a proof.

4.3.2 Some structural observations

Using (4.11) and its generalisations to replace all the occurrences of ∂x and ∂3
x in (4.10),

we express W [1] in the form

W [1] =

O(ε0)︷ ︸︸ ︷
ihε∂2

x−

O(ε2)︷ ︸︸ ︷
1
12 ih3ε−1(∂xV )2 − 1

6 ih3ε
{

(∂2
xV )∂2

x + ∂2
x[(∂2

xV ) · ]
}

−

O(ε4)︷ ︸︸ ︷
1
60 ih5ε−1(∂2

xV )(∂xV )2 + 1
12 ih3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
1

180 ih5ε
{

8(∂2
xV )2∂2

x + 8∂2
x[(∂2

xV )2 · ]− (∂3
xV )(∂xV )∂2

x − ∂2
x[(∂3

xV )(∂xV ) · ]
}

−

O(ε4)︷ ︸︸ ︷
1
90 ih5ε−3

{
(∂4
xV )∂4

x + ∂4
x[(∂4

xV ) · ]
}

+O
(
ε6
)
.

Once appropriate odd and even differential operators are replaced, operators of the

form f∂kx +∂kx [f · ] start appearing ubiquitously in our analysis. Far from being unique to

our computation ofW [1], these are characteristic of the Lie algebra generated by ∂2
x and V .

Proving this observation rigourously is a different ball game that requires a fundamental

investigation of the Lie algebra of the symmetrised differential operators, f∂kx + ∂kx [f · ],
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which forms the central theme of Chapter 5.

At this stage we take a break from Zassenhaus splittings to analyse these symmetric

structures in more detail. The results of this investigation will prove to be indispensable

for designing and analysing our splittings. In Chapter 6 we resume the development of

Zassenhaus splittings in the language of the algebraic structures of Chapter 5.
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Chapter 5

A Lie algebra of symmetrised

differential operators

In the pursuit of stable commutator-free Zassenhaus splittings in Chapter 4, we encoun-

tered terms of the form f∂kx+∂kx [f · ]. As evident from Figure 4.1, symmetrised differential

operators such as (∂xV )∂x + ∂x[(∂xV ) · ] are crucial for ensuring skew-Hermiticity of ex-

ponents upon discretisation, the loss of which leads to exponential blow up and numerical

instability.

A linear differential operator such as

f2(x)∂2
x + f1(x)∂x + f0(x) = f2(x) ◦ ∂2

x + f1(x) ◦ ∂x + f0(x),

where ◦ is operator composition, can be viewed as a polynomial in ∂x with function

coefficients f0, f1, f2. The symmetrised differential operators such as

i
(
f4∂

4
x + ∂4

x[f4 · ]
)
+i
(
f2∂

2
x + ∂2

x[f2 · ]
)
+if0 = i

(
f4 ◦ ∂4

x + ∂4
x ◦ f4

)
+i
(
f2 ◦ ∂2

x + ∂2
x ◦ f2

)
+if0,

which we encountered in the pursuit of stability in Section 4.3.2 can similarly be viewed

as polynomials in ∂x with function coefficients with one difference—instead of the product

operator being operator composition, ◦, these are polynomials under the Jordan product,

•, which is defined by

L1 • L2 = 1
2 (L1 ◦ L2 + L2 ◦ L1) .

With this notation in place, the symmetrised differential operators we encountered in

Section 4.3.2 can be written in the form

2if4 • ∂4
x + 2if2 • ∂2

x + if0.

Such an operator can be called a ‘Jordan polynomial’ (i.e. a polynomial under the Jordan

product, •) in ∂x with function coefficients if0, 0, 2if2, 0, 2if4.
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The symmetric form of the Jordan product naturally results in the Jordan polynomials

being symmetric. Once we discretise

f ; Df , ∂kx ; Kk,

these symmetrised differential operators discretise to

2if4 • ∂4
x + 2if2 • ∂2

x + if0 ; 2iDf4 • K4 + 2iDf2 • K2 + iDf0 .

It is easy to verify that each

2iDf • K2k = i
(
DfK2k +K2kDf

)
is skew-Hermitian, and its exponential is unitary.

That the coefficients of ∂x and ∂3
x don’t appear here is crucial—if we also had if3 • ∂3

x

in Section 4.3.2, for instance, such a term would result in a discretisation which mixes

Hermitian terms (arising from discretisation of if3 • ∂3
x) with the skew-Hermitian terms

arising from discretisation of 2if4•∂4
x+2if2•∂2

x+if0. This would result in loss of unitarity

and stability—precisely what we are trying to avoid. This ‘non-mixing property’ will be

an important result of this chapter.

We find that these symmetrised differential operators constitute a Lie algebra—i.e. the

commutator of two symmetrised differential operators is also a symmetrised differential

operator. The characterisation of this Lie algebra forms the motivation of this chapter. In

Section 5.3, we will find that this algebra possesses a Z2-graded structure that amounts

to the ‘non-mixing property’ we alluded to. Along with the in-built symmetry of the

symmetrised differential operators, this non-mixing property proves crucial for the unitary

evolution of wave-functions as well as the numerical stability of Zassenhaus splittings.

We also note the property of height reduction in Section 5.3 which is used in Sec-

tion 6.1.4 to show that commutators of differential operators are much smaller than näıvely

analysed using commutator bounds. Additionally, the property of height reduction will

allow us to formally prove the quadratic growth in costs for Zassenhaus splittings in Sec-

tion 6.7.

In Section 4.2, we had noted that the structure of the Lie algebra generated by V and

∂2
x,

g = LA{V, ∂2
x},

is of great interest to us since the terms in the sBCH expansion feature nested commuta-

tors of V and ∂2
x all of which reside in g by definition. A suitable characterisation of this

Lie algebra using symmetrised differential operators, therefore, can prove very helpful—it

will allow us to study the nested commutators of V and ∂2
x directly in terms of sym-

metrised differential operators. Instead of characterising g, however, we will attempt the
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characterisation of a bigger Lie algebra,

LA(G ∪ P(∂x)),

generated by all functions in the function space G and all polynomials of the differential

operator ∂x with constant coefficients. This characterisation will be done in Section 5.3.1.

These algebraic characterisations, however, will be introduced in a more abstract

form—in the context of an associative algebra A with a commutative subalgebra C and

its Lie idealiser I . The algebraic structures of the Zassenhaus schemes for the Schrödinger

equation are seen to be special cases of the Lie algebras introduced here.

The abstract formulation pursued in this chapter should also prove of crucial im-

portance in extending the use of Zassenhaus algorithms to other equations of quantum

mechanics and possibly beyond. Some of these applications are considered briefly in Sec-

tions 10.4.2 and 10.4.3.

In Section 5.1 we introduce the abstract context in which our algebra of Jordan poly-

nomials G is defined. In Section 5.2, we show that G is an associative algebra. While

it follows immediately that G is also a Lie algebra, in Section 5.3 we use the results of

Sections 5.2.1 and 5.2.2 to demonstrate that it possesses a very interesting structure, in-

cluding a Z2-grading (the non-mixing property), which has ramifications for the unitarity

and stability of numerical methods developed in Chapter 6. The tables of coefficients in

Section 5.4 should aid direct applications of the results of this chapter.

5.1 Notations

Consider a commutative algebra C which is a subalgebra of the unital associative algebra

(A , ·,+) over the field of rational numbers Q. The commutator on the associative product,

[a, b] = a · b− b · a,

acts as the canonical Lie product while the anticommutator ,

a • b = 1
2 (a · b+ b · a) ,

acts as a Jordan product. A , along with the Lie (Jordan) product, forms a Lie (Jordan)

algebra which we can identify with A again. This is true since for every a, b ∈ A , the

products a · b and b · a are in A and so is their sum or difference.

In the application of the results of this chapter to the Schrödinger equation, A will be

the algebra of linear differential operators (with · = ◦ being operator composition) and C

will be the commutative algebra of multiplication operators. This special case forms our

primary motivation for studying these algebraic structures in this thesis. For the purpose
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of our numerical methods, not much will be lost, therefore, if the reader were to assume

throughout that C = C∞p ([−1, 1],R) and A = (End(C ), ◦,+)—an assumption that is

made more precise in Section 6.1.3.

In particular, for two linear differential operators L1,L2, the commutator is

[L1,L2] = L1 ◦ L2 − L2 ◦ L1,

as usual, and its action on u is

[L1,L2](u) = L1(L2(u))− L2(L1(u)).

The Jordan product, similarly, is

L1 • L2 = 1
2 (L1 ◦ L2 + L2 ◦ L1) .

As an example, for L1 = f and L2 = ∂kx , we have

f • ∂kx = 1
2

(
f ◦ ∂kx + ∂kx ◦ f

)
,

which can be considered a monomial in ∂x of degree k (a polynomial with only the degree

k term). We will frequently study the behaviour of polynomials by studying the behaviour

of such monomials, which are simpler.

Note: As we have seen earlier in Section 4.3.2, such symmetrised differential operators

seem to appear naturally when we try to regain stability by replacing certain differ-

ential operators using the rules of Section 4.3.1. In this chapter we are attempting

to find an algebraic proof for the appearance of these symmetrised differential

operators.

Since all the properties that we will prove in this chapter are due to the algebraic

properties of ∂x, they can be studied in a greater degree of abstraction. The algebraic

generalisation of the derivative ∂x that we are interested in is a ‘derivation’. A map

δ : R → R is called a derivation on the algebra R if

δ(a · b) = δ(a) · b+ a · δ(b), ∀a, b ∈ R.

Essentially, a derivation is a map that follows the Leibniz rule (chain rule) and there-

fore behaves like differentiation, algebraically speaking. The differential operator ∂x is a

derivation on C∞p , for instance.

We will also need to exploit the observation that the commutator of ∂x with any

function f ∈ C∞p ,

[∂x, f ] = (∂xf),
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is again a function in the same space—in fact, it is the derivative of f . We seek a gener-

alisation of ∂x to an element, say, d such that

[d, f ] = add(f) = D(f),

where D = add is a derivation on the function space (d, on the other hand, need not be

a derivation). It is crucial, of course, that D(f) is in the function space. Any such pair

{d,D} will do for the purpose of our generalisation.

Note: The Lie idealiser of C in A ,

I = {d ∈ A : [d,C ] ⊆ C }.

is the largest subalgebra of A in which C is a Lie ideal. Essentially, therefore, any

element of the Lie idealiser of C will suffice for our purposes as a suitable choice

of d.

For d ∈ C , however, D = 0. Such a case will be considered trivial and will not be

of much interest.

With this generalisation of ∂x in place, we generalise the Jordan monomials

f • ∂kx = 1
2

(
f ◦ ∂kx + ∂kx ◦ f

)
in the following definition.

Definition 5.1.1 (Jordan monomials in d). For x ∈ C , d ∈ I and a non-negative integer

k, we introduce the notation

〈x〉dk = x • dk = 1
2(x · dk + dk · x),

for the degree k Jordan monomial in d with coefficient x ∈ C .

Note: The power dk is defined unambiguously as

dk+1 = d • dk = d · dk, d0 = 1A .

Once we have defined monomials, the definition of polynomials follows trivially. The

space of (Jordan) monomials of degree k will be denoted as Fdk while the space of all

(Jordan) polynomials in d will be denoted as Gd. These are formalised in the following

definition.

Definition 5.1.2 (Jordan polynomials in d). For any d ∈ I and non-negative integer k,

we denote the linear space of all degree k Jordan monomials in d with coefficients in C as
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Fdk =
{
〈x〉dk : x ∈ C

}
,

obtaining the linear space of all Jordan polynomials in d with coefficients in C as a direct

sum of these linear spaces,

Gd =
⊕
k∈Z+

Fdk.

In this chapter we will only use a single non-trivial element of I which is not in C ,

d ∈ I \ C , and can drop the superscript d, writing 〈x〉k, Fk and G in place of 〈x〉dk, Fdk
and Gd, respectively.

Since D = add is a derivation on A (and C ), D(a ·b) = Da ·b+a ·Db, and it distributes

binomially on A (and C ),

Dk(a · b) =
k∑
i=0

(
k

i

)
Dia ·Dk−ib. (5.1)

Starting from d · x = Dx+ x · d, a simple inductive procedure leads to a similar binomial

identity,

dk · x =
k∑
i=0

(
k

i

)
Dix · dk−i. (5.2)

These are trivial generalisations of the consequences of the Leibniz that are immediately

obvious and very well known for the case d = ∂x.

Note: In this chapter we typically use a, b, c for elements of the associative algebra A ,

x, y, z for elements of the commutative subalgebra C and reserve d for elements

of the Lie idealiser I , except where noted otherwise. For elements x, y of the

commutative algebra C , we write xy to denote x · y, dropping the explicit use of

the multiplication operator. The letters k, l,m, n, p, r, s, i are used for non-negative

integers.

Note: For all practical purposes, a reader who feels more comfortable with concrete ex-

amples might consider d = ∂x and D = ∂x for the rest of this chapter, considering

elements of the algebra A (usually denoted a, b, c) as linear differential operators

and elements of the commutative algebra C (usually denoted x, y, z) as functions

(or multiplicative operators).

5.2 Associative algebra of Jordan polynomials

We find that when we compose two symmetrised differential operators such as f1 •∂x + f0

and g2 • ∂2
x + g1 • ∂x + g0, using operator composition, ◦, we can express the result as

another symmetrised differential operator (of degree three, in this case). Note carefully
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that the product used for defining the polynomials, •, is different from the product, ◦, we

are applying for multiplying them.

This result is summarised in Lemma 5.2.1 under the general case where we use d

and D instead of ∂x, as usual, and recalling that terms like f1 • ∂x + f0 are written

in the form 〈f1〉1 + 〈f0〉0, following the notation introduced earlier. The result follows

by straightforward application of the Leibniz rule, followed by a recursive procedure for

finding the hypothesised terms. Thus the proof is constructive in nature.

Lemma 5.2.1. The linear space of Jordan polynomials, G, is an associative algebra under

the associative product ‘ ·’,

〈x〉k · 〈y〉l =
k+l∑
n=0

〈zn〉k+l−n , (5.3)

where the terms

zn =
n∑
i=0

πk,ln,iD
ixDn−iy (5.4)

are in C and πk,ln,i ∈ Q.

In other words, when we multiply two Jordan monomials using the product ·, we get a

Jordan polynomial whose degree is equal to the sum of the degrees of the monomials. Thus,

it follows trivially, that when we multiply two polynomials, we again get a polynomial

whose degree is equal to the sum of the degrees of polynomials. Once we know the

coefficients π, which can be computed using the recursive procedure (5.11), we have a

simple procedure by which we could multiply such polynomials.

Knowing how to multiply these polynomials is important since we eventually want to

be able to solve the commutators of the symmetrised differential operators. This naturally

involves being able to multiply two such operators.

Note: It is interesting to see that monomials of all degrees from 0 to k + l appear in the

polynomial formed as a product of the two monomials. Thus, even if we were to

take the monomials 〈f〉1 and 〈g〉1, which are both skew-Hermitian operators in the

context of our application (d = ∂x), their product will consist of a skew-Hermitian

term of the form 〈h1〉1 but will also have the Hermitian terms 〈h2〉2 and 〈h0〉0.

This is not surprising—the product of two skew-Hermitian operators might end up

being neither Hermitian nor skew-Hermitian.

However, when we compute commutators, it would become important that terms

such as 〈h2〉2 and 〈h0〉0 don’t appear since the commutator of two skew-Hermitian

operators must be skew-Hermitian. Moreover, the main motivation from a compu-

tational point of view is that the resulting term should readily lead to a discreti-

sation that is also skew-Hermitian.
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These results, which are highly desirable, will be sought in Section 5.3 in Theorem 5.3.2.

The non-mixing property, which ensures that we don’t mix Hermitian and skew-Hermitian

terms was alluded to in the introduction of this chapter, and is proven by showing that

the coefficients πk,ln,i posses a nice symmetry result in Lemma 5.3.1. In order to do so,

however, we first try to find a more explicit form of the coefficients in Section 5.2.1 than

evident from the recursive procedure (5.11) in the proof that follows, and by finding the

generating function of these coefficients in Section 5.2.2.

Proof. A proof for Lemma 5.2.1 follows by expanding (5.3) using the binomial identity

(5.2) and comparing powers of d. At first, we expand the left hand side,

4 〈x〉k · 〈y〉l = (x · dk + dk · x) · 2 〈y〉l
= x · (dk · y) · dl + x · (dk+l · y) + (dk · x) · 2 〈y〉l

= x ·

(
k∑
i=0

(
k

i

)
Diy · dk−i

)
· dl + x ·

k+l∑
i=0

(
k + l

i

)
Diy · dk+l−i

+

(
k∑
i=0

(
k

i

)
Dix · dk−i

)
·
(
y · dl + dl · y

)
=

k+l∑
i=0

[(
k

i

)
+

(
k + l

i

)]
(x Diy) · dk+l−i

+
k∑
i=0

k+l−i∑
j=0

(
k

i

)[(
k − i
j

)
+

(
k + l − i

j

)]
(Dix Djy) · dk+l−i−j .

The right hand side of (5.3) is expanded in similar fashion,

4
k+l∑
n=0

〈zn〉k+l−n = 2

k+l∑
n=0

zn · dk+l−n + 2
k+l∑
n=0

k+l−n∑
i=0

(
k + l − n

i

)
Dizn · dk+l−n−i.

A sequence of terms zn for which all terms accompanying dk+l−a, a ∈ {0, . . . , k+ l}, match

on both sides will certainly satisfy (5.3) although it need not be the unique solution. Note

that, in a break from convention, we have used the letter a as a non-negative integer. This

leads to the relation

2za + 2
k+l∑
n=0

(
k + l − n
a− n

)
Da−nzn =

[(
k

a

)
+

(
k + l

a

)]
(x Day) (5.5)

+
a∑
i=0

(
k

a

)[(
k − i
a− i

)
+

(
k + l − i
a− i

)]
(Dix Da−iy),
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which can easily be fashioned into a recursive procedure for solving za,

za = −1

2

a−1∑
n=0

(
k + l − n
a− n

)
Da−nzn +

1

4

[(
k

a

)
+

(
k + l

a

)]
(x Day) (5.6)

+
1

4

a∑
i=0

(
k

a

)[(
k − i
a− i

)
+

(
k + l − i
a− i

)]
(Dix Da−iy),

starting from z0 = xy (found by substituting a = 0). We remind the reader that a ≤ k+ l,

and
(
n
k

)
= 0 for k < 0 if n > 0.

The second part of the lemma states that zn of the form (5.4) satisfy (5.3) for some

πk,ln,i ∈ Q. After substituting this form in (5.5), the left side is comprised of

2
a∑
i=0

πk,la,iD
ix Da−iy (5.7)

and

2
k+l∑
n=0

(
k + l − n
a− n

)
Da−n

(
n∑
i=0

πk,ln,iD
ix Dn−iy

)

= 2
k+l∑
n=0

(
k + l − n
a− n

) n∑
i=0

πk,ln,i

a−n∑
j=0

(
a− n
j

)
Di+jx Da−i−jy, (5.8)

where the inner term Da−n ·
(
Dix Dn−iy

)
has been expanded using (5.1).

We now equate terms accompanying Dpx Da−py in (5.5), noting that this would give

a solution which need not be unique. We arrive at equations of the form

Rk,la,p = Lk,la,p, p ∈ {0, . . . , a}, a ∈ {0, . . . , k + l},

where

Rk,la,p = 2πk,la,p + 2
a∑

n=0

(
k + l − n
a− n

) n∑
i=0

πk,ln,i

(
a− n
p− i

)
, (5.9)

Lk,la,p = δp,0

((
k

a

)
+

(
k + l

a

))
(5.10)

+

(
k

p

)((
k − p
a− p

)
+

(
k + l − p
a− p

))
,

and δi,j is the Kronecker delta function. The fact that a recursive procedure for finding

πs can be designed,

πk,la,p =
1

4

(
Lk,la,p − 2

a−1∑
n=0

(
k + l − n
a− n

) n∑
i=0

πk,ln,i

(
a− n
p− i

))
, (5.11)
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starting from πk,l0,0 = 1, is the proof that such πk,ln,i ∈ Q exist, whereby zn ∈ C of the form

(5.4) satisfies (5.3). Hence G is an associative algebra with the prescribed properties (5.3)

and (5.4).

5.2.1 Explicit form of the coefficients

The recursive procedure (5.11) suffices for the proof of Lemma 5.2.1 and for expanding

products of Jordan polynomials using a symbolic computation algorithm. Coefficients πk,ln,i
for a few combinations of k and l, which can be derived using this recursive procedure,

are listed in Table 5.1 in Section 5.4.

Nevertheless, an explicit form for these coefficients remains highly desirable since the

observations which lead us to the structural properties (such as the non-mixing property)

of the Lie algebra in Section 5.3—the main result of this chapter—are not immediately

evident in the recursive form.

Lemma 5.2.2. The explicit form of the coefficients is given by

πk,ln,i =
1

2

k+l∑
s=0

k+l∑
j=0

Qk+l
(n,i),(s,j) L

k,l
s,j , (5.12)

where

Qq(n,i),(s,j) =

δn,sδi,j −
Pn−s+1

n−s+1

(
q−s
n−s
)(
n−s
i−j
)

n ≥ s, i ≥ j,

0 otherwise,
(5.13)

and Pr are defined in terms of the Bernoulli numbers Br (Abramowitz & Stegun 1964),

Pr = (−1)r(2r − 1)Br.

Proof. Let

Sq(a,p),(n,i) =

δa,nδp,i +
(
q−n
a−n
)(
a−n
p−i
)

a ≥ n, p ≥ i,

0 otherwise.
(5.14)

Note that, in a break from convention, we have used the letters a and b as non-negative

integers in this proof. The explicit form of πs in (5.12) allows us to express Rk,la,p in (5.9)

as

Rk,la,p = 2

k+l∑
n=0

k+l∑
i=0

Sk+l
(a,p),(n,i)π

k,l
n,i

=

k+l∑
n=0

k+l∑
i=0

Sk+l
(a,p),(n,i)

k+l∑
s=0

k+l∑
j=0

Qk+l
(n,i),(s,j)L

k,l
s,j

=

k+l∑
s=0

k+l∑
j=0

[
k+l∑
n=0

k+l∑
i=0

Sk+l
(a,p),(n,i)Q

k+l
(n,i),(s,j)

]
Lk,ls,j .
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To prove Lemma 5.2.2, we need to prove that Q in (5.12) is such that Rk,la,p = Lk,la,p is

satisfied. This certainly holds if

q∑
n=0

q∑
i=0

Sq(a,p),(n,i)Q
q
(n,i),(s,j) = δa,sδp,j , (5.15)

holds for any q and a, s, p, j ∈ {0, . . . , q}. To prove this we note that S and Q, and

therefore their product SQ, are lower triangular. Thus we may concern ourselves solely

with the case 0 ≤ s ≤ a ≤ q and 0 ≤ j ≤ p ≤ q. Denoting (SQ)q(a,p),(s,j) as T for brevity,

T =

q∑
n=0

q∑
i=0

[
δa,nδp,i +

(
q − n
a− n

)(
a− n
p− i

)][
δn,sδi,j −

Pn−s+1

n− s+ 1

(
q − s
n− s

)(
n− s
i− j

)]

can be separated into four parts,

T1 =

q∑
n=0

q∑
i=0

δa,nδp,iδn,sδi,j = δa,sδp,j ,

T2 = −
q∑

n=0

q∑
i=0

δa,nδp,i
Pn−s+1

n− s+ 1

(
q − s
n− s

)(
n− s
i− j

)
= − Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
,

T3 =

q∑
n=0

q∑
i=0

δn,sδi,j

(
q − n
a− n

)(
a− n
p− i

)
=

(
q − s
a− s

)(
a− s
p− j

)
,

T4 = −
q∑

n=0

q∑
i=0

(
q − n
a− n

)(
a− n
p− i

)
Pn−s+1

n− s+ 1

(
q − s
n− s

)(
n− s
i− j

)
.

In the case of T4 we note that the binomial coefficients vanish except for s ≤ n ≤ a and

j ≤ i ≤ p, when expanding them leads to the expression

T4 = − (q − s)!
(q − a)!

a∑
n=s

Pn−s+1

n− s+ 1

p∑
i=j

1

(p− i)!(a− n− p+ i)!(i− j)!(n− s− i+ j)!
.

In order to reduce this expression, will need the following identities,

p∑
i=j

1

(p− i)!(a− n− p+ i)!(i− j)!(n− s− i+ j)!
=

1

(a− n)!(n− s)!

(
a− s
p− j

)
, (5.16)

b∑
n=0

(
b+ 1

n+ 1

)
(2n+1 − 1)Bn+1 = −1

2
δb,0 − δb>0Pb+1, (5.17)
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and
b∑

n=0

Pn+1

(n+ 1)!(b− n)!
=

1

b!
− 1

2
δb,0 −

Pb+1

(b+ 1)!
δb>0, (5.18)

where δb>0 is 1 if b > 0 and 0 otherwise. Using these identities (proved at the end of this

section),

T4
(5.16)

= − (q − s)!
(q − a)!

(
a− s
p− j

) a∑
n=s

Pn−s+1

(n− s+ 1)!(a− n)!

= − (q − s)!
(q − a)!

(
a− s
p− j

) a−s∑
n=0

Pn+1

(n+ 1)!((a− s)− n)!

(5.18)
= − (q − s)!

(q − a)!

(
a− s
p− j

)[
1

(a− s)!
− 1

2
δa,s −

Pa−s+1

(a− s+ 1)!
δa>s

]
= −

(
q − s
a− s

)(
a− s
p− j

)
+

1

2
δa,sδp,j +

Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
δa>s

This allows us to complete the proof of Lemma 5.2.2 by proving (5.15),

T = δa,sδp,j −
Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
+

(
q − s
a− s

)(
a− s
p− j

)
−
(
q − s
a− s

)(
a− s
p− j

)
+

1

2
δa,sδp,j +

Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
δa>s

=
3

2
δa,sδp,j − (1− δa>s)

Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
=

3

2
δa,sδp,j − δa≤s

Pa−s+1

a− s+ 1

(
q − s
a− s

)(
a− s
p− j

)
=

3

2
δa,sδp,j − δa,sδp,jP1 = δa,sδp,j ,

in proving which we have used P1 = 1/2 and the fact that SQ is lower triangular (thus

the only case of a ≤ s that we need to consider is s = a). This completes the proof of

Lemma 5.2.2.

Proofs for the identities (5.16), (5.17) and (5.18) used in the proof of Lemma 5.2.2 are

derived here.

Proof. (5.16)

p∑
i=j

(a− n)!(n− s)!
(p− i)!(a− n− p+ i)!(i− j)!(n− s− i+ j)!

=

p∑
i=j

(
a− n
p− i

)(
n− s
i− j

)

=

p−j∑
i=0

(
a− n

(p− j)− i

)(
n− s
i

)
=

(
a− s
p− j

)
,
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since
k∑
i=0

(
n

k − i

)(
m

i

)
=

(
n+m

k

)
.

Proof. (5.17)

b∑
n=0

(
b+ 1

n+ 1

)
(2n+1 − 1)Bn+1 =

b∑
n=0

(
b+ 1

n

)
(2b−n+1 − 1)Bb−n+1

=

b+1∑
n=0

(
b+ 1

n

)
(2b−n+1 − 1)Bb−n+1 − 0

=
[
2b+1Bb+1(1/2)− Bb+1(1)

]
=
[
2− 2b+1 − (−1)b+1

]
Bb+1, (5.19)

where Bk(x) are the Bernoulli polynomials (Abramowitz & Stegun 1964),

Bk(x) =
k∑
i=0

(
k

i

)
Bk−i x

i,

whose values at 1 and 1/2 are,

Bk(1) = (−1)kBk, Bk(1/2) = (21−k − 1)Bk.

For b = 0, the expression (5.19) evaluates to −1/2, while for b > 0, (−1)b+1 can be replaced

by 1 since Bb+1 vanishes for all cases when (−1)b+1 is negative. Thus, for b > 0, (5.19)

evaluates to
(
1− 2b+1

)
Bb+1. Using the same logic, we may multiply it by (−1)b+1 to get

−Pb+1, completing the proof.

Proof. (5.18)

b∑
n=0

Pn+1

(n+ 1)!(b− n)!
=

1

(b+ 1)!

b∑
n=0

(
b+ 1

n+ 1

)
(−1)n+1(2n+1 − 1)Bn+1

=
1

(b+ 1)!

[
b∑

n=0

(
b+ 1

n+ 1

)
(2n+1 − 1)Bn+1 − 2(b+ 1)B1

]

=
1

b!
+

1

(b+ 1)!

b∑
n=0

(
b+ 1

n+ 1

)
(2n+1 − 1)Bn+1

(5.17)
=

1

b!
− 1

2
δb,0 −

Pb+1

(b+ 1)!
δb>0.

Where we have used the fact that, except for the n = 0 case, all negative occurrences of
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(−1)n+1 vanish since Bn+1 vanishes.

5.2.2 The generating function for the coefficients

The symmetry of the coefficients πk,ln,i that we require in order for the non-mixing property

to hold will be proven via the generating function of these coefficients, which is developed

in this section. We will break the notational convention of this chapter in this section,

using u,w, x and y as variables in which the formal series of the generating function is

specified.

Lemma 5.2.3. The generating function,

h(u,w, y, x) =
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xiπk,ln,i , (5.20)

for the coefficients πk,ln,i appearing in (5.3) is

h(u,w, y, x) =
exp ((wy − uxy)/2)

1− (w + u)

cosh(uy/2) cosh(wxy/2)

cosh(y(u+ w)(1 + x)/2)
. (5.21)

Proof. We wish to find an explicit form for the generating function

h(u,w, y, x) =

∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xiπk,ln,i. (5.20)

We start from the result of Lemma 5.2.2, substituting (5.12) in (5.20) and splitting πk,ln,i
into eight parts for convenience,

πk,ln,i =
1

2

8∑
j=1

pj(k, l, n, i), (5.22)

where

p1(k, l, n, i) = δi,0

(
k

n

)
, p2(k, l, n, i) = δi,0

(
k + l

n

)
,

p3(k, l, n, i) =

(
k

i

)(
k − i
n− i

)
, p4(k, l, n, i) =

(
k

i

)(
k + l − i
n− i

)
,

p5(k, l, n, i) = −
n∑
r=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i

)(
k

n− r

)
,

p6(k, l, n, i) = −
n∑
r=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i

)(
k + l

n− r

)
,

p7(k, l, n, i) = −
n∑
r=0

n−r∑
j=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i− j

)(
k

j

)(
k − j

n− r − j

)
,
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p8(k, l, n, i) = −
n∑
r=0

n−r∑
j=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i− j

)(
k

j

)(
k + l − j
n− r − j

)
,

are obtained after a change of variables, r = n − s, and noting
(

0
i−j
)

= δi,j and the fact

that
(
n
k

)
vanishes for k < 0 when n ≥ 0. We will simplify the corresponding parts of

h(u,w, y, x),

hj(u,w, y, x) =

∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xipj(k, l, n, i),

combining them to find an expression for the generating function

h(u,w, y, x) =
8∑
j=1

hj(u,w, y, x)/2.

In this pursuit, we will repeatedly use a few results,

∞∑
r=0

Br
r!
xr =

x

ex − 1
, (5.23)

which is well known,

∞∑
r=0

Pr+1

(r + 1)!
xr =

1

x

∞∑
r=0

Pr
r!
xr =

1

x

∞∑
r=0

(−1)r(2r − 1)Br
r!

xr

=
1

x

∞∑
r=0

Br
r!

(−2x)r − 1

x

∞∑
r=0

Br
r!

(−x)r

= −
(

2

e−2x + 1
− 1

e−x + 1

)
=

ex

ex + 1
, (5.24)

where we use the fact that P0 = 0, and

∞∑
l=0

∞∑
k=0

(
k + r

l

)
ulwk+n−l =

∞∑
k=0

wk+n
∞∑
l=0

(
k + r

l

)( u
w

)l
=
∞∑
k=0

wk+n
(

1 +
u

w

)k
+ r

= wn−r(w + u)r
∞∑
k=0

(w + u)k =
wn−r(w + u)r

1− (w + u)
. (5.25)
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Two standard tricks for exchanging summations that we exploit are

∞∑
n=0

n∑
r=0

αn,r =

∞∑
r=0

∞∑
n=0

αn+r,r, (5.26)

∞∑
k=0

k+l∑
n=0

αn,k,l =
∞∑
n=0

∞∑
k=0

αn,k+n−l,l. (5.27)

With these tools, we proceed to seek expressions for the generating functions hj , writing

hj as shorthand for hj(u,w, y, x).

h1 =
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xiδi,0

(
k

n

)

=
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

(
k + l − n

l

)
yn

n!
=
∞∑
n=0

yn

n!

[ ∞∑
l=0

∞∑
k=0

(
k

l

)
ulwk+n−l

]

=
1

1− (w + u)

∞∑
n=0

(yw)n

n!
=

eyw

1− (w + u)
,

h2 =
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xiδi,0

(
k + l

n

)

=
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

(
k + l

l

)
yn

n!
=
∞∑
n=0

yn

n!

[ ∞∑
l=0

∞∑
k=0

(
k + n

l

)
ulwk+n−l

]

=
1

1− (w + u)

∞∑
n=0

(y(w + u))n

n!
=

ey(w+u)

1− (w + u)
,

h3 =

∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xi
(
k

i

)(
k − i
n− i

)

=

∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn

n!

(
k + l − n

l

)[ n∑
i=0

(
n

i

)
xi

]

=
∞∑
n=0

(y(1 + x))n

n!

[ ∞∑
l=0

∞∑
k=0

(
k

l

)
ulwk+n−l

]

=
1

1− (w + u)

∞∑
n=0

(yw(1 + x))n

n!
=

eyw(1+x)

1− (w + u)
,
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h4 =

∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xi
(
k

i

)(
k + l − i
n− i

)

=
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn

n!

n∑
i=0

(
n

i

)
xi
(
k + l − i

l

)

=
∞∑
n=0

yn

n!

n∑
i=0

(
n

i

)
xi

[ ∞∑
l=0

∞∑
k=0

(
k + n− i

l

)
ulwk+n−l

]

=
1

1− (w + u)

∞∑
n=0

yn

n!

n∑
i=0

(
n

i

)
xiwi(w + u)n−i

=
1

1− (w + u)

∞∑
n=0

(y((w + u) + xw))n

n!
=

ey(w+u)+xyw

1− (w + u)
,

h5 = −
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xi
n∑
r=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i

)(
k

n− r

)

= −
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn
n∑
r=0

r∑
i=0

xi
Pr+1

(r + 1)!(n− r)!

(
k + l − n+ r

l

)(
r

i

)

= −
∞∑
n=0

yn
n∑
r=0

Pr+1

(r + 1)!(n− r)!

[ ∞∑
l=0

∞∑
k=0

(
k + r

l

)
ulwk+n−l

][
r∑
i=0

(
r

i

)
xi

]
,

where we have changed summation limits on n using (5.27), and for i since r ≤ n and(
r
i

)
= 0 for i > r ≥ 0. Using (5.25) and changing limits again using (5.26),

h5 = − 1

1− (w + u)

∞∑
n=0

yn
n∑
r=0

Pr+1

(r + 1)!(n− r)!
wn−r((w + u)(1 + x))r

= − 1

1− (w + u)

[ ∞∑
n=0

(yw)n

n!

] ∞∑
r=0

Pr+1

(r + 1)!
(y(w + u)(1 + x))r

= − eyw

1− (w + u)

ez

ez + 1
,
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where we have defined z = y(w + u)(1 + x) for convenience.

h6 = −
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xi
n∑
r=0

Pr+1

r + 1

(
k + l − n+ r

r

)(
r

i

)(
k + l

n− r

)

= −
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn
n∑
r=0

Pr+1

(r + 1)!(n− r)!

(
k + l

l

)[ r∑
i=0

(
r

i

)
xi

]

= −
∞∑
n=0

yn
n∑
r=0

Pr+1

(r + 1)!(n− r)!
(1 + x)r

[ ∞∑
l=0

∞∑
k=0

(
k + n

l

)
ulwk+n−l

]

= − 1

1− (w + u)

∞∑
n=0

(y(w + u))n
n∑
r=0

Pr+1

(r + 1)!(n− r)!
(1 + x)r

= − 1

1− (w + u)

[ ∞∑
n=0

(y(w + u))n

n!

] ∞∑
r=0

Pr+1

(r + 1)!
(y(w + u)(1 + x))r

= − ey(w+u)

1− (w + u)

ez

ez + 1
.

After manipulating binomial coefficients, we change summation limits (5.27) and use (5.25),

h7 = −
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn
n∑
r=0

n−r∑
j=0

Pr+1

(r + 1)!j!(n− r − j)!

(
k + l − n+ r

l

)[ n∑
i=0

(
r

i− j

)
xi

]

= −
∞∑
n=0

yn
n∑
r=0

n−r∑
j=0

Pr+1

(r + 1)!j!(n− r − j)!

[ ∞∑
l=0

∞∑
k=0

(
k + r

l

)
ulwk+n−l

]r+j∑
i=j

(
r

i− j

)
xi


= − 1

1− (w + u)

∞∑
n=0

yn
n∑
r=0

n−r∑
j=0

Pr+1

(r + 1)!j!(n− r − j)!
wn−r(w + u)rxj(1 + x)r,

since
(
r
i−j
)

vanishes unless j ≤ i ≤ r + j and r + j ≤ n. Exchanging limits twice using

(5.26), once for r and once for j,

h7 = − 1

1− (w + u)

∞∑
r=0

∞∑
n=0

(yw)n
n∑
j=0

Pr+1

(r + 1)!j!(n− j)!
zrxj

= − 1

1− (w + u)

[ ∞∑
n=0

(yw)n

n!

][ ∞∑
r=0

Pr+1

(r + 1)!
zr

] ∞∑
j=0

(ywx)j

j!


= − eyw(1+x)

1− (w + u)

ez

ez + 1
.
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Along similar lines we manipulate

h8 =
∞∑
l=0

ul
∞∑
k=0

wk
k+l∑
n=0

yn
n∑
r=0

n−r∑
j=0

−Pr+1

(r + 1)!j!(n− r − j)!

(
k + l − j

l

)[ n∑
i=0

(
r

i− j

)
xi

]

=

∞∑
n=0

n∑
r=0

n−r∑
j=0

−Pr+1y
n

(r + 1)!j!(n− r − j)!

r+j∑
i=j

(
r

i− j

)
xi

[ ∞∑
l=0

∞∑
k=0

(
k + n− j

l

)
ulwk+n−l

]

= − 1

1− (w + u)

∞∑
n=0

yn
n∑
r=0

n−r∑
j=0

Pr+1

(r + 1)!j!(n− r − j)!
xj(1 + x)rwj(w + u)n−j ,

since
(
r
i−j
)

vanishes unless j ≤ i ≤ r + j and r + j ≤ n. Once again, exchanging limits

twice using (5.26), once for r and once for j,

h8 = − 1

1− (w + u)

∞∑
r=0

∞∑
n=0

yn+r
n∑
j=0

Pr+1

(r + 1)!j!(n− j)!
xj(1 + x)rwj(w + u)n+r−j

= − 1

1− (w + u)

[ ∞∑
n=0

(y(w + u))n

n!

][ ∞∑
r=0

Pr+1

(r + 1)!
zr

] ∞∑
j=0

(xyw)j

j!


= −ey(w+u)+xyw

1− (w + u)

ez

ez + 1
.

These expressions are then combined to form the full generating function

2h(u,w, y, x) =
eyw

1− (w + u)
+

ey(w+u)

1− (w + u)
+

eyw(1+x)

1− (w + u)
+

ey(w+u)+xyw

1− (w + u)

− eyw

1− (w + u)

ez

ez + 1
− ey(w+u)

1− (w + u)

ez

ez + 1

− eyw(1+x)

1− (w + u)

ez

ez + 1
− ey(w+u)+xyw

1− (w + u)

ez

ez + 1

=
eyw + ey(w+u) + eyw(1+x) + ey(w+u)+xyw

1− (w + u)

[
1− ez

ez + 1

]
=

1

1− (w + u)

[
eyw + ey(w+u) + eyw(1+x) + ey(w+u)+xyw

ez + 1

]
.

For further simplification, consider g = 2h(u,w, 2y, x)(1 − (w + u)), letting a = uy, b =
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wy, c = uxy and d = wxy,

g =
e2yw + e2y(w+u) + e2yw(1+x) + e2y(w+u)+2xyw

e2yw+2ywx+2yu+2yux + 1

=
e2b + e2a+2b + e2b+2d + e2a+2b+2d

e2a+2b+2d+2c + 1

=
e−a+b−c−d + ea+b−c−d + e−a+b−c+d + ea+b−c+d

ea+b+c+d + e−a−b−c−d

= eb−c
e−a−d + ea−d + e−a+d + ea+d

ea+b+c+d + e−a−b−c−d

= eb−c
(e−a + ea)(e−d + ed)

ea+b+c+d + e−a−b−c−d

= 2eb−c
cosh(a) cosh(d)

cosh(a+ b+ c+ d)
.

This brings us to the desired form of the generating function,

h(u,w, y, x) =
exp ((wy − uxy)/2)

1− (w + u)

cosh(uy/2) cosh(wxy/2)

cosh(y(u+ w)(1 + x)/2)
, (5.21)

and completes the proof of Lemma 5.2.3.

5.3 Lie algebra of Jordan polynomials

Recall that, as a consequence of Lemma 5.2.1 discussed in Section 5.2, we have a procedure

for multiplying two Jordan monomials (and, therefore, also for multiplying two Jordan

polynomials). This involved a recursive procedure (5.11) for finding the coefficients πk,ln,i.

As we had noted, once we know how to compose two symmetrised differential operators

(Jordan polynomials with d = ∂x), L1 and L2, we also have a procedure for computing

their commutators since

[L1,L2] = L1 ◦ L2 − L2 ◦ L1.

However, a major motivation for working with the symmetrised differential operators

is to ensure that Hermitian and skew-Hermitian terms do not mix. This non-mixing

property was not obvious from the results of Lemma 5.2.1. However, the results of Sec-

tion 5.2.1 and Section 5.2.2 will allow us to show the symmetry property of the coefficients

in Lemma 5.3.1, which leads to the Z2-graded structure of our Lie algebra. This property,

which can be gleaned from Theorem 5.3.2, is the crucial property of non-mixing that we

seek.

As we have already stated, since Jordan polynomials in d with coefficients in C form an

associative algebra (G, ·,+), it is immediately obvious that they also form a Lie algebra.
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From (5.3), we know that the commutator of the monomials can be expanded to

[〈x〉k , 〈y〉l] =
k+l∑
n=0

n∑
i=0

µk,ln,i
〈
DixDn−iy

〉
k+l−n , (5.28)

where µk,ln,i = πk,ln,i − π
l,k
n,n−i. However, as we have suspected all along, the structure of G

turns out to be more interesting than this due to a symmetry of the coefficients, πk,ln,i.

Lemma 5.3.1. The coefficients possess the symmetry,

πk,ln,i = (−1)nπl,kn,n−i.

Proof. We show that the generating function for (−1)nπl,kn,n−i coincides with the generating

function of πk,ln,i,

g(u,w, y, x) =
∞∑
l=0

ul

l!

∞∑
k=0

wk

k!

k+l∑
n=0

(k + l − n)!yn
n∑
i=0

xi(−1)nπl,kn,n−i

=
∞∑
l=0

wl

l!

∞∑
k=0

uk

k!

k+l∑
n=0

(k + l − n)!(−y)n
n∑
i=0

xn−iπk,ln,i

= h(w, u,−xy, 1/x)

=
exp ((−uxy + wy)/2)

1− (w + u)

cosh(−wxy/2) cosh(−uy/2)

cosh(−yx(u+ w)(1 + 1/x)/2)

=
exp ((wy − uxy)/2)

1− (w + u)

cosh(wxy/2) cosh(uy/2)

cosh(yx(u+ w)(1 + 1/x)/2)

= h(u,w, y, x).

Theorem 5.3.2. Commutators in the Lie algebra of Jordan polynomials (G, [·, ·],+) can

be solved explicitly using the rule

[〈x〉k , 〈y〉l] =

k+l−1
2∑

n=0

2n+1∑
i=0

λk,ln,i
〈
DixD2n+1−iy

〉
k+l−2n−1

, (5.29)

where λk,ln,i = 2πk,l2n+1,i ∈ Q.

Proof. The even indexed coefficients µk,l2n,i in (5.28) vanish due to Lemma 5.3.1, µk,l2n,i =

πk,l2n,i − (−1)2nπk,l2n,i = 0, while µk,l2n+1,i = πk,l2n+1,i − (−1)2n+1πk,l2n+1,i = 2πk,l2n+1,i. We conve-

niently rename µk,l2n+1,i as λk,ln,i.

Theorem 5.3.2 is the central result of this chapter. The following consequences of this

theorem will be discussed in the rest of this section and exploited further in Section 6.1.3.
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(i) Commutators of symmetrised differential operators can be expressed as other sym-

metrised differential operators, and we have a procedure based on the coefficients

λk,ln,i that allows us to do this in a symbolic algebra program. Moreover, due to (5.12)

these coefficients are known explicitly. Thus if we were to start with symmetrised

differential operators and form nested commutators, we will still be able to write

any such nested commutator as a symmetrised differential operator.

This is the property allowing us to simplify nested commutators in Zassenhaus split-

tings and Magnus expansions to symmetrised differential operators.

(ii) The 〈·〉k+l term that appears when composing two symmetrised differential operators

of the form 〈·〉k and 〈·〉l cancels out when we, instead, consider their commutator.

Thus the highest possible degree differential operator in the commutator vanishes.

Due to highly oscillatory solutions in the semiclassical regime, high derivatives of the

wavefunction are very large. Thus, this property of ‘height reduction’ significantly

reduces the size of nested commutators, leading to much smaller errors, milder con-

straints and lower costs of our numerical schemes.

(iii) Either 〈·〉2m+1 or 〈·〉2m terms, but not both, appear in the commutator of two

monomials—this is the property of non-mixing that proves crucial for separating

Hermitian and skew-Hermitian terms, leading to unitarity and stability of our meth-

ods.

We will now consider the above properties of this Lie algebra in more details.

Height reduction

The linear space of Jordan polynomials of degree ≤ n is written as

Gn =
⊕
k≤n

Fk.

The algebra G = limn→∞Gn can be seen as a filtered Lie algebra since

[Gk,Gl] ⊆ Gk+l.

In other words, when we take the commutator of a degree k symmetrised differential

operator and a degree l symmetrised differential operator, we expect the result to be

another symmetrised differential operator of degree k + l, just like the product of these

operators. As we see shortly, however, this turns out not to be the case—instead the

commutator is a symmetrised differential operator of degree k + l − 1.

Definition 5.3.3 (Height). The height of a Jordan polynomial W ∈ G is defined as its

degree and written as ht(W )—it is the smallest integer n such that W ∈ Gn. We define
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5.3. Lie algebra of Jordan polynomials

the height of 0 (the zero Jordan polynomial) to be −1 as per common convention, this

being the only term with negative height.

Effectively, the height of a general term in Gn (a degree n Jordan polynomial) is

ht

(
n∑
k=0

〈xk〉k

)
= n,

provided xn does not vanish. A degree k Jordan monomial 〈x〉k has height k.

Lemma 5.3.4 (Height Reduction for Commutators of Jordan Monomials).

ht ([〈x〉k , 〈y〉l]) ≤ k + l − 1. (5.30)

Proof. The largest degree monomial on the right hand side of (5.29) has the index k+l−1,

which occurs for n = 0. As a consequence, the height of the right hand side of (5.29) is

k + l − 1.

We note that, as a consequence of Theorem 5.3.2 and Lemma 5.3.4,

[Gk,Gl] ⊆ Gk+l−1,

while keeping in mind that Gk+l−1 ⊆ Gk+l, so that there is no contradiction. Thus,

the commutator of two symmetrised differential operators is a symmetrised differential

operator of degree one lower than the sum of their degrees.

Corollary 5.3.5 (Height Reduction). For any commutator C featuring the ‘letters’

Wi ∈ Gki , i = 1, . . . , n,

ht (C (W1, . . . ,Wn)) ≤
n∑
i=1

ki − n+ 1. (5.31)

Non-mixing property

The non-mixing property of this Lie algebra is that it doesn’t mix terms of certain forms.

We define

e =
⊕
k≥0

F2k , o =
⊕
k≥0

F2k+1,

so that G = o⊕ e.

In the special case of d = ∂x, which interests us while solving the Schrödinger equation,

the even indexed terms e correspond to Hermitian operators and the odd indexed terms

o correspond to skew-Hermitian operators. The non-mixing property means that the

commutator of two monomial symmetrised differential operators can be written as another

symmetrised differential operator which is either Hermitian or skew-Hermitian but doesn’t
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combine Hermitian and skew-Hermitian terms. Moreover, the discretisation of such a

differential operator also results in a Hermitian or skew-Hermitian matrix, appropriately,

without mixing terms.

The following relations are evident from (5.29),

[e, e] ⊆ o, [o, o] ⊆ o, (5.32)

[e, o] ⊆ e, [o, e] ⊆ e.

For instance, the commutator of two terms in e, such as [〈f〉2k , 〈g〉2l], is expressed as a

linear combination of terms of the form 〈·〉2k+2l−2n−1 which have odd indices and are,

therefore, in o.

As a consequence of (5.32), for instance,

[[[[e, e] , e] , o] , e] ⊆ o, [[[[e, o] , e] , e] , o] ⊆ e. (5.33)

Thus, if each letter Wi is either in e or in o, the commutator C (W1, . . . ,Wn) is either in e

or o and does not mix terms from the two. Moreover, commutators with the same letters

will fall in the same space, e or o. For example,

[[[[e, o] , e] , e] , e] ⊆ o, [[[[e, o] , o] , e] , e] ⊆ e, (5.34)

are obtained merely by exchanging the positions of o and e in the commutators (5.33).

As already stated earlier, this non-mixing property has implications for our Zassenhaus

schemes discussed in Chapter 6 where this property translates into a matrix being either

Hermitian or skew-Hermitian but not a mix of the two, which would have resulted in

unfavourable structures like the ones appearing in Chapter 4.

Note: Formally, the property (5.32) says that G is a Z2-graded Lie algebra with the grade

0 component o and grade 1 component e. A graded Lie algebra s is a Lie algebra

which is a direct sum of vector spaces sk,

s =
⊕
k∈Z

sk,

such that the Lie bracket respects the gradation,

[sk, sl] ⊆ sk+l.

A Zn-graded Lie algebra is similar, except the index is in Zn = Z/nZ instead of Z,

s =
⊕
k∈Zn

sk,
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and

[sk, sl] ⊆ s k⊕nl,

where k ⊕n l = (k + l) mod n is the modular addition.

In light of this, (5.33) and (5.34) can be easily understood by considering the grade:

[[[[e, e] , e] , o] , e] has the grade 1⊕2 1⊕2 1⊕2 0⊕2 1 = 4 mod 2 = 0, thus residing

in the grade 0 component, o.

Note: The linear space o is a Lie algebra in its own right, while structures of the form e

are also called Lie triple systems which are closed under double commutation:

[e, [e, e]] ⊆ e.

These notions are closely related to Lie groups and symmetric spaces and have

found applications in linear algebra methods such as the generalised polar decom-

position (Munthe–Kaas, Quispel & Zanna 2001).

5.3.1 Characterisation of the Lie algebra

As anticipated, there is a close relation between G and the Lie algebra generated by

C and polynomials in d with constant coefficients, i.e. the linear space closure of all

their commutators. Recall that we were interested in studying the linear space of all

nested commutators since commutators of all grades appear in the sBCH series, which

underlies the Zassenhaus algorithm. Thus, the fact that these commutators can all be

written in terms of the symmetrised differential operators means that, as a consequence

of Lemma 5.3.6, the exponents in our Zassenhaus splittings can always be written as

symmetrised differential operators and their properties directly become relevant for our

schemes.

Lemma 5.3.6. The Lie algebra generated by C and P(d) (the ring of polynomials in d

with constant coefficients) is contained in G,

f = LA(C ∪ P(d)) ⊆ G.

The two are identical if an inverse of the mapping D = add : C → C exists.

Proof. The containment is not difficult to prove. Since dk = 〈1〉k, it is contained in Fk

and therefore P(d) ⊆ G. The algebra C is also contained in G since every x ∈ C can be

written in the form x = 〈x〉0. The Lie algebra f generated by C ∪P(d) is the intersection

of all Lie algebras containing C and P(d) and is therefore contained in the Lie algebra G.

The two algebras f and G are identical if inverse of the map D exists. Any term in F0

is of the form 〈y〉0 for some y ∈ C and therefore trivially resides in f. Take any x ∈ C and
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note that d2 ∈ P(d). These are both contained in f and by definition of being a Lie algebra

[d2, x] = [〈1〉2 , 〈x〉0] = λ2,0
0,0

〈
D0(1)D1(x)

〉
1

+ λ2,0
0,1

〈
D1(1)D0(x)

〉
1

= 2 〈D(x)〉1 resides in f

as well. Consequently, any 〈y〉1 ∈ F1 can be expressed as 1
2 [d2, D−1(y)] so long as the

inverse of D exists. Thus we have F0,F1 ⊆ f. These two cases form the base case of our

induction argument.

Assume that for all k < n, F2k and F2k+1 are contained in f. For completing the

inductive proof, consider

[d2n+1, x] = [〈1〉2n+1 , 〈x〉0] =
n∑
s=0

2s+1∑
i=0

λ2n+1,0
s,i

〈
Di(1)D2s+1−i(x)

〉
2n−2s

=
n∑
s=0

λ2n+1,0
s,0

〈
D2s+1(x)

〉
2n−2s

= λ2n+1,0
0,0 〈D(x)〉2n +

n∑
s=1

λ2n+1,0
s,0

〈
D2s+1(x)

〉
2n−2s

.

Setting x = D−1(y) ∈ C ,

〈y〉2n = 1

λ2n+1,0
0,0

[d2n+1, D−1(y)]−
n∑
s=1

λ2n+1,0
s,0

λ2n+1,0
0,0

〈
D2s(y)

〉
2n−2s

.

The first term on the right hand side is in f since d2n+1 ∈ P(d), while the terms in the

summation fall in f due to the induction hypothesis. Thus, we find that 〈y〉2n ∈ f for any

y ∈ C . A similar proof shows that 〈y〉2n+1 also resides in f, proving that Fk ⊆ f for every

k. Since f is also a linear space, the direct sum of these spaces, G =
⊕

k∈Z+
Fk, is also

contained in it. This completes our proof, f = G.

We note that, in general, the Lie algebra f is not a subalgebra of the Lie idealiser I

since d2 need not be in I for every d ∈ I . We also remind the reader that

g = LA{V, ∂2
x} ⊆ LA(C ∪ P(d)) = f.

Of less immediate and practical interest to us is the fact that the Jordan polynomials

in d also form a Jordan algebra, (G, •,+). This follows directly and trivially from the

fact that they form an associate algebra (G, ·,+) (Lemma 5.2.1). More interestingly, this

Jordan algebra is also Z2-graded since, along similar lines to (5.28),

〈x〉k • 〈y〉l =

k+l∑
n=0

n∑
i=0

γk,ln,i
〈
DixDn−iy

〉
k+l−n , (5.35)

where γk,ln,i = (πk,ln,i + πl,kn,n−i)/2 vanishes for odd values of n due to Lemma 5.3.1, while

γk,l2n,i = πk,l2n,i survives. Corresponding observations about the Jordan algebra generated by
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C and P(d) can also be made along similar lines, however a property corresponding to

height reduction of Corollary 5.3.5 does not follow.

5.4 Tables of coefficients

The coefficients πk,ln,i appearing in Lemma 5.2.1 for k + l ranging between 1 and 4 are

presented in Table 5.1. The case 〈x〉0 · 〈y〉0 = 〈xy〉0 is trivial and not listed. From

(k, l) n πk,ln,0 πk,ln,1 πk,ln,2 πk,ln,3 πk,ln,4

(1, 0) 0 1
1 1/2 0

(2, 0) 0 1
1 1 0
2 0 −1/2 0

(1, 1) 0 1
1 1/2 −1/2
2 −1/4 −3/4 −1/4

(3, 0) 0 1
1 3/2 0
2 0 −3/2 0
3 −1/4 −3/4 0 0

(2, 1) 0 1
1 1 −1/2
2 −1/2 2 −1/2
3 −1/4 −1/2 0 0

(4, 0) 0 1
1 2 0
2 0 −3 0
3 −1 −3 0 0
4 0 1/2 3/2 1/2 0

(3, 1) 0 1
1 3/2 −1/2
2 −3/4 −15/4 −3/4
3 −1 −9/4 0 0
4 1/8 1 15/8 7/8 1/8

(2, 2) 0 1
1 1 −1
2 −1 −4 −1
3 −1/2 −1 1 1/2
4 1/4 5/4 9/4 5/4 1/4

Table 5.1: A table of the coefficients πk,ln,i, n ∈ {0, . . . , k+l}, i ∈ {0, . . . , n}, which appear
in Lemma 5.2.1.

Lemma 5.3.1 we know that πk,ln,i = (−1)nπl,kn,n−i, so that specifying the rows (1, 3) and
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(0, 4), for instance, would be redundant.

In Table 5.2 we present the coefficients λk,ln,i appearing in Theorem 5.3.2 for k+l ranging

between 1 and 6, while noting that the relation λk,ln,i = −λl,kn,2n+1−i makes redundant the

need to specify coefficients when k and l exchange values. The values of the coefficients

for (k, l) = (0, 2) can be inferred from the row (k, l) = (2, 0), for instance. Since λk,ln,i =

2πk,l2n+1,i, the first eight rows can be read directly by doubling the corresponding rows in

Table 5.1. Note that [〈x〉0 , 〈y〉0] = 0, and the case k + l = 0 doesn’t merit a mention in

the table.

Substituting the coefficients from Table 5.2, row (k, l) = (2, 1) into (6.2) we find,

[〈x〉2 , 〈y〉1] =
〈
−1

2xD
3y −DxD2y

〉
0

+ 〈2xDy −Dxy〉2 ,

while from the row (k, l) = (3, 2) we can compute

[〈x〉3 , 〈y〉2] = 〈3xDy − 2Dxy〉0
+
〈
−(7/2)xD3y − (15/2)DxD2y + 3D2xDy + (3/2)D3x y

〉
1

+
〈
(3/4)xD5y + 3DxD4y + (7/2)D2xD3y −D4xDy − (1/4)D5x y

〉
2
.

Note that these brackets are linear, 〈αx+ βy〉k = α 〈x〉k + β 〈y〉k.

5.5 A finite-dimensional example

While the applications of these algebraic ideas in this thesis, which are first explored

in Section 6.1, will be based in infinite-dimensional algebras and function spaces, it is

also possible to construct finite-dimensional examples of such structures. Consider the

commutative subalgebra of 2n× 2n matrices, A = M(2n,R),

C =

{(
aIn A

On aIn

)
: a ∈ R, A ∈ M(n,R)

}
,

where In is the n× n identity matrix and On is the n× n zero matrix. Consider any

d =

(
E11 E12

On E22

)
,

where Eij ∈ M(n,R). Then, for every x ∈ C ,

[d, x] =

(
On E11A−AE22

On On

)
∈ C .
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Thus, d is in the Lie idealiser of C , D = add is a derivation on C , and, consequently the

Lie algebra

Gd =
⊕
k∈Z+

{〈x〉dk = 1
2(xdk + dkx) : x ∈ C }

is a Z2-graded matrix Lie algebra with height reduction where commutators can be solved

directly.

Similar structures should be found in other commutative subalgebras of M(n,R). Ap-

plications of these structural observations to linear algebra algorithms are yet to be ex-

plored.
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(k, l) n λk,ln,0 λk,ln,1 λk,ln,2 λk,ln,3 λk,ln,4 λk,ln,5

(1, 0) 0 1 0

(2, 0) 0 2 0

(1, 1) 0 1 −1

(3, 0) 0 3 0
1 −1/2 −3/2 0 0

(2, 1) 0 2 −1
1 −1/2 −1 0 0

(4, 0) 0 4 0
1 −2 6 0 0

(3, 1) 0 3 −1
1 −2 −9/2 0 0

(2, 2) 0 2 −2
1 −1 −2 2 1

(5, 0) 0 5 0
1 −5 −15 0 0
2 1 5 15/2 5/2 0 0

(4, 1) 0 4 −1
1 −5 −12 0 0
2 1 9/2 6 2 0 0

(3, 2) 0 3 −2
1 −7/2 −15/2 3 3/2
2 3/4 3 7/2 0 −1 −1/4

(6, 0) 0 6 0
1 −10 −30 0 0
2 6 30 45 15 0 0

(5, 1) 0 5 −1
1 −10 −25 0 0
2 6 55/2 75/2 25/2 0 0

(4, 2) 0 4 −2
1 −8 −18 4 2
2 5 21 26 4 −4 −1

(3, 3) 0 3 −3
1 −5 −21/2 21/2 5
2 3 12 21/2 −21/2 −12 −3

Table 5.2: A table of the coefficients λk,ln,i, n ∈ {0, . . . , (k+ l− 1)/2}, i ∈ {0, . . . , 2n+ 1},
which appear in Theorem 5.3.2.
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Chapter 6

Symmetric Zassenhaus splittings

Having laid down most of the groundwork for symmetric Zassenhaus splittings for the

semiclassical Schrödinger equation in Chapter 4, we encountered the problem of instability

caused by loss of skew-Hermiticity. As it turned out, replacement of odd derivatives in

Section 4.3 restored the skew-Hermiticity in the first stage of the Zassenhaus splitting we

considered in Section 4.2.3. However, this does not constitute a proof of the effectiveness

of the procedure in restoring skew-Hermiticity in arbitrary settings.

In Chapter 5 we investigated the Lie algebra of symmetrised differential operators that

start appearing in our workings following replacement of derivatives, albeit in a highly gen-

eral and abstract manner. In this chapter we will resume the development of the symmetric

Zassenhaus splittings, while working directly in the language of these symmetrised differ-

ential operators. We will see how the structural properties of these algebras translate into

the remarkable features of symmetric Zassenhaus splittings for semiclassical Schrödinger

equations. In particular, these structural properties allow us to devise arbitrarily high-

order, stable, commutator-free, asymptotic splittings which benefit from height reduction

and conservation of unitary evolution, and whose costs grow quadratically with the order.

In Section 6.1, we translate the results of Chapter 5 into a language that is relevant

for the Schrödinger equation. The first symmetric Zassenhaus splitting is fully devel-

oped in the language of these symmetrised differential operators in Section 6.2, following

the algorithms introduced in Chapter 4. A variant splitting is presented in Section 6.3,

demonstrating the versatility of the symmetric Zassenhaus algorithm. At this stage the

splittings are still in operatorial form. The computation of the exponentials featuring in

these schemes, following discretisation, is discussed in Section 6.4.

In Section 6.5, we consider Zassenhaus splittings for h = O (εσ) for σ ≤ 1. In Sec-

tion 6.6, 6.7 and 6.8 we consider some consequences of height reduction on the termination

of the Zassenhaus algorithm and the cost of these splittings—both local as well as global.

In Section 6.9, we formally prove the numerical stability of these schemes before presenting

numerical results in Section 6.10.
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6.1 Working with symmetrised differential operators

Applications of the algebras of Chapter 5 in solving partial differential equations such

as the time-dependent Schrödinger equation will arise from considering function spaces

as commutative algebras and the algebra of linear differential operators acting on these

spaces as our associative algebra. With this motivation, we will restrict our attention to

cases where the commutative algebra C is isomorphic to a function space.

In Section 6.1.1 and Section 6.1.2, we will pursue a very formal and pedantic notation in

order to see how the results of the previous chapter translate to the case of the Schrödinger

equation. However, since much of this intuition has already been given in the previous

chapter and since the following narrative is highly pedantic, not much will be lost by

simply recalling the results of Section 5.3 and considering the case of d = ∂x as a special

case. A reader may, therefore, safely assume that the symmetrised differential operators

of the form

〈f〉k = 1
2

(
f ◦ ∂kx + ∂kx ◦ f

)
inherit all the nice structural properties discussed in Section 5.3 and proceed directly to

Section 6.1.3.

6.1.1 The most general case of interest

Let C be isomorphic to G and Ψ be the isomorphism between them. Anticipating the

case where G is a function space, we will use f, g to denote its elements. For f ∈ G , we

use the notation Ψf and Ψ(f) interchangeably for the corresponding element in C .

We recall that for an element d ∈ I in the Lie idealiser of C , D = add is a derivation

on C . For any f ∈ G ,

D(Ψf ) = [d,Ψf ] ∈ C

so that

d̃(f) := Ψ−1(D(Ψf )) ∈ G .

Since D is a derivation on C , and C is isomorphic to G , d̃ is a derivation on G ,

d̃(fg) = Ψ−1(D(Ψfg))

= Ψ−1(D(ΨfΨg))

= Ψ−1(D(Ψf )Ψg + ΨfD(Ψg))

= Ψ−1(D(Ψf ))g + fΨ−1(D(Ψg))

= d̃(f)g + fd̃(g).

We say that d̃ is a derivation induced by d. The element of the Lie idealiser that we will

require in the following sections will be the differential operator d = ∂x, which will end up
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coinciding with the induced derivation d̃.

The isomorphism Ψ that will concern us while solving the Schrödinger equation will

be M, the left multiplication map. In the case of the Wigner equation, the isomorphism

Ψ is more complicated and maps functions to pseudo-differential operators. The study of

the Wigner equation is beyond the scope of this thesis. However, we consider the algebraic

behaviour of the operators appearing in this equation in Section 10.4.3, which has formed

the motivation for presenting the discourse leading up to here in a more abstract manner.

6.1.2 A more specific case

Let G ⊆ H be real and complex valued function spaces, respectively. Endomorphisms

on H form an associative algebra A = (End(H ), ◦,+) where ◦ is operator composition.

For convenience, we consider G = C∞p ([−1, 1],R) and H = C∞p ([−1, 1],C), the space of

smooth periodic functions over [−1, 1] with values in R and C, respectively. LetM : G →
End(H ) be the left multiplication map ,

Mf (g) = fg ∈H , f ∈ G , g ∈H .

We write Mf to denote the operator M(f) whose action is that of multiplying by f . It

is not uncommon to denote the map Mf simply by f—in fact, this is precisely the way

in which we have used V as an operator of multiplying by the potential.

The image of G under M,

C =M(G ),

is a commutative algebra of multiplication operators, with M acting as an isomorphism

between G and C . The partial differentiation operator ∂x is an element of the Lie idealiser

of C in the associative operator algebra (End(H ), ◦,+),

[∂x,Mf ] = ∂x ◦Mf −Mf ◦ ∂x =M∂xf +Mf ◦ ∂x −Mf ◦ ∂x =M∂xf ∈ C ,

where the commutator is the canonical Lie product as usual. Following our terminology,

the operator ∂x ∈ End(H ) induces the derivation ∂̃x = ∂x on G . Here the induced

derivation d̃ overlaps with the element d, but this need not be the case in general. To be

very precise, ∂̃x is an operator on G while ∂x is an operator on H , but the two coincide

on G .

Having chosen A = (End(H ), ◦,+), C =M(G ) and d = ∂x, we can define the linear

spaces of Jordan monomials in ∂x with coefficients in C ,

F∂xk =
{
〈Mf 〉∂xk : f ∈ G

}
,

along the same line as Chapter 5, obtaining the linear space of Jordan polynomials in ∂x
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as the direct sum of these linear spaces,

G∂x =
⊕
k∈Z+

F∂xk .

As usual, since we consider only one element of I , d = ∂x, we drop the superscript and

write Fk, G and 〈Mf 〉k instead of F∂xk , G∂x and 〈Mf 〉∂xk , respectively .

Results of Chapter 5 imply that G is a Z2-graded Lie algebra and Lemma 5.3.6 directly

allows us to conclude that

LA(M(G ) ∪ P(∂x)) = G.

Here D−1 is isomorphic to d̃−1, which is the inverse of differentiation on the space G .

Assuming G is closed under integration, therefore, an appropriate inverse of D exists

and the Lie algebra generated by multiplicative operators M(G ) and polynomials (with

constant coefficients) in the differential operators, P(∂x), is characterised completely by

G, the Lie algebra of Jordan polynomials in ∂x with coefficients in G .

6.1.3 Schrödinger equation in the language of G

The symmetrised differential operators are written using the notation of the monomials,

〈f〉k = f • ∂kx =
1

2

(
f ◦ ∂kx + ∂kx ◦ f

)
.

In this notation

〈1〉k = ∂kx , 〈f〉0 = f,

where the unit 1 in 〈1〉k is the constant function over G with value 1.

In our new notation, the semiclassical Schrödinger equation (3.9),

∂tu = iε∂2
xu− iε−1V u,

can be written in the form

∂tu = i(ε 〈1〉2 − ε
−1 〈V 〉0)u. (6.1)

Recall that G is the space of all symmetrised differential operators and Fk constitutes

all the monomials of degree k. We recall other useful definitions from Chapter 5,

Gn =
⊕
k≤n

Fk,
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6.1. Working with symmetrised differential operators

which shows G = limn→∞Gn as a filtered Lie algebra, and

e =
⊕
k≥0

F2k , o =
⊕
k≥0

F2k+1,

which form the grade 1 and grade 0 components, respectively, of G = o ⊕ e seen as a

Z2-graded Lie algebra. As we had discussed in the previous chapters, and which is easy to

verify, for a real valued f , the monomial 〈f〉k is symmetric if k is even and skew-symmetric

otherwise. We define the direct sum of the skew-Hermitian spaces o and i e,

H = o⊕ i e =
⊕
k∈Z+

{ik+1 〈f〉k : f ∈ G }.

Components of H are, naturally, skew-Hermitian operators. The structure of o and e

means that H also turns out to be a Z2-graded Lie algebra that inherits all the favourable

features of G.

Our computations will be performed in H, whereby we trivially preserve skew-Hermiticity.

However, since the properties of height reduction (where the height (Definition 5.3.3) is

the degree of the symmetrised differential operator) and solution of commutators are in-

herited from G, where such considerations are the dominating factor we can ignore the

multiplication by the imaginary unit and the analysis can be carried out in G.

6.1.4 Consequences for exponential splitting schemes

Following the strategy pursued in Chapter 4, we can find the solution of the Schrödinger

equation (6.1), written in the symmetrised differential operator form, by formally expo-

nentiating the Hamiltonian without discretisation,

u(h) = exp(ihε 〈1〉2 − ihε−1 〈V 〉0) u(0).

We may now perform splittings directly on this undiscretised Hamiltonian. In Chapter 4

we found that, working in the Lie algebra S, we could simplify commutators and achieve

height reduction. However, we encountered instability when the elements of S were discre-

tised in a straightforward manner. In this subsection we briefly consider how the Jordan

polynomials in ∂x will allow us to simplify commutators, achieve height reduction, while

maintaining stability under straightforward discretisation. These observations are pursued

in more details in Section 6.2, 6.6 and 6.9, respectively.

Simplification of commutators

Methods such as the symmetric Zassenhaus splitting of Section 4.1.1, which result in the

appearance of nested matrix commutators such as [[DV ,K2],K2], feature corresponding
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commutators of operators 〈1〉2 and 〈V 〉0, such as [[〈V 〉0 , 〈1〉2], 〈1〉2] when splitting the

undiscretised Hamitlonian. Since the two operators reside in our Lie algebra,

〈1〉2 , 〈V 〉0 ∈ G =
⊕
k∈Z+

{〈f〉k : f ∈ G },

(i.e. they are symmetrised differential operators), so do all of their commutators. More-

over, as a consequence of Theorem 5.3.2, commutators in this Lie algebra can be solved

explicitly to other symmetrised differential operators using the rule

[〈f〉k , 〈g〉l] =

k+l−1
2∑

n=0

2n+1∑
i=0

λk,ln,i
〈
(∂ixf)(∂2n+1−i

x g)
〉
k+l−2n−1

, (6.2)

where λs are the same as in Chapter 5. This allows us to design commutator-free

methods by explicitly working out nested commutators such as [[〈V 〉0 , 〈1〉2], 〈1〉2] and

[[〈V 〉0 , 〈1〉2], 〈V 〉0]] appearing in the sBCH of ihε 〈1〉2 and −ihε−1 〈V 〉0 using the rules,

[〈f〉2 , 〈g〉1] = −
〈
(∂xf)(∂2

xg) + 1
2f(∂3

xg)
〉

0
+ 〈2f(∂xg)− (∂xf)g〉2 ,

[〈f〉2 , 〈g〉0] = 2 〈f(∂xg)〉1 ,

[〈f〉1 , 〈g〉0] = 〈f(∂xg)〉0 ,

which can be read off Table 5.2 in Section 5.4. We easily deduce

[〈V 〉0 , 〈1〉2] = −2 〈∂xV 〉1 ,

[[〈V 〉0 , 〈1〉2], 〈V 〉0]] = −2
〈
(∂xV )2

〉
0
,

[[〈V 〉0 , 〈1〉2], 〈1〉2] = −
〈
∂4
xV
〉

0
+ 4

〈
∂2
xV
〉

2
.

The sBCH of ihε 〈1〉2 and −ihε−1 〈V 〉0 up to and including grade three terms using the

above simplifications is

ihε 〈1〉2 − ihε−1 〈V 〉0 −
1
6 ih3ε

〈
∂2
xV
〉

2
+ 1

24 ih3ε
〈
∂4
xV
〉

0
− 1

6h
3ε−1

〈
(∂xV )2

〉
0
.

Such simplifications are used in Section 6.2 to derive the symmetric Zassenhaus splitting

of the first kind.

Height reduction

We recall that we need M = O
(
ε−1
)

grid points to resolve spatial oscillations. As we have

discussed previously, the spectral radius of the differentiation matrix K scales as O (M),
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i.e. O
(
ε−1
)
. Keeping eventual discretisation in mind and noting that

〈f〉k ; 1
2(DfKk +KkDf ) = O

(
ε−k
)
,

we use the shorthand1

〈f〉k = O
(
ε−k
)
.

It is now easy to see how the height (or degree) of a Jordan polynomial W ∈ Gn acts as

a proxy for the spectral radius of the eventual discretisation,

ht(W ) = n =⇒ W = O
(
ε−n

)
.

As we discussed in Section 4.2.2, näıve estimates using typical commutator bounds suggest

that the commutator [[DV ,K2],K2] should scale as O
(
ε−4
)

since the matrix K2 scales

as O
(
ε−2
)
. However, the property of height reduction in G (Corollary 5.3.5) follows

the observations of height reduction in S (Lemma 4.2.2) made in Section 4.2.2, and the

undiscretised commutator [[〈V 〉0 , 〈1〉2], 〈1〉2] scales as O
(
ε−2
)
.

In Section 6.6 and 6.7 we see how the property of height reduction plays a role in the

finite termination of the Zassenhaus algorithm and leads to the quadratic growth of costs

of the resulting splittings.

Stability

The non-mixing property is an important consequence of Theorem 5.3.2. Due to this

property, all terms in the sBCH of ihε 〈1〉2 and −ihε−1 〈V 〉0 reside in the Lie algebra

H = o⊕ i e =
⊕
k∈Z+

{ik+1 〈f〉k : f ∈ G },

whose elements are skew-Hermitian operators. A careful reader would note that if it were

not for [o, o] ⊆ o, we might have featured terms such as the Hermitian term 〈f〉2 (note

the lack of a leading imaginary unit) when expanding commutators of elements in H, for

instance.

Upon discretisation using spectral collocation methods, these elements of H are re-

placed by

ik+1 〈f〉k ; 1
2 ik+1(DfKk +KkDf ),

where Df is a diagonal matrix and K a skew-symmetric circulant differentiation matrix.

Consequently, the discretised forms of elements of H are skew-Hermitian matrices, the

exponentials of which are unitary matrices.

Once Zassenhaus splittings are carried out in this algebra, they feature exponentials

1In Section 9.1 we will give meaning to this notation without reference to discretisation.
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of terms in H, thereby guaranteeing unitary evolution of the wave-function and resulting

in unconditional stability of these numerical methods. Concerns of stability are fully

addressed in Section 6.9 once the details of the symmetric Zassenhaus splittings have been

fully fleshed out.

6.1.5 Relation to other algebras

The gain of powers of ε with commutation (a consequence of height reduction) has also

been observed by Gaim & Lasser (2014) using Moyal brackets in the phase space. However,

the analysis is not as easily generalised as the algebraic approach here. Moreover, the

structures involved are not symmetrised and are reminiscent of the algebra S of Chapter 4.

These ideas are closely related to the Weyl algebra (Coutinho 1997, Dixmier 1968)

which is the universal enveloping algebra of the Lie algebra of Heisenberg groups. The

univariate Weyl algebra can be written in the form

W =

{
n∑
k=0

pk(x)∂kx : pk ∈ P(x), k = 0, . . . , n, n ∈ Z+

}
.

These are special cases of the more general form discussed in (Bader, Iserles, Kropielnicka

& Singh 2014)

S =

{
n∑
k=0

fk(x)∂kx : fk ∈ G , k = 0, . . . , n, n ∈ Z+

}
,

under the choice of polynomials in x, P(x), as the function space G .

We note that S is contained within G as an associative algebra since fk, ∂
k
x ∈ G,

while, in the other direction, G ⊆ S is evident using the Leibniz rule. Thus, the two are

identical. The analysis in Chapter 4 is carried out in this algebra and we note that height

reduction has also been proven for S in Lemma 4.2.2. However, we remind the reader

that the elements of S are not symmetrised. Their non-symmetry led to instability when

discretised in a straightforward manner in Zassenhaus splittings (see Figure 4.1). It was

this very drawback that forced us to seek more symmetrised structures in the form of

Jordan polynomials whose direct discretisation preserves skew-Hermiticity.

Recalling the discourse in Section 4.3, one could argue that any nested commutator

of skew-Hermitian operators in S should be skew-Hermitian. As we had noted, this is

indeed true prior to discretisation. However, unless some highly specialised differentiation

matrices can be constructed, the discretised version of the commutator simplified in S

possesses no such structure and, as seen in Figure 4.1, this leads to an exponential blow

up and numerical instability even in the simplest case.

What is more, even prior to discretisation we prefer to discard terms smaller than

a certain size (while analysing in powers of ε). Working in S instead of G, it becomes
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difficult to discern which components of a term such as
∑n

k=0 fk(x)∂kx can be discarded and

which need to be kept despite their small size in order to preserve the skew-Hermiticity of

the undiscretised operator.

There is a significant advantage to working in the symmetrised form of G since S lacks

an obvious Z2-graded structure. The Z2 grading on G and the symmetric nature of its

elements ensures that elements of H are skew-Hermitian after discretisation. This proves

crucial for devising stable numerical schemes such as the symmetric Zassenhaus schemes

once we start utilising nested commutators. In contrast, lacking a Z2 grading, a clean

separation of terms does not occur in the form S.

6.2 The first Zassenhaus splitting

All necessary tools for developing symmetric Zassenhaus splittings for the semiclassical

Schrödinger equation are now available and we dedicate this section to illustrating how

to compute the splitting (4.1), whose development we had left incomplete at the end of

Chapter 4.

We present here the identities of G which suffice for simplifying all commutators ap-

pearing in this chapter,

[〈f〉4 , 〈g〉0] = 4 〈f(∂xg)〉3 − 2
〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

1
, (6.3)

[〈f〉3 , 〈g〉0] = 3 〈f(∂xg)〉2 −
1
2

〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉2] = 2 〈f(∂xg)− (∂xf)g〉3 +
〈
2(∂2

xf)(∂xg)− 2(∂xf)(∂2
xg) + (∂3

xf)g − f(∂3
xg)
〉

1
,

[〈f〉2 , 〈g〉1] = 〈2f(∂xg)− (∂xf)g〉2 −
1
2

〈
2(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉0] = 2 〈f(∂xg)〉1 ,

[〈f〉1 , 〈g〉1] = 〈f(∂xg)− (∂xf)g〉1 ,

[〈f〉1 , 〈g〉0] = 〈f(∂xg)〉0 .

These can be read off Table 5.2.

As a matter of convenience, we will often write f in place of 〈f〉0 and ∂kx instead of 〈1〉k.
This will help a reader immediately identify the components that can be exponentiated

directly (in the case of f) or via FFTs (in the case of ∂kx).

We recall that we were working under the scaling σ = 1 or h = O (ε), and commence

with the splitting using the symmetric Zassenhaus algorithm in Table 6.1.

We have started the algorithm with

W [0] = −ihε−1V.
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Symmetric Zassenhaus Algorithm

W [0] = ih(ε∂2
x − ε−1V )

W [0] = −ihε−1V
s := 0
do
s := s+ 1

computeW [s] = sBCH(−W [s−1],W [s−1])
expand result in powers of ε
discard terms of size O

(
ε2smax+2

)
define W [s] = O

(
ε2s−2

)
, s.t. W [s] −W [s] = O

(
ε2s
)

while s < desired order smax

Resulting method:

eW
[0]

= eW
[0]/2eW

[1]/2 · · · eW [smax] · · · eW [1]/2eW
[0]/2 +O

(
ε2smax+2

)
Table 6.1: The symmetric Zassenhaus splitting algorithm

Simplifying using the rules (6.3), we find that

W [1] =

O(ε0)︷ ︸︸ ︷
ihε∂2

x−

O(ε2)︷ ︸︸ ︷
1
12 ih3ε−1(∂xV )2 − 1

3 ih3ε
〈
∂2
xV
〉

2

−

O(ε4)︷ ︸︸ ︷
1
60 ih5ε−1(∂2

xV )(∂xV )2 + 1
12 ih3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
1
90 ih5ε

〈
8(∂2

xV )2 − (∂3
xV )(∂xV )

〉
2

−

O(ε4)︷ ︸︸ ︷
1
45 ih5ε−3

〈
∂4
xV
〉

4
+O

(
ε6
)
.

To progress to the second stage, we choose to eliminate the lowest ε-order term,

W [1] = ihε∂2
x,
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from W [1] by computing the sBCH

W [2] = sBCH(−W [1],W [1])

= −W [1] +W [1] − 1
24 [[W [1],W [1]],W [1]]− 1

12 [[W [1],W [1]],W [1]] +O
(
ε6
)
.

=

O(ε2)︷ ︸︸ ︷
− 1

12 ih3ε−1(∂xV )2 − 1
3 ih3ε

〈
∂2
xV
〉

2

−

O(ε4)︷ ︸︸ ︷
1
60 ih5ε−1(∂2

xV )(∂xV )2 + 1
12 ih3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
1
60 ih5ε

〈
7(∂2

xV )2 + (∂3
xV )(∂xV )

〉
2

+

O(ε4)︷ ︸︸ ︷
1
30 ih5ε−3

〈
∂4
xV
〉

4
+O

(
ε6
)
.

In the next iteration, we pull out the O
(
ε2
)

term,

W [2] = − 1
12 ih3ε−1(∂xV )2 − 1

3 ih3ε
〈
∂2
xV
〉

2

and need to computeW [3]. The O
(
ε2
)

terms inW [2] are precisely W [2] and, consequently,

they cancel out in the commutator [W [2],W [2]]. The terms in W [2] whose commutation

with W [2] does not trivially vanish are O
(
ε4
)

in size. As a consequence of height reduction,

the commutator gains a power of ε and [W [2],W [2]] = O
(
ε7
)
. Since this term is smaller

than our error tolerance, commutators can be disregarded to obtain W [3] simply as the

O
(
ε4
)

components of W [2]. The asymptotic splitting is therefore

Z [1]
2,1 = e

1
2
W [0]

e
1
2
W [1]

e
1
2
W [2]

eW
[3]

e
1
2
W [2]

e
1
2
W [1]

e
1
2
W [0]

, (6.4)

where

W [0] = −ihε−1V = O
(
ε0
)
, (6.5)

W [1] = ihε∂2
x = O

(
ε0
)
,

W [2] = − 1
12 ih3ε−1(∂xV )2 − 1

3 ih3ε
〈
∂2
xV
〉

2
= O

(
ε2
)
,

W [3] = − 1
60 ih5ε−1(∂2

xV )(∂xV )2 + 1
12 ih3ε(∂4

xV )

+ 1
60 ih5ε

〈
7(∂2

xV )2 + (∂3
xV )(∂xV )

〉
2

+ 1
30 ih5ε−3

〈
∂4
xV
〉

4
= O

(
ε4
)
.

The notation Z [1]
2,1 is mostly self-explanatory: the splitting (4.6) is denoted as Zs,σ and

the numbers 2, 1 in the subscript mean s = 2, σ = 1. The superscript [1] stands for an
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asymptotic splitting of the first kind: in Section 6.3 we consider an alternative splitting

(with the initial term W [0] equalling ihε∂2
x), which we designate as an asymptotic splitting

of the second kind.

6.3 Zassenhaus splitting of the second kind

The motivation for splitting W [0] = ihε∂2
x − ihε−1V is down to the structural differences

in −ihε−1V and ihε∂2
x which makes it easy to exponentiate either separately. There is,

however, no reason why we must commence with W [0] = −ihε−1V . In this Section we

start with the term ihε∂2
x, instead, and arrive at a variant of the splitting Z [1]

2,1.

Revisiting the narrative of Section 6.2, we start from

W [0] = ihε∂2
x, W [0] = ihε∂2

x − ihε−1V.

This results in

W [1] = sBCH(−W [0],W [0]) =

∞∑
j=0

W [1]
j , where W [1]

j = O
(
ε2j
)
,

and

W [1]
0 = −ihε−1V,

W [1]
1 = 1

6 ih3ε−1(∂xV )2 + 1
6 ih3ε

〈
∂2
xV
〉

2
,

W [1]
2 = − 1

24 ih3ε(∂4
xV )− 2

45 ih5ε−1(∂2
xV )(∂xV )2

+ 1
30 ih5ε

〈
(∂2
xV )2 − 2(∂3

xV )(∂xV )
〉

2

− 1
120 ih5ε3

〈
∂4
xV
〉

4
.

We next remove W [1] = W [1]
0 = O

(
ε0
)

and obtain, with the shorthand X = −W [1],

Y =W [1],

W [2] = sBCH(X,Y ) = X + Y − 1
24 [[Y,X], X]− 1

12 [[Y,X], Y ] +O
(
ε6
)

=

∞∑
j=1

W [2]
j ,

where

W [2]
1 = 1

6 ih3ε−1(∂xV )2 + 1
6 ih3ε

〈
∂2
xV
〉

2
,

W [2]
2 = − 1

24 ih3ε(∂4
xV )− 7

120 ih5ε−1(∂2
xV )(∂xV )2

+ 1
30 ih5ε

〈
(∂2
xV )2 − 2(∂3

xV )(∂xV )
〉

2

− 1
120 ih5ε3

〈
∂4
xV
〉

4
.
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Finally,

W [2] =W [2]
1 , W3 =W [2]

2 .

The outcome is the splitting

Z [2]
2,1 = e

1
2
W [0]

e
1
2
W [1]

e
1
2
W [2]

eW
[3]

e
1
2
W [2]

e
1
2
W [1]

e
1
2
W [0]

, (6.6)

where

W [0] = ihε∂2
x = O

(
ε0
)
, (6.7)

W [1] = −ihε−1V = O
(
ε0
)
,

W [2] = 1
6 ih3ε−1(∂xV )2 + 1

6 ih3ε
〈
∂2
xV
〉

2
= O

(
ε2
)
,

W [3] = − 1
24 ih3ε(∂4

xV )− 7
120 ih5ε−1(∂2

xV )(∂xV )2

+ 1
30 ih5ε

〈
(∂2
xV )2 − 2(∂3

xV )(∂xV )
〉

2
(6.8)

− 1
120 ih5ε3

〈
∂4
xV
〉

4
= O

(
ε4
)
.

6.4 Computation of exponentials

Once we replace derivatives by differentiation matrices, the evaluation of a single time

step un+1 = (Z̃ [2]
2,1)un of the Zassenhaus splitting (6.6), where Z̃ [2]

2,1 follows from Z [2]
2,1 by

spatial discretisation of all exponents, requires in principle seven exponentials.

We note that g(Df ) = Dg(f) for any analytic function g, while diagonalisation of K
via Fourier transforms, K = F−1DinπF , implies that g(K) = F−1Dg(inπ)F . Consequently,

the exponential of W [0] = ihε∂2
x is evaluated using two FFTs,

e
1
2
W [0]

u ; F−1Dexp(−ihεn2π2/2)Fu,

in O (M logM) operations and W [1] is exponentiated trivially in O (M) operations,

e
1
2
W [1]

u = exp
(
−1

2 iε−1V
)
u ; Dexp(− 1

2
iε−1V )u,

as we had seen in Section 3.3.4. Inexpensive computation of the exponentials of these terms

is an important factor because W̃ [0] and W̃ [1], which follow from the spatial discretisation

of W [0] and W [1], respectively, are (spectrally) the largest matrices present. All other

exponents in Z̃ [2]
2,1 are O

(
ε2
)

or smaller and, as will be clear later in this section, their

computation with Lanczos iterations is very affordable.

Note that the palindromic property allows us to further reduce the number of expo-

nentials if no output at intermediate steps is required. This so-called First-Same-As-Last

133



Symmetric Zassenhaus splittings

(FSAL) property effectively yields a method

Z̃(α)
[2]
2,1 = e

1
2
W̃ [1]

e
1
2
W̃ [2]

eW̃
[3]

e
1
2
W̃ [2]

e
1
2
W̃ [1]

e
1
2
αW̃ [0]

, (6.9)

where the first step has to be calculated with α = 1, and further steps with α = 2.

Whenever output is required, we apply e
1
2
W̃ [0]

, and initialise the method by letting α = 1

for the next step. All in all, we only need to compute six exponentials each step, two of

which are diagonal matrices, one is circulant and the remaining three can be approximated

cheaply by Krylov methods.

Unlike W [0] and W [1], the exponents W [2] and W [3] in splittings (6.4) and (6.6) do not

posses a structure that makes them amenable to direct exponentiation. However, they are

small—O
(
ε2
)

and O
(
ε4
)
, respectively—and approximating their exponentials to O

(
ε6
)

accuracy is relatively inexpensive.

Since these matrices are skew-Hermitian, we resort to Lanczos iterations of Table 2.2

for exponentiating them. As we had seen in Section 2.2.2, exponentiation using this Krylov

subspace method involves approximating the exponential of a matrix A by the exponential

of a small m ×m upper Hessenberg matrix Hm (which happens to be tridiagonal in the

case of skew-Hermitian matrices and Lanczos iterations),

eAv ≈ VmeHmV∗mv. (2.23)

Here m is the number of Lanczos iterations.

Typically these methods are effective when m�M and eHm is inexpensive to evaluate.

In such cases, the computational cost of exponentiation via these Krylov subspace methods

is dominated by the cost of the iterations required for constructing the basis vectors of the

Krylov subspace, Vm, and the Hessenberg matrix, Hm. Each Lanczos iteration involves

evaluating a matrix–vector product of the form Avj .

6.4.1 Evaluating matrix–vector products

In symmetric Zassenhaus splittings the exponents will always be in H and, therefore, of

the form

W =
k∑
j=0

ij+1 〈fj〉j .

The matrices that require exponentiation by Krylov methods will, consequently, involve a

symmetric (Jordan) multiplication of a diagonal and a circulant,

W =

k∑
j=0

ij+1 〈fj〉j ;
k∑
j=0

ij+1Dfj • K
j = 1

2

k∑
j=0

ij+1
(
DfjK

j +KjDfj
)

= W̃ .
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The circulants can be diagonalised using Fourier transform matrices F ,

1
2

k∑
j=0

ij+1
(
DfjF

−1D(inπ)jF + F−1D(inπ)jFDfj
)
.

A few FFTs are therefore unavoidable in each iteration, bringing the overall cost to

O (mM logM) operations, where m is the number of Lanczos iterations.

When attempting to approximate each ij+1 〈fj〉j v separately via

1
2 ij+1

(
DfjF

−1D(inπ)jFv + F−1D(inπ)jFDfjv
)
,

it seems that we would need four FFTs per 〈fj〉j , bringing the total number of FFTs for

a term W =
∑k

j=0 ij+1 〈fj〉j to 4k (note that no FFT is required for i 〈f0〉0).

In order to evaluate W̃v efficiently, we could combine the FFTs more cleverly,

iDf0v + 1
2

 k∑
j=1

ij+1DfjF
−1D(inπ)j

Fv + 1
2F
−1

 k∑
j=1

ij+1D(inπ)jFDfjv

 ,

bringing the cost to 2k + 2 FFTs.

In the case of the splittings (6.4) and (6.6), designed for the Schrödinger equation (3.9),

the exponents W are of the form i
∑k

j=0 〈fj〉2j , so that no odd-indexed term appears. In

this case, the number of FFTs required would again be 2k + 2—given the height this

means fewer FFTs (note that the height of this term is 2k, not k). This is not the case

for Zassenhaus splittings for the Magnus expansion that we encounter in Chapter 8.

6.4.2 Estimating Lanczos iterations

The question of an appropriate number of Lanczos iterations, m, is answered by the

inequality ∥∥eAv − VmeHmV∗mv
∥∥

2
≤ 12e−ρ

2/(4m)
( eρ

2m

)m
, m ≥ ρ, (2.24)

where ρ = ρ(A) is the spectral radius of A (Hochbruck & Lubich 1997). We know that

W̃ [2] = O
(
ε2
)

and assume, with very minor loss of generality, that ρ(W̃ [2]) ≤ cε2 for some

c > 0. We thus deduce from (2.24) that∥∥∥eW̃
[2]
v − VmeHmV∗mv

∥∥∥
2
≤ 12

( ec

2m

)m
ε2m, m ≥ ρ,

and m = 3 is sufficient to reduce the error to O
(
ε6
)
, in line with the error of our symmetric

Zassenhaus algorithm. This is true provided that ρ ≤ 3, i.e. ε ≤
√

3/c—since we expect

ε > 0 to be very small, this is not much in a way of restriction. Likewise, W̃ [3] = O
(
ε4
)
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Figure 6.1: The error, compared to the required order O
(
ε6
)
, in computing eW̃

[2]
v (left)

and eW̃
[3]
v (right).

and the inequality ρ(W̃ [3]) ≤ c̃ε4 implies that

∥∥∥eW̃
[3]
v − VmeHmV∗mv

∥∥∥
2
≤ 12

(
ec̃

2m

)m
ε4m, m ≥ ρ

and for ε ≤ (2/c̃)1/4 we need just m = 2. Altogether, we deduce that the computation

(consistent with the error of O
(
ε6
)
) of eW̃

[2]
v (twice) and eW̃

[3]
v in each step of (6.4) or

(6.6) cost just O (M logM) operations.

Numerical examples

Figure 6.1 presents the L2 error committed in approximating the exponentials eW̃
[2]
v and

eW̃
[3]
v, where we take

φ(x) = e−20 sin2(πx/2)

as the interaction potential V and

ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2))

as the wave-function u, both discretised on M = 2N + 1 grid points with N = dε−1e.
Although we have used just m = 3 for eW̃

[2]
v (i.e., approximated the (2N+1)×(2N+1)

exponential by an 3× 3 one) the error is truly minuscule. Moreover, consistently with our

theory (but not with conventional numerical intuition) it decreases with ε. Indeed, the

sort of accuracies we obtain for small values of ε are well in excess of what is required in

realistic numerical computations. In the case of eW̃
[3]
v, we approximate with just a 2× 2

exponential! Again, everything is consistent with our analysis.

The slope of the error bound is steeper than O
(
ε6
)

in the second figure and this should

cause no surprise. The error for eW̃
[3]
v decays like O

(
ε8
)
, much faster than required.

136



6.5. Splittings for different scaling laws

6.5 Splittings for different scaling laws

The Zassenhaus splitting procedure used for deriving the splitting (4.6) is hardly tied to

the choice of σ = 1 and works just as well for any other choice. With minimal analysis,

for instance, we can show that the relevant splitting for 0 < σ ≤ 1 is

Z [2]
2,σ = e

1
2
W [0]

e
1
2
W [1]

e
1
2
W [2]

eW
[3]

e
1
2
W [2]

e
1
2
W [1]

e
1
2
W [0]

= eih(ε∂2
x−ε−1V ) +O

(
ε7σ−1

)
, (6.10)

with

W [0] = ihε∂2
x = O

(
εσ−1

)
,

W [1] = −ihε−1V = O
(
εσ−1

)
,

W [2] = 1
6 ih3ε−1(∂xV )2 + 1

6 ih3ε
〈
∂2
xV
〉

2
= O

(
ε3σ−1

)
,

W [3] = − 1
24 ih3ε(∂4

xV )− 7
120 ih5ε−1(∂2

xV )(∂xV )2

+ 1
30 ih5ε

〈
(∂2
xV )2 − 2(∂3

xV )(∂xV )
〉

2

− 1
120 ih5ε3

〈
∂4
xV
〉

4
= O

(
ε5σ−1

)
,

which coincides with (6.6)—the only difference being the factor − 1
24 ih3ε(∂4

xV ) in W [3]

which can be discarded for σ ≤ 1
2 . This is because the term is O

(
ε3σ+1

)
, which is

O
(
ε5σ−1

)
for σ ≤ 1 and O

(
ε7σ−1

)
for σ ≤ 1

2 . Since the error in these splittings is

O
(
ε7σ−1

)
, we may discard this additional term in the case of σ ≤ 1

2 .

6.5.1 Number of Lanczos iterations

Consider the problem of exponentiating a skew-Hermitian matrix A = O
(
εkσ−1

)
in a

splitting featuring error ofO
(
εrσ−1

)
. Assuming ρ(A) ≤ cεkσ−1, the error in approximating

exp(A)v by m Lanczos iterations is bounded above by

‖eAv − VmeHmV∗mv‖2 ≤ 12
( ec

2m

)m
εm(kσ−1), m ≥ cεkσ−1. (6.11)

For our splitting,

m(kσ − 1) ≥ rσ − 1, m ∈ Z+,

will ensure that the error in Krylov approximation of the exponential is equal to or smaller

than the error incurred in the splitting procedure. Thus we need

m =

⌈
rσ − 1

kσ − 1

⌉
Lanczos iterations.

Note that the number of Lanczos iterations required for approximation grows linearly

with the order of the method r and decreases with k (i.e. is smaller for smaller exponents).

137



Symmetric Zassenhaus splittings

For r = 15, for instance, which corresponds to a splitting featuring O
(
ε15σ−1

)
error, and

σ = 1, the number of iterations required for progressive exponents in the Zassenhaus

splitting (k = 3, 5, . . . , 11, 13) are 7, 4, 3, 2, 2, 2, while for σ = 1/2, these are 13, 5, 3, 2, 2, 2.

6.6 Termination of the Zassenhaus algorithm

Lemma 6.6.1. Grade n commutators of iε 〈1〉2 and −iε−1 〈V 〉0 are of size O
(
ε−1
)
.

Proof. Consider a grade n commutator C of 〈1〉2 and 〈V 〉0, featuring k occurrences of

the letter 〈1〉2 and n − k occurrences of 〈V 〉0. Since 〈1〉2 ∈ G2 and 〈V 〉0 ∈ G0, using

Corollary 5.3.5,

ht(C) ≤ 2k − n+ 1.

Thus C isO
(
ε−2k+n−1

)
. However, the corresponding commutator of iε 〈1〉2 and−iε−1 〈V 〉0

is scaled by k occurrences of ε and n−k occurrences of ε−1, bringing its size to O
(
ε−1
)
.

Corollary 6.6.2. Grade n commutators of ihε 〈1〉2 and −ihε−1 〈V 〉0 are of size O
(
εnσ−1

)
under the scaling h = O (εσ) , σ > 0.

The O
(
εnσ−1

)
scaling of Corollary 6.6.2 is in contrast to the O

(
εn(σ−1)

)
scaling seen

when using näıve estimates of commutator size for matrix commutators. Whereas the

latter requires σ > 1 (which corresponds to very small time steps) for terms in sBCH to

become progressively smaller, our analysis suggests that no such restrictions apply for the

semiclassical Schrödinger equation. With time steps of size O ( 4
√
ε), which corresponds to

σ = 1/4, for instance, grade n commutators are O
(
εn/4−1

)
.

The Zassenhaus procedure terminates so long as the correction terms are progressively

smaller. As we have seen, every correction term added in the Zassenhaus procedure is a

commutator of a higher grade which, as a consequence of Corollary 6.6.2, is progressively

smaller in size.

6.7 Cost of Zassenhaus splittings

As we have seen in the previous sections, the property of height reduction which un-

derlies the asymptotic splitting of the symmetric Zassenhaus kind results in inexpensive

exponentiations via Lanczos iterations.

Note: The advantages of height reduction also extend to error analysis for existing meth-

ods such as Yoshida splittings since commutators discarded in these methods can

be assumed to be undiscretised and analysed appropriately. An order six Yoshida

splitting, for instance, discards all commutators of grade seven and higher, thereby

committing an error of O
(
ε7σ−1

)
by the virtue of Corollary 6.6.2. This is an
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improvement upon analysis that does not take height reduction into account—

working with matrices and analysing näıvely one would expect the error of these

methods to be O
(
ε7(σ−1)

)
.

Unlike the exponential growth of costs for Yoshida splittings, however, Zassenhaus

splittings feature a quadratic growth of costs which results from a systematic exploitation

of the structures of G and the property of height reduction, combined with the asymptotic

splitting approach.

Theorem 6.7.1. Cost of Zassenhaus splittings grows quadratically in the order desired.

Proof. Zassenhaus splittings (Table 6.1) recursively utilise the sBCH formula featuring

odd grade commutators of ihε 〈1〉2 and −ihε−1 〈V 〉0. Due to Corollary 6.6.2, any grade

n commutator of ihε 〈1〉2 and −ihε−1 〈V 〉0 is O
(
εnσ−1

)
. Splittings with O

(
ε(2n+3)σ−1

)
error, therefore, require commutators of grades up to 2n + 1. Such a splitting has the

form,

Zn,σ = e
1
2
W [0] · · · e

1
2
W [n]

eW
[n+1]

e
1
2
W [n] · · · e

1
2
W [0]

= e−ihH/ε +O
(
ε(2n+3)σ−1

)
, (4.1)

where W [0] = ihε 〈1〉2 and W [1] = −ihε−1 〈V 〉0, both of which are O
(
εσ−1

)
. (Note that

we have renamed the central exponent W [n+1] to W [n+1] for convenience.) For k ≥ 2,

W [k] is of size O
(
ε(2k−1)σ−1

)
and arises from grade ≤ 2k− 1 commutators of ihε 〈1〉2 and

−ihε−1 〈V 〉0.

As discussed in Section 6.4, the first (outermost) exponent, W [0], is discretised as

a circulant matrix, ihεK2, whose exponential can be evaluated using two Fast Fourier

Transforms (FFTs), each of which costs O (M logM) = O
(
ε−1 log ε−1

)
. The second

exponent, W [1], is discretised as a diagonal matrix, −ihε−1DV , and can be exponentiated

directly.

Remaining exponents require Lanczos iterations. Since W [k] is O
(
ε(2k−1)σ−1

)
, we

need
⌈

(2n+3)σ−1
(2k−1)σ−1

⌉
iterations for approximating its exponential to O

(
ε(2n+3)σ−1

)
accuracy,

as seen in Section 6.5.1. Each of these iterations require the evaluation of matrix–vector

products of the form W [k]u.

Since W [k] arises from grade 2k− 1 commutators (at most) of the terms 〈1〉2 ∈ G2 ∩ e
and 〈V 〉0 ∈ G0 ∩ e, it resides in the intersection of G2k−2 and e. Thus, it consists of

terms of the form 〈f0〉0 , 〈f2〉2 , 〈f4〉4 , . . . , 〈f2k−2〉2k−2. To evaluate W [k]u, we need to

evaluate 〈f0〉0 u, 〈f2〉2 u, 〈f0〉4 u, . . . , 〈f2k−2〉2k−2 u. The first of these, 〈f0〉0 u, is a pointwise

product, while the rest require four FFTs each since 〈f〉k is discretised as (DfK2+K2Df )/2.

However, as we have seen in Section 6.4.1, there are more clever ways of combining the

FFTs using which W [k]u can be evaluated using 2k FFTs.

The cost of the splitting is dominated by the cost of the FFT operations, each of which

requires O
(
ε−1 log ε−1

)
operations. Since each evaluation of W [k]u requires 2k FFTs, the
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number of FFTs required per time step of the splitting scheme is

Cσ(n) = 2 + 2(n+ 1)

⌈
(2n+ 3)σ − 1

(2n+ 1)σ − 1

⌉
+ 2

n∑
k=2

2k

⌈
(2n+ 3)σ − 1

(2k − 1)σ − 1

⌉
, (6.12)

which grows quadratically in n (as seen in Figure 6.2). Here we have used the FASL

property, combining the outermost exponentials (see Section 6.4). A comparable Yoshida

splitting requires Y (n) = 2× 3n FFTs (see Section 2.2.5).
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Figure 6.2: Number of FFTs in the Zassenhauss splitting Zn,σ of O
(
ε(2n+3)σ−1

)
accuracy

for σ = 2/5, 3/5, 4/5, 1, compared to the Y (n) = 2× 3n FFTs required for the comparable
Yoshida splitting S2n+2. For n ≤ 3, the number of FFTs for Yoshida splittings is lower
than all Zassenhaus splittings.

The overall cost for an O
(
ε(2n+3)σ−1

)
splitting is O

(
Cσ(n)ε−1 log ε−1

)
per time step.

We remark that careful choices in a splitting could allow us to reduce the exact number

of FFTs required. However, we are largely concerned with asymptotic growths here.

Note: Since this proof does not assume a specific form of the exponents, W [k]s, and can

work solely on the basis of the structure of Gk and H, and the height reduction

of Corollary 5.3.5, the cost estimates derived here also apply directly to Magnus–

Zassenhaus approaches of Chapter 8 (with the exception that Magnus–Zassenhaus

splittings will also feature exponents with odd-indexed components of the form

〈f〉2k+1 and the exact number of FFTs are somewhat higher).

Note: While the quadratic growth of Zassenhaus methods is theoretically impressive,

small values of n (or moderately high-order methods) are all that are required in

practical applications. A careful reader would notice in Figure 6.2 the number of
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6.7. Cost of Zassenhaus splittings

FFTs in Yoshida splitting are lower than those required in a corresponding Zassen-

haus splitting for small n. Featuring a similar error, therefore, Yoshida splittings

are superior for time-independent Hamiltonians for moderately high orders.

Note: Yoshida splittings are not the most efficient and optimised of high order splittings

in use. It would be worth comparing the cost with highly optimised high order

splittings—those discussed in (Blanes et al. 2008), for instance. However, as we

note in Figure 6.2, for moderately high orders the cost of Zassenhaus splittings

exceeds that of Yoshida splittings. Thus, where Yoshida already performs better,

more optimised splittings are certainly expected to outperform.

On the other hand, from a complexity point of view, the quadratic growth of

Zassenhaus splittings is unlikely to be beaten by optimised splittings.

The true advantage of Zassenhaus splittings becomes evident when the Hamilto-

nian is a bit more complicated and features more terms, as it does in the case of

Magnus expansions. A cost analysis for Magnus–Zassenhaus schemes is presented

along similar lines in Section 8.5. Here Yoshida splittings are applicable but be-

come prohibitively expensive. On the other hand, no splittings for time-dependent

potentials along the lines of (Blanes et al. 2008) were known to the author at the

time of writing. Keeping these factors in mind, the choice of Yoshida splittings as

a reference seems reasonable.

Example 6.7.2. For n ≥ 2 and under the scaling σ = 1 and, C1(n) ∼ 6n2,

C1(n) = 2 + 2(n+ 1)

⌈
2n+ 2

2n

⌉
+ 2

n∑
k=2

2k

⌈
2n+ 2

2k − 2

⌉

≤ 2 + 4(n+ 1) + 4
n∑
k=2

k

(
n+ 1

k − 1
+ 1

)

= 2 + 4(n+ 1) + 4

n−1∑
k=1

(k + 1)

(
n+ 1

k
+ 1

)

= 2 + (n− 1) + 4(n+ 1) + 4
n−1∑
k=1

(n+ 1 + k) + 4(n+ 1)
n−1∑
k=1

1

k

= 6n2 + 3n+ 1 + 4(n+ 1)Hn−1

≤ 6n2 + 3n+ 1 + 4(n+ 1)(log(n− 1) + γ) + 4 +O
(

1

n− 1

)
≤ 6n2 + 3n+ 6 + 4(n+ 1)(log(n− 1) + γ),

where γ ≈ 0.577 is the Euler gamma constant, Hn−1 is the harmonic number and (n+ 1)Hn−1
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is estimated using Euler’s summation formula following (Apostol 1976),

(x+ 2)Hx = (x+ 2)

x∑
k=1

1

k

= (x+ 2)

[ˆ x

1

1

t
dt−

ˆ x

1

t− btc
t2

dt+ 1− x− bxc
x

]
= (x+ 2)

[
log x+ 1−

ˆ ∞
1

t− btc
t2

dt+

ˆ ∞
x

t− btc
t2

dt

]
− 2

x− bxc
x

− (x− bxc)

≤ (x+ 2) (log x+ γ) + 1 + 2
1− (x− bxc)

x
− (x− bxc)

≤ (x+ 2)(log x+ γ) + 1 +O
(

1

x

)
.

Here we use the fact that

ˆ ∞
x

t− btc
t2

dt ≤
ˆ ∞
x

1

t2
dt =

1

x
,

and

1−
ˆ ∞

1

t− btc
t2

dt = γ.

6.8 Scaling choices and global cost concerns

For the splitting Z [2]
2,σ, which is valid for σ ≤ 1, the exponents W̃ [0] and W̃ [1] are exponen-

tiated easily despite their O
(
εσ−1

)
size (note that for σ = 1

2 these exponents increase as

ε → 0). The remaining exponents are W̃ [2] = O
(
ε3σ−1

)
and W̃ [3] = O

(
ε5σ−1

)
. Except

for cases with σ < 1
3 , where the spectral radius of W̃ [2] increases as ε→ 0, the number of

iterations required in the Krylov approximation of the exponentials is small and derived

in a straightforward manner from the bound (2.24). The exponentiation of W̃ [2] requires

3 iterations for σ = 1, as we have seen, and 5 iterations for σ = 1
2 , while W̃ [3] can be

exponentiated in 2, 2 and 3 iterations, respectively, in the cases σ = 1, 1
2 ,

1
4 .

For the case σ = 1
4 , the spectral radius of W̃ [2] becomes large enough to be of concern

with regards to the side condition in (2.24), m ≥ ρ, where, it should be recalled, m was

the number of iterations and ρ the spectral radius. In this case, as noted by Hochbruck

& Lubich (1997), the error does not decrease substantially till m ≥ ρ, decreasing rapidly

thereafter. Re-writing (2.24) as∥∥∥eW̃
[2]
v − VmeHmV∗mv

∥∥∥
2
≤ 12 exp

(
−ρ2+4m2(1−log 2)

4m

)( ρ
m

)m
, m ≥ ρ, (6.13)

from where, with the choice m ≥ αρ for some α > 1, we end up with an estimate∥∥∥eW̃
[2]
v − VmeHmV∗mv

∥∥∥
2
≤ 12 exp

(
−ρ2+4m2(1−log 2−logα)

4m

)
.

142



6.9. Stability

Exponential convergence, well in excess of what we require, can be achieved by an appro-

priate choice of α, whereby O
(
ε−1/4

)
iterations prove adequate. With α = 2, for instance,

the error term works out to roughly exp(−7
8ρ).

After O
(
ε−1/4

)
iterations we are also left with the task of exponentiating a O

(
ε−1/4

)
×

O
(
ε−1/4

)
upper Hessenberg matrix which, although large, can be exponentiated by brute

force using diagonal Padé methods in O
(
ε−3/4

)
operations. The O

(
ε−5/4 log ε−1

)
cost of

the Lanczos iterations, however, overshadows the cost for approximating the exponential

of the Hessenberg matrix.

The cost of the exponential eW̃
[2]
v dominates the cost of each time-step of the splitting

under σ = 1
4 , making the overall (global) cost O

(
ε−3/2 log ε−1

)
for solving the equation

over a fixed time interval [0, T ]. This is no less than the cost of the more accurate σ = 1
2

splitting. In the case of σ = 1—where, of course, a much smaller error is achieved with

the same number of exponentials per time step—the overall cost comes to O
(
ε−2 log ε−1

)
.

Of the three choices σ = 1
4 ,

1
2 , 1, the O

(
C 1

2
(n)ε−3/2 log ε−1

)
cost for σ = 1

2 is the

lowest. There seems little point in considering a σ smaller than 1
3 where W̃ [2] becomes

O (1) or larger and the number of Lanczos iterations required for eW̃
[2]
v starts increasing as

ε→ 0. Even where the spectral radius does decrease with ε, a small σ makes the constraint

m ≥ ρ in (2.24) a graver concern. With σ = 1
4 , for instance, where W̃ [3] scales as c̃ε1/4, this

requires ε ≤ (3/c̃)4. The constant c̃ depends on the interaction potential and circumstances

where this constraint can become a serious concern are far from inconceivable.

6.9 Stability

The convergence of classical methods for initial-value partial differential equations is gov-

erned by the Lax equivalence theorem: convergence equals consistency plus stability

(Iserles 2008). Our method is clearly consistent but the question is whether, once deriva-

tives are replaced by differentiation matrices, the ensuing finite-dimensional operator is

stable in the sense of Lax. Within our formalism this is equivalent to

lim
ε→0

lim sup
n→∞

‖(Z̃ [1]
2,1)n‖ <∞, (6.14)

where Z̃ [1]
2,1 is the finite-dimensional discretisation of Z [1]

2,1.

Upon discretisation of ∂x and f as M ×M matrices K and Df , respectively, where

K is skew-Hermitian and Df is diagonal, elements of the Lie algebra H are discretised as

skew-Hermitian matrices,

n∑
k=0

ik+1 〈fk〉k ; 1
2

n∑
k=0

ik+1
(
DfKk +KkDf

)
,

which reside in u(M). Since the computations of the Zassenhaus procedure of Section 6.2
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are carried out entirely in H, it guarantees W [k] ∈ H and thus the discretisation W̃ [k] ∈
u(M). Consequently, exp(W̃ [k]) ∈ U(M) and Z̃ [1]

2,1 ∈ U(M).

The condition (6.14) is clearly implied by Z̃ [1]
2,1 being a unitary matrix for all (suffi-

ciently small) ε > 0, in other words by the discretisation method being unitary. This

has the added virtue of the discretisation method mimicking the unitarity of the infinite-

dimensional operator exp(ih(ε∂2
x − ε−1V )) which was discussed in Chapter 3. Conse-

quently, in that case we obtain a geometric integrator in the sense of (Faou 2012, Hairer

et al. 2006, Lubich 2008).

We note that once we resort to Lanczos iterations (a Krylov subspace method) to

exponentiate some exponents, the unitarity is lost. However, `2 norm is preserved under

these numerical methods. Consequently,

‖(Z̃ [1]
2,1)nu‖ = ‖u‖,

holds for all u, and we conclude that

‖(Z̃ [1]
2,1)n‖ = 1.

This is sufficient to guarantee (6.14).

6.10 Numerical experiments

We present numerical results for two interaction-potential wave-function pairs. The wave-

functions used in our experiments are u1(x) = 1
100φ(x + 0.6)ei20πx and u2 = ψ, where φ

and ψ have been previously introduced as

φ(x) = e−20 sin2(πx/2), ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2)).

The first of these is a moderately oscillating wave-train with a periodic Gaussian envelope

seen travelling to the right in free space (V = 0). In our experiments, these move under

influence of the interaction potentials

V1(x) = expbumpp(x) sin(20πx),

V2(x) = 1
5 + 1

2expbumpp
(
x+ 1

10

)
+ 3

10

(
sin4

(
2πx− 24

35

)
+ sin2

(
5πx− 8

3

))
,

where expbumpp is the periodic bump function (2.17).

Physically, the first pair shown in Fig. 6.3 (top row) is an attempt at modelling a

wave-packet heading towards a periodic lattice. The second pair, Fig 6.3 (bottom row),

has no physical motivation and is chosen for its complexity.

The error estimates are, of course, of an asymptotic nature and it is little surprise
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Figure 6.3: The interaction-potential wave-function pair V1, u1 (top row) and V2, u2

(bottom row).

that for some cases the true nature does not emerge till very small values of ε. In the

case of V1 with σ = 1
2 or 1

4 , for instance, where one of the terms omitted in the splitting,

− 1
24 ih3ε(∂4

xV ), is fairly large, we do not see a noticeable decrease till very small values of

ε unless the magnitude of the interaction potential is decreased. In Figure 6.5 (top row)

the error is seen to approach the asymptotic estimate at at earlier stage in the case of a

smaller potential. The asymptotic bounds are very much adhered to, but here we become

limited by inefficiency of the reference method—MATLAB’s expm—which does not allow

us to go beyond moderate values of M = O
(
ε−1
)
.

All estimates and bounds in our analysis have, of course, been derived with respect to

the L2 norm. This is approximated by the `2 norm on the grid. Where `∞ error estimates

are required, noting the inequality (2.4), ‖u‖∞ ≤
√
M/2 ‖u‖2, we expect the `∞ error to

be worse off than the `2 error by a factor of
√
M/2 = O

(
ε−1/2

)
. This is indeed seen to

be the case in our experiments (Figures 6.5 and 6.6, bottom row).
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Figure 6.4: The Z [2]
2,1 splitting (6.6) with seven exponentials (top row) has a global `2

error estimate of O
(
ε5
)

at T = 1, while the Z [2]
1,1 splitting which omits W̃ [3] uses five

exponentials (bottom row) and has an error estimate of O
(
ε3
)
. Errors are presented with

initial value combinations V1, u1 and V2, u2.

6.10.1 Finding a reference solution

To arrive at a reference solution, we solve (3.15) with increasing spatial degrees of freedom

MR (decoupled in this case from ε and h) till the reference numerical solution uR(T ) seems

to converge with respect to `∞ norm, up to a certain level of tolerance.

Direct exponentiation using MATLAB’s expm function is a näıve approach that is

discussed in Section 3.3, and is seen to be inefficient to the point of impracticality for small

values of ε. Generating reference solutions using this method is, therefore, an extremely

resource intensive and time consuming affair. However, its accuracy can be relied upon as

a reference solution. The inefficiency of this method, rather than that of the Zassenhaus

splitting method, sets limits on the range of ε for which we can verify the accuracy of our
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Figure 6.5: Global error at T = 1 for Z [2]

2, 1
2

(where σ = 1
2): asymptotic nature of the

error bounds is evident in the top row where asymptotic decrease is achieved faster when
V1 is scaled down by a factor of 1

100 . The bottom row shows the relationship between the
`2 error and `∞ error for the initial value pair V2, u2.

splitting schemes.

Choice of grid resolutions

As we make the grid finer in the pursuit of a converged reference solution, we must ensure

that the coarser grid forms a subset of the finer grid. Solution obtained on the coarser

grid can then be compared against the solution on the finer grid restricted to the coarse

grid points.

Let M1,M2 be two grid resolutions such that M1 < M2. The two grids are given by

xji = i/(Nj + 1/2), i = −Nj , . . . , 0, . . . , Nj with Mj = 2Nj + 1, j = 1, 2. In order for
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Figure 6.6: Global error at T = 1 for Z [2]

2, 1
4

(where σ = 1
4): asymptotic nature of the

error bounds is evident in the top row where asymptotic decrease is achieved faster when
V1 is scaled down by a factor of 1

100 . The bottom row shows the relationship between the
`2 error and `∞ error for the initial value pair V2, u2.

x1
1 to feature in the finer grid, there must be a k such that x1

1 = x2
k, or

1

N1 + 1/2
= k

1

N2 + 1/2

which gives us the relation N2 = kN1 +(k−1)/2 whereby a choice of an odd k is necessary

and sufficient. For the purpose of our experiments we stick with the factor of 3 and the

corresponding relation M2 = 2N2 + 1 = 2(3N1 + 1) + 1 = 3M1. For this reason, we stick

to comparing discretised solutions on grids with resolutions that differ by powers of 3.
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6.10.2 Comparison with Yoshida splittings

As we noted in Section 6.7, Yoshida splittings should also benefit from decrease in height

of the commutators (that are discarded and lead to the O
(
h2n+1

)
error estimate for the

order 2n Yoshida splitting S2n). Consequently, S2n+2 should feature a O
(
ε(2n+3)σ−1

)
error

which corresponds to the accuracy of the Zassenhaus splitting Zn,σ. The order six Yoshida

splitting S6 should therefore be as accurate as Z [2]
2,σ.
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O
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)

Figure 6.7: Global `2 error at T = 1 for the initial value pair V2, u2 using Z [2]
2,σ and the

sixth order Yoshida splitting S6 under σ = 1 (left) and σ = 1
2 (right).

In Figure 6.7 we show the results of numerical experiments comparing the accuracy

of Z [2]
2,σ and S6 for the initial value pair V2, u2 discussed earlier. The exact scaling used

here is M ∼ ε−1 and h ∼ εσ. For σ = 1, the two splittings have nearly identical errors.

In practice we have found that, depending on the example under consideration and the

exact choice of discretisation scaling, either of them could turn out somewhat superior for

σ = 1. However, for small values of σ, the Zassenhaus splittings usually perform better. In

this example, however, the Yoshida splitting performs unusually bad in the case of σ = 1
2 .

This behaviour requires further investigation.

In Figure 6.8 we show the errors in energy for the Strang splitting S2, the Yoshida

splitting S6, and the Zassenhaus splitting Z [2]
2,σ. The initial value pair V2, u2 and the choice

of discretisation scaling is the same as discussed earlier.

Note: The error in energy seems to gain an entire power of ε, scaling as O
(
ε6σ
)

for the

Zassenhaus and Yoshida splittings and as O
(
ε2σ
)

for the Strang splitting. This

is in line with the observations of (Jin et al. 2011), who note that when we are

only concerned about observables such as the energy, the time step in the Strang
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Figure 6.8: Error in energy at T = 1 for the initial value pair V2, u2 using Z [2]
2,σ, the

sixth order Yoshida splitting S6 and the Strang splitting S2 under σ = 1 (left) and σ = 1
2

(right).

splitting can be taken independently of ε and the negative power of ε doesn’t show

up in the error.

Consequently the (global) accuracy of Strang splitting in the context of observables

is expected to be O
(
h2
)
. This is effectively what we are witnessing here since the

experiments were performed under the scaling h = O (εσ).

A similar analysis needs to be carried out for Yoshida splittings and Zassenhaus

splittings. However, the evidence seems to support the hypothesis that, much like

the case of the Strang splitting, the error in energy does not feature a ε−1 factor

and, in fact, scales as O
(
h6
)

= O
(
ε6σ
)
.

Numerical experiments concerning error in observables also need to be carried out

while choosing h independently of ε. However, this is beyond the scope of this

thesis.
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Chapter 7

Time-dependent potentials and

Magnus expansions

The one-dimensional semiclassical Schrödinger equation featuring a time-dependent elec-

tric potential introduced in Section 3.4 is

∂tu(x, t) = i
(
ε∂2
x − ε−1V (x, t)

)
u(x, t), x ∈ [−1, 1], t ≥ 0, (3.20)

where the wave-function u = u(x, t) is given with an initial condition u(x, 0) = u0(x).

In Section 3.4.1, we imposed periodic boundary conditions at ±1 to allow an effective

approximation by spectral methods, arriving at the discretised equation,

u′(t) = i(εK2 − ε−1DV (·,t))u(t), t ≥ 0, (3.24)

which is solved via the Magnus expansion,

u(h) = eΘ(h)u(0).

Magnus expansions such as the fourth order truncation,

Θ3(h) iεhK2 − iε−1hV + h2
√

3h2

12 [K2, Ṽ ]

naturally feature commutators of matrices and the approximation of their exponential

via Krylov methods (which results in the Magnus–Lanczos schemes) is estimated to cost

O
(
ε−2 log ε−1

)
.

In this context, Yoshida splittings also become less effective on two counts: firstly,

even the lowest order method—the Strang splitting—features a large number of exponen-

tials, leading to an even larger number of exponentials in higher order Yoshida splittings

derived by composing the Strang splitting; secondly, unlike the case of time-independent

Hamiltonians, there seems to be no way to avoid commutators, whose exponentials are
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more expensive to compute than the exponentials of K2 and DV . Moreover, no highly

optimised splitting along the lines of (Blanes et al. 2008) were known to the author at the

time of writing.

In contrast to the traditional approach discussed in Chapter 3, we follow the ideas pur-

sued in Chapter 6: we postpone the spatial discretisation to the very last moment, work-

ing directly in the Lie algebra generated by ∂2
x and V . As always, we assume throughout

that the interaction potential V (·, t) and the wave-function u(·, t) are sufficiently smooth.

For the purpose of simplicity we may assume that they belong to C∞p ([−1, 1],R) and

C∞p ([−1, 1],C)—the spaces of real-valued and complex-valued smooth periodic functions

over [−1, 1], respectively—but the results should extend to functions of lower smoothness.

Consider (3.20) written in the form

∂tu(t) = A(t)u(t), u(0) = u0, (3.22)

where A(t) = iε 〈1〉2 − iε−1 〈V (t)〉0 ∈ H. The solution of the partial differential equation

(3.22) is obtained via the Magnus expansion

u(t) = eΘ(t)u(0),

where the infinite series Θ(t) =
∑∞

k=1 Θk(t) is also an element of the underlying Lie algebra

H. The Lie algebra

H =
⊕
k∈Z+

{ik+1 〈f〉k : f ∈ C∞p ([−1, 1],R)},

which has been introduced previously in Section 6.1.3, possesses structural properties that

allow us to simplify commutators while gaining powers of ε and preserving stability. The

graded version of the Magnus expansion reads

Θ(t) =

ˆ t

0
A(ξ)dξ − 1

2

ˆ t

0

ˆ ξ1

0
[A(ξ2),A(ξ1)]dξ (7.1)

+
1

12

ˆ t

0

ˆ ξ1

0

ˆ ξ1

0
[A(ξ2), [A(ξ3),A(ξ1)]]dξ

+
1

4

ˆ t

0

ˆ ξ1

0

ˆ ξ2

0
[[A(ξ3),A(ξ2)],A(ξ1)]dξ + · · · .

(A more detailed version of the Magnus expansion, (2.53), appears in Section 2.3.1.)

Since A(t) ∈ H, all commutators can be simplified to commutator-free terms in H. The

skew-Hermitian nature of elements of H implies that our Magnus expansion, or any finite

truncation in H, remains skew-Hermitian even after spatial discretisation. Once again,

this leads to unitary evolution and stability of our Magnus based methods.

In Section 7.2 we develop truncated integral and commutator-free Magnus expansions
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Θ̃
ε[M ]
p that can achieve an arbitrarily high order, expressed in powers of the semiclassi-

cal parameter ε. We commence our analysis from an integral-free approximation of the

Magnus expansion, following the approach of (Munthe–Kaas & Owren 1999) discussed

in Section 2.3.5. Here the integrals appearing in the Magnus expansion are replaced by

Gauss–Legendre quadratures at the outset. When the interaction potential V possesses

favourable temporal behaviour, values of V at only a few temporal grid points are required

for a high-order method. For O
(
ε7σ−1

)
accuracy, for instance, we require merely three

Gauss–Legendre knots1, tk = h(1 + k
√

3/5)/2, k = −1, 0, 1.

In another approach, presented in Section 7.3, evaluation of integrals is postponed till

the very end to derive integral-preserving commutator-free Magnus expansions Θ̃
ε[I]
p . The

mathematical machinery we need to introduce here becomes more involved. However, we

end up with a highly flexible method—not only is it possible to approximate the integrals

through any quadrature method, but we may also use exact integrals for potentials that

possess an analytic form. This flexibility can also allow us to tackle effectively potentials

with weaker temporal regularity as well as highly oscillatory potentials of certain forms.

Deriving a commutator-free Magnus expansion, however, is only half the story—to

develop an effective scheme for (3.20), we need to find efficient ways to approximate the

exponential of these expansions. In Section 7.4 we discuss the cost of exponentiation via

Lanczos iterations and Yoshida splittings. More effective means are only presented in

Chapter 8 when we combine Magnus expansions with Zassenhaus splittings.

7.1 Truncation by powers of the semiclassical parameter

From Section 2.3, we recall that the Magnus expansion can be written in the form,

Θ(h) =
∞∑
k=1

Θ[k](h) =
∞∑
k=1

∑
τ∈Tk

α(τ)Cτ (h), h ≥ 0, (2.54)

where Tk is the set of trees featuring k integrals (and k commutators). As we noted in

Section 2.3.4, it is more advantageous to use the power truncated Magnus expansion,

Θp(h) =

p∑
k=1

∑
τ∈Fk

α(τ)Cτ (h), (2.55)

where we include trees based on the sets Fk (defined in terms of powers of h) instead of

the sets Tk (based on number of integrals). Such a power truncated Magnus expansion

has the desirable characteristic of being odd in h due to the time symmetry of its flow

1Although a Gauss–Lengendre quadrature with three knots usually has an accuracy of O
(
h6

)
, due to

time-symmetry and odd nature of power-truncated Magnus expansions, all even terms in the Taylor series,
including error terms, vanish. Consequently, these methods become O

(
h7

)
accuracy in our context. See

Section 2.3.4 and Section 2.3.5.
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(Iserles et al. 2000, Iserles & Nørsett 1999, Iserles et al. 2001). Odd-indexed methods of

this form, consequently, gain an extra power of h,

Θ2p−1(h) = Θ(h) +O
(
h2p+1

)
. (2.59)

Once we start analysing the Magnus expansion for the Schrödinger equation in the

currency of ε, however, we need to consider truncating the sets of trees by powers of ε.

For this purpose we define the set Ek along similar lines to the definition of Fk: τ ∈ Ek if

k is the greatest integer such that τ = O
(
εkσ−1

)
for all smooth V (·, t) . It turns out that

the sets Ek and Fk are, in fact, identical under the choice of spatial discretisation scaling

M = O
(
ε−1
)
.

Theorem 7.1.1. Em = Fm

Proof. Consider any τ ∈ Fm. Clearly τ ∈ Tn for some n ≤ m, and we know that Cτ (h) is a

nested integral of a commutator C(A(ξ1), . . . ,A(ξn)), where A(ξk) = iε∂2
x− iε−1V (ξk) for

ξk ∈ R. By linearity of the Lie bracket, this commutator expands to a linear combination

of commutators of the form C(E1, . . . , En), where each Ek ∈ {iε 〈1〉2} ∪ {iε−1 〈V (ξ)〉0 :

ξ ∈ R}.
Not all of these commutators end up vanishing, and we restrict our attention to those

with non-negative height, C(E1, . . . , En) 6= 0. By Lemma 6.6.1, any commutator of iε 〈1〉2
and iε−1 〈V (ξk)〉0 is O

(
ε−1
)
. Thus, the largest commutator occurring in τ is O

(
ε−1
)

(note

that considerations of time step and integration have not yet been taken into account).

Analysed in terms of the time step h alone, however, such a term is O (hm) by definition

of τ ∈ Fm. Combining these facts, we see that the tree τ is O
(
εmσ−1

)
in size and

consequently also belongs to Em.

Every τ ∈ Em, of course, must be in some Fn and thus in En. However, the definition

of Ek dictates that n = m. Thus the sets Fm and Em must coincide.

The consequence of Theorem 7.1.1 is that Magnus expansions truncated by Ek (which

interest us when analysing in powers of ε),

Θε
p(h) =

p∑
k=1

∑
τ∈Ek

α(τ)Cετ (h), (7.2)

where the superscript ε explicitly acknowledges the dependence on ε, are identical to the

corresponding Magnus expansions (2.55) truncated by Fk (analysed in powers of h). Thus

we can commence our analysis from the regular power-truncated Magnus expansions.

Note: Under grid resolution scaling that differs from our choice of M = O
(
ε−1
)
, obser-

vations such as Theorem 7.1.1 and Lemma 6.6.1 do not hold.
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The largest trees that are discarded in this expansion are O
(
ε(p+1)σ−1

)
since they

belong to Ep+1, and the expansion incurs an error of

Θε
p(h) = Θ(h) +O

(
ε(p+1)σ−1

)
. (7.3)

Odd-indexed truncations, as expected, gain a power of εσ since h = O (εσ),

Θε
2p−1(h) = Θ(h) +O

(
ε(2p+1)σ−1

)
. (7.4)

We must make a clear distinction between discarding trees by powers of ε and discard-

ing terms obtained upon simplification of these trees in H. A tree τ ∈ Em is O
(
εmσ−1

)
by definition, and is included in the expansion Θε

2p−1 if m ≤ 2p − 1. Upon simplify-

ing, however, it might feature O
(
ε2pσ−1

)
, O

(
ε(2p+1)σ−1

)
or smaller terms, which must,

nevertheless, be retained in the expansion Θε
2p−1 for the sake of time symmetry.

Once the desirable time symmetry properties are fully exploited, though, we discard

all O
(
ε(2p+1)σ−1

)
and smaller terms from Θε

2p−1 and arrive at Θ̃ε
2p−1, which carries an

error of

Θ̃ε
2p−1(h) = Θε

2p−1(h) +O
(
ε(2p+1)σ−1

)
= Θ(h) +O

(
ε(2p+1)σ−1

)
. (7.5)

We are prohibited, however, to discard any O
(
ε2pσ−1

)
terms that might originate in

simplifications without compromising on error. For completeness, we also define Θ̃ε
2p as

the expansion obtained after discarding all O
(
ε(2p+1)σ−1

)
and smaller terms from Θε

2p.

However, it is preferable to work solely with odd-indexed expansions due to the free gain

in power.

7.2 Approach 1: Discretised integrals

In combining Magnus expansions with the algebraic advantages of working in the Lie al-

gebra H, we encounter some technicalities. In this section we start with the most straight-

forward combination of these techniques: we commence our analysis directly from the

results of (Munthe–Kaas & Owren 1999), discussed in Section 2.3.5, where the integrals

occurring in the Magnus expansion are approximated using Gauss–Legendre quadratures

at the outset.

Following the techniques discussed here, it should be relatively straightforward to

commence the development of a numerical scheme from an alternative quadrature method

for approximating the integrals in the Magnus expansion. See (Iserles et al. 2000) and

(Blanes et al. 2009) for comprehensive information and ways to approximate the Magnus

expansion using different quadrature rules and to higher orders. The former could be

relevant if the time-dependent potential is only known at certain grid-points as might be
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the case in some control setups.

7.2.1 The self-adjoint basis of Munthe-Kaas & Owren

As we saw in Section 2.3.5, the seemingly complicated multivariate integrals occurring in

the Magnus expansion (7.1) can be computed using simple univariate quadrature rules.

Among the approaches for discretising these integrals, the approach of Munthe–Kaas &

Owren (1999) is particularly efficient for smooth A. Following this approach, an order

six approximation (which incurs an O
(
h7
)

error) is obtained by evaluating A at three

Gauss–Legendre quadrature points2

tk =
(

1
2 + k

√
15

10

)
h, k = −1, 0, 1.

The values at the Gauss–Legendre knots are used for generating the so called self-

adjoint basis (2.72),

J1 = hA(t0),

J2 =
√

15
3 h(A(t1)−A(t−1)),

J3 = 10
3 h(A(t1)− 2A(t0) +A(t−1)).

The power-truncated Magnus expansion up to order six expressed in terms of these self-

adjoint basis is

Θ
[M ]
5 (h) =J1 + 1

12J3 − 1
12 [J1, J2] + 1

240 [J2, J3] + 1
360 [J1, [J1, J3]]

− 1
240 [J2, [J1, J2]] + 1

720 [J1, [J1, [J1, J2]]].
(2.71)

We will start our analysis from this result of (Munthe–Kaas & Owren 1999), where we

use the superscript [M ] to distinguish this Magnus expansion from later ones discussed in

Section 7.3 where integrals are preserved.

In the case of the Schrödinger equation (3.21), the time-dependent component ofA(t) is

V (t) and in order to evaluate J1, J2, J3, the values of V at the three Gauss–Legendre knots

are required. As noted in Section 2.3.5, the self-adjoint basis J1, J2 and J3 approximate

the degree zero, one and two derivatives of A in time, respectively, using central differences

on the Gauss–Legendre knots. Foreseeing a corresponding need for the central difference

2Although a Gauss–Lengendre quadrature with three knots usually has an accuracy of O
(
h6

)
, due to

time-symmetry and odd nature of power-truncated Magnus expansions, all even terms in the Taylor series,
including error terms, vanish. Consequently, these methods become O

(
h7

)
accuracy in our context. See

Section 2.3.4 and Section 2.3.5.
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approximations of derivatives of V , we define

V0 = V (t0), (7.6)

V1 =
√

15
3h (V (t1)− V (t−1)),

V2 = 10
3h2 (V (t1)− 2V (t0) + V (t−1)).

Since A(t) = iε 〈1〉2 − iε−1 〈V (t)〉0, the self-adjoint basis of (2.72) are

J1 = ihε 〈1〉2 − ihε−1 〈V0〉0 , (7.7)

J2 = −ih2ε−1 〈V1〉0 ,

J3 = −ih3ε−1 〈V2〉0 .

We note that Ji ∈ H. Consequently, the truncated Magnus expansion (2.71) can be

expanded in H to a commutator-free form,
∑

k ik+1 〈fk〉k with fk ∈ C∞p ([−1, 1],R).

7.2.2 Computations in the Lie algebra H

For the purpose of anO
(
ε7σ−1

)
Magnus expansion, we only require the following identities,

[〈f〉2 , 〈g〉2] = 2 〈f(∂xg)− (∂xf)g〉3 +
〈
2(∂2

xf)(∂xg)− 2(∂xf)(∂2
xg) + (∂3

xf)g − f(∂3
xg)
〉

1
,

[〈f〉2 , 〈g〉1] = 〈2f(∂xg)− (∂xf)g〉2 −
1
2

〈
2(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉0] = 2 〈f(∂xg)〉1 ,

[〈f〉1 , 〈g〉1] = 〈f(∂xg)− (∂xf)g〉1 ,

[〈f〉1 , 〈g〉0] = 〈f(∂xg)〉0 ,

[〈f〉0 , 〈g〉0] = 0, (7.8)

which can be read off Table 5.2 and which are a subset of those listed previously in (6.3).

Using (7.7) and the identities (7.8), the grade one commutators of the self-adjoint basis

can be simplified as follows,

[J1, J2] =
[
ihε 〈1〉2 − ihε−1 〈V0〉0 ,−ih2ε−1 〈V1〉0

]
= h3 [〈1〉2 , 〈V1〉0] = 2h3 〈∂xV1〉1 , (7.9)

[J1, J3] =
[
ihε 〈1〉2 − ihε−1 〈V0〉0 ,−ih3ε−1 〈V2〉0

]
= h4 [〈1〉2 , 〈V2〉0] = 2h4 〈∂xV2〉1 , (7.10)

[J2, J3] =
[
−ih2ε−1 〈V1〉0 , ih

3ε−1 〈V2〉0
]

= 0. (7.11)
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Consequently, the grade two commutators appearing in (2.71) are,

[J1, [J1, J3]] =
[
ihε 〈1〉2 − ihε−1 〈V0〉0 , 2h

4 〈∂xV2〉1
]

= 2ih5ε [〈1〉2 , 〈∂xV2〉1] + 2ih5ε−1 [〈∂xV2〉1 , 〈V0〉0]

= 2ih5ε
(
2
〈
∂2
xV2

〉
2
− 1

2

〈
∂4
xV2

〉
0

)
+ 2ih5ε−1 〈(∂xV2)(∂xV0)〉0

= 4ih5ε
〈
∂2
xV2

〉
2
− ih5ε

〈
∂4
xV2

〉
0

+ 2ih5ε−1 〈(∂xV2)(∂xV0)〉0 , (7.12)

[J2, [J1, J2]] =
[
−ih2ε−1 〈V1〉0 , 2h

3 〈∂xV1〉1
]

= 2ih5ε−1 [〈∂xV1〉1 , 〈V1〉0]

= 2ih5ε−1
〈
(∂xV1)2

〉
0
, (7.13)

[J1, [J1, J2]] =
[
ihε 〈1〉2 − ihε−1 〈V0〉0 , 2h

3 〈∂xV1〉1
]

= 2ih4ε [〈1〉2 , 〈∂xV1〉1] + 2ih4ε−1 [〈∂xV1〉1 , 〈V0〉0]

= 2ih4ε
(
2
〈
∂2
xV1

〉
2
− 1

2

〈
∂4
xV1

〉
0

)
+ 2ih4ε−1 〈(∂xV1)(∂xV0)〉0

= 4ih4ε
〈
∂2
xV1

〉
2
− ih4ε

〈
∂4
xV1

〉
0

+ 2ih4ε−1 〈(∂xV1)(∂xV0)〉0 . (7.14)

The only grade three commutator that we need is

[J1, [J1, [J1, J2]]] =
[
ihε 〈1〉2 − ihε−1 〈V0〉0 , (7.15)

4ih4ε
〈
∂2
xV1

〉
2
− ih4ε

〈
∂4
xV1

〉
0

+ 2ih4ε−1 〈(∂xV1)(∂xV0)〉0
]

= −4h5ε2
[
〈1〉2 ,

〈
∂2
xV1

〉
2

]
+ h5ε2

[
〈1〉2 ,

〈
∂4
xV1

〉
0

]
−2h5 [〈1〉2 , 〈(∂xV1)(∂xV0)〉0]− 4h5

[〈
∂2
xV1

〉
2
, 〈V0〉0

]
= −4h5ε2

(
2
〈
∂3
xV1

〉
3
−
〈
∂5
xV1

〉
1

)
+ 2h5ε2

〈
∂5
xV1

〉
1

−4h5
〈
(∂2
xV1)(∂xV0) + (∂xV1)(∂2

xV0)
〉

1
− 8h5

〈
(∂2
xV1)(∂xV0)

〉
1

= −8h5ε2
〈
∂3
xV1

〉
3

+ 3h5ε2
〈
∂5
xV1

〉
1
− h5

〈
12(∂2

xV1)(∂xV0) + 4(∂xV1)(∂2
xV0)

〉
1
.
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7.2.3 Commutator-free Magnus expansion

Substituting (7.9–7.15) in (2.71) gives us a Magnus expansion for (3.21) in the Lie algebra

H,

Θ
ε[M ]
5 (h) = J1 + 1

12J3 − 1
12 [J1, J2] + 1

240 [J2, J3] + 1
360 [J1, [J1, J3]]

− 1
240 [J2, [J1, J2]] + 1

720 [J1, [J1, [J1, J2]]]

= ihε 〈1〉2 − ihε−1 〈V0〉0 −
1
12 ih3ε−1 〈V2〉0 −

1
6h

3 〈∂xV1〉1
+ 1

360

(
4ih5ε

〈
∂2
xV2

〉
2
− ih5ε

〈
∂4
xV2

〉
0

+ 2ih5ε−1 〈(∂xV2)(∂xV0)〉0
)

− 1
120 ih5ε−1

〈
(∂xV1)2

〉
0

+ 1
720

(
−8h5ε2

〈
∂3
xV1

〉
3

+ 3h5ε2
〈
∂5
xV1

〉
1

−h5
〈
12(∂2

xV1)(∂xV0) + 4(∂xV1)(∂2
xV0)

〉
1

)
.

Θ
ε[M ]
5 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − ihε−1V0−

O(ε3σ−1)︷ ︸︸ ︷
1
12 ih3ε−1V2 − 1

6h
3 〈∂xV1〉1 (7.16)

+

O(ε5σ−1)︷ ︸︸ ︷
1

360 ih5ε−1
(

2(∂xV2)(∂xV0)− 3(∂xV1)2
)
−

O(ε5σ−1)︷ ︸︸ ︷
1

180h
5
〈
(∂xV1)(∂2

xV0) + 3(∂xV0)(∂2
xV1)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
1
90 ih5ε

〈
∂2
xV2

〉
2
− 1

90h
5ε2
〈
∂3
xV1

〉
3
−

O(ε5σ+1)︷ ︸︸ ︷
1

360 ih5ε(∂4
xV2) + 1

240h
5ε2
〈
∂5
xV1

〉
1

= Θ +O
(
ε7σ−1

)
.

We remind the reader that the superscript [M ] is used for distinguishing this Magnus

expansion from later ones discussed in Section 7.3 where integrals are preserved. For

σ ≤ 1, the last two terms in Θ
ε[M ]
5 (h), which are O

(
ε5σ+1

)
, become O

(
ε7σ−1

)
and can be
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discarded. After discarding these terms, the Magnus expansion reduces to

Θ̃
ε[M ]
5 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − ihε−1V0−

O(ε3σ−1)︷ ︸︸ ︷
1
12 ih3ε−1V2 − 1

6h
3 〈∂xV1〉1 (7.17)

+

O(ε5σ−1)︷ ︸︸ ︷
1

360 ih5ε−1
(

2(∂xV2)(∂xV0)− 3(∂xV1)2
)

−

O(ε5σ−1)︷ ︸︸ ︷
1

180h
5
〈
(∂xV1)(∂2

xV0) + 3(∂xV0)(∂2
xV1)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
1
90 ih5ε

〈
∂2
xV2

〉
2
− 1

90h
5ε2
〈
∂3
xV1

〉
3

= Θ +O
(
ε7σ−1

)
.

Since A(t) ∈ H and A(t) = i(ε 〈1〉2− ε−1 〈V (t)〉0) = O
(
ε−1
)
, t ≥ 0, Lemma 6.6.1 implies,

‖[A(τk), [. . . , [A(τ1),A(τ0)] . . .]‖2 = O
(
ε−1
)
, τi ∈ [0, T ], i = 0, . . . , k, k ∈ Z+, (3.26)

which is responsible for the terms in the Magnus expansion being progressively smaller,

even for large time steps. Due to Corollary 6.6.2, a grade n term in the Magnus expansion

of A(t) is O
(
εnσ−1

)
. Thus, asymptotically speaking in terms of ε, the terms in the

expansion are decreasing in size with increasing n for any σ > 0.

7.3 Approach 2: Undiscretised integrals

The Magnus expansion (7.2), truncated by powers of ε, features integrals that were approx-

imated in the previous section by Gauss–Legendre quadratures. Getting rid of the integrals

in this way allowed us to simplify the development of the commutator-free Magnus expan-

sion greatly: once we commence from the optimised Magnus expansion of (Munthe–Kaas

& Owren 1999), relatively straightforward algebraic manipulations in the Lie algebra H

bring us to the commutator-free Magnus expansion Θ̃
ε[M ]
5 (7.17) in just a few steps.

While this simplifies the analysis greatly, there is no fundamental reason why we cannot

perform similar algebraic manipulations while keeping the integrals intact. There are

many good reasons for attempting to do so—the result of such a procedure would be a

method that could be easily tailored to potential functions that can be integrated in closed

form, are optimally discretised via quadrature methods other than the Gauss–Legendre

quadrature (for highly-oscillatory quadrature, or uniform grids, for instance), or possess a

lower degree of temporal regularity.

In this section we demonstrate how commutators in a power-truncated Magnus expan-
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sion

Θ4(h) = rr − 1
2

@�rrr rr
+ 1

12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
, (7.18)

where integrals haven’t been discretised, can still be expanded in the algebra G.

7.3.1 Computing with integrals intact

We note that all integrals occurring in our work are in the temporal domain, while the

differential operators are in the spatial domain. Consequently, integral and differential

operators occurring out here commute,

∂kx

(ˆ h

0
V (ξ) dξ

)
=

ˆ h

0
(∂kxV (ξ)) dξ,

and (ˆ h

0
V (ξ) dξ

)
∂kx =

ˆ h

0
V (ξ)∂kx dξ,

for instance. In the context of the Lie algebra G,

ˆ h

0
〈V (ξ)〉k dξ =

〈ˆ h

0
V (ξ) dξ

〉
k

and it is the latter representation that we will use as the canonical form.

With A(ζ) = iε 〈1〉2 − iε−1 〈V (ζ)〉0, the first term of the Magnus expansion is the

integral

rr :

ˆ h

0
A(ζ) dζ = ihε 〈1〉2 − iε−1

〈ˆ h

0
V (ζ) dζ

〉
0

. (7.19)

Other terms can be written as nested integrals of commutators C(A1, . . . ,An), Aj =

A(ξj) = iε 〈1〉2 − iε−1 〈V (ξj)〉0, which can again be worked out in the Lie algebra G. The

first non-trivial tree, for instance, is simplified as

@�rrr rr
:

ˆ h

0

[ˆ ζ

0
A(ξ) dξ , A(ζ)

]
dζ =

ˆ h

0

ˆ ζ

0
[A(ξ),A(ζ)] dξ dζ

=

ˆ h

0

ˆ ζ

0

[
iε 〈1〉2 − iε−1 〈V (ξ)〉0 , iε 〈1〉2 − iε−1 〈V (ζ)〉0

]
dξ dζ

=

ˆ h

0

ˆ ζ

0
[〈1〉2 , 〈V (ζ)〉0] + [〈V (ξ)〉0 , 〈1〉2] dξ dζ

= 2

(ˆ h

0
ζ 〈(∂xV (ζ))〉1 dζ −

ˆ h

0

ˆ ζ

0
〈(∂xV (ξ))〉1 dξ dζ

)
= 2

〈ˆ h

0
ζ(∂xV (ζ)) dζ −

ˆ h

0

ˆ ζ

0
(∂xV (ξ)) dξ dζ

〉
1

. (7.20)
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Similarly, we can solve

@�
@�rrrr rr rr

: 4iε

〈ˆ h

0
ζ2(∂2

xV (ζ)) dζ −
ˆ h

0
ζ

ˆ ζ

0
(∂2
xV (ξ)) dξ dζ

〉
2

+ 2iε−1

〈ˆ h

0
ζ(∂xV (ζ))

ˆ ζ

0
(∂xV (ξ)) dξ dζ −

ˆ h

0

(ˆ ζ

0
(∂xV (ξ)) dξ

)2

dζ

〉
0

− iε

〈ˆ h

0
ζ2(∂4

xV (ζ)) dζ −
ˆ h

0
ζ

ˆ ζ

0
(∂4
xV (ξ)) dξ dζ

〉
0

. (7.21)

7.3.2 Simplifying integrals over Magnus polytopes

After simplifying terms in the Magnus expansion (2.54) we arrive at expressions such as

(7.20) and (7.21), where each integral is of the form

IS,P (h) =

ˆ
S
P (ξ) dξ,

where P (ξ) =
∏s
j=1 Pj(ξj) for some Pj , and S is an s-dimensional polytope of the special

form,

S = {ξ ∈ Rs : ξ1 ∈ [0, h], ξl ∈ [0, ξml ], l = 2, 3, . . . , s},

with ml ∈ {1, 2, . . . , l − 1}, l = 2, 3, . . . , s (Iserles et al. 2000).

Integration over the polytope S in the temporal domain has remained an afterthought

up to this stage. The special forms of these polytopes, and of certain integrands obtained

after expanding the commutators, allows us to simplify the terms of the Magnus expansion

further. Integration by parts leads us to the following identities:

ˆ h

0
P1(ξ1)

(ˆ ξ1

0
P2(ξ2)dξ2

)
dξ1 =

ˆ h

0
P2(ξ1)

(ˆ h

ξ1

P1(ξ2)dξ2

)
dξ1, (7.22)

ˆ h

0
P1(ξ1)dξ1

(ˆ ξ1

0
P2(ξ2)dξ2

)(ˆ ξ1

0
P3(ξ3)dξ3

)
dξ1 (7.23)

=

ˆ h

0

(ˆ h

ξ3

P1(ξ1)dξ1

)(
P2(ξ3)

ˆ ξ3

0
P3(ξ2)dξ2 + P3(ξ3)

ˆ ξ3

0
P2(ξ2)dξ2

)
dξ3.

In our simplifications, (7.20) and (7.21), we have already encountered integrals over

a triangle such as
´ h

0

´ ζ
0(∂xV (ξ)) dξ dζ and

´ h
0 ζ
´ ζ

0(∂2
xV (ξ)) dξ dζ. We can reduce these

to integrations over a line by applying the first identity with P1(ξ1) = 1, P2(ξ2) =

∂xV (ξ2) and P1(ξ1) = ξ1, P2(ξ2) = ∂xV (ξ2), respectively. Integration over the pyramid

in
´ h

0

(´ ζ
0(∂xV (ξ)) dξ

)2
dζ is similarly reduced using the second identity with P1(ξ1) = 1,

P2(ξ2) = ∂xV (ξ2), P3(ξ3) = ∂xV (ξ3).
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Although it might be possible to develop a general formalism for extending these

observations to higher dimensional polytopes appearing in the Magnus expansion, the two

identities presented here suffice for all results presented in our work. Deducing similarly

useful identities for reduction of nested integrals in any specific high dimensional polytope

case should also be possible.

Applying (7.22) with P1(ζ) = 1 and P2(ξ) = ∂xV (ξ), the second integral in (7.20) can

be reduced to a line integral,

ˆ h

0

ˆ ζ

0
(∂xV (ξ)) dξ dζ =

ˆ h

0
(h− ζ)(∂xV (ζ)) dζ.

After similar simplifications in H and applications of the integration identities (7.22)

and (7.23), the trees in F1,F3 and F4, which appear in the truncated Magnus expansion

Θ4(h) = rr − 1
2

@�rrr rr
+ 1

12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
, (7.18)

simplify to the forms

rr : ihε∂2
x − iε−1

ˆ h

0
V (ζ) dζ, (7.24)

@�rrr rr
: 4

〈ˆ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

, (7.25)

@�
@�rrrr rr rr

: −2iε−1

ˆ h

0

ˆ ζ

0
(2h− 3ζ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

− 2iε

〈ˆ h

0

(
h2 − 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

, (7.26)

@�

@�

rrr rrr rr
: 2iε−1

ˆ h

0

ˆ ζ

0
(ζ − 2ξ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

+ 2iε

〈ˆ h

0

(
h2 − 4hζ + 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

. (7.27)
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The term
〈´ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1
, which occurs in the simplification of the tree

@�rrr rr
∈ F3,

might seem to be O
(
h2
)

at first sight, contradicting our expectations from a tree in F3.

A closer look at the special form of the integrand, however, shows that the term is indeed

O
(
h3
)
. To observe this, consider V (ζ) expanded about h = 0 so that V (h) = V (0) +∑∞

k=1 h
kV (k)(0)/k! and note that the h2 term

´ h
0

(
ζ − h

2

)
(∂xV (0)) dζ vanishes. Similar

care has to be exercised throughout the simplifications in combining the appropriate terms

before analysing size.

7.3.3 Time symmetry and gain of order

The Magnus expansion Θ̃
ε[I]
4 (where the superscript [I] indicates the integral-preserving

Magnus expansion and distinguishes this Magnus expansion from the ones derived in

Section 7.2 after discretising integrals), obtained by discarding all O
(
ε5σ−1

)
terms from

Θ4 (7.18–7.27),

Θ̃
ε[I]
4 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1

ˆ h

0
V (ζ) dζ −

O(ε3σ−1)︷ ︸︸ ︷
2

〈ˆ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

+

O(ε4σ−1)︷ ︸︸ ︷
iε−1

ˆ h

0

ˆ ζ

0

(
ζ − ξ − h

3

)
[∂xV (ζ)] [∂xV (ξ)] dξ dζ

+

O(ε4σ−1)︷ ︸︸ ︷
2iε

〈ˆ h

0

(
ζ2 − hζ + h2

6

)
(∂2
xV (ζ)) dζ

〉
2

, (7.28)

shares an O
(
ε5σ−1

)
error with the simpler expansion

Θ̃
ε[I]
3 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1

ˆ h

0
V (ζ) dζ −

O(ε3σ−1)︷ ︸︸ ︷
2

〈ˆ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

. (7.29)

This gain of order in case of Θ̃
ε[I]
3 (h) is explained by (7.4) and, as we had remarked earlier,

comes about due to the time symmetry of the Magnus expansion when truncated by Ek
(or equivalently, by Fk).

Before rushing on to make a conjecture that all terms of the form O
(
ε2kσ−1

)
, such as

theO
(
ε4σ−1

)
term in Θ̃

ε[I]
4 , may be discarded at no cost in general, it is worth remembering
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that the increased order (7.4) due to time symmetry of an odd-indexed method, Θ̃
ε[I]
2p−1,

only allows us to discard the ‘penultimate’ O
(
ε2pσ−1

)
trees. Thus Θ̃

ε[I]
5 will once again

feature the discarded O
(
ε4σ−1

)
trees while being free to discard the O

(
ε6σ−1

)
trees, and

Θ̃
ε[I]
7 will feature trees of sizes O

(
εkσ−1

)
for k = 1, 3, 4, 5, 6, 7 while being free to discard

the O
(
ε8σ−1

)
trees. Terms (to be contrasted with trees) of size O

(
ε8σ−1

)
could appear

from the simplification of included trees in such situations, however, and we are prohibited

to discard them.

A further exploitation of time symmetry is explored in Section 8.4 where we develop

expansions that discard all O
(
ε2kσ−1

)
terms.

7.3.4 A simplifying notation

The algebraic workings become increasingly convoluted once we start dealing with larger

nested commutators and integrals. It becomes helpful to introduce a notation for the

integrals on the line,

µj,k(h) =

ˆ h

0
B̃kj (h, ζ)V (ζ) dζ, (7.30)

and integrals over the triangle,

Λ [f ]a,b(h) =

ˆ h

0

ˆ ζ

0
f(h, ζ, ξ)∂axV (ζ)∂bxV (ξ) dξ dζ, (7.31)

where B̃ is a rescaling of the Bernoulli polynomials (Abramowitz & Stegun 1964, Lehmer

1988),

B̃j(h, ζ) = hjBj (ζ/h) .

The Bernoulli polynomials and their scaled versions can be described in terms of the

Bernoulli numbers,

Bn(ζ) =
n∑
k=0

(
n

k

)
Bn−kζ

k,

B̃n(h, ζ) =

n∑
k=0

(
n

k

)
Bn−kζ

khn−k.

The first few Bernoulli polynomials are

B0(ζ) = 1,

B1(ζ) = ζ − 1
2 ,

B2(ζ) = ζ2 − ζ + 1
6 ,

B3(ζ) = ζ3 − 3
2ζ

2 + 1
2ζ,
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and the scaled versions are

B̃0(h, ζ) = 1,

B̃1(h, ζ) = ζ − 1
2h,

B̃2(h, ζ) = ζ2 − ζh+ 1
6h

2,

B̃3(h, ζ) = ζ3 − 3
2ζ

2h+ 1
2ζh

2.

Since the jth scaled Bernoulli polynomial, B̃j(h, ζ), scales as O
(
hj
)

for ζ = O (h), we

expect µj,k(h) = O
(
hjk+1

)
but, since integrals of the Bernoulli polynomials vanish,

ˆ h

0
Bj(h, ζ) dζ = 0, (7.32)

the term µj,1(h) gains an extra power of h (following Taylor analysis) and is O
(
hj+2

)
.

With this new notation in place, the Magnus expansions Θ̃
ε[I]
3 and Θ̃

ε[I]
4 can be presented

more concisely,

Θ̃
ε[I]
3 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1µ0,0(h)−

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1, (7.33)

Θ̃
ε[I]
4 (h) = Θ̃

ε[I]
3 (h) +

O(ε4σ−1)︷ ︸︸ ︷
iε−1Λ [φ]1,1(h) + 2iε

〈
∂2
xµ2,1(h)

〉
2
, (7.34)

with

φ(h, ζ, ξ) = ζ − ξ − h
3 .

In general, for a polynomial pn(h, ζ, ξ) featuring only degree-n terms in h, ζ and ξ, the

linear (integral) functional Λ [pn]a,b(h) is O
(
hn+2

)
. However, the integral of φ over the

triangle vanishes, ˆ h

0

ˆ ζ

0
φ(h, ζ, ξ) dξ dζ = 0, (7.35)

lending an extra power of h to terms featuring Λ [φ]a,b(h).

7.4 Exponentiation of Magnus expansions

Once a suitably truncated Magnus expansion Θ̃ε
p(h) has been derived—Θ̃

ε[M ]
5 or Θ̃

ε[I]
3 , for

instance—in order to approximate the exact solution,

u(h) = exp(Θ(h))u(0),
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by a numerical solution,

ũ(h) = exp(Θ̃ε
p(h))u(0),

we still need to approximate effectively the exponential exp(Θ̃ε
p(h))u(0). This is certainly

no easier than the challenge of exponentiating ihε∂2
x − ihε−1V that we face in the case

of the time-independent potential: for p ≥ 2, Θ̃ε
p(h) always features a term of the form

ihε∂2
x − iε−1f(h) that possesses similar structure and size, with f(h) = O (h) being some

linear functional of the potential. The matter is complicated further by the inclusion of

increasingly complicated terms once we consider p ≥ 3, such as the term 1
6h

3 〈∂xV1〉1 in

Θ̃
ε[M ]
5 (7.17) or 2 〈∂xµ1,1(h)〉1 in Θ̃

ε[I]
3 (7.33).

Direct exponentiation via diagonal Padé methods is an even worse approach for a

Magnus expansion than it is for the solution of a time-independent Hamiltonian: each

exponential here requires O
(
M3
)

= O
(
ε−3
)

operations, but now we need to take O (ε−σ)

time steps and the overall cost becomes O
(
ε−3−σ). This holds irrespective of the Magnus

expansion under consideration. Higher order Magnus expansions along the lines of Sec-

tion 7.2 and Section 7.3 involve more terms and become more expensive but are still less

expensive than Magnus expansions expressed directly in commutators of matrices (such

as those discussed in Section 3.4.1).

Alternatively, one can approximate the exponential of the Magnus expansion using

Lanczos iterations, resulting in Magnus–Lanczos schemes. The Magnus expansion, taken

as a whole, is O
(
εσ−1

)
in size. Consequently, at the very least m = O

(
εσ−1

)
Lanczos

iterations are required (for σ ≤ 1) to exponentiate it to reasonable accuracy. The cost per

step of the Magnus–Lanczos scheme is, therefore, O
(
εσ−1ε−1 log ε−1

)
. Since we require

O (ε−σ) steps, the global cost comes to O
(
ε−2 log ε−1

)
.

The cost is also affected by the specific Magnus expansion that we combine with

the Lanczos iterations. The Θ̃ε
2n+1(h) Magnus expansion with O

(
ε(2n+3)σ−1

)
accuracy,

simplified in Jordan polynomials of the differential operator, involves solving nested com-

mutators of 〈1〉2 and 〈V (ζ)〉0 of grade 2n + 1 and lower. Were we to start with such a

Magnus expansion,

Θ̃ε
2n+1(h) = ihε∂2

x +
2n+1∑
k=1

ik+1 〈fk〉k ,

we would require 2(2n+ 1) + 2 = 4(n+ 1) FFTs for the computation of Θ̃ε
2n+1(h)v in each

of the Lanczos iterations.

For a Magnus expansion written in terms of nested commutators of matrices such

as the methods discussed in Section 3.4.1, the asymptotic cost would be the same (i.e.

O
(
ε−2 log ε−1

)
). However, the number of FFTs would grow much more rapidly than

the 4(n + 1) FFTs required for a Magnus expansion simplified in H since computing

with larger nested commutators becomes progressively more expensive. The most näıve
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approach would be to open each commutator [A,B] = AB −BA, whereby

[K2, [K2,DV ]]v = K4DV v − 2K2DVK2v +DVK4v

can be computed in O (M logM) operations. However, the number of such terms and

therefore the number of FFTs grows much more rapidly in n.

Yoshida splittings also fare more poorly in the case of time-dependent Hamiltonians.

Take the lowest order Yoshida splitting—the Strang splitting. There could be multiple

ways to split Θ̃ε
2n+1(h). One approach could be to separate the 〈1〉2 and the 〈·〉0 terms

which are easy to exponentiate,

exp
(

Θ̃ε
2n+1(h)

)
= e

1
2

ihε∂2
xe

1
2

if0 exp

(
−〈f1〉1 +

2n+1∑
k=3

ik+1 〈fk〉k

)
e

1
2

if0e
1
2

ihε∂2
x +O

(
ε3σ−1

)
.

However, we still need to repeatedly compose the Strang splitting in order to arrive at the

order 2n + 2 Yoshida splitting featuring an O
(
ε(2n+3)σ−1

)
accuracy. In such a Yoshida

splitting, we encounter 3n exponentials of both 1
2 ihε∂2

x and the central exponent.

Each exponential of ∂2
x requires two FFTs. The central exponent can be exponenti-

ated via Lanczos iterations. This time, however, the exponent is O
(
ε3σ−1

)
. For σ ≤ 1

3 ,

we require at least m = O
(
ε3σ−1

)
Lanczos iterations for reasonable approximation,

each of which requires 4n + 2 FFTs and costs O
(
(4n+ 2)ε−1 log ε−1

)
. This translates

to O
(
(4n+ 2)× 3nε3σ−1ε−1 log ε−1

)
cost for the order 2n + 2 Yoshida splitting of the

Magnus expansion. However, this merely accounts for one step of the Magnus scheme

and propagating over [0, T ] requires O (ε−σ) time steps, bringing the overall cost to

O
(
(4n+ 2)× 3nε2σ−2 log ε−1

)
at the very least (remember that the number of Lanczos

iterations also grow with n, something we haven’t accounted for here). For σ = 1
4 , for

instance, this is O
(
(4n+ 2)× 3nε−3/2 log ε−1

)
.

By comparison, for σ > 1
3 , we need m =

⌈
(2n+3)σ−1

3σ−1

⌉
iterations. For σ = 1

2 , for in-

stance, m = 2n+1 iterations are required. The cost of exponentiating the central exponent

via Lanczos iterations in this case is O
(
(2n+ 1)(4n+ 2)× 3nε−1 log ε−1

)
. Additionally,

we have the O
(
2× 3nε−1 log ε−1

)
cost for exponentiating the ∂2

x term. The overall cost

for propagating to T is O
(
(8n2 + 8n+ 4)× 3nε−3/2 log ε−1

)
, which is comparable to the

cost for σ = 1
4 . The accuracy of the method for σ = 1

2 is much higher, on the other hand.

Just like we saw in Section 6.8 for Zassenhaus splittings of Chapter 6, there seems little

point in going for σ ≤ 1
3 .

Yet another approach is to separate terms by size to arrive at a Strang splitting

exp
(

Θ̃ε
2n+1(h)

)
= e

1
2
W [0] · · · e

1
2
W [n]

eW
[n+1]

e
1
2
W [n] · · · e

1
2
W [0]

+O
(
ε3σ−1

)
,

such that W [0] is the term featuring ∂2
x, while W [k] = O

(
ε(2k−1)σ−1

)
. Separating terms by
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their spectral size would result in fewer Lanczos iterations for subsequent terms. However,

this looks very much like a Zassenhaus splitting and is not much cheaper than one. More-

oever, this splitting only features an O
(
ε3σ−1

)
accuracy—the correct Yoshida splitting

will be significantly more expensive.

We have seen that the cost of Magnus–Lanczos schemes scales as O
(
ε−2 log ε−1

)
. This

can be improved upon by performing a Yoshida splitting before exponentiating the central

exponent. Such schemes can achieve a O
(
ε−3/2 log ε−1

)
cost, which is asymptotically

superior. In Chapter 8, we will develop the Magnus–Zassenhaus schemes whose asymptotic

costs are similar, but which require fewer FFTs as we go towards higher order methods.

This observation will be similar to that made in Section 6.7. However, unlike the 2 × 3n

FFTs required per step of the Yoshida splitting for time-independent Hamiltonians, we

have found that (8n2+8n+4)×3n FFTs are required when we combine Magnus expansions

with Yoshida splittings. On the other hand, the increase in cost of Zassenhaus splittings

for Magnus expansions is seen to be milder. This will result in the Magnus–Zassenhaus

schemes being superior not only for very high orders of accuracy, but also for low and

moderately high orders.
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Chapter 8

Magnus–Zassenhaus schemes

As discussed in Section 7.4, the large size and inconvenient structure of commutators

occurring in the matrix based Magnus expansions introduced in Section 3.4.1 makes the

exponentiation of high-order Magnus expansions extremely expensive. However, even after

simplification of the Magnus expansion in H, following Chapter 7, the Magnus–Lanczos

schemes are not the most optimal approach for exponentiation.

Asymptotically speaking, the O
(
ε−3/2 log ε−1

)
cost of Yoshida splittings of the Magnus

expansion (where the central exponent in the Strang splitting is exponentiated via Lanczos

iterations) is more favourable. However, these Yoshida methods require Ỹ (n) = (8n2 +

8n+ 4)× 3n FFTs which is significantly higher than the Y (n) = 2× 3n FFTs required in

the case of time-independent Hamiltonians.

Simplifying the Magnus expansion in the Lie algebra H without resorting to spatial

discretisation gives us another advantage—it is now possible to resort to a commutator-

free symmetric Zassenhaus splitting for exp(Θ̃ε
p(h)) along the lines of Chapter 6. The

Zassenhaus algorithm provides a neat separation of terms with differing structures and

sizes, each of which is easy to exponentiate separately.

In Sections 8.1 and 8.2, two versions of the Magnus expansion—Θ̃
ε[M ]
5 (7.17) and Θ̃

ε[I]
3

(7.33), respectively—are successfully combined with Zassenhaus splittings to yield efficient

methods—ZΘ[M ]
2,σ and ZΘ[I]

1,σ , respectively—for solving the Schrödinger equation with time-

dependent potentials. We find that, in principle, an effective splitting scheme for the

Magnus expansion can be developed for time steps of size h = O (εσ) for any σ > 1
3 , which

is the same restriction we encountered in the case of Zassenhaus splittings for Schrödinger

equations with time-independent potentials.

Much like the postponement of spatial discretisation considerations till the last stage,

Zassenhaus splittings that commence from integral-preserving Magnus expansions, such

as Θ̃
ε[I]
3 , eventually require the evaluation of integrals. Some of the options available to

us for evaluation of these integrals are considered briefly in Section 8.2.1, following which

some numerical results are presented in Section 8.3.
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A technical difficulty encountered while attempting to preserve integrals, when start-

ing from an expansion like Θ̃
ε[I]
p , is the occurrence of O

(
ε4σ−1

)
, O

(
ε6σ−1

)
or, in general,

O
(
ε2kσ−1

)
terms that do not occur when splitting the integral-free Magnus expansion

Θ̃
ε[M ]
p . In Section 8.4 we exploit time symmetry of the Magnus expansion to derive split-

tings where the exponents W [k] are O
(
ε(2k−1)σ−1

)
for k ≥ 2. In these new splittings

terms of size O
(
ε2kσ−1

)
do not feature, reducing the number of exponents in the splitting

(and the cost) to half, thereby making high-order integral-preserving splittings simpler

and more feasible.

In Section 8.5 we note that the cost of the Magnus–Zassenhaus schemes grows quadrat-

ically in the order desired and is only marginally higher than the cost of Zassenhaus split-

tings for the time-independent case. Unlike the case of time-independent Hamiltonians,

the cost of these Zassenhaus splittings is superior to the corresponding Yoshida splittings

even for low and moderately high-order methods as a consequence of the latter approach

becoming significantly more expensive.

8.1 Approach 1: Discretised integrals

For the sake of simplicity, we demonstrate an example of a Zassenhaus splitting performed

on (7.17), the truncated integral and commutator-free Magnus expansion Θ̃
ε[M ]
5 (h). The

procedure clearly generalises to any Θ̃
ε[M ]
p (h).

In line with our previous examples in Chapter 6, the splitting presented here involves

extracting the largest terms (analysed in powers of ε) first. Variants of Zassenhaus split-

tings based on different choices are possible but not explored here. We commence the

Zassenhaus splitting algorithm (summarised in Table 6.1) with W [0] = ihε∂2
x. As we had

seen in Section 6.2, we could equally well have chosen W [0] = −ihε−1V0, for instance, to

arrive at a variant of the splitting presented here.

The exponent to be split here is the Magnus expansion (7.17), W [0] = Θ̃
ε[M ]
5 (h),

Θ̃
ε[M ]
5 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − ihε−1V0−

O(ε3σ−1)︷ ︸︸ ︷
1
12 ih3ε−1V2 − 1

6h
3 〈∂xV1〉1

+

O(ε5σ−1)︷ ︸︸ ︷
1

360h
5
[
iε−1

(
2(∂xV2)(∂xV0)− 3(∂xV1)2

)
− 2

〈
(∂xV1)(∂2

xV0) + 3(∂xV0)(∂2
xV1)

〉
1

]

+

O(ε5σ−1)︷ ︸︸ ︷
1
90 ih5ε

〈
∂2
xV2

〉
2
− 1

90h
5ε2
〈
∂3
xV1

〉
3

= Θ +O
(
ε7σ−1

)
.

The first steps of Zassenhaus splitting procedure involve computations of commutators in

the sBCH formula. Here, once again, we will need to use the identities (6.3) of the Lie
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algebra H for arriving at a commutator-free expression,

[〈f〉4 , 〈g〉0] = 4 〈f(∂xg)〉3 − 2
〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

1
,

[〈f〉3 , 〈g〉0] = 3 〈f(∂xg)〉2 −
1
2

〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉2] = 2 〈f(∂xg)− (∂xf)g〉3 +
〈
2(∂2

xf)(∂xg)− 2(∂xf)(∂2
xg) + (∂3

xf)g − f(∂3
xg)
〉

1
,

[〈f〉2 , 〈g〉1] = 〈2f(∂xg)− (∂xf)g〉2 −
1
2

〈
2(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉0] = 2 〈f(∂xg)〉1 ,

[〈f〉1 , 〈g〉1] = 〈f(∂xg)− (∂xf)g〉1 ,

[〈f〉1 , 〈g〉0] = 〈f(∂xg)〉0 .

Using these simplification rules, we compute the sBCH for the first stage of the Zassen-

haus algorithm with W [0] = ihε∂2
x and W [0] = Θ̃

ε[M ]
5 (h),

W [1] = sBCH(−W [0],W [0])

= −

O(εσ−1)︷ ︸︸ ︷
ihε−1V0 +

O(ε3σ−1)︷ ︸︸ ︷
1
12 ih3ε−1

(
2(∂xV0)2 − V2

)
− 1

6h
3 〈∂xV1〉1 + 1

6 ih3ε
〈
∂2
xV0

〉
2

−

O(ε3σ+1)︷ ︸︸ ︷
1
24 ih3ε(∂4

xV0)−

O(ε5σ−1)︷ ︸︸ ︷
1

360 ih5ε−1
(

8(∂xV0)2(∂2
xV0) + 3(∂xV1)2 − 12(∂xV2)(∂xV0)

)

+

O(ε5σ−1)︷ ︸︸ ︷
1
30h

5
〈
2(∂xV0)(∂2

xV1)− (∂xV1)(∂2
xV0)

〉
1

−

O(ε5σ−1)︷ ︸︸ ︷
1

720 ih5ε
〈
127(∂xV0)(∂3

xV0) + 130(∂2
xV0)2 − 18(∂2

xV2)
〉

2

+

O(ε5σ−1)︷ ︸︸ ︷
1
60h

5ε2
〈
∂3
xV1

〉
3
− 13

90 ih5ε3
〈
∂4
xV0

〉
4

+O
(
ε7σ−1

)
.
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At the second stage we select the largest remaining element W [1] = −ihε−1V0, whereby

W [2] = sBCH(−W [1],W [1])

=

O(ε3σ−1)︷ ︸︸ ︷
1
12 ih3ε−1

(
2(∂xV0)2 − V2

)
− 1

6h
3 〈∂xV1〉1 + 1

6 ih3ε
〈
∂2
xV0

〉
2

−

O(ε3σ+1)︷ ︸︸ ︷
1
24 ih3ε(∂4

xV0)−

O(ε5σ−1)︷ ︸︸ ︷
1

360 ih5ε−1
(

13(∂xV0)2(∂2
xV ) + 3(∂xV1)2 − 12(∂xV2)(∂xV0)

)

+

O(ε5σ−1)︷ ︸︸ ︷
1
30h

5
〈
2(∂xV0)(∂2

xV1)− (∂xV1)(∂2
xV0)

〉
1

−

O(ε5σ−1)︷ ︸︸ ︷
1

720 ih5ε
〈
127(∂xV0)(∂3

xV0) + 130(∂2
xV0)2 − 18(∂2

xV2)
〉

2

+

O(ε5σ−1)︷ ︸︸ ︷
1
60h

5ε2
〈
∂3
xV1

〉
3
− 13

90 ih5ε3
〈
∂4
xV0

〉
4

+O
(
ε7σ−1

)
.

We terminate the procedure by letting W [2] consist of the O
(
ε3σ−1

)
terms inW [2] and are

left with O
(
ε3σ+1

)
and O

(
ε5σ−1

)
terms in W [3] = W [2] −W [2], once we ignore O

(
ε7σ−1

)
terms. Since ε3σ+1 = O

(
ε5σ−1

)
under σ ≤ 1, it is not problematic to combine these terms.

The outcome is the splitting,

ZΘ[M ]
2,σ = e

1
2
W [0]

e
1
2
W [1]

e
1
2
W [2]

eW
[3]

e
1
2
W [2]

e
1
2
W [1]

e
1
2
W [0]

= exp
(

Θ̃
ε[M ]
5 (h)

)
+O

(
ε7σ−1

)
, (8.1)

where

W [0] = iεh∂2
x = O

(
εσ−1

)
,

W [1] = −iε−1hV0 = O
(
εσ−1

)
,

W [2] = 1
12 iε−1h3

(
2(∂xV0)2 − V2

)
− 1

6h
3 〈∂xV1〉1 + 1

6 iεh3
〈
∂2
xV0

〉
2

= O
(
ε3σ−1

)
,

W [3] = − 1
24 iεh3(∂4

xV0)− 1
360 iε−1h5

(
13(∂xV0)2(∂2

xV0) + 3(∂xV1)2 − 12(∂xV2)(∂xV0)
)

+ 1
30h

5
〈
2(∂xV )(∂2

xV1)− (∂xV1)(∂2
xV )

〉
1

− 1
720 iεh5

〈
127(∂xV0)(∂3

xV0) + 130(∂2
xV0)2 − 18(∂2

xV2)
〉

2

+ 1
60ε

2h5
〈
∂3
xV1

〉
3
− 13

90 iε3h5
〈
∂4
xV0

〉
4

= O
(
ε5σ−1

)
.

This splitting looks very similar to the splitting Z [2]
2,σ (6.10), derived in Chapter 6 for the

time-independent Hamiltonian and the notation ZΘ[M ]
2,σ is very similar too, with Θ[M ]

indicating that we have started from an appropriately high-order integral-free Magnus ex-

pansion of the type Θ̃
ε[M ]
p . Structurally speaking, Z [2]

2,σ and ZΘ[M ]
2,σ differ in the appearance

of odd-indexed terms, such as −1
6h

3 〈∂xV1〉1 which appears in W [2] here. Apart from this,
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the splittings are very similar and the computation of these exponentials is carried out

exactly on the same lines as the approach pursued for Z [2]
2,σ in Section 6.4.

The outer exponents are structurally identical to those in Z [2]
2,σ and they are expo-

nentiated in precisely the same manner—W [0] is discretised to W̃ [0] = iεhK2, which is

exponentiated in O (M logM) operations (where M = 2N+1 is the number of grid points

in the spatial discretisation), while W [1] ; W̃ [1] = −iε−1hDV , which is exponentiated

directly in O (M) cost.

The remaining exponents, W [2] and W [3], do not posses a structure amenable to exact

exponentiation. However, they are very small—O
(
ε3σ−1

)
and O

(
ε5σ−1

)
, respectively—

precisely like the corresponding exponents in splitting Z [2]
2,σ. Following the analysis of

Lanczos iterations in Section 6.4, the exponentials of these terms can be evaluated to

O
(
ε7σ−1

)
accuracy using merely three and two Lanczos iterations, respectively, under the

scaling σ = 1.

The number of iterations required do change with the choice of σ. As we saw in

Section 6.8, for σ = 1
2 the term W [2] is of size O

(
ε1/2

)
and we would require m = 5 for

achieving the O
(
ε5/2

)
accuracy of the corresponding splitting. A critical stage is reached

at σ = 1
3 , where the term W [2] becomes O

(
ε0
)

and no longer decreases in size with ε.

Beyond this, the exponent grows in size with decreasing ε and, following the analysis of

Section 6.8, smaller σ are no longer cost effective. Thus we are forced to place a limit on

the time step scaling and restrict ourselves to 1
3 < σ ≤ 1. This restriction arises out of the

Zassenhaus splitting (not the Magnus expansion).

All exponents for which we resort to Lanczos iterations feature Jordan polynomials in

∂x of the form 〈f〉k = (f ◦ ∂kx + ∂kx ◦ f)/2. As we saw earlier, these are discretised in a

straightforward way,

〈f〉k ; 1
2(DfKk +KkDf ) = 1

2

(
DfF−1D(inπ)kF + F−1D(inπ)kFDf

)
,

and 〈f〉k u ; 1
2

(
DfF−1D(inπ)kFu+ F−1D(inπ)kFDfu

)
is computed in O (M logM) op-

erations using four FFTs (more efficient ways of combining FFTs to reduce costs are

discussed in Section 6.4.1). Altogether, W̃ [2]v can be computed using O (M logM) oper-

ations, resulting in an overall cost of O (mM logM) operations for the approximation of

eW̃
[2]
u, where m is the number of Lanczos iterations required.

The exponents W [2] and W [3] feature spatial derivatives of the potential (∂xV0, ∂xV1,

and ∂2
xV0, for instance), which might be available in closed form. However, in general

these can be evaluated through numerical differentiation. ∂2
xV0, for instance, can be ap-

proximated by the vector K2V0. We note that the degree of accuracy required in the

differentiation here is considerably lower than the spectral accuracy of spectral collocation

differentiation matrices. We may, instead, use centred finite-difference differentiation ma-

trices of varying accuracy (depending on the accuracy requirement per term) to achieve
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the same feat at an O (M) cost. For instance, the term

−1
6h

3 〈∂xV1〉1

appearing in W [2] needs to be approximated to O
(
ε7σ−1

)
accuracy (the accuracy of

ZΘ[M ]
2,σ ). Considering the h3 = O

(
ε3σ
)

factor and the fact that 〈·〉1 = O
(
ε−1
)
, we need

∂xV1 to be accurate up to O
(
ε4σ
)
. In other words, an order four differentiation method

would suffice for this instance of ∂xV1 under the scaling σ = 1 and an order two method

would do for σ = 1/2.

We note that all exponents in our splitting ZΘ[M ]
2,σ are of the form ik+1 〈f〉k. This is

a more general scenario than the Zassenhaus splittings of Chapter 6 where all terms are

i 〈f〉2k. Nevertheless, the terms ik+1 〈f〉k are in H and are discretised as skew-Hermitian

matrices once we resort to spectral collocation,

ik+1 〈f〉k ; 1
2 ik+1(DfKk +KkDf ).

Since the exponential of a skew-Hermitian matrix is unitary, unitary evolution and (conse-

quently) unconditional stability of the method are guaranteed, once again (see Section 6.9).

For a more detailed discussion of the exponentiation methods and stability analysis,

we refer the reader to Sections 6.4, 6.5, 6.8 and 6.9 of Chapter 6.

8.2 Approach 2: Undiscretised integrals

Integral-preserving Magnus–Zassenhaus schemes can be derived along similar lines as Sec-

tion 8.1. Once the integrals have been simplified in the Magnus expansion Θ̃
ε[I]
3 (h), for

instance, the Zassenhaus splitting procedure can work while being agnostic of the presence

of integrals, treating terms such as µ0,0(h) and µ1,1(h) as any other potential function.

As usual, we discard terms smaller than our error tolerance—for Θ̃
ε[I]
2n+1(h) this means

discarding terms of size O
(
ε(2n+3)σ−1

)
. The Magnus expansion that we wish to split is,

Θ̃
ε[I]
3 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1µ0,0(h)−

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1 . (7.33)

We get a five-stage splitting by starting with W [0] = ihε∂2
x and then extracting the largest

term at each iteration. For a splitting of Θ̃
ε[I]
3 (h), we only need to compute the sBCH at

the first stage of the Zassenhaus splitting,

W [1] = sBCH(−W [0],W [0])

= −

O(εσ−1)︷ ︸︸ ︷
iε−1µ0,0(h) +

O(ε3σ−1)︷ ︸︸ ︷
1
6 ihε−1 (∂xµ0,0(h))2 − 2 〈∂xµ1,1(h)〉1 + 1

6 ih2ε
〈
∂2
xµ0,0(h)

〉
2
.
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At the next stage we let W [1] = −iε−1µ0,0(h) and terminate with W [2] =W [1]−W [1] (the

leading term in the sBCH of W [1] and −W [1]), arriving at the splitting

ZΘ[I]
1,σ = e

1
2
W [0]

e
1
2
W [1]

eW
[2]

e
1
2
W [1]

e
1
2
W [0]

= exp
(

Θ̃
ε[I]
3 (h)

)
+O

(
ε5σ−1

)
, (8.2)

where

W [0] = ihε∂2
x = O

(
εσ−1

)
,

W [1] = −iε−1µ0,0(h) = O
(
εσ−1

)
,

W [2] = 1
6 ihε−1 (∂xµ0,0(h))2 − 2 〈∂xµ1,1(h)〉1 + 1

6 ih2ε
〈
∂2
xµ0,0(h)

〉
2

= O
(
ε3σ−1

)
.

As a quick sanity check, for time-independent potentials, V (x, t) = V (x), ZΘ[I]
1,σ reduces to

the standard symmetric Zassenhaus splitting Z [2]
1,σ of Chapter 6, which is obtained from

(6.10) by ignoring the W [3] exponent.

It is only by this stage—having arrived at an asymptotic splitting expressed in opera-

torial terms—that we start considering discretisation issues. Considerations of spatial and

temporal discretisation (in the form of approximation through quadrature) are entirely

independent here and one may proceed to address them in any order. As usual, we resort

to spectral collocation for spatial discretisation. The considerations of stability and the

approximation of exponentials follow along the same line as discussed in Section 8.1 (and

previously in Chapter 6). Having preserved integrals, we now consider how to evaluate

these for an effective numerical scheme.

8.2.1 Evaluation of integrals

In this section we consider the problem of evaluating the integrals appearing in ZΘ[I]
1,σ :

µ0,0(h) and µ1,1(h). The integral

µ0,0(h) =

ˆ h

0
V (ζ) dζ

appears once in W [1] and twice in W [2]. Since we have already committed an O
(
ε5σ−1

)
error in the splitting, we need not approximate the integrals to a greater degree of accuracy.

In the term 1
6 ih2ε

〈
∂2
xµ0,0(h)

〉
2
, we need an O

(
ε3σ
)

or O
(
h3
)

approximation of µ0,0(h) due

to the presence of the h2ε scalar factor and since 〈f〉2 is O
(
ε−2
)

for f = O
(
ε0
)
. However,

O
(
h4
)

and O
(
h5
)

approximations are needed for its other occurrences in W [2] and W [1],

respectively. The only occurrence of µ1,1(h),

µ1,1(h) =

ˆ h

0

(
ζ − h

2

)
V (ζ) dζ,
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demands an O
(
h5
)

approximation. Thus, it suffices to evaluate O
(
h5
)

accuracy approx-

imations for the integrals µ0,0(h) and µ1,1(h) once per time step.

In the standard setting, where V (h) is sufficiently smooth in the temporal domain, we

may effectively approximate the integrals using two Gauss–Legendre knots tk := h
2 (1 +

k/
√

3), k = −1, 1, and weights wk = h
2 (Davis & Rabinowitz 1984),

µ0,0(h) =

(
V (t1) + V (t−1)

2

)
h+O

(
h5
)
,

and

µ1,1(h) =

(
V (t1)− V (t−1)

4
√

3

)
h2 +O

(
h5
)
.

These turn out to be centred finite difference approximations of ∂jt V (t) at t = h
2 for j = 0, 1

on the grid h
2 (1 + k/

√
3), k = −1, 0, 1.

Note: In Section 2.3.5 we noted that, in the context of power-truncated Magnus expan-

sions, a quadrature method which usually has an accuracy of O
(
h2n
)

gains an

order of accuracy, becoming O
(
h2n+1

)
. This was due to time-symmetry and odd

nature of such Magnus expansions, where all even terms in the Taylor series, in-

cluding error terms, vanish. Thus two Gauss–Legendre knots result in a O
(
h5
)

method in our case.

While the approach presented here requires us to carry all integrals along in an undis-

cretised form, and is thus considerably more involved, it is also more flexible. Little has

been assumed about the regularity of V in the temporal domain so far. It is generally

accepted that integrals are to be preferred over derivatives—they are particularly helpful

in the case of functions with low regularity and in the case of highly oscillatory functions.

Here our decision of not replacing the integrals with Taylor expansion at the outset affords

us the ability to effectively handle such cases.

It might be possible to evaluate the exact integral for µ0,0(h) and µ1,1(h), for instance,

if an analytic expression for V is available. This is also true for potentials of the form

V (x, t) = f(t)V (x) where an analytic expression for f(t) is available. If f(t) is a highly

oscillatory envelope, oscillating around the origin, there can be a further decrease in size

of integrals involved which can benefit us greatly.

Where an exact integral is not available, integrals featuring highly oscillatory inte-

grands of the form ˆ 1

0
f(t) eiωg(t) dt

can be approximated effectively using the Filon method (Iserles & Nørsett 2005).

Unless the the potential V depends on ε, the approximation of the integrals will require

O (M) operations. Thus, even though the evaluation of integrals needs to be performed at
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each step of the Magnus–Zassenhaus splitting scheme, it does not significantly contribute

to the costs, which are dominated by the O (M logM) costs of FFTs.

8.3 Numerical results

Example 8.3.1. Consider the evolution of the wave-packet

u0(x) = (δπ)−1/4 exp

(
ik0

(x− x0)

δ
− (x− x0)2

2δ

)
, x0 = −0.3, k0 = 0.1, δ = 10−3,

(8.3)

heading towards the lattice potential

V0 = ρ̂(4x) sin(20πx), (8.4)

where ρ̂(x) = expbump(x) is the bump function (2.18).
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|uE(T )|
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|uE(T/4)|
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x

VE(T/2)

|uE(T/2)|

Figure 8.1: Initial wave-packet u0 (top left); final wave-packets at time T = 0.75 (top
right): u(T ) under the influence of V0 and uE(T ) under the influence of VE(x, t) = V0 +
E(x, t) for Example 8.3.1. Intermediate stages of uE are shown in the bottom row.

When the semiclassical parameter is ε = 2−8, the wave-packet evolves to u(T ) at

T = 0.75 in Figure 8.3.1 under the influence of the time-independent potential V0 alone.
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When we excite it using an additional time-dependent potential,

E(x, t) = ρ̂(3t− 1)ρ̂(sin(2π(x− t))),

so that the wave packet evolves under VE(x, t) = V0(x)+E(x, t), a significantly larger part

of the wave packet is able to make it across the lattice to the right hand side (see uE(T )

in Figure 8.1).

The excitation pulse is not active for the entire duration since ρ̂(3t − 1) acts as a

smooth envelope simulating the switching on and off of the time-dependent component of

the potential. The excited potential is evident at t = T/2 in Figure 8.1.
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10−1
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ZΘ[I]
1,1

O
(
ε5
)

O
(
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)
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10−6

10−3

100

103

ε

ZΘ[M ]

2,1/2

ZΘ[I]

1,1/2

O
(
ε3
)

O (ε)

Figure 8.2: Global `2 errors for Example 8.3.1 at T = 0.75 using schemes ZΘ[M ]
2,σ (8.1)

and ZΘ[I]
1,σ (8.2) under σ = 1 (left) and σ = 1

2 (right).

In the splitting scheme ZΘ[M ]
2,1 (8.1), we commit a local `2 error of O

(
ε6
)

per time step.

Since the number of time steps is O
(
ε−1
)
, the global `2 error is O

(
ε5
)
. The global error

for ZΘ[I]
1,1 (8.2) is O

(
ε3
)
.

In Figure 8.2 we present the global `2 errors in the propagation of u0 to uE(T = 0.75)

under the influence of VE using the schemes ZΘ[M ]
2,σ and ZΘ[I]

1,σ . The precise scaling used in

our experiments for σ = 1 is

M ∼ 5ε−1, h ∼ ε/2.

We note that the expense of evaluating a reference solution by brute force is what

limits us to moderately small values of ε (see Section 8.3.1). Moreover, for reasonable

error decrease in practice, our spatial and temporal resolutions need to be sufficient to

resolve the potential correctly, at the very least. Thus, at large values of ε, these schemes

cannot be expected to be accurate under the scaling prescribed here. However, the scaling

chosen here allows us to resolve the potential reasonably for moderate values of ε. For

very small ε, less stringent scalings such as M ∼ ε−1 do work, as we see in the σ = 1
2 case.
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The global `2 error in ZΘ[M ]

2, 1
2

is O
(
ε6σ−1

)
= O

(
ε2
)

(since σ = 1
2) and that in ZΘ[I]

1, 1
2

is

O (ε). We resort to the high-order method ZΘ[I]
2,1 (8.16) (which we encounter in Section 8.4,

and whose accuracy is established in Figure 8.3) for generating reference solutions for

ZΘ[M ]

2, 1
2

and ZΘ[I]

1, 1
2

. This allows us to generate high accuracy reference solutions for very

small ε. At these scales, reasonable spatial discretisation of the potential is easily achieved

with M ∼ ε−1. However, anticipating that the temporal resolution of the potential would

suffer for moderately small ε (since we chose h = O (
√
ε)), we let h =

√
ε/4 so that the

scaling used for σ = 1
2 is

M ∼ ε−1, h ∼
√
ε/4.

This has the added advantage of making the exponents smaller, causing the errors to

conform to the asymptotic estimates at an earlier stage. The splitting ZΘ[I]

1, 1
2

performs

surprisingly good, as we can see in Figure 8.2, reaching O
(
ε3
)

accuracy instead of O (ε)

and even beating the higher order scheme ZΘ[M ]

2, 1
2

at times (to be fair, to some extent even

ZΘ[M ]

2, 1
2

outperforms the O
(
ε2
)

error expected out of it)!

8.3.1 Finding a reference solution

Since no analytic solution of (3.20), the semiclassical Schrödinger equation with time-

dependent potentials, is available, reference solutions must also be obtained via a numer-

ical approach. Unlike Section 6.10.1, we obtain the reference solutions for our numerical

experiments by resorting to the exponential midpoint rule (3.25) where we freeze the

potential in the middle of the interval followed by a Strang splitting,

u1
R = e

1
2

iεhRK2
e−iε−1hRDV (hR/2) e

1
2

iεhRK2
u0
R.

We make this choice because directly exponentiating a Hamiltonian (via MATLAB’s expm)

with potential frozen at the middle of the interval is more expensive but no more accurate

than the above Strang splitting—freezing the potential already leads to an error which is

of the same order as the error of the Strang splitting.

Since such a splitting is also the lowest order in the Magnus–Zassenhaus family of

schemes (following our notation, this splitting is ZΘ[I]
0,σ or, equivalently, ZΘ[M ]

0,σ ), we require

very small times steps for convergence—certainly hR � h is required for the reference

solution to possess an error smaller than the splittings ZΘ[I]
1,1 and ZΘ[M ]

2,1 whose error

behaviour we are attempting to verify.

Another factor we must take into account is the growth of oscillations with decreasing ε.

To capture this, we take a larger constant of proportionality while selecting MR = O
(
ε−1
)

degrees of freedom for spatial discretisation while computing the reference solution. The

error in the reference solution is estimated by generating another reference solution with

finer spatio-temporal resolution, to which the candidate reference solution is compared. A
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reference solution is only accepted when this difference is much smaller than the error of

the schemes to be compared.

Using such a low order method for generating reference solutions to a high degree

of accuracy means generating reference solutions is orders of magnitude slower than the

splittings ZΘ[I]
1,1 and ZΘ[M ]

2,1 requiring validation. The exorbitant cost of reference solutions

is what restricts experimental study of numerical errors to moderate values of ε for σ = 1.

A similar method is utilised for establishing the accuracy of the scheme ZΘ[I]
2,1 , which is

encountered in the following section.

Having established the accuracy of the Magnus–Zassenhaus schemes under σ = 1

using this brute force method, we resort to ZΘ[I]
2,1 for generating reference solutions for the

σ = 1
2 case. There are a couple of reasons for this—firstly, the midpoint rule is the lowest

order Magnus–Zassenhaus method ZΘ[I]
0,σ with a local accuracy of O

(
ε3σ−1

)
and a global

accuracy of O
(
ε2σ−1

)
, which is O (1) for σ = 1

2 and O (ε) for σ = 1, forcing us to choose

σ = 1 for reference solutions; secondly, the high accuracy of ZΘ[I]
2,1 allows us to approach

much smaller values of ε than would be practical via the midpoint rule, which has a very

low accuracy even for σ = 1.

8.4 High order schemes with undiscretised integrals

Arbitrarily high-order Magnus–Zassenhaus splittings for the Schrödinger equation with

time-dependent potential (3.21) while keeping the integrals intact can be obtained by

starting from a correspondingly high-order integral-preserving Magnus expansion. For a

Zassenhaus splitting featuring an error of O
(
ε7σ−1

)
, for instance, we need to consider

the Magnus expansion Θ̃
ε[I]
5 which is derived by simplifying trees in Θ5 and discarding all

O
(
ε7σ−1

)
terms,

Θ̃
ε[I]
5 (h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1µ0,0(h)−

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1 +

O(ε4σ−1)︷ ︸︸ ︷
iε−1Λ [φ]1,1(h) + 2iε

〈
∂2
xµ2,1(h)

〉
2

+

O(ε4σ−1)︷ ︸︸ ︷
1
6

〈
Λ [ψ1]1,2(h) + Λ [ψ2]2,1(h)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
1
6

〈
Λ [θ1]1,2(h) + Λ [θ2]2,1(h)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
4
3ε

2
〈
∂3
xµ3,1(h)

〉
3

+

O(ε4σ+1)︷ ︸︸ ︷
1
4 iε∂4

xµ2,1(h) = Θ(h) +O
(
ε7σ−1

)
, (8.5)
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where

ψ1(h, ζ, ξ) = h2 − 4hξ + 2ζξ, (8.6)

ψ2(h, ζ, ξ) = (h− 2ζ)2 − 2ζξ,

θ1(h, ζ, ξ) = h2 − 6hζ + 6hξ + 6ζξ + 3ζ2 − 12ξ2,

θ2(h, ζ, ξ) = h2 − 6hζ + 6hξ − 6ζξ + 5ζ2.

Integrals of θj vanish over the triangle,

ˆ h

0

ˆ ζ

0
θj(h, ζ, ξ) dξ dζ = 0, j = 1, 2, (8.7)

lending an extra power of h to the functionals where θjs appear. No similar observation

about ψjs can be made and, although similar in many regards, functionals featuring them

ought not be combined with the corresponding ones featuring θjs by this stage.

When we commence the Zassenhaus splitting procedure from the truncated Magnus

expansion Θ̃
ε[I]
5 featuring terms of sizes O

(
εkσ−1

)
, k = 1, 3, 4, 5, the resulting exponential

splitting will continue to feature terms of all these sizes. The expansion Θ̃
ε[I]
7 will feature

O
(
εkσ−1

)
terms with k = 1, 3, 4, 5, 6, 7, and its Zassenhaus expansion retains such terms.

This is suboptimal—the time-symmetric nature of the power-truncated Magnus expansion

Θp implies that it should be possible to expand Θ
ε[I]
p (h) and, therefore, Θ̃

ε[I]
p (h) solely in

odd powers of h for any choice of the potential, V .

A Zassenhaus splitting commencing from an odd-powered expansion will never intro-

duce even powers of h since underlying the procedure is a recursive application of the

symmetric BCH which features only odd-grade commutators. The objective of this sec-

tion is to develop such a Magnus–Zassenhaus scheme while preserving integrals in their

undiscretised forms. This splitting will not feature O
(
ε2kσ−1

)
terms, reducing the number

of exponentials that need to be evaluated in the splitting.

8.4.1 Revisiting time symmetry

To examine the time symmetry of the Magnus expansion, we revisit (2.48),

u(t+ h) = eΘ(t+h,t)u(t), (2.48)

where the exponential, exp(Θ(t + h, t)), is the evolution operator from t to t + h. As we

had remarked earlier, Θ(t+h, t) can be easily recovered from Θ(h, 0) (shortened to Θ(h))

by substituting all occurrences of A(ζ) with A(t+ ζ).

We define t1/2 = t+h/2 as the midpoint of the interval [t, t+h] and rewrite (2.48) as

u(t1/2 + h
2 ) = eΘ(t1/2+h

2
,t1/2−h2 )u(t1/2 − h

2 ). (8.8)
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Since Θ(t1/2− h
2 , t1/2+ h

2 ) is the evolution operator from t1/2+ h
2 to t1/2− h

2 (going backward

in time by length h), we also have

u(t1/2 − h
2 ) = eΘ(t1/2−h2 ,t1/2+h

2
)u(t1/2 + h

2 ). (8.9)

Combining the two, we find that Θ(t1/2 − h
2 , t1/2 + h

2 ) = −Θ(t1/2 + h
2 , t1/2 −

h
2 ), so that Θ

is odd in h around the midpoint t1/2. Similarly, the power-truncated Magnus expansions

Θ
ε[I]
p (t1/2 + h

2 , t1/2 −
h
2 ) are also odd in h around t1/2 due to their time symmetry (Iserles

et al. 2001). If we expand Θ
ε[I]
p in powers of h around t1/2, therefore, we should only get

odd powers of h.

The expansion Θ
ε[I]
p (t1/2 + h

2 , t1/2−
h
2 ) = Θ

ε[I]
p (t+h, t) can be obtained from Θ

ε[I]
p (h) =

Θ
ε[I]
p (h, 0) by substituting all occurrences of V (ζ) by V (t1/2 − h

2 + ζ). Keeping the odd

nature of the expansion about t1/2 in mind, we shift the origin to t1/2 by defining

U(ζ) = V (t1/2 + ζ),

whereby we need to substitute V (ζ) with U(ζ − h
2 ). To arrive at the desired expansion of

Θ
ε[I]
p (t+ h, t), therefore, we only need to substitute occurrences of µj,k(h) and Λ [f ]a,b(h)

with the new definitions,

µj,k(h) =

ˆ h

0
B̃k
j (h, ζ)U

(
ζ − h

2

)
dζ, (8.10)

Λ [f ]a,b(h) =

ˆ h

0

ˆ ζ

0
f(h, ζ, ξ)

[
∂axU

(
ζ − h

2

)
∂bxU

(
ξ − h

2

)]
dξ dζ. (8.11)

Since we have shifted the origin to t1/2, all odd and even components are to be understood

with respect to 0 from this point onwards. This makes identification of the odd components

of the Magnus expansion simpler, assuming that the odd and even components of U can

be found.

8.4.2 Identifying odd and even components

A multivariate function F is said to be odd if F (−ζ) = −F (ζ) and even if F (−ζ) = F (ζ).

The odd and even components, F o and F e, of a multivariate function F are defined as

F o(ζ) = 1
2 (F (ζ)− F (−ζ))

and

F e(ζ) = 1
2 (F (ζ) + F (−ζ)) ,
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respectively. It follows that the odd and even components of a product of two multivariate

functions are

(F (ζ)G(ζ))o = F e(ζ)Go(ζ) + F o(ζ)Ge(ζ)

and

(F (ζ)G(ζ))e = F e(ζ)Ge(ζ) + F o(ζ)Go(ζ),

respectively. We stress that the odd-ness or even-ness of a multivariate function is con-

sidered with respect to all its parameters and therefore changes with context. In the

integration identities, (ˆ s

0
F (r, ζ) dr

)o
=

ˆ s

0
F e(r, ζ) dr, (8.12)

and (ˆ s

0
F (r, ζ) dr

)e
=

ˆ s

0
F o(r, ζ) dr, (8.13)

for instance, these are with respect to (s, ζ) on the left hand side but with respect to (r, ζ)

on the right hand side.

Extending the new definitions of µ and Λ (8.10, 8.11), we define

µ?,j,k(h) =

ˆ h

0
B̃k
j (h, ζ)U?

(
ζ − h

2

)
dζ, ? ∈ {e, o}, (8.14)

and

Λ [f ]?,a,b(h) =

ˆ h

0

ˆ ζ

0
f(h, ζ, ξ)

[
∂axU

(
ζ − h

2

)
∂bxU

(
ξ − h

2

)]?
dξ dζ, ? ∈ {e, o}.

(8.15)

The even and odd components of previously defined terms µj,k(h) and Λ [f ]a,b(h) can be

expressed in terms of these new definitions. It should be obvious that B̃j(h, ζ) is odd in

(h, ζ) for odd values of j and even for even values. Consequently,

(µj,k(h))o =

ˆ h

0

(
B̃k
j (h, ζ)U

(
ζ − h

2

))e
dζ

=

ˆ h

0

(
B̃k
j (h, ζ)

)e
U e
(
ζ − h

2

)
+
(
B̃k
j (h, ζ)

)o
Uo
(
ζ − h

2

)
dζ

=


µe,j,k(h) if jk is even,

µo,j,k(h) if jk is odd.

In particular, µ0,0(h)o = µe,0,0(h) =
´ h

0 U
e
(
ζ − h

2

)
dζ. Note carefully the difference of
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usage in subscript and superscript. The odd part of Λ [f ]a,b(h) is

(
Λ [f ]a,b(h)

)o
=

ˆ h

0

ˆ ζ

0

{
f(h, ζ, ξ)

[
∂axU

(
ζ − h

2

)
∂bxU

(
ξ − h

2

)]}o
dξ dζ

=

ˆ h

0

ˆ ζ

0
fo(h, ζ, ξ)

[
∂axU

(
ζ − h

2

)
∂bxU

(
ξ − h

2

)]e
dξ dζ

+

ˆ h

0

ˆ ζ

0
fe(h, ζ, ξ)

[
∂axU

(
ζ − h

2

)
∂bxU

(
ξ − h

2

)]o
dξ dζ

= Λ [fo]e,a,b(h) + Λ [fe]o,a,b(h).

For an odd function such as φ(h, ζ, ξ) = ζ − ξ − h
3 , this reduces to(

Λ [φ]a,b(h)
)o

= Λ [φ]e,a,b(h).

The even parts µj,k(h)e and Λ [f ]a,b(h)e can be deduced analogously.

8.4.3 Time-symmetrised rewriting

The time symmetry of power truncated Magnus expansions ensures that Θε
p(h) and Θ̃ε

p(h)

are odd around the origin so that the even part Θ̃ε
p(h)e vanishes, leaving Θ̃ε

p(h) = Θ̃ε
p(h)o.

Even terms in the Magnus expansion may, therefore, be discarded without further analysis.

For instance, we conclude that

Θ̃
ε[I]
4 (h) = ihε∂2

x − iε−1 (µ0,0(h))o − 2 〈∂x (µ1,1(h))o〉1
+ iε−1

(
Λ [φ]1,1(h)

)o
+ 2iε

〈
∂2
x (µ2,1(h))o

〉
2

= ihε∂2
x − iε−1µe,0,0(h)− 2 〈∂xµo,1,1(h)〉1

+ iε−1Λ [φ]e,1,1(h) + 2iε
〈
∂2
xµe,2,1(h)

〉
2
.

For an analytic potential,

U

(
ζ − h

2

)
=
∞∑
k=0

U (k)(0)

k!

(
ζ − h

2

)k
,

we expect a gain of a single power of h in µj,1(h) which, instead of being O
(
hj+1

)
, as

might be expected otherwise, turns out to be O
(
hj+2

)
since

´ h
0 Bj(h, ζ)U(0) dζ vanishes.

In the case of µe,j,1(h) where we take the even part of the potential U at ζ − h
2 , this

translates into a gain of two powers of h since the smallest non-vanishing term is

1

2

ˆ h

0
Bj(h, ζ)U (2)(0)

(
ζ − h

2

)2

dζ.
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Consequently, the term 2iε
〈
∂2
xµe,2,1(h)

〉
2

is O
(
ε5σ−1

)
in contrast to the O

(
ε4σ−1

)
term

2iε
〈
∂2
xµ2,1(h)

〉
2

which appears in (7.34). This gain of power arises from discarding the even

part 2iε
〈
∂2
xµo,2,1(h)

〉
2

from the full term. Similar analysis shows that iε−1Λ [φ]e,1,1(h) is

also O
(
ε5σ−1

)
since the integral of φ over the triangle vanishes. We may, therefore, discard

this term from the expansion Θ̃
ε[I]
4 .

Note: After discarding the even terms and the O
(
ε5σ−1

)
odd terms, Θ̃

ε[I]
4 and Θ̃

ε[I]
3

become identical. This is not entirely surprising since both feature an O
(
ε5σ−1

)
error.

The full power of this approach becomes evident when working on higher-order expan-

sions such as Θ̃
ε[I]
5 (h),

Θ̃
ε[I]
5 (h)o =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x − iε−1µe,0,0(h)−

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµo,1,1(h)〉1

+

O(ε5σ−1)︷ ︸︸ ︷
iε−1Λ [φ]e,1,1(h) + 2iε

〈
∂2
xµe,2,1(h)

〉
2

+

O(ε5σ−1)︷ ︸︸ ︷
1
6

〈
Λ [ψ1 + θ1]o,1,2(h) + Λ [ψ2 + θ2]o,2,1(h)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
4
3ε

2
〈
∂3
xµo,3,1(h)

〉
3

+

O(ε5σ+1)︷ ︸︸ ︷
1
4 iε∂4

xµe,2,1(h) = Θ(h) +O
(
ε7σ−1

)
.

In this way, we are able to eradicate all O
(
ε4σ−1

)
terms, which correspond to even powers

of h. Since ϕj = ψj + θj , j = 1, 2, are even,
(

Λ [ϕj ]a,b(h)
)o

= Λ [ϕj ]o,a,b(h). We also

note that Λ [f ]o,a,b(h) and µo,j,k(h) gain an extra power of h since the odd part of the

function V does not feature a constant term, V o(0) = 0. The term iε∂4
xµe,2,1(h), which

is O
(
ε5σ+1

)
, can now be discarded since σ ≤ 1. This process allows us to use half the

number of terms for the same degree of accuracy.

8.4.4 Zassenhaus splitting after time-symmetrisation

A Zassenhaus splitting commencing from this Magnus expansion naturally yields an ex-

ponential splitting featuring only O
(
εσ−1

)
, O

(
ε3σ−1

)
and O

(
ε5σ−1

)
terms,

ZΘ[I]
2,σ = e

1
2
W [0]

e
1
2
W [1]

e
1
2
W [2]

eW
[3]

e
1
2
W [2]

e
1
2
W [1]

e
1
2
W [0]

= exp
(

Θ̃
ε[I]
5 (h)

)
+O

(
ε7σ−1

)
, (8.16)
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where

W [0] = ihε∂2
x = O

(
εσ−1

)
,

W [1] = −iε−1µe,0,0(h) = O
(
εσ−1

)
,

W [2] = 1
6 ihε−1 (∂xµe,0,0(h))2 − 2 〈∂xµo,1,1(h)〉1 + 1

6 ih2ε
〈
∂2
xµe,0,0(h)

〉
2

= O
(
ε3σ−1

)
,

W [3] = iε−1Λ [φ]e,1,1(h)− 1
24 ih2ε

(
∂4
xµe,0,0(h)

)
− 1

6 iε−1 (∂xµe,0,0(h))2 (∂2
xµe,2,1(h)

)
− 2

45 ih2ε−1 (∂xµe,0,0(h))2 (∂2
xµe,0,0(h)

)
+ 1

6

〈
Λ [ϕ1]o,1,2(h) + Λ [ϕ2]o,2,1(h)

〉
1

− h
〈
(∂xµe,0,0(h))

(
∂2
xµo,1,1(h)

)
− 1

3

(
∂2
xµe,0,0(h)

)
(∂xµo,1,1(h))

〉
1

+ 1
30 ih3ε

〈(
∂2
xµe,0,0(h)

)2 − 2 (∂xµe,0,0(h))
(
∂3
xµe,0,0(h)

)〉
2

+ 2iε
〈
∂2
xµe,2,1(h)

〉
2

+ 4
3ε

2
〈
∂3
xµo,3,1(h)

〉
3

+ 1
3h

2ε2
〈
∂3
xµo,1,1(h)

〉
3
− 1

120 ih4ε3
〈
∂4
xµe,0,0(h)

〉
4

= O
(
ε5σ−1

)
,

where ϕj = ψj + θj , j = 1, 2. The term 1
24 ih2ε

(
∂4
xµe,0,0(h)

)
in W [3] is O

(
ε3σ+1

)
. For

1/2 < σ ≤ 1, this term can be bundled with the O
(
ε5σ−1

)
terms in W [3], whereas for

σ ≤ 1/2 it can be ignored since it is smaller than O
(
ε7σ−1

)
. We remind the reader that

the splitting is computationally effective for 1/3 < σ ≤ 1.

This scheme requires the evaluation of five line integrals,

µe,0,0(h) =

ˆ h

0
U e
(
ζ − h

2

)
dζ,

µo,1,1(h) =

ˆ h

0

(
ζ − h

2

)
Uo
(
ζ − h

2

)
dζ,

µe,1,2(h) =

ˆ h

0

(
ζ − h

2

)2
U e
(
ζ − h

2

)
dζ,

µe,2,1(h) =

ˆ h

0

(
ζ2 − hζ + 1

6h
2
)
U e
(
ζ − h

2

)
dζ,

µo,3,1(h) =

ˆ h

0

(
ζ3 − 3

2hζ
2 + 1

2h
2ζ
)
Uo
(
ζ − h

2

)
dζ,

and three integrals over the triangle,

ˆ h

0

ˆ ζ

0
φ(h, ζ, ξ)

[
∂xU

(
ζ − h

2

)
∂xU

(
ξ − h

2

)]e
dξ dζ,

ˆ h

0

ˆ ζ

0
ϕ1(h, ζ, ξ)

[
∂xU

(
ζ − h

2

)
∂2
xU

(
ξ − h

2

)]o
dξ dζ,

ˆ h

0

ˆ ζ

0
ϕ2(h, ζ, ξ)

[
∂2
xU

(
ζ − h

2

)
∂xU

(
ξ − h

2

)]o
dξ dζ,

once per time step. If analytic expressions are not available, it is possible to approximate

these through Gauss–Legendre quadrature. For the O
(
ε7σ−1

)
splitting here, we require
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merely three Gauss–Legendre knots tk = h(1 + k
√

3/5)/2, k = −1, 0, 1, with weights

wk = 5
18h,

4
9h,

5
18h (Davis & Rabinowitz 1984), respectively, for the O

(
h7
)

accuracy which

is required of the quadrature.

Note: In Section 2.3.5 we noted that, in the context of power-truncated Magnus expan-

sions, a quadrature method which usually has an accuracy of O
(
h2n
)

gains an

order of accuracy, becoming O
(
h2n+1

)
. This was due to time-symmetry and odd

nature of such Magnus expansions, where all even terms in the Taylor series, in-

cluding error terms, vanish. Thus three Gauss–Legendre knots result in a O
(
h7
)

method in our case.

Evaluation for the integrals over the line, µ?,j,k(h), follows directly using these quadra-

ture knots. Integrals over the triangle are also easily evaluated using the same three knots

by substituting U with its interpolating polynomial (see Section 2.3.5).

8.4.5 Numerical results

10−2.5 10−2 10−1.5
10−8

10−5

10−2

101

ε

ZΘ[I]
2,1

O
(
ε5
)

10−4 10−3 10−2
10−9

10−6

10−3

100

ε

ZΘ[I]

2,1/2

O
(
ε3
)

Figure 8.3: Global `2 errors for Example 8.3.1 at T = 0.75 using ZΘ[I]
2,σ (8.16) under for

σ = 1 (left) and σ = 1
2 (right).

Under the scaling σ = 1, the accuracy of the ZΘ[I]
2,σ scheme isO

(
ε6
)

and we require three

and two Lanczos iterations, respectively, for exponentiating W [2] and W [3]. The global `2

error is seen to be better than O
(
ε5
)

through numerical experiments—in Figure 8.3 we use

the same setup and scaling choices as elaborated in Section 8.3 for Example 8.3.1. Once

again, for σ = 1
2 , where the error is expected to be O

(
ε2
)
, we use ZΘ[I]

2,1 for generating

reference solutions. This allows us to generate reference solutions for very small ε. In

Figure 8.3, we find that ZΘ[I]
2,1/2 outperforms the O

(
ε2
)

error expected out of it, and is

closer to O
(
ε3
)

error.
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Example 8.4.1. Consider the evolution of the wave-packet

u0(x) =
√

10(δπ)−1/4 exp

(
−(x− x0)2

2δ

)
, x0 = −0.3, δ = 10−3, (8.17)

sitting in the double-well potential

V0 = 450x4 − 100x2 + 1. (8.18)

Figure 8.4 shows that the wave-packet u(T ) at T = 0.1, evolving under the influence of

the time-independent double-well potential V0 alone, does not leave the left well (note that

the Magnus–Zassenhaus schemes do not restrict us to T = 0.1 in any way—rather, this is

a choice that suffices to demonstrate the control in this particular experimental setup and

experimental results on numerical accuracy in Figure 8.5 are obtained for T = 1).
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Figure 8.4: Initial wave-packet u(0) = u0 (left), final wave-packets at time T = 0.1
(right): u(T ) under the influence of V0 alone and uL(T ) under the influence of VL(x, t) =
V0(x) + L100(x, t) in Experiment 8.4.1. For ease of illustration we depict the potential
scaled down by a factor of five. The intermediate stages of uL at T/4 and T/2 are shown
in the bottom row (zoomed in for clarity).
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When we excite the wave-packet with the time-dependent potential,

Lω(x, t) = −2ρ̂(30t− 1) sin((x− 5t)πω), (8.19)

we find that we are able to induce part of the wave-packet to move to the second well.

Figure 8.4 shows the final wave-packet uL(T ) under the influence of the potential VL(x, t) =

V0 + L100(x, t).

Here the semiclassical parameter is taken to be ε = 0.01 and ρ̂(t) = expbump(t) is the

bump function (2.18),

ρ̂(t) =

exp
(
− 1

1−t2

)
for |t| < 1,

0 otherwise,

0 0.025 0.05 0.075 0.1
0

0.1

0.2

0.3

0.4

t

ρ̂
(3

0t
−

1)

which acts as a smooth envelope simulating the switching on and off of the time-dependent

component of the potential.
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Figure 8.5: Global `2 errors for Example 8.4.1 at T = 1 using ZΘ[I]
2,1 (8.16), ZΘ[M ]

1,1 (8.1)

and ZΘ[I]
1,1 (8.2).

Although neither the wave-function nor the potential is periodic, we impose periodic

boundary conditions at x = ±1 in order to resolve spatial oscillations with spectral accu-
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racy and restrict the domain to [−1, 1]. Reasonable results are obtained even though the

initial conditions are not periodic since the potential is a confining potential.

The errors for Example 8.4.1 are presented in Figure 8.5. These are the global errors

in u(x, T ) where T = 1 is the final time. The precise scaling used in our numerical

experiments is

M ∼ 2ε−1, h ∼ ε/4.

Note that the potential function used out here is particularly tricky on two counts—firstly,

V0 is very large; secondly, and more worryingly, the time varying component L100 has high

oscillations in both space and time. In space, L100 has 100 oscillations, whereas in time

it has 500. Thus, we require h to be sufficiently small in order to resolve the temporal

behaviour of L100 correctly. This becomes particularly troublesome in the case of σ = 1
2—

even though it is likely that for ε → 0 the asymptotic accuracy does show up, h =
√
ε

would mean that we would need to wait for ε ∼ 10−6 before the temporal behaviour of

the potential is correctly resolved, which is the very least we require.

As we have seen repeatedly—in Chapter 6 and here again—the asymptotic estimates

only tell half the story and for moderately small values of ε, as well as moderately small

values of h caused by small σ, correct spatio-temporal discretisation of the potential as

well as the magnitude of the potential and its derivatives needs to be taken into account

since these can play a role in making exponents of the splitting as well as errors large in

practice.

8.5 Costs of Magnus–Zassenhaus schemes

In Section 8.4 we demonstrate that, even while preserving integrals, we can derive Magnus–

Zassenhaus schemes where O
(
ε2kσ−1

)
terms do not appear. Consequently, these schemes

look structurally identical to the Zassenhaus splitting for time-indepdendent Hamiltonians.

The O
(
ε(2n+3)σ−1

)
Magnus–Zassenhaus scheme is

ZΘ[?]
n,σ = e

1
2
W [0] · · · e

1
2
W [n]

eW
[n+1]

e
1
2
W [n] · · · e

1
2
W [0]

,

for ? ∈M, I, where each W [k] = O
(
ε(2k−1)σ−1

)
, k ≥ 2, is of the form

W [k] =
2k−2∑
j=0

ij+1 〈fj〉j ,

following the narrative of Theorem 6.7.1. Evaluating W [k]u requires 2×(2k−2)+2 = 4k−2

FFTs. Unlike the case of Zassenhaus splittings, here we find odd-indexed terms such as

〈f1〉1 appearing and the cost is slightly higher, as a consequence. Consequently, ZΘ[?]
n,σ
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requires

C̃σ(n) = 2 + (4(n+ 1)− 2)

⌈
(2n+ 3)σ − 1

(2n+ 1)σ − 1

⌉
+ 2

n∑
k=2

(4k − 2)

⌈
(2n+ 3)σ − 1

(2k − 1)σ − 1

⌉
(8.20)

FFTs.

We recall from Section 7.4 that a comparable Yoshida splitting requires Ỹ (n) = (8n2 +

8n + 4) × 3n FFTs for the Magnus expansions simplified in H. The cost of Yoshida

splittings for Magnus expansions of Section 3.4.1 which feature commutators of matrices

is even higher since high grade commutators are extremely expensive to exponentiate (even

via Lanczos iterations).

As we see in Figure 8.6, the costs of Yoshida splittings are found to be universally

higher here than the cost of Magnus–Zassenhaus schemes—even for low and moderately

high-order accuracies.
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Figure 8.6: Number of FFTs in the Magnus–Zassenhauss splitting ZΘ[?]
n,σ for σ =

2/5, 3/5, 4/5, 1, compared to the Ỹ (n) = (8n2 + 8n + 4) × 3n FFTs required for a com-
parable Yoshida splitting. Here, even for small n ≤ 3, the number of FFTs for Yoshida

splittings is higher than for ZΘ[?]
n,σ .

Note: We noted in Section 6.7 that Yoshida splittings are not the most efficient and

optimised of high order splittings in existence. On the other hand, no splittings

for time-dependent potentials along the lines of the highly optimised splittings of

(Blanes et al. 2008) were known to the author at the time of writing. Thus, the

choice of Yoshida splittings as a reference seems reasonable.
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Chapter 9

Formal error analysis

In the entire discourse preceding this chapter, we have designed symmetric Zassenhaus

splittings and truncated Magnus expansions of undiscretised operators while assuming

∂nx = O (ε−n) and 〈f〉n = O (ε−n). This has allowed us to separate terms by powers of ε

and to estimate the error of our schemes as well as the cost.

The scaling ∂nx = O (ε−n) is argued by noting that the O (ε) wavelength oscillations in

the wave function force us to take M = O
(
ε−1
)

grid points, whereby ∂nx is replaced by Kn

upon discretisation, which scales as O (Mn) = O (ε−n). However, this approach indicates

that the analysis of size of terms as well as the error is only valid upon discretisation.

This is a cause for concern since it is crucial for the design of our methods, such as the

Magnus–Zassenhaus schemes, that we work with undiscretised operators till the very last

stage. The jump to the analysis of the undiscretised case is far from trivial, however, and

will form the gist of this chapter.

In this chapter we attempt to put the analysis employed in the rest of this thesis

on firm theoretical grounds. A common ingredient is the highly oscillatory behaviour of

the wave function, proven in Section 9.1 and Section 9.2 via conservation of energy. A

reader comfortable with these assumptions might prefer to jump directly to Section 9.3

after consulting Section 9.1.4 and Section 9.1.5 which give a more formal sense to our

shorthand ∂nx = O (ε−n) and 〈f〉n = O (ε−n).

The observations of high oscillations noted in Section 9.1 and Section 9.2 are employed

in Section 9.3.2 to derive an error bound for truncated but undiscretised Magnus expan-

sions, following largely the approach of (Hochbruck & Lubich 2003). Error bounds for

the spatially discretised Magnus expansions then follow in a straightforward way in Sec-

tion 9.3.3 by following the analysis of (Bao et al. 2002) and (Pasciak 1980). In doing so,

we find that the degree of spatial discretisation required is somewhat higher. However,

due to ∂nx = O (ε−n) holding nevertheless as a consequence of the results in Section 9.1,

the finer spatial discretisation affects only the cost of FFTs and not the analysis of error,

which is made precise in Section 9.3.
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In addition to keeping the error analysis largely independent of spatial discretisation

considerations, the analysis presented in this chapter is carried out with the time step h

kept independent of ε throughout, except where noted explicitly. This is in contrast to the

development of methods presented earlier in this thesis and, in fact, suggests that it should

be possible to design methods along the same lines without the power laws governing the

scaling of h and M in terms of ε. However, we suspect that this might make the analysis

of cost more involved.

The error analysis for Zassenhaus splittings is presented in Section 9.4. Having been

developed earlier in this thesis and being applicable to the simpler case of time-independent

potential, it is natural to expect that the analysis for Zassenhaus splittings should be

presented first. The reason for this anomaly is that the error analysis for Zassenhaus

splittings proceeds by studying the error in truncating the sBCH series (which is used

recursively in the symmetric Zassenhaus procedure), which, in turn, can be expressed as

a Magnus expansion for the purpose of analysis. Therefore the techniques used in the

error analysis of Magnus expansions extend to the analysis of the symmetric Zassenhaus

splittings.

9.1 Highly oscillatory solutions in the semiclassical regime

Recall the highly oscillatory behaviour of solutions of the Schrödinger equation under the

semiclassical regime from (3.10),∥∥∥∂kxu(t)
∥∥∥

L2
≤ Ckε−k, k ∈ Z+, t ≥ 0, (9.1)

where Cks are independent of ε and t, along the lines of (Bao et al. 2002, Jin et al. 2011).

This growth of spatial derivatives of the wave function is evident from the numerical

example presented in Figure 3.2.

In this section we will prove that these bounds hold for the solution of the Schrödinger

equations (3.9) and (3.19) for all t if they do for the initial conditions. The proof strategy

involves noting that once the initial condition satisfies (9.1), this implies finite initial

energy under the semiclassical limit and, therefore, also the finiteness of energy for all

times due to conservation of energy. Finiteness of energy at all times, in turn, implies that

derivatives of the wave function must stay bounded by (9.1) at all times.

We will also need to assume that the potential function has bounded derivatives∥∥∥∂kxV (t)
∥∥∥ ≤ Ĉk, k ∈ Z+, t ≥ 0, (9.2)

which also have bounded variation in t,

ˆ t

0

∥∥∥∂t∂kxV (τ)
∥∥∥ dτ ≤ Ĉk, k ∈ Z+, t ≥ 0, (9.3)
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where Ĉks are once again independent of ε and t. Here the norm on derivatives of V might

be L2 or L∞. These observations will allow us to formalise the statement ∂kx = O
(
ε−k
)
.

As for the initial conditions, it should be simple to verify whether they satisfy (9.1).

For k > 1, we need to consider conservation of higher moments of the Hamiltonian. In

Section 9.2, in the case of truncated but undiscretised Magnus expansions, we will consider

the Magnus expansion as a perturbed Hamiltonian whose moments are also conserved.

Note that the proof of (9.1) in Section 9.1.1 and Section 9.1.3 does not rely on an appeal

to the non-physical nature of infinite energy under the semiclassical limits. Moreover, we

avoid the extremely complex issue of semiclassical limits of observable densities.

The author gratefully acknowledges the input of Weizhu Bao, whose insight on the

emergence of this oscillatory behaviour as a consequence of semiclassical limit of energy

forms the basis of Lemma 9.2.1. This insight has also inspired proofs of other oscillatory

behaviour considered in this chapter.

9.1.1 The first derivative in the semiclassical limit

The energy of the quantum system at time t is the expected value of the Hamiltonian,

E(t) = 〈u(t),Hu(t)〉.

In the case of the standard Hamiltonian with time-independent potential under semiclas-

sical scaling,

H = −ε2∂2
x + V (x),

the energy can be written as

E(t) = ‖ε∂xu(t)‖2L2 + 〈u(t), V u(t)〉.

Naturally, a fundamental physical property that one expects to be conserved in a closed

system is the energy. This is indeed the case. Noting that the evolution of the wavefunction

is given by

u(t) = e−itH/εu(0),

we can show that the energy is conserved,

E(t) = 〈u(t),Hu(t)〉 = 〈e−itH/εu(0),He−itH/εu(0)〉

= 〈e−itH/εu(0), e−itH/εHu(0)〉 = 〈u(0),Hu(0)〉 = E(0).

The above proof works out because H commutes with the evolution operator e−itH/ε.

Lemma 9.2.1 forms the basis of our assumption that the wave function develops os-

cillations of wavelength O (ε) in space and time under the semiclassical regime. When

considering the semiclassical limit, we will explicitly note the dependence of u,H and E
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on ε by writing uε,Hε and Eε, instead.

Lemma 9.1.1. In the semiclassical limit, ε→ 0, the spatial derivative of the wavefunction

remains bounded by inverse of the semiclassical parameter,

‖∂xuε(t)‖L2 ≤ Cε−1, t ≥ 0, (9.4)

if it is bounded at t = 0,

‖∂xuε(0)‖L2 ≤ C0ε
−1.

Here 0 < C <∞ is independent of ε and t.

Proof. Noting that

‖ε∂xuε(t)‖2L2 − ‖V ‖ ≤ Eε(t) ≤ ‖ε∂xuε(t)‖2L2 + ‖V ‖ , t ≥ 0,

and the fact that Eε(t) = Eε(0), we conclude

‖ε∂xuε(t)‖2L2 ≤ ‖ε∂xuε(0)‖2L2 + 2 ‖V ‖ .

Thus

lim
ε→0
‖ε∂xu(t)‖2L2 ≤ C2

0 + 2 ‖V ‖ ,

so that C =
√
C2

0 + 2 ‖V ‖ suffices for (9.4).

Note: Here, and later, the specific norm is often not written for functions such as V and

it can be taken as L2 or L∞ as convenient.

Note: C2 bounds from above the kinetic energy at time t. Not only does the kinetic

energy needs to be finite, but it cannot be 0 for all cases—certainly not when

interesting dynamics are involved. Thus, although the extent of oscillations will

depend from case to case, we can safely assume that O (ε) oscillations generally

appear in the solution at finite times.

Note: (9.4) is a more informal way of writing

lim
ε→0
‖ε∂xu(t)‖L2 ≤ C.

9.1.2 Time-dependent potentials

In case of the exact solution for time-dependent potentials, where the Hamiltonian is

H(t) = −ε2∂2
x + V (t, x),
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9.1. Highly oscillatory solutions in the semiclassical regime

the energy

E(t) = 〈u(t),H(t)u(t)〉 = ‖ε∂xu(t)‖2L2 + 〈u(t), V (t)u(t)〉,

is no longer conserved. However, this is completely attributable to the time-varying part

of the potential function, which is an external influence. The energy should, nevertheless,

stay finite for the exact solution and one expects the exact solution to satisfy (9.1).

Lemma 9.1.2. In the semiclassical limit, ε→ 0, the spatial derivative of the wavefunction

remains bounded by inverse of the semiclassical parameter,

‖∂xuε(t)‖L2 ≤ Cε−1, t ≥ 0, (9.5)

if it is bounded at t = 0,

‖∂xuε(0)‖L2 ≤ C0ε
−1,

so long as the variations of the time-dependent potential are bounded independently of t

(9.3). Here 0 < C <∞ is independent of ε and t.

Proof. The exact solution is obtained as a limit

uε(t) = lim
n→∞

n∏
k=1

exp(−ihε−1Hε(tk))u
ε(0),

such that h = tn+1 − tn and tn → t.

Considering finite n (and finite h), the energy

Eεk(t) = 〈uε(t),Hε(tk)u
ε(t)〉

is preserved from tk to tk+1,

Eεk(tk+1) = Eεk(tk),

since H(tk) commutes with the evolution operator. Thus

Eεk(tk)− Eεk−1(tk−1) = Eεk(tk)− Eεk−1(tk)

= 〈uε(tk), (Hε(tk)−Hε(tk−1))uε(tk)〉

= 〈uε(tk), (V (tk)− V (tk−1))uε(tk)〉 .

≤ ‖V (tk)− V (tk−1)‖ .
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Telescoping this series, we conclude

Eεn(tn)− Eε0(t0) ≤
n∑
k=1

‖V (tk)− V (tk−1)‖

≤
ˆ tn

0
‖∂tV (τ)‖ dτ,

so that under n → ∞ and tn → t, while exploiting the bounded variation of V due to

assumption (9.3),

Eε(t) ≤ Eε(0) +

ˆ t

0
‖∂tV (τ)‖ dτ ≤ Eε(0) + Ĉ0.

Now consider the limit ε→ 0,

lim
ε→0
‖ε∂xuε(t)‖2L2 ≤ lim

ε→0
‖ε∂xuε(0)‖2L2 + ‖V (0)‖ + ‖V (t)‖ + Ĉ0 ≤ C2

0 + 3Ĉ0,

so that (9.5) is satisfied with C =
√
C2

0 + 3Ĉ0.

9.1.3 Higher derivatives in the semiclassical limit

In this section we will restrict our attention to time-independent potentials. Corresponding

results for time-dependent potentials can be obtained along the lines of this section by

combining the observations of Lemma 9.1.2.

Lemma 9.1.3. In the semiclassical limit, ε → 0, higher spatial derivatives of the wave-

function remain bounded by inverse powers of the semiclassical parameter,∥∥∥∂kxuε(t)∥∥∥
L2
≤ Ckε−k, k ∈ Z+, t ≥ 0, (9.1)

if they are bounded at t = 0 and V satisfies (9.2)∥∥∥∂kxV ∥∥∥ ≤ Ĉk, k ∈ Z+,

where 0 < Ĉk <∞ and 0 < Ck <∞ are independent of ε and t.

Proof. For deriving (9.1) for higher derivatives, we note that

Eεm(t) = 〈u(t), (Hε)mu(t)〉 = 〈e−itHε/εu(0), (Hε)me−itHε/εu(0)〉

= 〈e−itHε/εu(0), e−itHε/ε(Hε)mu(0)〉 = 〈u(0), (Hε)mu(0)〉 = Eεm(0),

is also conserved since arbitrary powers of H also commute with the evolution operator.
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We will prove (9.1) for k ∈ Z+ by inducting over m. In Lemma 9.2.1, we have already

proven the m = 1 case. We first consider the case where m = 2n, assuming that (9.1)

holds for all k < 2n.

Case 1, m = 2n: The 2nth moment of the Hamiltonian can also be written as

Eε2n(t) = 〈(Hε)nu(t), (Hε)nu(t)〉.

Note that (Hε)n is a degree 2n differential operator which can be written as

(Hε)n =
2n∑
k=0

εkfk∂
k
x

by using the chain rule, where fk = O
(
ε0
)

are composed of the potential and its deriva-

tives. Thus we may write

Eε2n(t) =
2n∑
k=0

〈
εkfk∂

k
xu

ε(t), εkfk∂
k
xu

ε(t)
〉

+
2n∑

j,k=0
j 6=k

ij+k
〈
εkfk∂

k
xu

ε(t), εjfj∂
j
xu

ε(t)
〉

=
2n∑
k=0

∥∥∥εkfk∂kxuε(t)∥∥∥2

L2
+

2n∑
j,k=0
j 6=k

ij+k
〈
εkfk∂

k
xu

ε(t), εjfj∂
j
xu

ε(t)
〉
. (9.6)

The bounds we need are

2n∑
k=0

‖fk‖2
∥∥∥εk∂kxuε(t)∥∥∥2

L2
−

2n∑
j,k=0
j 6=k

‖fk‖ ‖fj‖
∥∥∥εk∂kxuε(t)∥∥∥

L2

∥∥εj∂jxuε(t)∥∥L2 ≤ Eε2n(t)

≤
2n∑
k=0

‖fk‖2
∥∥∥εk∂kxuε(t)∥∥∥2

L2
+

2n∑
j,k=0
j 6=k

‖fk‖ ‖fj‖
∥∥∥εk∂kxuε(t)∥∥∥

L2

∥∥εj∂jxuε(t)∥∥L2 . (9.7)

Our assumptions regarding uε(0) directly prove the boundedness of Eε2n(0) under ε →
0, and thus also of Eε2n(t) for all t. Here (9.2) is crucial for concluding that ‖fk‖ are

independent of ε.

If we were to assume that uε(t) satisfies (9.1) for k < 2n but doesn’t for k = 2n,

lim
ε→∞

∥∥ε2n∂2n
x uε(t)

∥∥
L2 =∞,

we immediately arrive upon a contradiction since we can show that limε→∞E
ε
2n(t) ≥ ∞

under such an assumption. Thus,

lim
ε→∞

∥∥ε2n∂2n
x uε(t)

∥∥
L2 = C̃2n(t)
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for some 0 < C̃2n(t) <∞.

Having established finiteness, we consider a time-independent bound. Consider the

limit of (9.7) under ε→ 0, rewritten in the form

‖f2n‖2
∥∥ε2n∂2n

x uε(t)
∥∥2

L2 − 2 ‖f2n‖
∥∥ε2n∂2n

x uε(t)
∥∥

L2

2n−1∑
k=0

‖fk‖
∥∥∥εk∂kxuε(t)∥∥∥

L2

≤ Eε2n(0)−
2n−1∑
k=0

‖fk‖2
∥∥∥εk∂kxuε(t)∥∥∥2

L2
+

2n−1∑
j,k=0
j 6=k

‖fk‖ ‖fj‖
∥∥∥εk∂kxuε(t)∥∥∥

L2

∥∥εj∂jxuε(t)∥∥L2 .

This can be written in the quadratic form

ay(ε)2 − by(ε)− c ≤ 0,

where

y(ε) =
∥∥ε2n∂2n

x uε(t)
∥∥

L2 ,

and the coefficients are

a = ‖f2n‖2 ,

b = 2 ‖f2n‖
2n−1∑
k=0

‖fk‖
∥∥∥εk∂kxuε(t)∥∥∥

L2
,

c = Eε2n(0)−
2n−1∑
k=0

‖fk‖2
∥∥∥εk∂kxuε(t)∥∥∥2

L2
+

2n−1∑
j,k=0
j 6=k

‖fk‖ ‖fj‖
∥∥∥εk∂kxuε(t)∥∥∥

L2

∥∥εj∂jxuε(t)∥∥L2 .

The bounds on y(ε) are

b−
√
b2 + 4ac

2a
≤ y(ε) ≤ b+

√
b2 + 4ac

2a
.

We know that in the limit ε→ 0,

a = ‖f2n‖2 ,

b ≤ 2 ‖f2n‖
2n−1∑
k=0

‖fk‖Ck =: b0,

c ≤ Eε2n(0) +
2n−1∑
j,k=0
j 6=k

‖fk‖ ‖fj‖CjCk =: c0,

so that y(ε) =
∥∥ε2n∂2n

x uε(t)
∥∥

L2 = C2n(t) can be bounded from above by the constant

b0+
√
b20+4ac0
2a which is independent of t.
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Case 2, m = 2n+1: The case of m = 2n + 1 follows analogously. As before, we

assume that (9.1) holds for all k < m. The mth moment of the Hamiltonian can be written

as

Eε2n+1(t) = 〈(Hε)n+1u(t), (Hε)nu(t)〉.

Note that (Hε)n+1 is a degree 2n+ 2 differential operator which can be written as

(Hε)n+1 =
2n+2∑
k=0

εkgk∂
k
x

by using the chain rule, where gk = O
(
ε0
)

are composed of the potential and its derivatives

and will be different from fks. In this case we again feature three terms. The first of these

is
2n∑
k=0

2n∑
j=0

〈
εkgk∂

k
xu

ε(t), εjfj∂
j
xu

ε(t)
〉
,

which can be bounded in the straightforward way and behaves like the constant term in

the quadratic form. The second term is of the form

2n∑
j=0

〈
ε2n+1g2n+1∂

2n+1
x uε(t), εjfj∂

j
xu

ε(t)
〉
,

which is a ‘linear’ term (in terms of the 2n+ 1th derivative) and the third is

2n∑
j=0

〈
ε2n+2g2n+2∂

2n+2
x uε(t), εjfj∂

j
xu

ε(t)
〉
,

which can be rewritten as

〈
ε2n+2g2n+2∂

2n+2
x uε(t), εjfj∂

j
xu

ε(t)
〉

=
〈
ε2n+1∂2n+1

x uε(t), ε∂x
(
g2n+2ε

jfj∂
j
xu

ε(t)
)〉

=
〈
ε2n+1∂2n+1

x uε(t), g2n+2ε
j+1fj∂

j+1
x uε(t)

〉
+
〈
ε2n+1∂2n+1

x uε(t), (∂xg2n+2)εj+1fj∂
j
xu

ε(t)
〉
.

The case of j = 2n provides us the ‘quadratic’ growth (in terms of the 2n+1th derivative),

while the other cases give us ‘linear’ growth. The rest of the proof for the m = 2n+ 1 case

follows along the same lines as the m = 2n case.

Note: Here, and later, the specific norm is often not written for functions such as fk and

it can be taken as L2 or L∞ as convenient.
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9.1.4 Size of symmetrised differential operators

Recall that we use the big-O notation to write

f(ε) = O (g(ε))

if there exists a C > 0 and ε0 > 0 such that

f(ε) ≤ Cg(ε), ∀ε < ε0.

Thus, another way of writing (9.1) is

∂kxu
ε(t) = O

(
ε−k
)
,

where the size is considered in context of ‖·‖L2 . This also gives rise to our shorthand,

∂kx = O
(
ε−k
)
,

which should be understood with the additional caveat that ∂kx acts solely on solutions of

the Schrödinger equation in the semiclassical regime that satisfy (9.1).

Since 〈f〉k = 1
2(f ◦ ∂kx + ∂kx ◦ f), applying the chain rule brings us to the form

〈f〉k = f∂kx + 1
2

k−1∑
j=0

(
k

j

)
(∂k−jx f)∂jx.

Lemma 9.1.4. The bounds

lim
ε→0

∥∥∥εk∂kxuε∥∥∥
L2
≤ Ck, k = 0, . . . , n,

where 0 < Ck <∞ are independent of ε, are equivalent to

lim
ε→0

∥∥∥εk 〈f〉k uε∥∥∥
L2
≤ Ck ‖f‖ , k = 0, . . . , n, f ∈ Cn(R), (9.8)

so long as f obeys (9.2) ∥∥∥∂kxf∥∥∥ ≤ Ĉk, k ∈ Z+,

where 0 < Ĉk <∞ are independent of ε.
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9.1. Highly oscillatory solutions in the semiclassical regime

Proof. This is due to the bound,

‖f‖
∥∥∥εk∂kxu∥∥∥

L2
− 1

2

k−1∑
j=0

εk−j
(
k

j

)∥∥∥∂k−jx f
∥∥∥ ∥∥εj∂jxu∥∥L2 ≤

∥∥∥εk 〈f〉k u∥∥∥
L2

≤ ‖f‖
∥∥∥εk∂kxu∥∥∥

L2
+ 1

2

k−1∑
j=0

εk−j
(
k

j

)∥∥∥∂k−jx f
∥∥∥ ∥∥εj∂jxu∥∥L2 ,

where the terms in the sum are O (ε) or smaller (since j ≤ k − 1 and derivatives of f

are independent of ε due to the assumptions) and become inconsequential under the limit

ε→ 0, proving (9.8). In the other direction, noting 〈1〉k = ∂kx , we conclude that (9.1) is a

special case of (9.8).

Note: This justifies our shorthand 〈f〉k = O
(
ε−k
)
—again with the caveat that this dif-

ferential operator acts on solutions of the Schrödinger equation in the semiclassical

regime which satisfy (9.1) and f satisfies (9.2).

9.1.5 Size of commutators

In this section we formally restate Lemma 6.6.1 and its corollary

‖[A(τk), [. . . , [A(τ1),A(τ0)] . . .]‖2 = O
(
ε−1
)
, τi ∈ [0, T ], i = 0, . . . , k, k ∈ Z+, (3.26)

where A(t) = iε∂2
x − iε−1V (t).

Lemma 9.1.5. If uε satisfies (9.1) and V (t) satisfies (9.2), then for every grade n com-

mutator Ln with letters Bj ∈ {ε∂2
x, ε

−1V (t)}, j = 1, . . . , n,

lim
ε→0
‖εLn(B1, . . . , Bn)uε‖L2 ≤ C, n ∈ Z+, (9.9)

where 0 ≤ C <∞ is independent of ε and t.

Proof. Consider a grade n commutator L̃n of 〈1〉2 and 〈V 〉0, featuring k occurrences of

the letter 〈1〉2 and n − k occurrences of 〈V 〉0. Since 〈1〉2 ∈ G2 and 〈V 〉0 ∈ G0, using

Corollary 5.3.5,

ht(L̃n) ≤ 2k − n+ 1.

That is, the highest symmetrised differential operator is of the form 〈g〉2k−n−1 (at most),

i.e. Ln can be written as

L̃n =

2k−n−1∑
j=0

〈fj〉j ,

where, for simplicity, we have disregarded the fact that the indices can be either odd or

even but not both.
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The corresponding commutator, Ln, of ε 〈1〉2 and ε−1 〈V 〉0 is scaled by k occurrences

of ε and n− k occurrences of ε−1,

Ln = εn−2kL̃n = εn−2k
2k−n−1∑
j=0

〈fj〉j .

The bound (9.9), therefore, follows straight away from Lemma 9.1.4.

Note: Recall that due to (9.2), the potential and its derivatives are assumed to be bounded

independently of t. This is important in order for C to be independent of t.

Note: Note that C can be 0 since a commutator can vanish.

Since commutators of A(t) result in commutators of ε∂2
x and ε−1V (t) via linearity, the

following Corollary is an immediate consequence.

Corollary 9.1.6. If uε satisfies (9.1) and V (t) satisfies (9.2), then

lim
ε→0
‖ε[A(τn), [. . . , [A(τ2),A(τ1)] . . .]uε‖L2 ≤ C, τj ∈ [0, t], j = 0, . . . , n, n ∈ Z+,

(9.10)

where 0 ≤ C <∞ is independent of ε and t.

9.2 Oscillatory solutions for truncated Magnus expansions

Of interest to us in this section is the case of finite truncations of the Magnus expansion,

such as (7.33), (7.34) and (8.5), prior to spatial discretisation. Since the propagation via

the truncated Magnus expansion

ũ(t) = eΘ̃(t)u0, (9.11)

solves a perturbed equation

ũ′(t) = Ã(t)u(t), ũ(0) = u0, (9.12)

we cannot immediately say whether the solution of this equation also develops oscillations

of wavelength O (ε). However, we require this property in the proof of Theorem 9.3.2.

In this section we will see that conservation of a perturbed energy over each time

allows us to draw similar conclusions, justifying the application of bounds (9.1) for ũ. The

proofs follow along the same lines as Section 9.1. The difference is that instead of relying

on the conservation of moments of Hamiltonian, the truncated Magnus expansion will be

considered as a perturbed Hamiltonian whose moments are conserved at discrete times,

tn.
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9.2.1 Conservation of the perturbed Hamiltonian

Writing Θ̃(tn+1, tn) for an undiscretised truncated Magnus expansions over the time in-

terval [tn, tn+1], we note that the time-stepping procedure

ũ(tn+1) = eΘ̃(tn+1,tn)ũ(tn)

conserves a modified energy,

Ẽn(t) = 〈ũ(t), H̃nũ(t)〉,

in the step tn to tn+1, where the perturbed Hamiltonian in the nth step is defined as

H̃n = H̃(tn+1, tn) = i εhΘ̃(tn+1, tn).

This is to say

Ẽn(tn+1) = 〈ũ(tn+1), H̃nũ(tn+1)〉 = 〈ũ(tn), H̃nũ(tn)〉 = Ẽn(tn).

This occurs since H̃(tn+1, tn) = i εhΘ̃(tn+1, tn) commutes with the evolution operator

eΘ̃(tn+1,tn). Note that unitarity of eΘ̃(tn+1,tn) and, therefore, the skew-Hermiticity of

Θ̃(tn+1, tn) are crucial. By the same argument, we conclude that

Ẽ2
n(t) = 〈ũ(t), H̃2

nũ(t)〉 = 〈H̃nũ(t), H̃nũ(t)〉,

is also conserved.

Once again, we explicitly note the dependence of ũ, H̃, Θ̃, Ẽn and Ẽ2
n on ε by writing

ũε, H̃ε, Θ̃ε, Ẽεn and Ẽ2,ε
n . Considering the semiclassical limit, we conclude that the solution

of the perturbed equation solved by the truncated Magnus expansion Θ̃ also develops O (ε)

wavelengths oscillations.

We consider three cases – where the highest differential operator apart from the Lapla-

cian, ∂2
x, is of (i) degree one, (ii) degree two and (iii) degree greater than two. The first two

cases will be applicable for (7.33) and (7.34), respectively, while the third will be applicable

for (8.5). In some cases there will be restrictions on time-steps. However, these depend

solely on the potential function and are independent of the semiclassical parameter, ε.

The proof for case (iii) is the most general and can also be used for cases (i) and (ii).

However, we believe that it is helpful to first consider the simpler and more concrete cases

(i) and (ii) before considering a general procedure. The first of the three cases is dealt

with in Lemma 9.2.1.
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9.2.2 The first non-trivial Magnus expansion

Lemma 9.2.1. Let ũε(tn) be the perturbed solution obtained under propagation via Θ̃ε
3

(7.33). In the semiclassical limit, ε → 0, the spatial derivative of the wavefunction ũε

remains bounded by inverse of the semiclassical parameter,

‖∂xũε(tn)‖L2 ≤ C̃ε−1, n ∈ Z+, (9.13)

if it is bounded at t0 (i.e. for uε0) and V satisfies (9.2)∥∥∥∂kxV (t)
∥∥∥ ≤ Ĉk, k ∈ {0, 1}, t ≥ 0,

and (9.3), ˆ t

0

∥∥∥∂t∂kxV (τ)
∥∥∥ dτ ≤ Ĉk, k ∈ {0, 1}, t ≥ 0,

where 0 < Ĉk <∞ and 0 < C̃(tn) <∞ are independent of ε and t.

Proof. The proof will proceed by induction on the time step. Firstly, we note that ũε(t0) =

uε0, which is assumed to satisfy (9.13).

Assuming that (9.13) holds for tn, let us assume the contrary for tn+1,

lim
ε→0
‖ε∂xũ(tn+1)‖L2 =∞.

The perturbed Hamiltonian in this case is

H̃ε
n = i εhΘ̃ε

3(tn+1, tn) = −ε2∂2
x + 1

hµ0,0(tn, tn+1) + 2i 1
h 〈∂xµ1,1(tn, tn+1)〉1 ,

where

µ0,0(tn, tn + h) =

ˆ h

0
V (tn + ζ) dζ

and

µ1,1(tn, tn + h) =

ˆ h

0

(
ζ − h

2

)
V (tn + ζ) dζ.

The perturbed energy Ẽεn at t is

Ẽεn(t) = 〈ũε(t), H̃ε
nũ

ε(t)〉

= ‖εũε(t)‖2L2 + 1
h 〈ũ

ε(t), µ0,0(tn, tn+1)ũε(t)〉+ 2iε 1
h

〈
ũε(t), 〈∂xµ1,1(tn, tn+1)〉1 ũ

ε(t)
〉
.

Although it might be hard to say much about the inner products appearing here, it suffices
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to bound Ẽε(t) by noting ‖ũε(t)‖L2 = 1 and

〈
ũε(t), 2 〈∂xµ1,1(tn, tn+1)〉1 ũ

ε(t)
〉

= 〈ũε(t), (∂x ◦ (∂xµ1,1(tn, tn+1)) + (∂xµ1,1(tn, tn+1))∂x) ũε(t)〉

= −〈∂xũε(t), (∂xµ1,1(tn, tn+1))ũε(t)〉+ 〈(∂xµ1,1(tn, tn+1))ũε(t), ∂xũ
ε(t)〉

= 2i Im 〈∂xũε(t), (∂xµ1,1(tn, tn+1))ũε(t)〉 ,

which brings us to

‖ε∂xũε(tn)‖2L2 − 1
h ‖µ0,0(tn, tn+1)‖L2 − 2

h ‖∂xµ1,1(tn, tn+1)‖L2 ‖ε∂xũε(tn)‖L2 ≤ Ẽεn(tn)

≤ ‖ε∂xũε(tn)‖2L2 + 1
h ‖µ0,0(tn, tn+1)‖L2 + 2

h ‖∂xµ1,1(tn, tn+1)‖L2 ‖ε∂xũε(tn)‖L2 .

Clearly, assuming that ũε(tn) satisfies (9.13) and ∂xµ1,1(tn, tn+1) is bounded independently

of ε immediately implies that Ẽεn(tn) stays bounded under the limit ε→ 0.

Working similarly, we conclude that the perturbed energy Ẽn at time tn+1 is bounded

from below by

Ẽεn(tn+1) ≥ ‖ε∂xũε(tn+1)‖2L2− 1
h ‖µ0,0(tn, tn+1)‖L2− 2

h ‖∂xµ1,1(tn, tn+1)‖L2 ‖ε∂xũε(tn+1)‖L2 ,

where the only difference in the bound is in the appearance of the perturbed wave function

at time tn+1. If we assume

lim
ε→0
‖ε∂xũ(tn+1)‖L2 =∞,

this immediately brings us to the conclusion

lim
ε→0

Ẽεn(tn+1) ≥ +∞

since the term ‖∂xµ1,1(tn, tn+1)‖L2 ‖ε∂xũε(tn+1)‖L2 grows at a lower rate than ‖ε∂xũ(tn+1)‖2L2 .

However, by conservation of Ẽεn over the time step from tn to tn+1, Ẽεn(tn+1) = Ẽεn(tn) and

Ẽεn(tn+1) must also stay bounded in the semiclassical limit, contradicting our conclusion.

Thus ‖ε∂xũ(tn+1)‖L2 must stay bounded.

To show that the bound can be derived independently of t, we recall that Ẽn−1(tn) =

209



Formal error analysis

Ẽn−1(tn−1) due to conservation of the perturbed energy over one time step. Thus,

Ẽεn(tn)− Ẽεn−1(tn−1) = Ẽεn(tn)− Ẽεn−1(tn)

=
〈
ũε(tn), 1

h(µ0,0(tn, tn+1)− µ0,0(tn−1, tn))ũε(tn)
〉

+2iε 1
h

〈
ũε(tn), 〈∂x(µ1,1(tn, tn+1)− µ1,1(tn−1, tn))〉1 ũ

ε(tn)
〉

≤ 1
h ‖µ0,0(tn, tn+1)− µ0,0(tn−1, tn)‖

+ 2
h ‖∂x(µ1,1(tn, tn+1)− µ1,1(tn−1, tn))‖ ‖ε∂xũε(tn)‖L2 .

Telescoping this series, assuming that C̃ in (9.13) is independent of tk for k = 0, . . . , n−1,

and recalling that derivatives of V have uniformly bounded variations in t due to (9.3),

Ẽεn(tn)− Ẽε0(t0) ≤
n∑
k=1

1
h ‖µ0,0(tk, tk+1)− µ0,0(tk−1, tk)‖

+ 2
h

n∑
k=1

‖∂x(µ1,1(tk, tk+1)− µ1,1(tk−1, tk))‖ ‖ε∂xũε(tk)‖L2

≤
ˆ tn

0
‖∂tV (τ)‖ dτ + 2C̃

ˆ tn

0
‖∂t∂xV (τ)‖ dτ

+ 2
h ‖∂x(µ1,1(tn, tn+1)− µ1,1(tn−1, tn))‖ ‖ε∂xũε(tn)‖L2

≤ C1 + C2 ‖ε∂xũε(tn)‖L2 ,

Using the above inequality, we can show that a bound independent of tn can be found

along the lines of Lemma 9.1.3.

Note: The above bound only requires ũ(tn), V (t) ∈ C1
p([−1, 1]).

Note: It is crucial for the above proof that the ‖ε∂xũ(tn+1)‖2L2 term grows faster than

other terms. This is guaranteed for the first of the three cases, where the highest

differential operator apart from the Laplacian is of degree one. Corollary 9.2.2

deals with the case where there is another degree two differential operator in the

perturbed Hamiltonian.

9.2.3 The second non-trivial Magnus expansion

Corollary 9.2.2. Let ũε(tn) be the perturbed solution obtained under propagation via Θ̃ε
4

(7.34), with an added assumption on the time-step to ensure

∥∥∂2
xµ2,1(tn, tn+1)

∥∥ < h/2, n ∈ Z+
0 .
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In the semiclassical limit, ε → 0, the spatial derivative of the wavefunction ũε remains

bounded by inverse powers of the semiclassical parameter,

‖∂xũε(tn)‖L2 ≤ C̃ε−1, n ∈ Z+, (9.14)

if it is bounded at t0 (i.e. for uε0) and V satisfies (9.2),∥∥∥∂kxV (t)
∥∥∥ ≤ Ĉk, k ∈ {0, 1, 2, 3}, t ≥ 0,

and (9.3), ˆ t

0

∥∥∥∂t∂kxV (τ)
∥∥∥ dτ ≤ Ĉk, k ∈ {0, 1, 2, 3}, t ≥ 0,

where 0 < Ĉk <∞ and 0 < C̃ <∞ are independent of ε and t.

Proof. For the case of Θ̃ε
4(h), we have higher order differential operators such as

− 2
hε

2
〈
∂2
xµ2,1(tn, tn+1)

〉
2

appearing in the perturbed Hamiltonian. In this case, letting f = ∂2
xµ2,1(tn, tn+1) for

convenience,

∣∣ε2 〈ũε(t), 2 〈f〉2 ũ
ε(t)〉

∣∣
=
∣∣ε2
〈
ũε(t),

(
∂2
x ◦ f + f∂2

x

)
ũε(t)

〉∣∣
= |− 〈ε∂xũε(t), ε∂x(fũε(t))〉 − 〈ε∂x(fũε(t)), ε∂xũ

ε(t)〉|

≤ 2 ‖ε∂xũε(t)‖L2 ‖ε∂x(fũε(t))‖L2

≤ 2 ‖ε∂xũε(t)‖L2 (ε ‖∂xf‖L2 + ‖f‖L2 ‖ε∂xũε(t)‖L2) .

In this case our assumption limε→0 ‖ε∂xũ(tn+1)‖L2 = ∞ does not directly allow us to

conclude that limε→0 Ẽ
ε
n(tn+1) ≥ +∞ since the above term, in general, grows as fast as

the leading term. However, if the time step is chosen to be small enough so that

2
h ‖f‖ = 2

h

∥∥∂2
xµ2,1(tn, tn+1)

∥∥ < 1,

then the leading term dominates once again. Note carefully that the time step is still not

constrained by ε – instead it is constrained by the nature of the potential. The reader will

recall that µ2,1(tn, tn+1) is O
(
h4
)
, so that the restriction imposed here is not severe.

Note: The above bound requires ũ(tn) ∈ C1
p([−1, 1]) and V (t) ∈ C3

p([−1, 1]).
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9.2.4 Higher order Magnus expansions

A slightly different approach needs to be followed in the case of higher order Mag-

nus expansions such as Θ̃ε
5(h), developed in Section 8.4. These feature terms such as

i4
3ε

3 1
h

〈
∂3
xµ1,3(tn, tn+1)

〉
3

in the perturbed Hamiltonian which are higher degree differen-

tial operators than the Laplacian. The strategy pursued here will be along the lines of

Lemma 9.1.3.

A general truncated Magnus expansion with O
(
ε(2p+3)σ−1

)
accuracy can be written

in the form

Θ̃ε
2p+1 =

2p−1∑
k=0

ik+1εk−1 〈fk〉k , (9.15)

where our focus is now on the degree of the differential operator and not the size of each

term in powers of ε. Consequently, fk might combine terms of all sizes in terms of h, as

well as higher (positive) powers of ε. Thus, although fks might depend on ε, they still

satisfy (9.2).

Lemma 9.2.3. Let ũε(tn) be the perturbed solution obtained under propagation via Θ̃ε
2p+1

for p ≥ 1. In the semiclassical limit, ε→ 0, the spatial derivatives of the wavefunction ũε

remain bounded by inverse powers of the semiclassical parameter,∥∥∥∂kx ũε(tn)
∥∥∥

L2
≤ C̃kε−k, k = 0, . . . , 2p− 1, n ∈ Z+, (9.16)

if they are bounded at t0 (i.e. for uε0) and V satisfies (9.2),∥∥∥∂kxV (t)
∥∥∥ ≤ Ĉk, k ∈ Z+, t ≥ 0,

and (9.3), ˆ t

0

∥∥∥∂t∂kxV (τ)
∥∥∥ dτ ≤ Ĉk, k ∈ Z+, t ≥ 0,

where 0 < Ĉk <∞ and 0 < C̃k <∞ are independent of ε and t.

Proof. The initial condition ũε(t0) = uε0 is assumed to satisfy (9.16). We now assume that

(9.16) is satisfied by ũε(tn) but not by ũε(tn+1),

lim
ε→0

∥∥∥εk∂kx ũε(tn+1)
∥∥∥

L2
=∞.

Let k0 be the derivative for which this limit goes to infinity the fastest.

Consider the conservation of

Ẽ2,ε
n (t) =

〈
ũε(t),

(
H̃ε
n

)2
ũε(t)

〉
=
〈

H̃ε
nũ

ε(t), H̃ε
nũ

ε(t)
〉

when evolving from tn to tn+1 under Θ̃ε
2p+1(tn, tn+1). The perturbed Hamiltonian is of

212



9.3. Error Analysis for Magnus Expansions

the form

H̃ε
n =

2p−1∑
k=0

ikεk 〈fk〉k ,

so that

Ẽ2,ε
n (t) =

2p−1∑
k=0

〈
εk 〈fk〉k ũ

ε(t), εk 〈fk〉k ũ
ε(t)
〉

+

2p−1∑
j,k=0
j 6=k

ij+k
〈
εk 〈fk〉k ũ

ε(t), εj 〈fj〉j ũ
ε(t)
〉

=

2p−1∑
k=0

∥∥∥εk 〈fk〉k ũε(t)∥∥∥2

L2
+

2p−1∑
j,k=0
j 6=k

ij+k
〈
εk 〈fk〉k ũ

ε(t), εj 〈fj〉j ũ
ε(t)
〉
.

The bounds we need are

2p−1∑
k=0

∥∥∥εk 〈fk〉k ũε(t)∥∥∥2

L2
−

2p−1∑
j,k=0
j 6=k

∥∥∥εk 〈fk〉k ũε(t)∥∥∥
L2

∥∥∥εj 〈fj〉j ũε(t)∥∥∥L2
≤ Ẽ2,ε

n (t)

≤
2p−1∑
k=0

∥∥∥εk 〈fk〉k ũε(t)∥∥∥2

L2
+

2p−1∑
j,k=0
j 6=k

∥∥∥εk 〈fk〉k ũε(t)∥∥∥
L2

∥∥∥εj 〈fj〉j ũε(t)∥∥∥L2
.

Our assumptions regarding ũε(tn) directly prove the boundedness of Ẽ2,ε
n (tn) under ε→ 0,

and thus also of Ẽ2,ε
n (tn+1). Here we use the fact that the

∥∥εk 〈fk〉k ũε(t)∥∥L2 also grows at

the same asymptotic rate as
∥∥εk∂kx ũε(t)∥∥L2 due to (9.8) and (9.2).

While the inner product terms in the second sum are indefinite and lead to bounds

that might otherwise become meaningless, the crucial observation in the case of ũε(tn+1) is

that these terms are always dominated by the k0 term in the first sum. Thus ũε(tn+1) not

satisfying (9.16) necessarily means Ẽ2,ε
n (tn+1) ≥ +∞, bringing us to a contradiction.

Note: Using the strategy pursued in Lemma 9.1.3, we can prove (9.16) for arbitrarily

high k ∈ Z+ by considering conservation of higher moments of H̃ε
n. Moreover,

the bounds can be shown to be independent of t by following along the lines of

Lemma 9.2.1.

9.3 Error Analysis for Magnus Expansions

As noted in Section 3.4.1, the Magnus expansion for the Schrödinger equation with time-

dependent potential, Θ(h), need not converge since the Hamiltonian is an unbounded

operator (note that all results regarding the convergence of the Magnus expansion are

restricted to the case of bounded operators). Nevertheless, Hochbruck & Lubich (2003)

note that this does not restrict us from designing or analysing methods that are formally

213



Formal error analysis

based on the Magnus expansion but in practice work with finite truncations and spatially

discretised versions of the expansion.

The error bound obtained by Hochbruck & Lubich (2003) for standard Magnus ex-

pansions (under ε = 1) suggests that the fourth order Magnus expansion results in an

error,

‖un − u(tn)‖2 ≤ Ch
5tn max

0≤t≤tn

∥∥∂4
xu(t)

∥∥
2
,

which was noted as a cause for concern by the authors due to the presence of ∂4
xu(t)

and the typically oscillatory nature of the wavefunction. When this oscillatory behaviour

arises from the semiclassical scaling, where ~� ε� 1, the bounds might seem to be fairly

pessimistic since
∥∥∂4

xu
∥∥ ≤ Cε−4. Moreover, these bounds are derived under the time step

scaling h ‖K‖ ≤ c for some constant c, which could be restrictive1.

In the semiclassical regime, where the oscillatory behaviour of the wave function is

primarily attributable to small values of ε, however, we can improve upon these bounds

by correctly accounting for powers of ε. Additionally, we are able to bypass restrictions

of the type h ‖K‖ ≤ c. This is achieved by using the results of Section 9.2, which allow

us to conclude that the wavefunction propagated under the truncated Magnus expansion

also obeys the bounds (9.1).

The resulting error bounds for the discretised version of Θ̃ε
5 are summarised in Theo-

rem 9.3.6,

lim
ε→0

ε ‖uε(tn)− uε(tn)I‖L2 ≤ Ctnh6, n ∈ Z+,

where C > 0 is independent of ε, h and tn but depends on the potential. With the choice

of h = O (εσ) we arrive upon the error bound

‖uε(tn)− uε(tn)I‖L2 = O
(
tnε

6σ−1
)
,

which is more in line with the notation used in the previous chapters of this thesis.

Note: The error analysis carried out here also applies to standard truncated Magnus

expansions (featuring commutators) in the semiclassical regime and generalises to

higher dimensions. However, this aspect will not be explored in this thesis.

9.3.1 Proof outline

Recall that the Schrödinger equation featuring time-dependent potential,

∂tu(x, t) = i
(
ε∂2
x − ε−1V (x, t)

)
u(x, t), x ∈ [−1, 1], t ≥ 0, (3.20)

1The authors note that the restriction h ‖K‖ ≤ c can be bypassed, but in doing so the bounds end up
featuring progressively higher derivatives of the wavefunction.
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is also written in the form

∂tu(t) = A(t)u(t), u(0) = u0, (3.22)

where A(t) = iε∂2
x− iε−1V (t). The exact solution of this equation will be denoted as u(t),

as always.

Formally, the solution of this equation can be written via the exponential of the Magnus

expansion,

u(t) = eΘ(t,0)u0.

However, as noted earlier, in the case of unbounded operators such as the Hamiltonian

(which features the Laplacian), the Magnus expansion as a series may not necessarily

converge for any t. Nevertheless, an approximate solution can be found by time-stepping

using the truncated Magnus expansion Θ̃,

ũ(tn+1) = eΘ̃(tn+1,tn)ũ(tn), n ∈ Z+, ũ(t0) = u0. (9.17)

In practice, the numerical solution is found by exponentiating the truncated and discretised

Magnus expansion, Θ,

u(tn+1) = eΘ(tn+1,tn)u(tn), n ∈ Z+, u(t0) = u0, (9.18)

where u0 is obtained via trigonometric interpolation of the initial conditions u0.

The error is analysed in two steps: in the first step we analyse the error due to the

truncation of the Magnus, and in the second step we analyse the error due to discretisation

of the truncated Magnus expansion, whereby the error in the concrete (fully discretised)

schemes is obtained as

‖u(tn)− uI(tn)‖L2 ≤ ‖u(tn)− ũ(tn)‖L2 + ‖ũ(tn)− uI(tn)‖L2 , (9.19)

where, following the notation of (Bao et al. 2002), uI will stand for the trigonometric

interpolant of the data u on the grid, i.e interpolating {(xj ,uj)}Nj=−N . Thus ‖uI‖L2 =

‖u‖`2 . Additionally, we use fI to denote the trigonometric interpolant of the function f

on our grid {x−N , . . . , xN}, xj = 2j/M, M = 2N + 1.

For the first part, i.e. the error due to truncation of the Magnus expansion, we follow

the approach of Hochbruck & Lubich (2003). Propagation via a truncated Magnus ex-

pansion is equivalent to the exact solution of a perturbed equation. The error is analysed

by studying this perturbation. The design of the truncated Magnus expansions ensures

that the error terms are composed of (i) high order nested integrals of nested commuta-

tors and (ii) a remainder term. Bounds for the nested integrals of nested commutators

follows straightaway from Corollary 9.1.6. For the remainder term we rely on results of
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(Hochbruck & Lubich 2003) and the observations of Section 9.2.

The second part of proof, dealing with errors due to discretisation, follows along the

lines of (Bao et al. 2002) and (Pasciak 1980), once we consider the Magnus expansion as

being frozen over a time interval. The error can then be analysed as stemming solely from

the discretisation. In particular, this analysis gives us a handle on the degree of spatial

discretisation required for the required accuracy.

9.3.2 Error bounds for the truncated Magnus expansion

The perturbed solution ũ in (9.17) can be expressed as,

ũ(t) = eΘ̃(t,tn)ũ(tn), t ∈ [tn, tn+1], (9.20)

where the purpose of time stepping is to keep truncation errors low. This, in fact, is how

the truncated Magnus expansion is derived: in each time step we find the formal Magnus

expansion at an arbitrary t and then truncate this series, following which we decide to

propagate the solution with steps of size h = tn+1 − tn.

By differentiating (9.20), we find that the perturbed solution satisfies a modified equa-

tion

ũ′(t) = Ã(t)ũ(t), Ã = dexpΘ̃(t)

(
Θ̃′(t)

)
, (9.21)

with initial value ũ(tn), where we have written Θ̃(t) as a shorthand for Θ̃(t, tn). In this

section we will try to quantify the error,

e(t) = ũ(t)− u(t), (9.22)

for the truncated Magnus expansion Θ̃. The following lemma, essentially restating the

results of Lemma 4.1 in (Hochbruck & Lubich 2003), allows us to study the error in terms

of the perturbation.

Lemma 9.3.1. The error in the time step [tn, tn+1] is bounded by

‖e(tn+1)‖L2 ≤ ‖e(tn)‖L2 +

ˆ tn+1

tn

∥∥∥(Ã(t)−A(t)
)
u(t)

∥∥∥
L2

dt. (9.23)

Proof. Differentiation the error (9.22) and writing ũ(t) = u(t)− e(t),

e′(t) = ũ′(t)− u′(t)

= Ã(t)ũ(t)−A(t)u(t)

= Ã(t)u(t) + Ã(t)e(t)−A(t)u(t).
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Following the observation in Lemma 4.1 in (Hochbruck & Lubich 2003), we note that

1
2

d
dt ‖e(t)‖

2
L2([−1,1],C) = 1

2〈e
′, e〉L2([−1,1],C) + 1

2〈e, e
′〉L2([−1,1],C)

= Re 〈e′, e〉L2([−1,1],C)

= Re 〈Ãu−Au+ Ãe, e〉

= Re 〈Ãu−Au, e〉

≤
∥∥∥Ãu−Au∥∥∥

L2
‖e‖L2 .

Here we have used the fact that Ã is skew-Hermitian in the case of the Schrödinger

equation. This means 〈Ãe, e〉 = −〈e, Ãe〉 = −〈Ãe, e〉 and, consequently, 〈Ãe, e〉 is purely

imaginary. Noting that d
d t ‖e‖

2 = 2 ‖e‖ d
d t ‖e‖, this inequality immediately gives us

d
d t ‖e(t)‖ ≤

∥∥∥Ã(t)u(t)−A(t)u(t)
∥∥∥

L2
.

Integrating this inequality over [tn, tn+1] proves the lemma.

To estimate the integral in Lemma 9.3.1, we need to study how much

Ã(t) = dexpΘ̃(t)

(
Θ̃′(t)

)
deviates from A(t). Following the strategy of (Hochbruck & Lubich 2003), we write the

dexp function as

dexpΘ̃(Θ̃′) = Θ̃′ + 1
2 [Θ̃, Θ̃′] + . . .+ 1

(2p+1)!ad2p

Θ̃
(Θ̃′) + 1

(2p+2)!r2p+2

(
adΘ̃

) (
ad2p+1

Θ̃
(Θ̃′)

)
,

where Θ̃ = Θ̃ε
2p+1(t, tn) and the remainder rp is defined by the series,

ez − 1

z
= 1 + 1

2z + . . .+ 1
(p−1)!z

p−2 + 1
p!z

p−1rp(z).

Thus, to estimate the integral in (9.23), we must analyse the action of

Ê(t) = Θ̃′ −A(t) + 1
2 [Θ̃, Θ̃′] + . . .+ 1

(2p+1)!ad2p

Θ̃
(Θ̃′) + 1

(2p+2)!r2p+2

(
adΘ̃

) (
ad2p+1

Θ̃
(Θ̃′)

)
on u(t). The remainder term is unlike the other terms appearing here, which can be

explicitly written down in terms of commutators and bounded by Corollary 9.1.6. After

discussing a procedure by which the bounds for the remainder term can also be translated

to the common form,
∥∥∥adk

Θ̃
(Θ̃′)v

∥∥∥, we can proceed to derive bounds for the specific Magnus

expansions Θ̃3 and Θ̃5.
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The remainder term

From Lemma 5.1 of (Hochbruck & Lubich 2003), we know that the remainder term rp has

a Fourier transform r̂p ∈ L1(R),

rp(ix) =

ˆ
R
r̂p(ξ)e

iξx dξ.

Consequently, for skew-Hermitian operator X (where rp(adΘ̃)(X) also ends up being skew-

Hermitian),

rp(adΘ̃)(X) =

ˆ
R
r̂pe

adξΘ̃(X) dξ =

ˆ
R
r̂pAdξΘ̃(X) dξ

=

ˆ
R
r̂pe

ξΘ̃Xe−ξΘ̃ dξ,

from which it follows that

∥∥rp(adΘ̃)(X)u
∥∥

L2 ≤ ‖r̂p‖L1(R) sup
ξ∈R

∥∥∥eξΘ̃Xe−ξΘ̃u
∥∥∥

L2
.

Noting that the outermost exponential can be absorbed due to its unitarity, we arrive at

the following bound for X = ad2p+1

Θ̃
(B),∥∥∥r2p+2

(
adΘ̃

) (
ad2p+1

Θ̃
(B)

)
u(t)

∥∥∥
L2
≤ ‖r̂2p+2‖L1(R) sup

ξ∈R

∥∥∥ad2p+1

Θ̃
(B) exp(−ξΘ̃)u(t)

∥∥∥
L2
,

(9.24)

where B = Θ̃′2p+1(t, tn).

We first note that the exact solution, u(t), is assumed to satisfy (9.1), i.e. its spatial

derivatives are bounded by inverse powers of ε,

lim
ε→0

∥∥∥εk∂kxuε(t)∥∥∥
L2
≤ Ck <∞, k ∈ Z+.

Using u(t) as the initial condition and following the procedure of Lemma 9.2.3, we can

show that

wε = exp(−ξΘ̃(t, tn))u(t)

also satisfies the oscillatory assumptions

lim
ε→0

∥∥∥εk∂kxwε∥∥∥
L2
≤ Ck <∞, k ∈ Z+. (9.1)

This is since Θ̃(t, tn) commutes not only with the evolution operator exp(Θ̃(t, tn)), but

also with exp(−ξΘ̃(t, tn)) for any ξ ∈ R, and thus the perturbed Hamiltonian and its

moments are conserved. Therefore, the arguments used in Lemma 9.2.3 can be employed

here to conclude that w satisfies (9.1).
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Error bounds for Θ̃3

For this part we closely follow the approach in Section 6 of (Hochbruck & Lubich 2003).

For the sake of simplicity we consider the time shifted to tn, so that our first non-trivial

Magnus expansion (7.33) is

Θ̃3(h) = iε∂2
x − iε−1µ0,0(h)− 2 〈∂xµ1,1(h)〉1 , (7.33)

as usual. Recalling (2.51), used in the derivation of the Magus expansion, we note that

the truncated Magnus expansion is obtained by setting

Θ̃′3(t) = A(t)− 1
2

ˆ t

0
[A(ζ), A(t)] dζ,

integrating which brings us to

Θ̃3(t) =

ˆ t

0
A(ζ) dζ − 1

2

ˆ t

0

ˆ ξ

0
[A(ζ), A(ξ)] dζ dξ.

In our case we used t = h for time stepping and A(t) = iε∂2
x−iε−1V (t) before reducing this

expansion to (7.33). However, we will disregard this simplification for now and directly

use the (algebraic) results of (Hochbruck & Lubich 2003) to conclude that

Ê(t) = Θ̃′ −A(t) + 1
2 [Θ̃, Θ̃′] + 1

6 [Θ̃[Θ̃, Θ̃′]] + 1
24r4

(
adΘ̃

) (
ad3

Θ̃
(Θ̃′)

)
= − 1

12

ˆ t

0

ˆ t

0

ˆ t

0
[A(ζ), [A(ξ), [A(χ), A(t)]]] dχdξ dζ

− 1

12

ˆ t

0

ˆ t

0

ˆ ξ

0
[A(ζ), [A(χ), A(ξ)], A(t)]] dχdξ dζ

− 1

24

ˆ t

0

ˆ ζ

0

ˆ t

0
[[A(χ), A(ζ)], [A(ξ), A(t)]] dξ dχdζ

+R(t) + 1
24r4

(
adΘ̃

) (
ad3

Θ̃
(Θ̃′)

)
.

The precise form of R(t) is not important, except for noting that it is composed of terms

with four integrals (five commutators) and five integrals (six commutators) of A. Nor, for

that matter, does the precise form of the integrals appearing here or the form of ad3
Θ̃

(Θ̃′)

matter, except for noting that they all have three or more integrals.

Due to the observation made in Section 2.3.3, all these terms are O
(
t4
)

(not O
(
t3
)
)

or smaller. Corollary (9.1.6), further tells us that all these commutators satisfy bounds of

the form

lim
ε→0
‖ε [[A(χ), A(ζ)], [A(ξ), A(t)]]uε(t)‖L2 ≤ C̃ <∞,
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for instance, and thus the integrals satisfy

lim
ε→0

∥∥∥∥ε ˆ t

0

ˆ ζ

0

ˆ t

0
[[A(χ), A(ζ)], [A(ξ), A(t)]] dξ dχdζ uε(t)

∥∥∥∥
L2

≤ C̃t4.

Similarly,

lim
ε→0

∥∥∥ε ad3
Θ̃

(Θ̃′)uε(t)
∥∥∥

L2
≤ Ĉt4.

Using (9.24) and the fact that wε = exp(−ξΘ̃(t, tn))uε(t) also manifests the highly oscil-

latory behaviour (9.1), we conclude that

lim
ε→0

∥∥∥ε r4

(
adΘ̃

) (
ad3

Θ̃
(Θ̃′)

)
uε(t)

∥∥∥
L2
≤ Ct4.

It follows immediately that

lim
ε→0

∥∥∥ε Ê(t)uε(t)
∥∥∥

L2
≤ Ct4,

for some 0 < C <∞, integrating which bring us to the conclusion

lim
ε→0

ε ‖eε(tn+1)‖L2 ≤ lim
ε→0

ε ‖eε(tn)‖L2 + Ch5. (9.25)

Telescoping this sum provides the error bounds for the truncated but undiscretised Magnus

expansion, summarised in Theorem 9.3.2.

Theorem 9.3.2. If ũε(tn) is the solution found by time stepping the undiscretised Magnus

expansion Θ̃ε
3(h), the exact solution uε(t) satisfies (9.1) and the potential satisfies (9.2)

and (9.3), then

lim
ε→0

ε ‖uε(tn)− ũε(tn)‖L2 ≤ Ctnh4, n ∈ Z+,

for some C > 0 which is independent of ε, h and tn but depends on the potential function.

A comment on higher order Magnus expansions

We note that the difference of the operators Ê(t) = Ã(t) − A(t) in the previous section,

where we carried out the analysis for Θ̃3, is expressed in terms of a remainder term and

terms with three (and more) nested integrals of nested commutators. This should be no

surprise—the very derivation of the truncated Magnus expansions Θ̃3 is designed to cancel

terms with two and fewer integrals.

In the case of a Magnus expansion such as Θ̃5, the operator difference Ê(t) can be

written as a sum of r6

(
adΘ̃

) (
ad5

Θ̃
(Θ̃′)

)
and nested integrals which are O

(
t6
)

or smaller.

The latter are bounded in a straightforward manner due to Corollary 9.1.6, while the

former is bounded, once again, by using (9.24) and the fact that wε = exp(−ξΘ̃(t, tn))uε(t)

obeys (9.1). Thus, we find error bounds for Θ̃ε
5(h) along, essentially, the same lines as
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before.

Theorem 9.3.3. If ũε(tn) is the solution found by time stepping the undiscretised Magnus

expansion Θ̃ε
5(h), the exact solution uε(t) satisfies (9.1) and the potential satisfies (9.2)

and (9.3), then

lim
ε→0

ε ‖uε(tn)− ũε(tn)‖L2 ≤ Ctnh6, n ∈ Z+,

for some C > 0 which is independent of ε, h and tn but depends on the potential function.

In deriving these bounds we have also laid out the procedure for deriving error bounds

for a general high order Magnus expansion.

9.3.3 Error in discretisation

Recall that the time stepping of the truncated Magnus expansion is the procedure

ũ(tn+1) = eΘ̃(tn+1,tn)ũ(tn), n ∈ Z+, ũ(t0) = u0. (9.17)

However, as noted before, the numerical solution is found by exponentiating the discretised

version of Θ̃,

u(tn+1) = eΘ(tn+1,tn)u(tn), n ∈ Z+, u(t0) = u0. (9.26)

The error due to discretisation,

ε(tn) = ũ(tn+1)− u(tn+1)I ,

is bounded as

‖ε(tn+1)‖L2 = ‖ũ(tn+1)− u(tn+1)I‖L2

≤
∥∥∥eΘ̃(tn+1,tn)ũ(tn)− eΘ̃(tn+1,tn)u(tn)I

∥∥∥
L2

+
∥∥∥eΘ̃(tn+1,tn)u(tn)I −

(
eΘ(tn+1,tn)u(tn)

)
I

∥∥∥
L2

= ‖ε(tn)‖L2 +
∥∥∥eΘ̃(tn+1,tn)u(tn)I −

(
eΘ(tn+1,tn)u(tn)

)
I

∥∥∥
L2
,

where we have exploited the unitarity of Θ̃. For the second term, note that eΘ̃(tn+1,tn)u(tn)I

is the solution of

y′(t) = h−1Θ̃(tn+1, tn)y(t), t ∈ [tn, tn+1], y(tn) = u(tn)I (9.27)

at t = tn+1, while eΘ(tn+1,tn)u(tn) is the solution of

y′(t) = h−1Θ(tn+1, tn)y(t), t ∈ [tn, tn+1], y(tn) = u(tn) (9.28)
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at t = tn+1. Note here that Θ̃(tn+1, tn) and Θ(tn+1, tn) are treated in a time-independent

way (i.e. frozen over the interval). Thus the only error here is due to the discretisation of

Θ̃.

By following the analysis of (Pasciak 1980), the difference in solution2 of (9.27) and

(9.28) at tn+1 can be bounded as

‖y(tn+1)− y(tn+1)I‖L2 ≤ Ch−1 sup
t∈[tn,tn+1]

∥∥∥Θ̃ (y(t)− y(t)I)
∥∥∥

L2
.

Since Θ̃2p+1 can be expressed in terms of h
∑2p−1

j=0 εj−1 〈fj〉js, where fj = O (1) or smaller

in terms of h and ε, we conclude following the analysis of (Pasciak 1980),

‖y(tn+1)− y(tn+1)I‖L2 ≤ C sup
t∈[tn,tn+1]

2p−1∑
j=0

εj−1
∥∥∥〈fj〉j (y(t)− y(t)I)

∥∥∥
L2

≤ C̃s sup
t∈[tn,tn+1]

2p−1∑
j=0

εj−1M−s
∥∥∂s+jx y(tn)

∥∥
L2 , s ∈ Z+,

for an arbitrary s, where we have used the fact that fjs obey (9.2). Consider the scaling

M = O
(
h−γε−1

)
, 0 < γ ≤ 1,

whereby

‖y(tn+1)− y(tn+1)I‖L2 ≤ C̃shγsε−1 sup
t∈[tn,tn+1]

2p−1∑
j=0

∥∥εs+j∂s+jx y(tn)
∥∥

L2 , s ∈ Z+.

Note that y(tn) obeys (9.1), so that

lim
ε→0

ε ‖y(tn+1)− y(tn+1)I‖L2 ≤ Ĉshγs.

We now choose s = γ−1(2p+ 3), whereby

lim
ε→0

ε ‖ε(tn+1)‖L2 ≤ lim
ε→0

ε ‖ε(tn)‖L2 + Ĉγ−1(2p+3)h
2p+3.

Telescoping this (while noting that ε(t0) is also O
(
h2p+3ε−1

)
due to the accuracy of

spectral discretisation) brings us to the following theorem.

Theorem 9.3.4. If ũ(0) obeys the bounds (9.1), the potential function obeys (9.2) and

(9.3), and M = O
(
h−γε−1

)
for some 0 < γ ≤ 1, then the error due to spatial discretisation

2Note that this is zero at tn by definition.
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of Θ2p+3 is

lim
ε→0

ε ‖ũ(tn)− u(tn)I‖L2 ≤ Ctnh2p+2, (9.29)

for some C > 0 which is independent of ε, h and tn but depends on the potential function.

Note: We can take γ to be arbitrarily small, so that M can be fairly close to O
(
ε−1
)
. For

instance, with h = O
(
ε1/2

)
and γ = 1/2, the gridding strategy M = O

(
ε−1−1/4

)
suffices.

Note: Despite the fact that M is not strictly O
(
ε−1
)
, our error analysis carries through

since it is largely carried out without discretisation considerations and since, due

to Lemma 9.1.4, 〈f〉k = O
(
ε−k
)

continues to hold regardless. However, this does

affect the exact cost of FFTs, the impact of which will not be considered here fully.

9.3.4 A summary of the error bounds

Combining the results of Theorem 9.3.2 and Theorem 9.3.3 with Theorem 9.3.4, we get

the error bounds for our truncated and discretised Magnus expansions.

Theorem 9.3.5. If uε(tn) is the numerical solution found by time stepping the discretised

Magnus expansion Θε
3, the exact solution uε(t) satisfies (9.1), the potential function sat-

isfies (9.2) and (9.3), and the degree of discretisation is chosen so that M = O
(
h−γε−1

)
for some 0 < γ ≤ 1, then

lim
ε→0

ε ‖uε(tn)− uε(tn)I‖L2 ≤ Ctnh4, n ∈ Z+,

for some C > 0 which is independent of ε, h and tn but depends on the potential function

and the choice of γ.

Theorem 9.3.6. If uε(tn) is the numerical solution found by time stepping the discretised

Magnus expansion Θε
5, the exact solution uε(t) satisfies (9.1), the potential function sat-

isfies (9.2) and (9.3), and the degree of discretisation is chosen so that M = O
(
h−γε−1

)
for some 0 < γ ≤ 1, then

lim
ε→0

ε ‖uε(tn)− uε(tn)I‖L2 ≤ Ctnh6, n ∈ Z+,

for some C > 0 which is independent of ε, h and tn but depends on the potential function

and the choice of γ.

Note: Since C is independent of tn, the bounds effectively apply for any time T .

Note: The constraint h ‖K‖ ≤ c in (Hochbruck & Lubich 2003) arises in the case of

higher order truncations of the Magnus expansion while finding an estimate for
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the (discretised) term corresponding to∥∥∥∂kx exp(−ξΘ̃)uε(t)
∥∥∥

L2
.

Here, however, we use the fact that, due to Lemma 9.2.3, wε = exp(−ξΘ̃)uε(t)

essentially features the same degree of oscillations (9.1) as uε(t).

Note: The time step h is taken to be independent of ε for the entire analysis. It is natural

to contrast this with the methods presented in this thesis where h is assumed to

scale as O (εσ) for some 0 < σ ≤ 1. This scaling is used for two reasons:

(i) It allows us to analyse all terms and errors solely in powers of ε, making the

narrative easier. This is also helpful in deciding the degree of discretisation,

M .

(ii) When we combine the Magnus expansion with Zassenhaus splittings or with

Lanczos iterations, for that matter, the number of Lanczos iterations depend

on the spectral size of the exponent. This analysis becomes easier when carried

out in a single currency. It points out that Lanczos iterations are not the most

optimal choice in the semiclassical regime. Moreover, it imposes the time step

restriction σ > 1/3 on Magnus–Zassenhaus schemes. This restriction is solely

due to cost considerations arising from exponentiation via the Zassenhaus

splitting.

9.4 Error Analysis for Zassenhaus Splittings

The error analysis for Zassenhaus splittings proceeds by using essentially the same tools

that have been employed in the previous sections of this chapter. Our main tool will be

to link the error in truncating the sBCH series in each step of the symmetric Zassenhaus

splitting procedure to the error analysis for the truncated Magnus expansions.

Moan & Niesen (2008) note that the Baker–Campbell–Hausdorff (BCH) formula can

be obtained via the Magnus expansion,

BCH(X,Y ) = ΘÂ(2),

where Â(t) = X for t ∈ [0, 1] and Â(t) = Y for t ∈ (1, 2], and ΘÂ(2) is the formal Magnus

expansion at t = 2 under the time-varying vector field Â(t). By a similar logic,

sBCH(X,Y ) = ΘA(2),
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where A(t) = X for t ∈
[
0, 1

2

]
∪
[
11

2 , 2
]

and A(t) = Y for t ∈
(

1
2 , 1

1
2

)
. This holds since, by

definition, the exponential of the sBCH,

esBCH(X,Y )u = e
1
2
XeY e

1
2
Xu,

involves evolving u under the influence of X till t = 1
2 , then under Y till t = 11

2 , and under

X again till t = 2. This is also the exact effect of propagating under the formal Magnus

expansion of A till t = 2 since, by definition, it involves evolving under A(t) = X from

t = 0 to t = 1
2 , followed by evolution under A(t) = Y from t = 1

2 to t = 11
2 , and then

again under A(t) = X from t = 11
2 till t = 2.

The symmetric Zassenhaus procedure involves recursive applications of sBCH in order

to extract the largest terms from the exponent. Thus the overall error can be analysed in

two parts: (i) the error due to successive applications of suitably truncated sBCH and (ii)

the error due to discretisation. The latter of these can be analysed on exactly the same

lines as Section 9.3.3 and will not be discussed in detail.

In the following sections we proceed to analyse the error due to the truncation of the

sBCH in successive steps of the Zassenhaus procedure. For the sake of simplicity, we will

carry out the analysis for the first non-trivial symmetric Zassenhaus splitting,

Z [2]
1,1 = e

1
2

ihε∂2
xe−

1
2

ihε−1V e
1
6

ih3ε−1(∂xV )2+ 1
6

ih3ε〈∂2
xV 〉2e−

1
2

ihε−1V e
1
2

ihε∂2
x . (9.30)

Extension of this analysis to the splittings such as (6.6) should prove to be relatively

straightforward.

9.4.1 Error in the first step of the symmetric Zassenhaus algorithm

Let us consider the first step in the splitting of the exponent −itε−1H = itε∂2
x − itε−1V

and analyse the error arising from the truncation of the sBCH.

Lemma 9.4.1. Define X = −ihε∂2
x and Y = ihε∂2

x − ihε−1V . Assuming that uε satisfies

(9.1) and V satisfies (9.2), the local error due to the first application of the truncated

sBCH in the symmetric Zassenhaus procedure is bounded as follows∥∥∥∥eY uε − e−
1
2
XeX+Y−(

1
24 [[Y,X],X]+

1
12 [[Y,X],Y ])e−

1
2
Xuε

∥∥∥∥
L2

≤ Ch5ε−1, n ∈ Z+,

in the limit ε→ 0, where C > 0 is independent of ε and h.

Proof. Consider the evolution of uε under ihε∂2
x − ihεV ,

eihε∂2
x−ihεV uε = e

1
2 ihε∂2

xesBCH(−ihε∂2
x, ihε∂2

x−ihεV )e
1
2 ihε∂2

xuε

= e
1
2 ihε∂2

xeΘA(2)e
1
2 ihε∂2

xuε,
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where we have taken X = −ihε∂2
x and Y = ihε∂2

x − ihε−1V while defining A. Here the

Magnus expansion ΘA(2) and the sBCH expansion are used in a formal sense since they

might not converge as a series.

The error in truncating the sBCH series to s̃BCH by excluding all h5 or smaller terms,

for instance, is equivalent to the error in truncating ΘA to Θ̃A by excluding all h5 terms,∥∥∥∥eihε∂2
x−ihεV uε − e

1
2 ihε∂2

xes̃BCH(−itε∂2
x, itε∂2

x−ihεV )e
1
2 ihε∂2

xuε
∥∥∥∥

L2

=

∥∥∥∥e
1
2 ihε∂2

xeΘA(2)e
1
2 ihε∂2

xuε − e
1
2 ihε∂2

xeΘ̃A(2)e
1
2 ihε∂2

xuε
∥∥∥∥

L2

=
∥∥∥eΘA(2)wε − eΘ̃A(2)wε

∥∥∥
L2
,

where

wε = e
1
2 ihε∂2

xuε.

By the conservation of ε2∂2
x in the above step and the fact that uε obeys (9.1), we can

show that wε also obeys the bounds (9.1) by following the approach of Lemma 9.1.3.

The error analysis then follows along the lines of Section 9.3.2 since the formal notation

eΘA(2)wε amounts to the evolution of wε under A till t = 2. Thus, the error in this local

step can be characterised by Lemma 9.3.1,

‖e(2)‖L2 ≤
ˆ 2

0

∥∥∥(Ã(t)−A(t)
)
u(t)

∥∥∥
L2

dt,

where error is zero at t = 0 (in the context of this local step).

Recall that, by definition,

Θ′3(t) = A(t)− 1
2

ˆ t

0
[A(ζ), A(t)] dζ.

Thus

Ê(t) = Θ̃′ −A(t) + 1
2 [Θ̃, Θ̃′] + 1

6 [Θ̃[Θ̃, Θ̃′]] + 1
24r4

(
adΘ̃

) (
ad3

Θ̃
(Θ̃′)

)
= − 1

12

ˆ t

0

ˆ t

0

ˆ t

0
[A(ζ), [A(ξ), [A(χ), A(t)]]] dχdξ dζ

− 1

12

ˆ t

0

ˆ t

0

ˆ ξ

0
[A(ζ), [A(χ), A(ξ)], A(t)]] dχdξ dζ

− 1

24

ˆ t

0

ˆ ζ

0

ˆ t

0
[[A(χ), A(ζ)], [A(ξ), A(t)]] dξ dχdζ

+R(t) + 1
24r4

(
adΘ̃

) (
ad3

Θ̃
(Θ̃′)

)
still holds since it is derived algebraically for any A. There is a minor difference in the

analysis—on the one hand, t goes from 0 to 2, not 0 to h, and is O
(
h0
)
; on the other
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hand, A(t) = O (h). Thus all terms in Ê seem to be O
(
h4
)

or smaller. However, by

analysing the Taylor series of the inner most commutator, [A(ξ), A(ζ)], along the lines of

Section 2.3.3, we find that there is a gain of one power of h. Thus, all terms in Ê are, in

fact, O
(
h5
)

or smaller.

Once again, following the application of Corollary (9.1.6), and the observations of

Section 9.3.2, we conclude

lim
ε→0

∥∥∥ε Ê(t)wε
∥∥∥

L2
≤ Ch5, t ∈ [0, 2],

where 0 < C <∞. Integrating this bring us to the result of this Lemma3.

Note: At many stages in the symmetric Zassenhaus splitting procedure, having truncated

the sBCH by the grade of commutators (and, therefore, by powers of h), we also

discard some terms that are too small in powers of ε.

The analysis of this can be carried out by following the initial observations of

Section 9.3.3—considering as reference the truncated Magnus expansion Θ̃A(2)

frozen over [0, 2] while comparing it to the Magnus expansion which is obtained

by discarding the said terms from Θ̃A(2).

The difference here is that both Magnus expansions are undiscretised. However,

the error simply amounts to the difference between the two expansions, i.e. the dis-

carded terms, whose action on the wave function is easily bounded by Lemma 9.1.4.

Note: By following an analysis similar to Section 9.2, we can prove that the solution

under the undiscretised Zassenhaus splitting (in fact, also at each partial stage

such as propagation under ihε∂2
x) continues to obey the assumptions (9.1) if the

initial condition does. This will not be proven here.

Thus, using the fact that the simplifications in the algebra G are exact, and the results

of Lemma 9.4.1, we conclude,∥∥∥(eihε∂2
x−ihε−1V − e

1
2

ihε∂2
xe−ihε−1V+ 1

6
ih3ε−1(∂xV )2+ 1

6
ih3ε〈∂2

xV 〉2e
1
2

ihε∂2
x

)
uε
∥∥∥

L2
≤ Ch5ε−1,

under h = O (εσ) , 0 < σ ≤ 1. Here we have also taken the liberty of discarding the term

− 1
24 ih3ε(∂4

xV ) from the central exponent since it is deemed to be to be too small. It is

trivial to see that this term scales as O
(
h3ε
)
, which, strictly speaking, isn’t smaller than

the error when solely analysing in h. However, when ε → 0 independent of h, this term

vanishes in the limit. Even if we assume that h scales with ε, but is at most as small as ε

(under σ = 1) (which is not really much of a restriction) this term is O
(
h5ε−1

)
or smaller.

3The difference in this proof is that
∥∥∥ε Ê(t)wε

∥∥∥
L2

is already bounded in terms of h, features the fifth

power, and is independent of t. However, this is only a technicality that appears due to the way in which
we have scaled t from [0, 2] instead of, say, [0, 2h].
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9.4.2 Error in the second step of the symmetric Zassenhaus algorithm

Lemma 9.4.2. Define X = ihε−1V and Y = −ihε−1V + 1
6 ih3ε−1(∂xV )2 + 1

6 ih3ε
〈
∂2
xV
〉

2
,

i.e. the central exponent in the previous step. Assuming that uε satisfies (9.1) and V

satisfies (9.2), the local error in the central exponent due to the second application of the

truncated sBCH in the symmetric Zassenhaus procedure is bounded as follows∥∥∥eY uε − e−
1
2
XeX+Y e−

1
2
Xuε

∥∥∥
L2
≤ Ch5ε−1, n ∈ Z+,

in the limit ε→ 0, where C > 0 is independent of ε and h.

Proof. Once again, we find∥∥∥eY uε − e
1
2

ihε−1V es̃BCH(X,Y )e
1
2

ihε−1V uε
∥∥∥

L2

=
∥∥∥e

1
2

ihε−1V eΘA(2)e
1
2

ihε−1V uε − e
1
2

ihε−1V eΘ̃A(2)e
1
2

ihε−1V uε
∥∥∥

L2

=
∥∥∥eΘA(2)wε − eΘ̃A(2)wε

∥∥∥
L2
,

where

wε = e
1
2

ihε−1V uε.

Since V satisfies (9.2) and uε satisfies (9.1), simple application of the chain rule shows

that wε also satisfies (9.1).

In this step we truncate the sBCH series immediately—dropping all grade three or

higher commutators. This corresponds to the Magnus expansion Θ1 where

Θ′1(t) = A(t).

Thus the error is due to

Ê(t) = Θ̃′ −A(t) + 1
2r2

(
adΘ̃

) (
adΘ̃(Θ̃′)

)
= 1

2r2

(
adΘ̃

) (
adΘ̃(Θ̃′)

)
.

Following the analysis in Section 9.3.2, the bound for the remainder term boils down to

bounding a term of the form ∥∥∥[Θ̃, Θ̃′]w̃ε
∥∥∥

L2
,

which features one integral (from t = 0 to t = 2) and one commutator of A at different

times and where w̃ε obeys (9.1).

Since A(t) = O (h), one might expect this term to be O
(
h2
)
, näıvely , and O

(
h3
)

after accounting for the gain in power via Taylor analysis. However, this term is, in fact

O
(
h5
)
. This happens because the O (h) term in A is ihε−1V for all times (except for a

change in sign) and thus cancels out except when it is commuted with the O
(
h3
)

term.

Following the application of Corollary (9.1.6), and the observations of Section 9.3.2,
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we conclude

lim
ε→0

∥∥∥ε Ê(t)wε
∥∥∥

L2
≤ Ch5, t ∈ [0, 2],

where 0 < C <∞. Integrating this bring us to the result of this Lemma.

9.4.3 Local error in a single step of Z [2]
1,1

We now combine the results of Lemma 9.4.1 and Lemma 9.4.2 to analyse the local error

in a single step of the first non-trivial Zassenhaus splitting, Z [2]
1,1.

Lemma 9.4.3. Assuming that uε satisfies (9.1) and V satisfies (9.2), the local error in a

single step of the symmetric Zassenhaus splitting Z [2]
1,1 is bounded as follows∥∥∥eihε∂2

x−ihε−1V uε −Z [2]
1,1u

ε
∥∥∥

L2
≤ Ch5ε−1, n ∈ Z+,

in the limit ε→ 0, where C > 0 is independent of ε and h.

Proof. Letting

X1 = −ihε∂2
x,

X2 = ihε−1V,

Y1 = ihε∂2
x − ihε−1V,

Y2 = −ihε−1V + 1
6 ih3ε−1(∂xV )2 + 1

6 ih3ε
〈
∂2
xV
〉

2
,

and noting that

Z [2]
1,1 = e−

1
2
X1eY2e−

1
2
X1 − e−

1
2
X1e−

1
2
X2eY2+X2e−

1
2
X2e−

1
2
X1 ,

the error in a single step can be written as∥∥∥(eY1 −Z [2]
1,1

)
uε
∥∥∥

L2
≤
∥∥∥(eY1 − e−

1
2
X1eY2e−

1
2
X1

)
uε
∥∥∥

L2

+
∥∥∥(e−

1
2
X1eY2e−

1
2
X1 − e−

1
2
X1e−

1
2
X2eY2+X2e−

1
2
X2e−

1
2
X1

)
uε
∥∥∥

L2
.

Of these terms, the first is∥∥∥(eihε∂2
x−ihε−1V − e

1
2

ihε∂2
xe−ihε−1V+ 1

6
ih3ε−1(∂xV )2+ 1

6
ih3ε〈∂2

xV 〉2e
1
2

ihε∂2
x

)
uε
∥∥∥

L2
,

which was shown to be bounded by Ch5ε−1 at the end of Section 9.4.1 as a consequence

of Lemma 9.4.1. For the second term, define

wε = e
1
2

ihε∂2
xuε,
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so that ∥∥∥(e−
1
2
X1eY2e−

1
2
X1 − e−

1
2
X1e−

1
2
X2eY2+X2e−

1
2
X2e−

1
2
X1

)
uε
∥∥∥

L2

=
∥∥∥(eY2e−

1
2
X1 − e−

1
2
X2eY2+X2e−

1
2
X2e−

1
2
X1

)
wε
∥∥∥

L2
.

Following the arguments in Section 9.4.1, wε also satisfies the bounds of (9.1). Thus the

above term is also bounded by Ch5ε−1 due to Lemma 9.4.2. Combining the two bounds

results in a proof of this lemma.

9.4.4 Error bounds for the first non trivial Zassenhaus splitting

Theorem 9.4.4. Let uε(t) be the exact solution of the Schrodinger equation (3.9) fea-

turing a time-independent potential V , which satisfies (9.2). Assuming that the initial

condition uε(0) satisfies (9.1), the error in the solution ũε(tn) obtained by propagating via

the symmetric Zassenhaus splitting Z [2]
1,1 at time tn is bounded as

lim
ε→0

ε ‖uε(tn)− ũε(tn)‖L2 ≤ Ctnh4, n ∈ Z+,

where C > 0 is independent of ε,h and tn.

Proof. Denoting the error at time tn as

e(tn) = uε(tn)− ũε(tn),

it follows that

‖e(tn+1)‖L2 = ‖uε(tn+1)− ũε(tn+1)‖L2

=
∥∥∥eihε∂2

x−ihε−1V uε(tn)−Z [2]
1,1ũ

ε(tn)
∥∥∥

L2

≤
∥∥∥eihε∂2

x−ihε−1V uε(tn)− eihε∂2
x−ihε−1V ũε(tn)

∥∥∥
L2

+
∥∥∥eihε∂2

x−ihε−1V ũε(tn)−Z [2]
1,1ũ

ε(tn)
∥∥∥

L2

= ‖e(tn)‖L2 +
∥∥∥eihε∂2

x−ihε−1V ũε(tn)−Z [2]
1,1ũ

ε(tn)
∥∥∥

L2
.

As noted at the end of Section 9.4.1, the solution under the Zassenhaus splitting ũε(tn) can

also be shown to obey the assumptions (9.1). Thus we can apply the results of Lemma 9.4.3

to conclude

lim
ε→0

ε ‖e(tn+1)‖L2 ≤ lim
ε→0

ε ‖e(tn)‖L2 + Ch5.

Telescoping the above brings us to the result of this theorem.

Having arrived at the error bounds for the symmetric Zassenhaus splitting in the

operatorial form, we point the reader to Section 9.3.3 for an analysis of the fully discrete
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case. The difference from Section 9.3.3 is that now we need to break the analysis of error in

multiple stages due to the splitting of the exponential. The analysis procedure, however,

remains essentially the same. In particular, we must impose the same restriction on the

degree of discretisation, M , in terms of h and ε.
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Chapter 10

Conclusions and future work

10.1 Summary of the thesis

In this thesis we have presented a methodology for deriving arbitrarily high-order splitting

methods for the computation of semiclassical Schrödinger equations (3.9) and (3.20). The

results of our approach are the asymptotic exponential splittings Z [1]
2,1 (6.4), Z [2]

2,1 (6.6),

Z [2]
2,σ (6.10), ZΘ[M ]

2,σ (7.17), ZΘ[I]
1,σ (8.2) and ZΘ[I]

2,σ (8.16).

These splittings have a few crucial properties in common: (i) they do not feature nested

commutators, (ii) they are asymptotic—each consecutive exponent in these splittings (ex-

cept perhaps for one) is progressively smaller, leading to quadratic growth of costs, (iii)

they are stable—the exponents are all skew-Hermitian and exponentials are unitary.

These commutator-free splittings are derived by working in the Lie algebra of Jordan

polynomials in ∂x with function coefficients,

〈f〉k = f • ∂kx = 1
2(∂kx ◦ f + f ◦ ∂kx).

In this algebra we are able to simplify commutators by using the rule

[〈f〉k , 〈g〉l] =

k+l−1
2∑

n=0

2n+1∑
i=0

λk,ln,i
〈
(∂ixf)(∂2n+1−i

x g)
〉
k+l−2n−1

, (6.2)

where the coefficients λ can be read off Table 5.2 or computationally generated via (5.11)

or (5.12). The height reduction property in this algebra, summarised in Corollary 5.3.5,

leads to nested commutators being much smaller than otherwise expected, making the

asymptotic splittings effective.

Crucially, the stability of the numerical methods is guaranteed by the Z2-grading and

the symmetrised structure of the linear differential operators that form this Lie algebra.

Working in this algebra ensures skew-Hermiticity of all exponents, which leads to unitarity

of exponentials and guarantees unitary evolution—a crucial physical property in quantum
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mechanics.

We have also discussed the choice of semidiscretisation and effective means of approx-

imating matrix exponentials resulting from the discretisation of the operators appearing

in the splittings and the consequences upon the costs of the splittings.

The splittings ZΘ[M ]
2,σ , ZΘ[I]

1,σ and ZΘ[I]
2,σ are high-order methods for solving semiclassical

Schrödinger equations featuring time-dependent potentials. These splittings are based

on commutator-free Magnus expansions Θ̃
ε[M ]
5 , Θ̃

ε[I]
3 , and Θ̃

ε[I]
5 , respectively, which were

derived by simplifying truncated Magnus expansions in the Lie algebra G.

Even though the commutator-free Magnus expansions simplified in G are less expensive

to exponentiate via Lanczos iterations (or a combination of Yoshida splittings and Lanczos

iterations) than the standard Magnus expansions that feature nested commutators of

matrices, they remain fairly expensive to exponentiate.

In the case of time-independent potentials moderately high-order Yoshida splittings

are less expensive than Zassenhaus splittings, despite the quadratic costs of Zassenhaus

splittings being superior to the exponential costs of Yoshida splittings for very high-order

methods. However, for time-independent potentials, we find that the Zassenhaus–Magnus

splittings are universally more efficient than the corresponding Yoshida splittings—even

for low and moderately high orders of accuracy.

We have also analysed the error of these operatorial splittings and expansions without

resorting to discretisation. This is achieved by characterising the oscillatory solutions of

the Schrödinger equations in the semiclassical regime.

10.2 Zassenhaus splittings in practice

(i) Variants of the Zassenhaus splittings. Variant of the Zassenhaus splittings (such

as Z [1]
2,1, which extracts the term V before the ∂2

x term) should enjoy the same

asymptotic behaviour as we have seen. However, extracting subsequent terms in a

different way (i.e. not simply depending on their size in powers of ε) could potentially

lead to splittings that are more accurate or cost effective in some cases.

(ii) Scaling choices. In the case of moderately small values of ε, the spatio-temporal

discretisation choices could matter a lot. For instance, for ε = 1/50 the spatial reso-

lution M ≈ 50 is hardly likely to be sufficient for discretising the potential function,

which is the very least that we require, and h ≈ 1/7, which is the scaling sug-

gested under σ = 1/2, is likely be completely inadequate for resolving the temporal

behaviour of realistic potentials.

Clearly, in these cases we are nowhere near the asymptotic regime ε → 0 and M =

O
(
ε−1
)

is hardly a constraint to worry about. However, the property of height
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reduction still applies in terms of powers of M , once we estimate

〈f〉k ≤ C ‖f‖∞M
k.

(1) It would be worthwhile exploring the effect of different choices of M and h on

the accuracy and cost of the Zassenhaus splittings.

(2) These choices should correctly take into account the spatio-temporal discreti-

sation of the potential and should ideally be based on tighter estimates of the

number of oscillations appearing in the wave-function.

(3) If M is not particularly large, the costs may no longer be dominated by the

O (M logM) costs of the FFTs and we might have to take into account the

evaluation of the potential function, for instance.

(4) If M � ε−1, finite difference methods could once again become effective.

(5) It is likely that a Zassenhaus splitting where we extract terms based on their

size (not just asymptotically speaking, but estimated for finite h, M and ε, and

based on the potential under consideration) would look substantially different

and found highly effective in practice.

(iii) Yoshida–Zassenhaus hybrid schemes. Hybrid splittings combining Zassenhaus and

Yoshida splittings might benefit from the low cost of Yoshida splittings for low and

moderate orders of accuracy and yet feature a quadratic growth of costs. In principle

this should be possible by expressing, say, the sixth order Yoshida splitting S6 as

S6 = exp
(
A+B + h7C7 + h9C9 + . . .

)
,

where Cn are grade n commutators, and then using sBCH to extract the h7 terms

from the right hand side, writing

e−
1
2
h7C7S6e−

1
2
h7C7 = exp

(
sBCH

(
−h7C7, A+B + h7C7 + h9C9 + . . .

))
.

10.3 Related equations of quantum mechanics

(i) A multivariate setting. An effective numerical discretisation of the semiclassical

Schrödinger equation (3.9), evolving in d-dimensions requires overcoming some sig-

nificant challenges. Once algebraic foundations have been properly laid down in

accordance with Section 10.4.1, the case for small d ≥ 1 should be fairly straightfor-

ward, albeit a bit expensive.

Matters are more complicated when d becomes large and the cost of O
(
Md logM

)
becomes unsustainable. It is clear that, for our methodology to be scaleable to large
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dimensions, it must be combined with other approaches, e.g. sparse grids (Bungartz

& Griebel 2004), Hagedorn wavepackets (Gradinaru & Hagedorn 2014) and quasi

monte carlo lattices (Kämmerer, Kunis & Potts 2012).

(ii) Stochastic potentials. Many quantum systems involve continuous measurement and

environmental interference, resulting in random noise modelled by stochastic equa-

tions such as the Quantum Stochastic Schrödinger Equation (QSSE).

Magnus based methods are known to be effective for solving stochastic differential

equations (Lord et al. 2008). It is worth exploring whether the methods discussed in

Chapters 7 and 8 can be extended to deal with stochastic quantum equations such

as the Stratonovich Schrödinger equation which features a stochastic potential with

multiplicative white-noise.

The integral-preserving Magnus–Zassenhaus schemes ZΘ[I]
n,σ proceed without resort-

ing to a discretisation of integrals and makes few assumptions regarding the regular-

ity of the potential. These will form the ideal starting point for this investigation.

(iii) The nonlinear Schrödinger equation. A major challenge is to apply our methodology

in a nonlinear setting, e.g. to the nonlinear Schrödinger equation

iε
∂u

∂t
= − ε2

2m

∂2u

∂x2
− V (x)u+ λ|u|2u.

Preliminary investigation seems to indicate that a näıve generalisation does not work,

because we do not enjoy the reduction of negative powers of ε after commutation

with Lie-derivatives corresponding to |u|2.

(iv) Pauli equation. The Pauli equation, which has the hamiltonian

H = (σ · (−iε∇−A(x)))2 + V (x),

predicts the dynamics of spin-1/2 particles. Here σ = (σx, σy, σz) is the vector of

Pauli matrices, A is the magnetic potential and V is the electric potential. The

Hamiltonian can be simplified to the form

H = (−iε∇−A(x))2 − εσ ·B + V (x),

where B = ∇×A is the magnetic field.

In principle, a Zassenhaus splitting for this equation can be derived. However, even

if we were to consider the kinetic part reduced to one dimension, we encounter a

term 2iε 〈A〉1 which is O
(
ε0
)

in H and appears as the O
(
εσ−1

)
term 2h 〈A〉1 in

−ihH/ε. This term is as large as the Laplacian and the potential but due to the
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lack of favourable structure it is not possible to exponentiate it cheaply unless the

we resort to very small time steps.

10.4 Extension of the algebraic framework

10.4.1 Commuting elements of the Lie idealiser

In the 3-dimensional Schrödinger equation, the Hamiltonian has the form

H = −ε2∆ + V,

where ∆ is the Laplacian,

∆ = ∂2
x + ∂2

y + ∂2
z .

Assuming that we are working with smooth enough functions, ∂x, ∂y, ∂z, and their powers

commute. Moreover, all three of these are elements of the Lie idealiser,

[∂x, f ] = ∂xf, [∂y, f ] = ∂yf, [∂z, f ] = ∂zf.

An extension of the techniques discussed in this thesis to the case of multivariate

Schrödinger equation will require the development of corresponding algebraic structures.

Symbolic computation with these elements suggests that the symmetrised elements of the

form

〈f〉k,l,j = 1
2

(
∂kx∂

l
y∂

j
z ◦ f + f ◦ ∂kx∂ly∂jz

)
enjoy similar properties of height reduction and symmetry. For simplifying matter, we

write

〈f〉k = 〈f〉k1,k2,k3
,

where k is the multi-index (k1, k2, k3) which suggests obvious higher-dimensional general-

isations. The conjecture is that for all f, g ∈ G ,

[
〈f〉k , 〈g〉l

]
=

k+l−1
2∑
n=0

〈hn〉k+l−2n−1 ,

for some hn ∈ G and where the sum is restricted to 0 ≤ ni ≤ ki+li−1
2 , i = 1, 2, 3.

Once height reduction in multiple dimensions is established, the results of Chapter 9

should generalise to multiple dimensions in a very straightforward way. In practical appli-

cations, the simplification of commutators in higher dimensions has the potential of creat-

ing far too many terms, however. Thus the costs of Zassenhaus splittings may no longer

grow quadratically. It would be of interest to see if the terms are more favourable once

we consider nested commutators of the Laplacian (not just any polynomial in ∂x, ∂y, ∂z).
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10.4.2 Non-commuting elements of the Lie idealiser

It is simple to see that the components of div in cylindrical coordinates are elements of

the Lie idealiser, [
1

r
∂r ◦ r, f

]
= ∂rf,[

1

r
∂φ, f

]
=

1

r
∂φf,

[∂z, f ] = ∂zf.

We note that the derivations induced by the components of div are identical to the com-

ponents of grad, ∇ = (∂r,
1
r∂φ, ∂z),

1

r
∂r ◦ r → ∂r,

1

r
∂φ →

1

r
∂φ, ∂z → ∂z.

The components of grad are trivially seen to be elements of the Lie idealiser,

[∂r, f ] = ∂rf,[
1

r
∂φ, f

]
=

1

r
∂φf,

[∂z, f ] = ∂zf,

and the derivations they induce are identical.

Similar observations hold true in spherical coordinates. The components of div induce

the derivations

1

r2
∂r ◦ r2 → ∂r,

1

r sin θ
∂θ ◦ sin θ → 1

r
∂θ,

1

r sin θ
∂φ →

1

r sin θ
∂φ,

which are identical to the components of grad and the derivations they induce.

However, in neither case do these operators commute. In spherical coordinates, none

of the components of grad commute,[
∂r,

1

r
∂φ

]
= − 1

r2
∂φ,[

∂r,
1

r sin θ
∂φ

]
= − 1

r2 sin θ
∂φ,[

1

r
∂θ,

1

r sin θ
∂φ

]
= − cos θ

r2 sin θ
∂φ.

In cylindrical coordinates, the non-commuting components of grad are the pair ∂r and
1
r∂φ, as we have already seen for spherical coordinates.

An interesting question is whether structures such as Jordan polynomials in elements
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of the Lie idealiser could be generalised for non-commutating elements that, nevertheless,

do obey some properties that are common to components of grad and div in Cartesian,

cylindrical and spherical coordinates, for instance. This would have to be done keeping in

mind whether such a generalisation is useful from a numerical point of view—for instance,

whether it leads to structural properties such as height reduction and preservation of

skew-Hermiticity upon discretisation.

10.4.3 Wigner equation

The Wigner equation

∂tw
ε(x, k, t) = −k∂xwε(x, k, t) + ΘδεV w

ε(x, k, t),

obtained from the semiclassical Schrödinger equation via a Wigner transform (Jin et al.

2011), features the pseudo-differential operator ΘδεV . Here, the pseudo-differential oper-

ator Θg, for g ∈ G = C∞p ([−1, 1]2,R) (for instance), is defined by its action on f ∈ H =

C∞p ([−1, 1]2,C),

Θg(f(x, k)) =
1

2π

ˆ ˆ
g(x, y)f(x, s)eiy(k−s) dy ds,

while δεV (x, y) is the function

δεV (x, y) =
V
(
x− ε

2y
)
− V

(
x+ ε

2y
)

ε
.

The space C = {Θg : g ∈ G } is a commutative algebra since

Θg(Θh(f(x, k))) =
1

(2π)2

ˆ ˆ ˆ ˆ
h(x, z)g(x, y)f(x, s)eiy(k−s)eiz(s−r) dy dz dr ds

=
1

(2π)2

ˆ ˆ ˆ ˆ
h(x, z)g(x, y)f(x, r)eis(z−y)e−izreiyk dy dz dr ds

=
1

2π

ˆ ˆ ˆ
h(x, z)g(x, y)f(x, r)δ(z − y)e−izreiyk dy dz dr

=
1

2π

ˆ ˆ
h(x, z)g(x, z)f(x, r)eiz(k−r) dz dr

= Θgh(f(x, k)), (10.1)

where we have used the fact that δ(x−a) = 1
2π

´
eik(x−a) dk is the Dirac delta distribution

and that
´
δ(x − a)f(x) dx = f(a). Much like the setting of Section 6.1, C is isomorphic

to G .

Moreover, multiplication by k and the differential operator ∂x, are both elements of the

Lie idealiser, inducing the derivations i∂y and ∂x, respectively. The proof for [∂x,Θg] =
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Θ∂xg is trivial and goes as follows,

[∂x,Θg](f(x, k)) =
1

2π

ˆ ˆ
(∂xg(x, y)f(x, s) + g(x, y)∂xf(x, s)) eiy(k−s) dy ds

− 1

2π

ˆ ˆ
g(x, y)∂xf(x, s)eiy(k−s) dy ds

=
1

2π

ˆ ˆ
∂xg(x, y)f(x, s)eiy(k−s) dy ds = Θ∂xg(f(x, k)).

The proof for [k,Θg] = Θi∂yg is a bit more involved. Opening the commutator, we arrive

at

kΘg(f(x, k))−Θg(kf(x, k)) =
1

2π

ˆ ˆ
g(x, y)f(x, s)(k − s)eiy(k−s) dy ds.

We integrate by parts with ∂yu = i(k − s)eiy(k−s) and v = −ig(x, y)f(x, s). Noting that

u = eiy(k−s) and ∂yv = −i∂yg(x, y)f(x, s),

[k,Θg](f(x, k)) = − 1

2π

ˆ ˆ
(−i∂yg(x, y)f(x, s))eiy(k−s) dy ds

=
1

2π

ˆ ˆ
(i∂yg(x, y))f(x, s)eiy(k−s) dy ds

= Θi∂yg(f(x, k)).

We can also show that [∂x, k] = 0, and that these operators commute.

We find that these properties are similar to the natural extension of G to two dimen-

sions, with the role of the isomorphism played by Θ instead of left multiplication, M.

Instead of the Laplacian and the potential, the operators we have to contend with are

ΘδεV and the polynomial k∂x. We need to explore whether the properties of the sym-

metrised structures conjectured in Section 10.4.1 would be relevant here for developing

effective numerical schemes.

10.4.4 Matrix valued potentials

Matrix-valued potentials appear in TDSEs when we need to consider multiple energy levels

at once. Magnus expansion based methods such as (Hochbruck & Lubich 2003) are used

once these potentials start featuring time-dependent components (Kormann, Holmgren &

Karlsson 2008).

Unfortunately, matrix-valued potentials do not directly fall into the framework of G

as a Lie algebra. However suitable extensions for these contexts are being actively sought.

Initial findings suggest that a modified version of the height reduction rule holds and

it might be possible to extend the favourable computational complexity of the Magnus–

Zassenhaus schemes discussed in Chapter 8 to these cases.
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