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Abstract 

Learning, Consolidating, and Generalising Novel Morphology 

Lydia Viñals-Castonguay 

Despite a central role for morphological knowledge in supporting linguistic 

generalisation, the neural representations supporting its learning remain largely 

unexplored. This thesis addressed this gap by exploring the role of memory 

consolidation in morphological learning and generalisation. In three experiments, 

adult participants learned an artificial language in which stems (e.g. gleet, shiln) 

combined with plural affixes (e.g. –aff, -opp; gleetaff, shilnopp) to refer to the 

occupation of multiple male and female characters. Mimicking properties of 

morphological systems in natural languages, the plurals varied in their phonological 

consistency/ambiguity and type/token frequency. Two sets of plurals, distinguished by 

gender, were trained on two successive days. Experiment 1 revealed that 

generalisation to novel phonologically ambiguous forms measured on the second day 

showed a greater influence of token frequency for plurals trained on the previous day, 

suggesting overnight changes in their underlying representations. Experiment 2 

examined this effect further by using fMRI to compare the neural representations 

underlying plurals learned on the day of scanning or on the previous day. 

Representational Similarity Analysis revealed increased similarity structure among 

high type frequency plurals and reduced similarity structure among high token 

frequency plurals following overnight consolidation in the left superior temporal 

gyrus (STG). These results are consistent with a Complementary Learning Systems 

(CLS) model in which overnight consolidation supports the development of 

overlapping representations among several items sharing the same feature (here, an 

affix; type frequency) and strengthens item-specific representations for frequently 

occurring items (token frequency). Additionally, connectivity analyses showed that 

the functional coupling between the left STG and the left dorsolateral prefrontal 

cortex was weaker for high type frequency plurals and stronger for high token 

frequency plurals following overnight consolidation. These results suggest that the 

engagement of prefrontal control processes in retrieving the newly-learned plurals is 

subject to overnight consolidation and sensitive to the similarity structure underlying 

the plurals to be retrieved. However, the overnight changes in similarity structure and 
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functional networks observed in Experiment 2 were not mirrored by changes in 

generalisation to novel forms as were observed in Experiment 1. Experiment 3 aimed 

to address the discrepancy in consolidation-related changes in generalisation 

behaviour between the first two experiments. Type/token frequencies were 

manipulated to bias learning, consolidation, and generalisation towards high token 

frequency plurals. Despite this manipulation, no consolidation-related changes in 

generalisation were observed. Findings from all three experiments are interpreted in 

the context of the CLS model and a role for overnight consolidation in morphological 

learning and generalisation is discussed. 
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Chapter 1: Learning morphology 

1.1. Learning rules or strengthening connections 

Understanding the nature of language learning has been a central issue in linguistics 

and cognitive neuroscience for decades. Generative grammar (Chomsky, 1956, 1959) 

views language as the manipulation of symbols (e.g. words and phrases) according to 

rules (e.g. syntax). These rules are said to arise from a domain-specific language 

acquisition device programmed with innate knowledge of core linguistic principles. 

Generative grammar has thus tended to focus on formalising rules and establishing 

how they are learned, represented, and processed. As such, it allies with the broader 

symbolic approach to studying cognitive processes (Fodor, 1968, 1975; Newell, 1980; 

Newell & Simon, 1981; Pylyshyn, 1984). An alternative view comes from 

connectionism, or Parallel Distributed Processing (PDP), which eschews the need for 

symbols and rules and instead views language as best understood by considering the 

properties of artificial neural networks (Rosenblatt, 1958, 1962; Rumelhart, Hinton, & 

McClelland, 1986). Artificial neural networks, in which processing units are akin to 

neurons and their connections to synapses, are used to model different cognitive 

processes in a way that resembles the functioning of the brain. Learning involves the 

emergence and strengthening of connections between processing units over time on 

the basis of statistical contingencies in the environment. Knowledge comes to be 

represented as patterns of activity distributed across large numbers of units. 

Processing consists of using previously learned knowledge. On this view, language 

relies on the same domain-general learning mechanisms as other aspects of cognition.  

 English past tense inflection has spearheaded much of the debate between 

these opposing theoretical views. It has attracted contentious consideration due to its 

sharp distinction, within the same cognitive domain, between a highly regular pattern 

and a set of exceptions (Marslen-Wilson & Tyler, 1998, 2005; Pinker, 2001; 

McClelland & Patterson, 2002a, 2002b; Pinker & Ullman, 2002a, 2002b). The majority 

of English verbs form their past tense by adding the affix ‘ed’ to an otherwise 
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unchanging stem (e.g. ‘walk – walked’)1. Because it applies to almost all verbs and is 

typically extended to new verbs that enter the language (e.g. ‘Skype - Skyped’), the 

regular past tense has been considered a paradigmatic example of a rule-based 

mechanism. By contrast, there are about 180 irregular English verbs that do not follow 

the regular affixation pattern (e.g. ‘take – took’, ‘go – went’). Symbolic and 

connectionist accounts have mostly disagreed on whether the learning, 

representation, and processing of regulars is qualitatively different to that of 

irregulars.  

 According to symbolic accounts of the English past tense, regulars are 

composed by a rule that concatenates symbols for the verb stems and the past tense 

affix (e.g. [walk] + [ed]). Storage of past tenses is not required as they can be 

assembled online by rule. By contrast, irregular stems and past tenses are learned and 

stored as independent lexical entries. This account has yielded dual-mechanism 

theories according to which regulars and irregulars are subserved by distinct 

mechanisms (Chomsky & Halle, 1968; Halle & Mohanan, 1985; Lachter & Bever, 

1988; Pinker & Prince, 1988, 1994; Pinker, 1991, 1999, 2001; Prasada & Pinker, 1993; 

Ullman et al., 1997; Ullman, 1999, 2001; Marcus, 2001; Pinker & Ullman, 2002b; 

Marslen-Wilson & Tyler, 2007). Early dual-mechanism theories considered irregulars 

to be learned by rote and stored in distinct slots of memory (Chomsky & Halle, 1968; 

Halle & Mohanan, 1985). Rote memorisation of this kind could account for the 

learning of suppletive forms (e.g. ‘go – went’, ‘be – was’) but was inconsistent with 

important characteristics of other irregulars. First, like regulars, most irregulars show 

some degree of overlap between their stems and past tenses. For example, the regular 

‘bake – baked’ and the irregular ‘take – took’ both retain the onset and coda of their 

stem in their past tense form (Halle & Mohanan, 1985). Second, there are sub-

regularities in the mapping between stems and past tenses among pools of irregulars 

such as the vowel change in ‘cling – clung’, ‘fling – flung’, and ‘sling –slung’ (Chomsky 

& Halle, 1968). Third, some irregulars are similar to regulars in that their past tense 

                                                        
1 One of three allomorphs of the affix ‘-ed’ is applied depending on the final sound of the stem to which it attaches: /t/ as in ‘walk 
– walked’ if it is a voiceless consonant, /d/ as in ‘play – played’ if it is a voiced consonant or a vowel, and /ed/ as in ‘twist – twisted’ 
if it is an alveolar stop. 
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ends in /t/, one of the three regular ‘ed’ allomorphs (e.g. ‘creep – crept’, ‘sleep – slept’ 

like in ‘crop – cropped’, ‘step – stepped’). These have been referred to as weak irregulars 

or pseudo-regular irregulars (Pinker, 1999; Joanisse & Seidenberg, 2005).  Thus, 

irregulars are not as idiosyncratic as they might first appear. Similarities in the 

structure of regulars and irregulars are problematic for a model that assumes rote 

learning and independent representation of irregular stems and past tenses.   

 To account for these sub-regularities among irregulars, connectionist accounts 

– or single-mechanism theories - of the English past tense do not posit the same 

categorical distinction between regulars and irregulars as dual-mechanism theories. 

Both regulars and irregulars are learned, represented, and processed in a single 

network of connections that computes stem – past tense transformations from 

distributed phonological representations2 (Rumelhart & McClelland, 1986; Seidenberg 

& Bruck, 1990; Cottrell & Plunkett, 1991; Plunkett & Marchman, 1991, 1993, 1996; 

MacWhinney & Leinbach, 1991; Seidenberg, 1992; Daugherty & Seidenberg, 1992; 

Hare & Elman, 1992, 1995; Hare, Elman, & Daugherty, 1995; Marchman, Plunkett, & 

Goodman, 1997). For example, a network receives distributed phonological 

representations of regular and irregular verb stems as input (e.g. ‘bake’, ‘sing’) and 

computes distributed phonological representations of their past tenses as output (e.g. 

‘baked’, ‘sang’) by spreading activation over the connections between the input and 

output units. Through repeated exposure to the stem – past tense pairs3, the network 

gradually learns stem – past tense mappings by adjusting the weights between its 

connections using learning algorithms. Thus, single-mechanism accounts make no 

assumptions about a structural difference between regular and irregular mappings. 

Later instantiations of dual-mechanism theories, which are epitomised by Pinker’s 

‘Words and Rules’ theory (Pinker, 1991, 1999), maintain that regulars are composed 

by rule in a symbol-processing system, but concede that irregulars are learned, 

represented, and processed in an associative memory network. The rule is said to be 

                                                        
2 Distributed phonological representations refer to the fact that a word like ‘bake’ is not represented as a single unit but is rather 
encoded by separate units that represent its phonological features. 
3 All connectionist models of the English past tense have used supervised learning where stems and their associated past tense are 
presented together. Unsupervised learning, in which stems and their associated past tense would not need to be presented 
together, have not yet been investigated.  
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preferentially applied whilst the associative memory network can block its application 

if an appropriate irregular is identified.  

 Support for dual-mechanism theories dates back to the cognitive revolution of 

the 1960s during which a number of studies focusing on children’s acquisition of the 

English past tense played an important role in establishing the view that regulars are 

rule-governed (Berko, 1958; Ervin & Miller, 1963; Ervin, 1964; Brown, 1973; Kuczaj, 

1977). Native English speaking children typically begin by producing the correct past 

tense for a limited number of regulars (e.g. ‘played’) and irregulars (e.g. ‘went’) before 

moving on to a period where they produce overregularisation errors (e.g. ‘goed’). 

These overregularisation errors involve overextending the regular affix ‘ed’ to 

irregulars (e.g. ‘goed’) that had previously been correctly used (e.g. ‘went’). This break 

from correct use to overregularisation errors has been argued to imply the deduction 

of a rule governing the regulars. Once discovered, this rule is temporarily misapplied 

to irregulars. Children then learn to apply the rule to regulars only and memorise 

irregulars as whole forms. However, how children learn to distinguish between 

regulars and irregulars or what mechanism supports the deduction of a rule for 

regulars is not explained by this account. 

 Rumelhart and McClelland (1986) challenged dual-mechanism theories by 

showing that a network could successfully simulate key characteristics of children’s 

acquisition of the English past tense without invoking the deduction of a rule for 

regulars. The network initially correctly generated the past tense of regular and 

irregular verb stems before moving on to producing overregularisation errors similar 

to those produced by children. Thus, a simple network could learn both regular and 

irregular mappings using a common set of weighted connections. It also displayed 

rule-like behaviour and produced overregularisation errors in the absence of an 

explicit representation of the regular rule or a separate mechanism for irregulars. 

Rumelhart and McClelland (1986) argued that these findings greatly undermine dual-

mechanism accounts of children’s acquisition of the English past tense. Rumelhart 

and McClelland’s (1986) network spawned a great deal of criticism from proponents 

of dual-mechanism theories focusing mainly on the inappropriateness of its training 

regime, its poor generalisation performance, and its inadequacies of detail, 
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particularly in terms of the phonological representations of its inputs (Pinker & 

Prince, 1988; Lachter & Bever, 1988; Prasada & Pinker, 1993; Ling & Marinov, 1993). 

Several subsequent networks have, however, managed to address most of these 

criticisms (e.g. Plunkett & Marchman, 1991, 1993 but see Marcus, 1995 for a 

dissenting view).   

 As the debate between single- and dual-mechanism theories unfolded, it 

broadened its scope to consider some of the factors influencing the learning of 

regulars and irregulars. The influence of the frequency and phonological consistency 

of verbs has received the bulk of investigative attention. Because they embody a 

categorical distinction between regulars and irregulars, dual-mechanism theories 

predict that the two should almost always be dissociable. Since only irregulars are 

memorised, they should be sensitive to properties of associative memory including 

frequency and phonological consistency effects whilst regulars should not. By 

contrast, single-mechanism theories predict that both regulars and irregulars should 

be sensitive to frequency and phonological consistency effects. The next section 

focuses on network simulations, behavioural experiments, and diachronic data that 

have been used to pit these predictions against each other.  

1.2. Influences on learning inflections 
1.2.1. Frequency 

Frequency effects are well-established at all levels of language processing, typically 

yielding advantages for more frequent relative to less frequent forms (Cattell, 1886; 

Howes & Solomon, 1951; Solomon & Postman, 1952; Broadbent, 1967; Morton, 1969; 

Forster & Chambers, 1973; Bybee & Hopper, 2001; Ellis, 2002). However, frequencies 

can be measured in different ways. In the context of inflectional morphology, type 

frequency refers to the number of words that adhere to an inflectional pattern (Ellis, 

2009). For example, many more English verbs follow the regular ‘ed’ affixation pattern 

than the vowel change in ‘sing-sang’ to form their past tense. That is, regulars have 

higher type frequency than irregulars. Token frequency, in contrast, refers to how 

often individual inflected forms occur (Ellis, 2009). English irregular past tense forms 

‘had’ and ‘did’ have higher token frequency than ‘crept’ or ‘forbade’ because they occur 

more often in the language. Although English irregulars have much lower type 
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frequency than regulars, they have amongst the highest token frequencies (Bybee & 

Slobin, 1982; Bybee, 1995). Thus, in English, the regular – irregular dichotomy 

typically implies a type – token frequency distinction such that regular verbs have 

high type frequency whereas irregular verbs have high token frequency. According to 

dual-mechanism theories, only irregulars should be sensitive to type and token 

frequency effects. By contrast, according to single-mechanism theories, both regulars 

and irregulars should be affected by these factors.  

 In two separate experiments, Prasada, Pinker, and Snyder (1990) and 

Seidenberg and Bruck (1990) presented native English speakers with the stems of 

regular and irregular verbs and asked them to produce their past tenses as quickly as 

possible. Participants were faster at naming the past tense of high token frequency 

irregulars (e.g. ‘took’) than low token frequency irregulars (e.g. ‘rang’), even when 

stem frequencies were equated. By contrast, participants produced the past tense of 

high token frequency regulars (e.g. ‘liked’) and low token frequency regulars (e.g. 

‘biked’) with similar latencies. For proponents of dual-mechanism theories, this 

frequency by regularity interaction is consistent with a rule governing the regulars. 

Efficiency of retrieval from the mental lexicon is modulated by token frequency such 

that high token frequency irregulars are retrieved faster than low token frequency 

irregulars. However, since regulars are computed online by rule, they do not display 

token frequency effects. Once the stem is retrieved, the rule takes the same amount of 

time to be applied to all regulars.  

 The frequency by regularity interaction is not uniquely compatible with dual-

mechanism theories. Daugherty and Seidenberg (1992) trained a network on regular 

and irregular mappings. To examine the frequency by regularity interaction, 

Daugherty and Seidenberg (1992) constructed sets of the 10 highest token frequency 

regulars, 10 lowest token frequency regulars, 10 highest token frequency irregulars, 

and 10 lowest token frequency irregulars from an original training set. The model was 

more accurate on high token frequency irregulars than on low token frequency 

irregulars. By contrast, it was as accurate on high token frequency regulars as it was on 

low token frequency regulars. These results show that the frequency by regularity 

interaction reported by Prasada et al. (1990) and Seidenberg and Bruck (1990) can be 
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replicated within a single network undermining the claim that the interaction is 

evidence of a separate rule for regulars. Daugherty and Seidenberg (1992) further 

speculate that the frequency by regularity interaction could reflect not only token 

frequency effects but also type frequency effects. Learning the regular affixation 

pattern may benefit from several verbs sharing the same affix (high type frequency) 

such that token frequency effects are superseded.   

 Ellis and Schmidt (1998) considered the frequency by regularity interaction in 

adults learning regular and irregular inflections in an artificial language. Half of the 

words had a high type frequency regular prefix (e.g. bugarth but also bupid, bulant) 

and the other half had low type frequency irregular prefixes (e.g. zecharp but also 

niwoop, rekag). Within the regulars and the irregulars, half of the words were trained 

with high token frequency and half were trained with low token frequency. 

Participants were faster and more accurate at naming high token frequency regulars 

and irregulars at early stages in training. However, as training progressed, the token 

frequency effect disappeared for regulars but remained for irregulars giving rise to the 

frequency by regularity interaction reported by Prasada et al. (1990) and Seidenberg 

and Bruck (1990). Ellis and Schmidt (1998) further showed that a network could 

simulate the participant data. Like Daugherty and Seidenberg (1992), Ellis and 

Schmidt (1998) show that the frequency by regularity interaction can be explained by 

a single mechanism. The authors further argue that it is not the case that there are no 

token frequency effects for regulars but rather that these effects are difficult to observe 

due to asymptotic performance potentially driven by high type frequency. In addition, 

token frequency effects have been reported for the processing of regulars (Stemberger 

& MacWhinney, 1986; Alegre & Gordon, 1999; Hare, Ford, & Marslen-Wilson, 2001) . 

For example, Alegre and Gordon (1999) reported the results of a lexical decision task 

for regular English past tenses. Higher token frequency regulars were responded to 

faster than low token frequency regulars. These results cannot be accounted for if 

regular past tenses are derived by rule rather than being stored in an associative 

memory network. 

 Proponents of dual-mechanism theories have argued that token frequency 

effects on irregulars are consistent with patterns of diachronic change (e.g. Pinker, 
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1991. 1999). For example, low token frequency irregulars are more likely to be 

regularised over time (e.g. ‘weep – weeped’) than high token frequency irregulars (e.g. 

‘keep – kept’). In addition, all surviving suppletive forms (e.g. ‘go – went’) have high 

token frequencies (Bybee, 1985). However, these patterns of diachronic change do not 

necessitate postulating separate processing systems for regulars and irregulars. In the 

usage-based model (Bybee, 1985, 1988, 1995, 2001), regular and irregular inflectional 

patterns emerge from a single network of connections among lexical representations 

of past tenses. A high number of specific usage events with a word (i.e. high token 

frequency) strengthens its lexical representation. A stronger lexical representation 

makes a word more autonomous, easier to access whole, and less likely to be 

regularised over time (Bybee & Slobin, 1982; Bybee, 1985; Hooper, 1976). The 

regularisation and loss of low token frequency forms over time are argued to be 

consequences of insufficient usage. Speakers are unable to retrieve and use weakly 

represented variants. Furthermore, Hare and Elman (1995) report the results of a 

network simulating diachronic change of past tense inflection from Old to Modern 

English, which largely agrees with the usage-based model. The output of one network 

was used as the input of another to simulate change over generations of language 

users. High token frequency mappings were learned more quickly and accurately and 

were more likely to be preserved over generations. Low token frequency mappings, by 

contrast, were harder to learn and more prone to regularisation over generations. 

 As with token frequency, dual-mechanism theories predict that type frequency 

should have little influence on the learning and processing of regulars. Single-

mechanism theories, by contrast, consider type frequency to be a determining factor 

of the productivity of the regular affixation pattern. Productivity refers to the extent to 

which an affixation pattern is used to inflect novel forms. As such, it is closely related 

to the notions of default inflection and generalisation, which are discussed in more 

detail in Chapter 3. Nonetheless, it is worth noting here that connectionist networks 

are able to simultaneously learn specific mappings and regularities that are shared 

across several mappings. Plunkett and Marchman (1993) report the results of a 

network simulation of past tense inflection in which the size of the training set was 

increased incrementally. The ability of the network to correctly acquire new regular 

verbs was poor as the size of the training set increased. However, after the training set 
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reached a critical mass (around 50 verbs), the network’s performance started to 

improve rapidly. Plunkett and Marchman (1993) argue that these findings suggest 

that the network shifted from memorising specific mappings to discovering 

regularities shared across mappings allowing it to treat new verbs entering the training 

set in a systematic way. Plunkett & Juola (1999) found a similar critical mass effect in a 

connectionist model trained to produce the plurals of English nouns. Thus, the ability 

of a single network to extract regularities shared by several items (much like the 

deduction of a rule) can be simulated without invoking a symbol-processing system 

for regulars. The extent to which these results are an artefact of the idiosyncratic 

frequency statistics of English, however, has been a matter of debate, which is 

considered in Chapter 3. 

1.2.2. Phonological consistency 

Regular and irregular English verbs can be described in terms of their phonological 

consistency. Phonological consistency refers to the extent to which a verb shares with 

other verbs the phonology of its stem and the type of transformation that associates its 

stem with its past tense (Pinker & Prince, 1988; McClelland & Patterson, 2002). For 

example, the regular verb ‘walked’ can be said to be phonologically consistent because 

its stem is similar to its phonological neighbours ‘balk’, ‘calk’, chalk’, ‘stalk’, and ‘talk’, 

which all have regular past tenses. Similarly, the irregular verb ‘slung’ is relatively 

consistent since its stem is similar to its phonological neighbours ‘cling’, ‘fling’, ‘sting’, 

‘string’, ‘swing’, and ‘wring’, which all follow the same vowel alternation pattern to 

form their past tense. By contrast, the regular verb ‘flowed’ can be said to be 

phonologically ambiguous. Its stem is similar to its phonological neighbours ‘mow’, 

‘show’, ‘slow’, and ‘tow’, which have regular past tenses but it is also similar to its 

phonological neighbours ‘blow’, ‘grow’, ‘know’, and ‘throw’, which have irregular past 

tenses. According to dual-mechanism theories, at least in their original formulations, 

regulars are derived via rule and thus would not be expected to display phonological 

consistency effects. Single-mechanisms theories, by contrast, directly predict that both 

regulars and irregulars should demonstrate phonological consistency effects.    

 Seidenberg and Bruck (1990; also discussed in Seidenberg, 1992) asked native 

English speakers to generate the past tense of regular verb stems varying in their 
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degree of phonological consistency. Participants were slower and less accurate at 

producing the past tense of phonologically ambiguous regular verb stems compared to 

phonologically consistent regular verb stems, whilst naming latencies for the verb 

stems did not vary. Furthermore, for the phonologically ambiguous regular stems, the 

naming latency effect was related to the number of irregular phonological neighbours. 

Participants were faster at naming the past tense of regular stems like ‘pick - picked’, 

which only has one phonological neighbour with an irregular past tense, ‘stick – stuck’, 

than regular stems like ‘blink - blinked’, which has several phonological neighbours 

with irregular past tenses such as ‘sink –sank’ and ‘think – thought’. Seidenberg and 

Bruck (1990) argue that phonological consistency effects among regulars are at odds 

with the predictions made by dual-mechanism theories and support single-

mechanism theories. 

 Ullman (1999a) reported on an experiment in which participants made 

acceptability ratings for regular and irregular English past tenses varying in their 

phonological consistency. Acceptability ratings for irregulars were positively 

correlated with their phonological consistency. In contrast, there was no correlation 

between acceptability ratings and phonological consistency for regulars. Ullman 

(1999a) argue that the presence of phonological consistency effects for irregulars but 

not for regulars is consistent with the predictions of dual-mechanism theories. 

However, it should be noted that Ullman (1999a) only used regular past tenses whose 

stems are phonologically dissimilar to the stems of irregulars (e.g. ‘walk –walked’) (i.e. 

phonologically consistent). Seidenberg and Bruck (1990) considered both 

phonologically consistent and phonologically ambiguous regulars. Ullman (1999a) 

remark that phonologically ambiguous regulars (e.g. ‘glide – glided’; cf. ‘ride – rode’, 

‘hide – hid’) were tested but not analysed. The conclusions that can be drawn from the 

results of this study are limited by the exclusion of these phonologically ambiguous 

regulars. The results may simply reflect the fact that irregulars were more varied in 

their phonological consistency than regulars. 

Daugherty and Seidenberg (1992) trained a network to map the phonological 

representation of verb stems to their past tense. The training corpus included 60 

phonologically consistent regular verb stems (e.g. ‘walk – walked’, cf. ‘talk – talked’, 
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‘stalk – stalked’), 60 phonologically ambiguous regular verb stems (e.g. ‘bake – baked’, 

cf. ‘take – took’, ‘make – made’), and 60 irregular verb stems, all equated in terms of 

token frequency. The network performed better on the phonologically consistent 

regular verb stems than on phonologically ambiguous regular verb stems, which in 

turn, both yielded better performance than irregular verb stems. Daugherty and 

Seidenberg (1992) argue that these results are consistent with the behavioural results 

reported by Seidenberg and Bruck (1990) and support a single-mechanism account. A 

dual-mechanism account has regulars and irregulars being learned and processed by 

two separate mechanisms. Hence, there is no basis for predicting that they will 

interfere with each other. A single-mechanism account, however, encodes both 

regular and irregular past tense in the same set of connection weights. Hence, the 

learning and processing of a regular form is affected by whether it has an irregular 

phonological neighbour or not. It should be noted that in order to account for the 

previously outlined evidence, later formulations of dual-mechanism theories (Ullman 

et al., 1997, 2005; Pinker, 1999; Pinker & Ullman, 2002b) have suggested that the past 

tense forms of phonologically ambiguous regulars are stored in the same associative 

memory network as irregulars. As a result, phonologically ambiguous regulars are 

argued to be processed more slowly and subject to the same blocking mechanism as 

irregular forms. With this amendment, dual-mechanism theories are in principle able 

to account for the previously outlined evidence. However, single-mechanism theories 

provide a more parsimonious account of the evidence.  

1.3. Neural bases of inflectional processing 

A single network of distributed representations appears to provide a more 

parsimonious and psychologically plausible account of children’s developmental 

profile in acquiring past tense inflections as well as the influence of frequency 

measures and phonological consistency. However, the debate between single- and 

dual-mechanism theories continued well into the 1990s before reaching somewhat of 

a stalemate as far as the behaviourally observable properties of the phenomenon are 

concerned. To distinguish between these opposing views, research shifted its focus 

towards characterising the neural mechanisms underpinning adult processing of 

regular and irregular English past tenses in both health and disease. Dual-mechanism 
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theories postulate that since regulars and irregulars are subserved by distinct 

mechanisms, it should be possible to identify separate neural subsystems for their 

processing. By contrast, single-mechanism theories argue that there should be no such 

dissociation. 

Several neuroimaging studies have reported different patterns of brain 

activation associated with the generation of regular and irregular past tenses in 

healthy adults using positron emission tomography (PET; Jaeger et al., 1996; Indefrey 

et al., 1997), functional magnetic resonance imaging (fMRI; Ullman, Bergida, & 

O’Craven, 1997; Beretta et al., 2003), magnetoencephalography (MEG; Dhond, 

Marinkovic, Dale, Witzel, & Halgren, 2003), and electroencephalography (EEG; 

Lavric, Pizzagalli, Forstmeier, & Rippon, 2001). These studies share the assumption 

that differences in brain activity patterns associated with generating regulars and 

irregulars provide evidence for separate cognitive and neural subsystems underlying 

their processing. For example, Jaeger et al. (1996) found participants to show 

increased activation in the left dorsolateral prefrontal cortex when generating regulars 

and increased activation in the left middle temporal gyrus (MTG) when generating 

irregulars. Jaeger et al. (1996) interpreted these results as supporting dual-mechanism 

theories and suggested that whilst the dorsolateral prefrontal cortex may support rule 

application, the left MTG may be involved in retrieving stored irregulars.  

 Neuropsychological studies showing double dissociations in the processing of 

regulars and irregulars in patient groups have also been taken to support dual-

mechanism theories. Across different behavioural tasks, patients with frontal damage 

as a consequence of stroke (Marslen-Wilson & Tyler, 1997; Tyler, DeMornay-Davies, 

et al., 2002) or Parkinson’s disease (PD) (Ullman et al., 1997) have shown impaired 

processing of regulars but relatively well-preserved processing of irregulars. Patients 

with damage to temporal regions, as a result of either stroke (Marslen-Wilson & Tyler, 

1997), semantic dementia (Patterson, Lambon Ralph, Hodges, & McClelland, 2001), 

Herpes Simplex Encephalitis (Tyler et al., 2002), or Alzheimer’s disease (AD) (Ullman 

et al., 1997) have shown the opposite pattern of impairment. For example, Ullman et 

al. (1997) found that patients with AD had more difficulty generating the past tense of 

irregular than regular verbs. Patients with PD exhibited the converse pattern of 
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impairment. Ullman et al. (1997) suggested that this dissociation in behavioural 

deficits and their association with neurodegeneration in different brain regions 

provides strong support for distinct cognitive and neural subsystems underlying the 

processes of regulars and irregulars.   

 Taking these results as a starting point, Ullman and colleagues proposed the 

Declarative/Procedural (DP) model of language (Ullman, Corkin, et al., 1997; Ullman, 

1998, 2001, 2004, 2006). The DP model postulates that different aspects of language 

processing can be related to the neurobiological distinction between the declarative 

and procedural memory systems (Mishkin, Malamut, & Bachevalier, 1984; Schacter & 

Tulving, 1994; Squire & Knowlton, 2000; Eichenbaum & Cohen, 2001). The ‘mental 

lexicon’, which contains memorised words such as irregular past tenses, is said to 

depend on the temporal lobe structures that subserve declarative memory. The 

‘mental grammar’, which underpins the rule-based computation of complex forms 

(e.g. ‘jump’ + ‘ed’), is argued to rely on the frontal/basal-ganglia circuits that support 

procedural memory. AD affects temporal lobe structures whilst leaving frontal/basal-

ganglia circuits relatively intact. By contrast, PD affects the basal ganglia and the 

frontal areas4 to which it projects whilst sparing temporal lobe structures. Thus, 

Ullman et al. (1997) suggested that these specific impairments in declarative and 

procedural memory could account for the double dissociation observed in patients 

with AD and PD processing regulars and irregulars.  

 Based on their own neuropsychological and neuroimaging studies, Marslen-

Wilson, Tyler, and colleagues proposed the morpho-phonological decomposition 

model which, like the DP model, allies with dual-mechanism theories (Marslen-

Wilson & Tyler, 1997, 1998, 2003, 2007; Tyler, DeMornay-Davies, et al., 2002; Tyler, 

Randall, & Marslen-Wilson, 2002; Tyler, Marslen-Wilson, & Stamatakis, 2005; Tyler, 

Stamatakis, Post, Randall, & Marslen-Wilson, 2005). The model proposes a 

distinction between lexical access processes that require morpho-phonological 

decomposition of complex forms, such as regular past tenses (e.g. ‘jump’ + ‘ed’), from 

                                                        
4 As well as frontal areas, degeneration of the basal ganglia also inhibits motor areas to which it projects to causing the tremors 
and muscle rigidity that are characteristic of PD. 
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those that rely on more direct access to whole forms, such as irregular past tenses (e.g. 

‘found’), which have no internal morpho-phonological structure. For example, 

Marslen-Wilson and Tyler (1997) used auditory-auditory repetition priming to show 

selective deficits in morpho-phonological decomposition. Two aphasic patients with 

left-hemisphere lesions affecting parts of the frontal lobe, including the inferior 

frontal gyrus (IFG), and most of the temporal lobe following stroke showed normal 

priming for irregulars (e.g. ‘found’ priming ‘find’) but reduced priming for regulars 

(e.g. ‘jumped’ priming ‘jump’).  

 Marslen-Wilson and Tyler (2007) argue that whilst irregulars are equivalent to 

regulars in terms of their syntactic and semantic properties, they do not require the 

same decomposition into their constituent stem and affix. Instead, irregulars must be 

learned, stored, and accessed as whole forms. Preserved priming for irregulars is 

claimed to demonstrate that the impairment for regulars is specific to their 

decompositional properties. Furthermore, Marslen-Wilson and Tyler (2007) postulate 

a decompositional network linking left inferior frontal regions with temporal regions. 

The DP model (Ullman, 1997, 2001, 2004, 2005, 2006) distinguishes between a 

memorised mental lexicon and a computational mental grammar, relying on the 

declarative and procedural memory systems, respectively. The morpho-phonological 

decomposition model (Marslen-Wilson & Tyler, 2007) instead proposes a fronto-

temporal network involved in morpho-phonological decomposition that cuts across 

these two memory systems.  

 Both the DP and the morpho-phonological decomposition models have 

attracted criticism from proponents of single-mechanism models. Arguments have 

developed on the grounds that differences in the processing of regulars and irregulars 

reported in neuroimaging and neuropsychological studies do not necessarily reflect 

distinct neural systems (Joanisse & Seidenberg, 1999; Juola & Plunkett, 2000; 

McClelland & Patterson, 2002c; Plaut, 1995; Seidenberg & Hoeffner, 1998). One 

alternative explanation is that differences between regulars and irregulars simply 
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reflect differences in their processing difficulty5 (Seidenberg & Arnoldussen, 2003; 

Seidenberg & Hoeffner, 1998). For example, Jaeger et al. (1996) used a blocked design 

such that regulars and irregulars were presented separately, introducing potential 

experimental confounds. Regulars were more homogeneous and predictable (all 

formed by affixing ‘ed’) than irregulars, which were more varied and less predictable 

(formed in several different ways). Thus, irregulars could elicit more activity in left 

temporal regions than regulars because they are less predictable and more difficult to 

process than regulars not because they rely on different neural systems. This account 

is also consistent with the latency data reported by Jaeger et al. (1996). Participants 

were much faster at producing regular past tenses than they were at producing 

irregular past tenses. 

 A number of neuroimaging studies have found no differences in the patterns 

of brain activity elicited by regulars and irregulars, particularly when controlling for 

factors such as the phonological complexity of the past tenses. These findings have 

been taken as supporting single-mechanism theories (Desai, Conant, Waldron, & 

Binder, 2006; Joanisse & Seidenberg, 2005; Sach, Seitz, & Indefrey, 2004). For 

example, Joanisse and Seidenberg (2005) compared patterns of brain activity elicited 

by regulars (e.g. ‘step – stepped’), true irregulars (e.g. ‘take – took’), and pseudo-regular 

irregulars (e.g. ‘sleep – slept’) in an event-related fMRI study. Regulars and irregulars 

(combining true irregulars and pseudo-regular irregulars) elicited similar patterns of 

activity in bilateral posterior temporal lobe. By contrast, regulars elicited greater 

activity in left IFG than irregulars. Previous studies have interpreted similar results as 

supporting dual-mechanism theories (Pinker & Ullman, 2002). In a follow-up 

analysis, however, pseudo-regular irregulars were found to elicit similar levels of 

activation to regulars in the left IFG, which both elicited more activity than true 

irregulars. Importantly, naming latencies and accuracies did not differ between the 

pseudo-regular irregulars and the true irregulars so that differences in brain activity 

pattern could not be attributed to differences in processing difficulty. Thus, pseudo-

                                                        
5 Seidenberg and Arnoldussen (2003) argue that this problem is not restricted to neuroimaging studies of the English past tense 
but reflects a broader issue in neuroimaging studies which is that differences between experimental conditions are interpretable 
with reference to the variables of interest (e.g. type of stimuli) only if the stimuli are equated across conditions in terms of 
processing difficulty, a problem they coined the Difficulty Matching Error. 
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regular irregulars pattern with regulars in terms of eliciting activity in brain regions 

associated with phonological processing such as the left IFG. As such, there is no strict 

dichotomy between regulars and irregulars as suggested by single-mechanism 

theories. Consistent with Joanisse and Seidenberg’s (2005) findings, Desai et al. (2006) 

found that when contrasting regular and irregular past tense generation directly in an 

fMRI study, no areas showed greater activation for regulars if the regular and irregular 

past tenses were matched on phonological complexity. 

 Proponents of dual-mechanism theories have held double dissociations in the 

processing of regulars and irregulars observed in neuropsychological studies as the 

crowning piece of evidence for separate neural systems. However, these double 

dissociations have also been claimed to be compatible with single-mechanism 

accounts on the basis of network simulations (Plaut, 1995, Juola & Plunkett, 1998, 

Joanisse & Seidenberg, 1999) and neuropsychological studies (Patterson et al., 2001; 

Bird, Lambon Ralph, Seidenberg, McClelland, & Patterson, 2003). For example, 

Joanisse and Seidenberg (1999) noted that the regular past tenses used by Ullman et al. 

(1997) to show a double dissociation between AD and PD patients appeared to be 

phonologically more complex than the irregulars, such that any specific impairment 

with regulars could reflect a more general deficit in phonological processing. PD has 

been associated with phonological deficits whilst AD has been associated with 

semantic deficits (Grossman, Carvell, Stern, Gollomp, & Hurtig, 1992; Hodges & 

Patterson, 1995). Joanisse and Seidenberg (1999) implemented a neural network in 

which verbs were represented in terms of their phonology and semantics. Once 

trained, lesioning the semantic units led to specific impairments in the production of 

irregular past tenses, while lesioning the phonological units led to a specific 

impairment in the production of regulars. Joanisse and Seidenberg (1999) argue that 

these results show how knowledge of past tense inflection is represented in a single 

network that encodes semantic, phonological, as well as other types of information 

about words. The behavioural dissociations reported by Ullman et al. (1997) and 

others can reflect phonological and semantic representations being differentially 

affected by brain damage. Furthermore, in the neuropsychological assessment of 10 

aphasic patients, Bird et al. (2003) found that the disadvantage for the production of 
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regulars disappeared when phonological complexity was controlled consistent with a 

general impairment in phonological processing. 

1.4. Cross-linguistic inflectional processing 

The debate between single- and dual-mechanism theories of inflectional morphology, 

as well as the evidence reviewed thus far, has mostly focused on the English past tense. 

However, English has an impoverished inflectional system and lacks the complexity of 

other inflectional systems including, for example, those of Romance and Slavic 

languages. Furthermore, regular and irregular English verbs are strikingly different in 

that only regulars undergo affixation (e.g. walk – walked) whereas irregulars either 

undergo vowel changes (e.g. take – took) or suppletion (e.g. go – went). As such, the 

consideration of cross-linguistic inflectional processing may provide a stronger test of 

single- versus dual-mechanism accounts of morphology. An exhaustive review of 

cross-linguistic inflectional processing is beyond the scope of this thesis. Nevertheless, 

some illustrative examples are considered below.  

 Italian, Russian, Norwegian, and Icelandic all have complex verbal 

conjugational paradigms that have more than one regular verb class. A number of 

studies have considered the processing of verbal morphology in these languages in 

adults and children as well as in second language learners (Chernigovskaya & Gor, 

2000; Gor & Chernigovskaya, 2003a, 2003b; Orsolini & Marslen-Wilson, 1997; 

Orsolini, Fanari, & Bowles, 1998; Ragnasdottir, Simonsen, & Plunkett, 1997; 

Simonsen, 2000). Across these languages, type frequency has been found to be a 

determining factor of the generalisation of conjugational patterns in all verb classes 

including regular verb classes. As reviewed earlier in this chapter, only irregulars 

should be sensitive to type frequency effects according to dual-mechanisms theories. 

Single-mechanism theories, by contrast, consider type frequency to be a determining 

factor of the productivity of an affixation pattern. Thus, cross-linguistic behavioural 

data does not appear to support a categorical distinction between regular and irregular 

morphological processing as proposed by dual-mechanism theories.  

 Mirković, Seidenberg, and Joanisse (2011) analysed a large corpus of Serbian 

nouns and showed that, like English, Serbian inflectional morphology has a number of 
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partial regularities that vary in type frequency and phonological consistency. Mirković 

et al. (2011) then trained a network on over 3000 Serbian nouns to produce correctly 

inflected phonological forms from a specification of a word’s lemma, gender, number 

and case. The model’s ability to learn the correct inflected forms was influenced by 

type frequency and phonological consistency. Mirković et al. (2011) argue that these 

results suggest that the correct production of inflected forms in Serbian, as in English, 

reflects the interplay of competing factors within a single network of distributed 

representations. They further argue that their results suggest that common 

computational mechanisms may govern the representation of inflectional morphology 

across languages.   

 Turning to neuroimaging evidence for cross-linguistic inflectional processing, 

de Diego Balaguer et al. (2006) compared brain activations associated with the 

generation of regular and irregular Spanish verbs. In Spanish, both regulars (e.g. 

cantar – canto [I sing]) and irregulars (e.g. sentir – siento [I feel]) undergo suffixation, 

which arguably offers better control over the potential differences in difficulty that 

may account for contrasting patterns of neural activity associated with the processing 

of regular and irregular English verbs discussed in the previous section. De Diego 

Balaguer et al. (2006) found that both regulars and irregulars activated the left IFG, a 

region that dual-mechanism theories would expect only regulars to recruit for the 

retrieval of grammatical features and affixation. Regulars elicited greater activity than 

irregulars in the anterior STG, the hippocampus, and the insula, which de Diego 

Balaguer et al. (2006) argue may reflect automatic stem reactivation and maintenance 

when inflecting regulars. By contrast, irregulars elicited greater activity than regulars 

in the bilateral IFG and MFG regions, which have been implicated in supporting 

memory retrieval, manipulation of information, and selection of correct responses. De 

Diego Balaguer et al. (2006) argue that the overlapping activations between regulars 

and irregulars are more consistent with single-mechanism theories whereas the 

distinct activations could be taken to support dual-mechanism theories. However, 

unlike previous neuroimaging evidence supporting dual-mechanism theories, de 

Diego Balaguer et al.’s (2006) results suggest differences in the processing of regulars 

and irregulars are mostly supported by prefrontal areas.  
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1.5. Summary 

The debate surrounding the learning, representation, and processing of the English 

past tense inscribes itself in a broader debate regarding the nature of mental 

computations. Dual-mechanism theories argue that regulars and irregulars rely on 

distinct cognitive and neural subsystems, whilst single-mechanism theories contend 

that they are subserved by the same architecture. The evidence reviewed here suggests 

that language users’ ability to learn and process inflections is best seen as a complex 

interplay of competing influences within a single network of distributed 

representations. Learning and processing are dependent upon the frequency and 

phonological consistency of inflectional patterns. However, most of the evidence for 

the influence of these factors comes from child acquisition data, network simulations, 

and diachronic change data. Behavioural experiments examining these issues in adults 

are scarce. Furthermore, whilst a large body of neuroimaging studies has investigated 

the processing of inflections in adults, a paucity of work has considered the neural 

mechanisms supporting their learning. Investigating the mechanisms that support the 

learning of inflections requires the consideration of domain-general learning and 

memory mechanisms. Following initial learning, new memories undergo subsequent 

reorganisation through consolidation processes. A fairly recent but growing body of 

work suggests that the development of language representations benefits from periods 

of consolidation. The next chapter reviews the literature on memory consolidation 

and its role in language learning. 
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Chapter 2: Consolidating morphology 

2.1. Origins of consolidation theory 

Memory consolidation refers to the gradual stabilisation of new memories in long-

term memory and the processes that underpin this stabilisation (Dudai, 2002, 2004; 

Dudai, Karni, & Born, 2015). Reference to the idea of memory consolidation can be 

traced back to the writings of the Roman rhetorician Quintilian (c. AD 95) who noted 

the “curious fact…that the interval of a single night will greatly increase the strength of 

the memory” such that “things which could not be recalled on the spot are easily 

coordinated the next day” raising the possibility that memory “undergoes a process of 

ripening and maturing during the time that intervenes”. In the late 19th century, the 

process of consolidation was described by Ribot (1882) based on his clinical 

observations of amnesic patients for whom recently acquired premorbid memories 

are typically more impaired than more distant premorbid memories. This 

phenomenon is epitomised in Ribot’s Law, which states that the “progressive 

destruction advances progressively from the unstable to the stable” (Ribot, 1882). 

Hence, Ribot conceptualised a time-dependent process of memory organisation such 

that recent (unstable) memories are more vulnerable to disruption following trauma 

or injury than more distant (stable) memories.  

 The term consolidation was coined by Müller and Pilzecker (1900) based on a 

series of behavioural experiments which suggested that memory requires time to 

become fixed or undergo Konsolidierung. Participants learned nonword paired 

associates and were subsequently tested on the recall of the appropriate nonwords 

when cued with their pair members. When a new list of paired associates was learned 

in the first few minutes following learning of the initial list, recall was impaired 

compared to when the training-retrieval interval was of the same duration but did not 

include new learning, a phenomenon Müller and Pilzecker (1900) termed retroactive 

interference. No retroactive interference was observed when a gap of a few minutes 

was introduced between the learning of the two lists. Müller and Pilzecker (1900) 

suggested that their findings reflected a post-training interval during which 

associations are consolidated in memory and that introducing interfering material 

during this interval could disrupt the consolidation process. Jenkins and Dallenbach 
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(1924) further suggested a potential role for sleep in preventing retroactive 

interference after observing that participants recalled more nonsense syllables when 

they slept between presentations and recall than when they remained awake. 

 The consolidation process was further characterised by Burnham (1903) in a 

seminal paper integrating findings from experimental psychology and clinical 

observations of amnesic patients in which he noted that “considerable time may be 

necessary” for a memory to be consolidated and that consolidation is not “merely a 

process of making a permanent impression upon the nerve cells, but also a process of 

association, of organisation of the new impressions with the old ones”. Burnham’s 

(1903) characterisation added two important features to the description of the 

consolidation process. First, his conceptualisation of time referred to two different 

types of consolidation kinetics; fast, such as shown in the studies of Müller and 

Pilzecker and slow, as revealed by patterns of impairment in amnesia. Second, he 

suggested that consolidation is not merely a process through which new memories are 

strengthened but a process through which they are reorganised and integrated with 

old memories.  

 These two features have played an important role in characterising the 

neurobiological foundations of memory consolidation. A long-standing distinction in 

learning and memory research invokes separate neurobiological mechanisms for fast 

and slow consolidation. The former is accomplished within the first minutes to hours 

after the encoding of novel memories. Donald Hebb’s (1949) seminal work suggested 

the first neurobiological mechanism for fast consolidation. He proposed post-

encoding neuronal reverberation as a means to maintain labile new memories. 

Through reverberation, neuronal activity persists after the encoding has occurred or 

practice has ended, such as to allow the strengthening of synapses (i.e. long-term 

potentiation) among the neuronal ensembles that encoded the new memory. 

Consequently, fast consolidation is commonly referred to as synaptic consolidation 
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(Frey & Morris, 1997; Sajikumar, Navakkode, Sacktor, & Frey, 2005; Reymann & Frey, 

2007; Redondo & Morris, 2011; Clopath, 2012)6.  

 In contrast to fast consolidation, slow consolidation occurs over the course of 

days, weeks, or even years. In two related papers, Marr (1970, 1971) proposed a 

neurobiological theory of learning and memory that accounted for slow consolidation. 

He described how the archicortex, a structure now known as the hippocampus and 

hippocampal formation, functions as a simple memory storing information derived 

from sensory experience. Simple memory is suggested to perform a direct and 

temporary memorising function without performing any complex classification or 

organisation computations. It provides the input to the neocortex, which slowly 

classifies and organises new information in long-term memory. Marr (1970) further 

suggested a role for sleep in facilitating the transfer of information between the 

archicortex and the neocortex. This process is commonly referred to as systems 

consolidation as it involves the reorganisation over time of the brain systems that 

represent memories. Memory representations spread to neocortical structures and 

eventually relinquish their dependence from the archicortex, which supported their 

initial encoding. Thus, Marr’s proposal echoes the early ideas of Burnham in that 

consolidation does not merely entail the strengthening of new memories but also their 

reorganisation and integration with existing memories.   

 Since Quintilian noted it, Ribot conceptualised it, and Müller and Pilzecker 

coined it, memory consolidation has been further characterised by Burnham and its 

potential underlying neurobiological mechanisms proposed by Hebb and Marr. 

Marr’s ideas, in particular, have made an epochal contribution to contemporary 

theories of systems consolidation. In the spirit of Marr’s original ideas, various 

modern theories postulate two dissociable neurobiological mechanisms for systems 

consolidation; a hippocampal system for the initial encoding of new memories and a 

neocortical system for the long-term storage of memories and their integration with 

existing memories (Squire, 1992; Alvarez & Squire, 1994; McClelland, McNaughton, 

                                                        
6 There is also evidence that fast consolidation is dependent on interactions between synapses and their cell body and nucleus 
(Martin et al., 1997, Casadio et al., 1999, Dudai & Morris, 2000, Huber, Kayser, & Bear, 2000, Adams & Dudek, 2005) and so the 
terms “cellular” and “local” consolidation are sometimes used. 
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& O’Reilly, 1995; Nadel & Moscovitch, 1997; O’Reilly & Norman, 2002; Winocur & 

Moscovitch, 2011; McClelland, 2013; O’Reilly, Bhattacharyya, Howard, & Ketz, 2014; 

Kumaran, Hassabis, & McClelland, 2016). One of these theories, the Complementary 

Learning Systems (CLS) model (McClelland et al., 1995; O’Reilly & Norman, 2002; 

McClelland, 2013; O’Reilly et al., 2014; Kumaran et al., 2016), offers perhaps the best 

worked out neuroanatomical and computational description of systems consolidation 

and is the focus of the next section.  

2.2. Consolidation and Complementary Learning Systems 

The CLS model shares similarities with other accounts of memory and learning that 

invoke dissociable neurobiological systems specialised for different types of memory 

(e.g. Marr, 1970, 1971; Squire, 1992). However, whereas other accounts are mostly 

descriptive and rather undetermined in computational terms, the CLS model was 

innovative and influential in applying connectionist modelling to consider the types of 

computations underlying each system and how systems consolidation emerges from 

these computations. It also sought to relate these computations to the neurobiological 

and functional organisation of memory.   

 Like other theories of systems consolidation, the CLS model is grounded in the 

striking observation, in both human and animals, that damage to the hippocampus 

and related medial temporal lobe (MTL) structures causes dramatic amnesia. Many 

amnesics display temporally graded retrograde amnesia, in which recently acquired 

premorbid memories are more impaired than older ones, consistent with Ribot’s Law 

(Scoville & Milner, 1957; Marslen-Wilson & Teuber, 1975; Squire & Alvarez, 1995; 

Rempel-Clower, Zola, Squire, & Amaral, 1996; Squire & Bayley, 2007). Using a 

multitude of memory tasks, temporally graded retrograde amnesia has been reported 

in mice, rats, rabbits, and monkeys following selective lesions to the hippocampus and 

related MTL structures (Zola-Morgan & Squire, 1990; Winocur, 1990; Kim & 

Fanselow, 1992; Cho, Beracochea, & Jaffard, 1993; Kim, Clark, & Thompson, 1995; 

Kubie, Sutherland, & Muller, 1999; Clark, Broadbent, Zola, & Squire, 2002). Distant 

autobiographical memories, however, tend to be well-preserved in amnesics with 

hippocampal or MTL lesions (Bayley, Hopkins, & Squire, 2003). In contrast, flat 

extensive retrograde amnesia typically involves neocortical damage in the lateral and 
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anterior temporal lobes (Squire, Clark, & Knowlton, 2001). Together, these 

observations suggest that the hippocampus and related MTL structures are required 

for intact long-term declarative memory but that their role is circumscribed in time 

such that memories are eventually stored and represented in the neocortex. 

 Immediate memory span for sequences of digits and unrelated pairs of words 

often remains within the normal range in amnesic patients (Scoville & Milner, 1957). 

Together with the retention of old memories, these observations have been suggested 

to imply that deficits are not in the acquisition or short-term retention of novel 

information but rather in its consolidation or retrieval. Temporally graded retrograde 

amnesia suggests that the impairment lies in the consolidation of new memories 

(Dudai, 2004). In fact, fMRI studies have shown temporally graded activity in MTL 

structures in the human brain (Haist, Bowden, & Mao, 2001) and in the hippocampal 

formation of mice (Bontempi, Laurent-Demir, Destrade, & Jaffard, 1999) consistent 

with the idea that long-term memory relies on the time-dependent reorganisation of 

brain circuitry. 

 The CLS model elaborates an account of the functional organisation of 

memory that is consistent with the neuropsychological evidence described above. The 

account postulates a hippocampal and a neocortical system with distinct 

computational functions and representational structures (Figure 1). The first postulate 

of the CLS model is that the neocortical system houses structured knowledge 

representations stored in the connections of overlapping, distributed networks of 

neurons. This postulate originates from the observation that three-layered neural 

networks learn the shared structure among training items by gradually adjusting their 

connection weights to minimise the error in the network outputs. For example, the 

Parallel Distributed Processing (PDP) framework to modeling cognitive processes 

employs a hidden layer to mediate between the input and output layers. Such 

networks are trained to map inputs to outputs by gradually adjusting the weights 

between their connections by using backpropagation algorithms (Rumelhart, Hinton, 

& Williams, 1986). One major advantage of these neural networks is their ability to 

generalise. That is, trained neural networks can classify data that they have never 

encountered before if it pertains to the same category as the learning data. For 
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example, early neural networks learned to compute the phonological form of words 

(Sejnowski & Rosenberg, 1987; Plaut, McClelland, Seidenberg, & Patterson, 1996; 

Guyonneau, VanRullen, & Thorpe, 2004) from exposure to letters and their 

corresponding phonemes in English words. These networks gradually learned 

structured knowledge representations in the connection weights among their units, 

based on the statistics of the training set and used these representations to pronounce 

a large corpus of monosyllabic words, including exception words, nonwords, and 

novel examples. Such representations are best described as being distributed and 

overlapping. According to the CLS model, skill acquisition in a variety of domains 

including language, perception and motor action as well as the residual learning 

abilities observed in amnesic patients are dependent on such neural networks 

(McClelland et al., 1995). This proposal echoes and extends Marr’s original ideas by 

suggesting that the neocortex slowly classifies and organises information in long-term 

memory based on input statistics.  

 

 

 

  

 

  

 
Figure 1. Complementary Learning Systems and their interactions 
Schematic depiction of the CLS model on a sagittal view of the left hemisphere of the brain. The 
hippocampus is shown in dark grey. Orange arrows denote connections within the hippocampus. 
These connections exhibit rapid synaptic plasticity crucial for the rapid binding of the elements of an 
item or event into an integrated hippocampal representation. Systems consolidation involves 
hippocampal activity during replay spreading to neocortical areas via pathways depicted with blue 
arrows, thereby supporting learning within intra-neocortical connections (pink arrows). Adapted from 
Kumaran et al. (2016). 
 

 Despite the advantages associated with a system using overlapping, distributed 

representations in terms of robust performance, generalisation capacity and skill 

acquisition, it also has important limitations. First, the rapid adjustments of 
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connection weights to accommodate novel input-output mappings can disrupt or 

replace existing mappings – a phenomenon termed catastrophic interference 

(McCloskey & Cohen, 1989; Ratcliff, 1990; McClelland et al., 1995; French, 1999). 

McCloskey and Cohen (1989) demonstrated this phenomenon by using simulations 

of the AB-AC paradigm (Barnes & Underwood, 1959). In this paradigm, participants 

first learn word paired associates (A-B) and then learn to associate new words with the 

first words of the original pairs (A-C). Similar to the results obtained by Muller and 

Pilzecker (1900), learning of the second pairing typically impairs recall performance 

of the first pairings. While this effect is moderate in human participants, the effect in 

McCloskey and Cohen’s (1989) network was to completely erase memory for the 

initial mapping. This issue of catastrophic interference is related to the stability-

plasticity dilemma (Carpenter & Grossberg, 1987), which refers to the idea that 

learning requires plasticity for the integration of new knowledge but also stability to 

prevent forgetting of previous knowledge. Another limitation of a system using 

overlapping, distributed representations is that behaviour sometimes needs to be 

based on a single experience. For example, one severe allergic reaction to nuts should 

be sufficient to learn to avoid eating nuts. This type of one-shot learning would be 

prevented by a system that does not support memory for specific episodes.    

 To circumvent these limitations, the CLS model suggests a dual-memory 

system, which, fundamentally, simulates the presence of a short-term and a long-term 

memory and goes some way to addressing the stability-plasticity dilemma. As 

described above, the neocortical system employs a learning algorithm that produces 

overlapping, distributed representations. This system affords stability of 

representations over long periods of time despite changes in its structure or to the 

form of the input, which underlies its resistance to damage and ability to generalise, 

respectively. A second, complementary system, affords plasticity by allowing the rapid 

acquisition of information about individual items or episodes without interference 

from previously or subsequently learned ones. Extending Marr’s and subsequent 

proposals (Mcnaughton & Morris, 1987; Treves & Rolls, 1992; O’Reilly & McClelland, 

1994), the CLS model suggests that the hippocampus and related MTL structures 

support the initial storage of information about individual items or episodes. The 

hippocampal system employs a learning algorithm, which produces non-overlapping 
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representations allowing individuated storage of new items or episodes without 

overwriting preexisting knowledge. Evidence for the role of the hippocampus in 

recognition memory as well as its sensitivity to the specific context in which novel 

episodes occur is consistent with its role in the initial acquisition of information about 

individual items or episodes (Cohen & Eichenbaum, 1993; O’Reilly & Rudy, 2001; 

Norman & O’Reilly, 2003; Squire, Stark, & Clark, 2004; Davachi, 2006; Knierim, Lee, 

& Hargreaves, 2006; Mayes, Montaldi, & Migo, 2007; O’Reilly et al., 2014; Schiller et 

al., 2015). 

 The CLS model further posits a dynamic balance between two processes in the 

hippocampal system that are critical to avoiding catastrophic interference: pattern 

separation (making similar memories distinct by orthogonalising their neural 

representations) and pattern completion (reestablishing a past pattern of activity in 

response to partial or degraded input) (Marr, 1971; McNaughton & Morris, 1987; 

Treves & Rolls, 1992; O’Reilly & McClelland, 1994; McClelland et al. 1995; O’Reilly & 

Norman, 2002; Hunsaker & Kesner, 2013; Johnston, Shtrahman, Parylak, Gonçalves, 

& Gage, 2016; Knierim & Neunuebel, 2016). Pattern separation would allow 

differentiating between two birthday celebrations or two dinner dates, for example. 

The dentate gyrus (DG) and the CA3 subregion of the hippocampus are thought to be 

at the heart of pattern separation. With its sparse coding granule cells, the DG is the 

hypothesised source of the separation signal, which projects to the CA3 subfield of the 

hippocampus via strong mossy fibres (Treves, Tashiro, Witter, & Moser, 2008). 

Separation-like signals have been reported in the human DG/CA3 using high-

resolution fMRI (Bakker, Kirwan, Miller, & Stark, 2008; Lacy, Yassa, Stark, Muftuler, 

& Stark, 2011). By contrast, pattern completion would allow remembering a specific 

birthday celebration or dinner date when returning to the restaurant where it took 

place. The ability to retrieve previous memories based on environmental cues is 

thought to require pattern completion, a process that is often ascribed to the CA3 

hippocampal subregion (Knierim & Neunuebel, 2016). CA3 has been postulated as an 

attractor network containing excitatory recurrent connections, which attract the 

current firing pattern of the network to a stored pattern (Knierim & Zhang, 2012; 

Renno-Costa, Lisman, & Verschure, 2014). Importantly, this is thought to occur even 
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when the pattern of firing triggered by an external cue is incomplete (i.e. pattern 

completion). 

 According to the CLS, the hippocampal system cannot act alone due to its 

representational capacity and generalisation limitations. In fact, non-overlapping 

representations have an associated cost since the use of pattern-separated 

hippocampal codes for related events or episodes disregards their shared structure 

thereby limiting generalisation abilities. In contrast, dense similarity-based coding 

employed by the neocortical system is more adapted to supporting generalisation 

(Rolls, Treves, & Tovee, 1997; Kiani, Esteky, Mirpour, & Tanaka, 2007; Kriegeskorte et 

al., 2008; Leibold & Kempter, 2008; McNaughton, 2010; Bengio, Courville, & Vincent, 

2013; Clarke & Tyler, 2014, Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014). 

For example, neocortical activity patterns in high-level visual regions have been 

shown to exhibit more densely distributed coding and greater similarity-based overlap 

compared to hippocampal activity patterns (Barnes, McNaughton, Mizumori, 

Leonard, & Lin, 1990; Rolls et al., 1997; Kiani et al., 2007; Kriegeskorte et al., 2008; 

Leibold & Kemper, 2008; McNaughton, 2010; Khaligh-Ravazi & Kriegeskorte, 2014; 

Yamins et al., 2014). 

2.2.1. Sleep and CLS 

Within the CLS framework, interactions between the hippocampal and neocortical 

systems are hypothesised to play an important role in supporting systems 

consolidation (McClelland et al., 1995). Patterns of hippocampal activity that 

characterise the encoding of a new episode or event can drive the gradual integration 

of this new knowledge with existing knowledge in the neocortex. This is thought to 

occur when the hippocampus replays, or reinstates, the contents of a new episode or 

event back to the neocortex during offline periods such as sleep (McClelland et al., 

1995; O’Neill, Pleydell-Bouverie, Dupret, & Jozsef, 2010; Wikenheiser & Redish, 

2015). Hippocampal replay of new episodes is thought to be interleaved with replay of 

ongoing experiences allowing new memories to gradually become integrated into a 

neocortical network of existing memories. This is concomitant with a decay of 

hippocampal memories, either passively or through interference from new memories. 

Evidence for the role of sleep in supporting hippocampal replay comes primarily from 
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research on hippocampal place cells in rats (Wilson & McNaughton, 1994; Skaggs & 

Mcnaughton, 1996; Carr, Jadhav, & Frank, 2011). Hippocampal place cells responding 

to particular locations show large irregular activity (LIA) patterns during slow-wave 

sleep (SWS)7 that are distinct from the firing patterns observed during wake states 

(Figure 2). During LIA states, synchronous firing originating from the CA3 

hippocampal subregion produces oscillatory patterns called sharp-wave ripples 

(SWRs) which propagate to neocortical cells. Importantly, SWRs are thought to reflect 

the reinstatement of recent experiences as they correlate with the firing rates of 

hippocampal cells to particular locations during wake states. The suggestion that 

SWRs propagate to the neocortex is supported by findings showing that SWRs are 

synchronised with neocortical oscillations (Sirota, Csicvari, Buhl, & Buzsaki, 2003; 

Battaglia, Sutherland, & McNaughton, 2004). Furthermore, selective elimination of 

SWRs during SWS results in spatial memory impairments suggesting a causal role for 

replay in systems consolidation (Girardeau, Benchenane, Wiener, Buzsáki, & Zugaro, 

2009; Nakashiba, Buhl, McHugh, & Tonegawa, 2009; Ego-Stengel & Wilson, 2010; 

Nokia, Mikkonen, Penttonen, & Wikgren, 2012). 

 Evidence suggesting sleep-dependent memory consolidation in humans has 

first come from behavioural studies reporting better performance on declarative and 

procedural memory tasks after overnight sleep compared to equivalent wake intervals 

(Barrett & Ekstrand, 1972; Plihal & Born, 1997, 1999; Stickgold, James, & Hobson, 

2000; Fischer, Hallschmid, Elsner, & Born, 2002; Gais, Mölle, Helms, & Born, 2002; 

Walker, Brakefield, Hobson, & Stickgold, 2003; Tucker et al., 2006; Rasch, Büchel, 

Gais, & Born, 2007; Korman et al., 2007; Lahl, Wispel, Willigens, & Pietrowsky, 2008). 

Several of these studies have focused on comparing the effects of different sleep stages, 

specifically SWS and rapid eye movement (REM)8 sleep, on memory consolidation. 

The overall pattern of results suggests that SWS benefits the consolidation of 

                                                        
7 Slow-wave sleep (n.d.). In Merriam-Webster.com. Retrieved from http://www.merriam-webster.com/dictionary/slow-
wave%2Bsleep: A state of deep usually dreamless sleep that occurs regularly during a normal period of sleep with 
intervening periods of REM sleep and that is characterised by delta waves and a low level of autonomic 
physiological activity. 
8 REM sleep (n.d.). In Merriam-Webster.com. Retrieved from http://www.merriam-webster.com/dictionary/rem%2Bsleep: a 
state of sleep that recurs cyclically several times during a normal period of sleep and that is characterised 
especially by increased neuronal activity of the forebrain and midbrain, depressed muscle tone, dreaming, and 
rapid eye movements.  
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declarative memory whereas REM benefits the consolidation of procedural memory. 

For example, Plihal and Born (1997) found better recall of both paired-associated lists 

(declarative memory) and motor-tracing skills (procedural memory) after a period of 

sleep when compared to an equivalent period of wakefulness. Importantly, however, 

better recall of paired-associates lists improved more after intervals of SWS sleep 

whereas recall of motor-tracing skills improved more after intervals of REM sleep. 

Furthermore, Marshall, Helgadóttir, Mölle, & Born (2006) showed that the 

application of a weak electric anodal current with a frequency matching that of 

oscillations during SWS over prefrontal electrodes, where slow potential oscillations 

during SWS are thought to originate, improves the retention of a list of paired 

associates after sleep. These findings suggest a causal role for SWS in the consolidation 

of declarative memory and that its influence can be artificially enhanced. 

 

 

 

 

 
 

 

 
Figure 2. Sleep architecture and sleep stages 
Sleep is characterised by the cyclic occurrence of REM sleep and non-REM sleep, which includes SWS 
(stages 3 and 4) and lighter sleep stages 1 and 2. In humans, early sleep is characterised by high 
amounts of SWS whilst REM prevails in late sleep. Adapted from Diekelmann and Born (2010). 
 

 While the results from several studies are consistent with a dual-process 

hypothesis (Plihal & Born, 1997, 1999), which implicates SWS in the consolidation of 

declarative memory and REM sleep in the consolidation of procedural memory, 

others studies have demonstrated that SWS can be associated with the consolidation 

of procedural memory (Gais, Plihal, Wagner, & Born, 2000, Huber, Ghilardi, 

Massimini, & Tononi, 2004, Aeschbach, Cutler, & Ronda, 2008) and REM sleep with 

the consolidation of declarative memory (Rauchs et al., 2004; Fogel, Smith, & Cote, 
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2007). These divergent results may reflect the fact that different memory tasks involve 

both declarative and procedural memory to different extents. Such results are also 

consistent with the sequential hypothesis (Giuditta et al., 1995), which suggests that is 

it the sequential appearance of SWS and REM sleep that confers the optimal benefits 

of sleep on the consolidation of both declarative and procedural memory. Consistent 

with this hypothesis, Stickgold, Whidbee, Schirmer, Patel, & Hobson (2000) reported 

a positive correlation between both the amount of SWS in the first quarter of sleep 

and the amount of REM sleep in the last quarter of sleep with improvements on a 

visual texture discrimination task relying on visual-procedural memory. Mednick, 

Nakayama, and Stickgold (2003) further showed greater improvements in visual 

texture discrimination following a short nap containing both SWS and REM sleep 

compared to a nap of the same duration containing only SWS. Similar results have 

been reported for sleep-related improvements in declarative memory. For example, 

Ficca & Salzarulo (2004) showed that disrupting the natural SWS-REM sleep cycle 

while leaving the time spent in each sleep stage unchanged impaired the morning 

recall of declarative verbal material. 

 Reports of sleep-dependent hippocampal replay in humans have also provided 

support for the role of sleep in memory consolidation. Using polysomnography and 

PET, Peigneux and colleagues (2004) showed that hippocampal regions that are 

activated while participants learn different routes in a virtual town are similarly 

activated during subsequent SWS. Improvements in performance in retrieving the 

different routes on the subsequent day were positively correlated with the amount of 

hippocampal activity expressed during SWS. Rasch et al. (2007) provided compelling 

evidence for a causal role for SWS hippocampal replay in memory consolidation. 

Participants learned spatial locations associated with odours. Re-exposure to the 

odours during SWS, but not during REM sleep or wakefulness, enhanced subsequent 

memory for the spatial locations. Importantly, fMRI showed significant hippocampal 

activation in response to odour re-exposure during SWS suggesting that it is 

particularly sensitive to inputs that can re-active memories. 

 As suggested by the CLS model, hippocampal replay is thought to play an 

important role in systems consolidation and in redistributing hippocampal memories 
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to the neocortex. Although a direct role for hippocampal replay is not yet established, 

there is evidence for a shift from hippocampal to neocortical representations with 

consolidation (Gais et al., 2007; Takashima et al., 2009). For example, Gais et al. 

(2007) provided evidence for interactions between the hippocampus and the medial 

prefrontal cortex (mPFC) in the consolidation of new declarative memories. Using 

fMRI, the authors measured participants’ brain activity during the recall of trained 

word paired-associates, either following a period of post-training sleep or sleep 

deprivation. Post-training sleep led to greater hippocampal activation at recall and 

better recall of the word pairs than post-training sleep deprivation. Furthermore, there 

was greater functional coupling between the right hippocampus and the mPFC 

following post-training sleep than sleep deprivation. Gais et al. (2007) argue that these 

results may reflect the early stages of memory consolidation where the hippocampus 

still plays a central role in memory retrieval but interacts with the mPFC in a way that 

is consistent with the emergence of hippocampal-neocortical memory transfer. 

Similarly, Takashima et al. (2009) reported changes in functional connectivity 

between the hippocampal and neocortical systems following overnight consolidation, 

which are described in detail in Chapter 7.  

 In sum, there is ample evidence that new memory traces gradually become 

integrated into long-term memory through a process of memory consolidation. The 

CLS model provides a useful framework to characterise this process as involving the 

complex interplay of two memory systems, particularly during offline periods 

including sleep. The next section focuses on empirical work that has examined the 

role of memory consolidation and sleep in the domain of language learning 

specifically. The studies presented cut across several levels of language learning 

including lexical and morphological learning. 

2.3. Consolidation in language learning 
2.3.1. Consolidation of speech sounds and words 

Only a few studies have focused on the role of memory consolidation in learning 

speech sounds (Fenn, Nusbaum, & Margoliash, 2003; Roth, Kishon-Rabin, 

Hildesheimer, & Karni, 2005; Eisner & McQueen, 2006; Fenn, Margoliash, & 

Nusbaum, 2013; Earle & Myers, 2015). For example, Fenn et al. (2003) pre-tested and 
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then trained participants to identify words presented in low-intelligibility synthetic 

speech. Training required participants to learn and generalise the mapping of 

synthetic speech to pre-existing phonological categories. One group of participants 

were pre-tested and trained in the morning and retested on a new set of words after a 

12hr delay of waking (wake group). Another group of participants were pre-tested and 

trained in the evening and retested on a new set of words after a 12hr delay that 

included sleep (sleep group). A final group of participants were pre-tested, trained and 

re-tested within a single session without any retention interval. Performance 

improved immediately after training in the control group but degraded in the wake 

group. Importantly, performance recovered and was similar to that of the control 

group in the sleep group. Fenn et al. (2003) suggested that performance recovery in 

the sleep group implicates a role for sleep in refining and stabilising the new mappings 

between complex acoustic patterns and pre-existing phonological categories in a 

manner that supports generalisation to untrained material. As such, this account is 

consistent with the CLS model to the extent that overnight sleep may play a role in 

supporting the integration of new speech sounds with existing ones.  

 Evidence also suggests that the formation of new lexical representations 

requires memory consolidation (Gaskell & Dumay, 2003; Dumay & Gaskell, 2007; 

2012; Tamminen & Gaskell, 2008; Davis, Di Betta, Macdonald, & Gaskell, 2009; 

Tamminen, Payne, Stickgold, Wamsley, & Gaskell, 2010; Henderson, Weighall, 

Brown, & Gaskell, 2012). These studies share the common assumption that spoken 

word recognition requires the activation of candidate words in the mental lexicon 

followed by the selection of the most likely candidate based on the information 

contained in the input (see the Cohort Model, Marslen-Wilson, 1987). Words that are 

simultaneously activated, because they share the same onset phoneme, for example, 

are said to enter in lexical competition (Gaskell & Marslen-Wilson, 1997). For new 

words to have a similar status to existing words (i.e. to have been integrated into the 

mental lexicon), they must, therefore, engage in lexical competition with existing 

words.   

 Gaskell & Dumay (2003) reported the first results suggesting a role for 

memory consolidation in lexical learning. Participants were trained on novel 
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nonsense words that overlapped with existing words (e.g. ‘cathedruke’ and ‘cathedral’) 

through a phoneme-monitoring task. The engagement of the novel words in lexical 

competition with the existing words was measured using a pause-detection task either 

immediately after training or one week later. In a pause-detection task, listeners have 

to identify a silent pause inserted in an existing word (e.g. ‘cathe_dral’). Slower 

detection times are taken as an index of lexical competition reflecting lexical 

integration of the novel words. The results showed that while recognition memory for 

the novel words was good immediately after training, lexical competition effects in the 

pause-detection task emerged only after a delay of one week. Gaskell and Dumay 

(2003) suggested that the distinct patterns of results for form recognition and lexical 

competition were consistent with phonological information being learned swiftly but 

lexicalisation developing more slowly and requiring memory consolidation.  

 Dumay and Gaskell (2007, 2012) went a step further and attempted to 

disentangle the effects of the passage of time and sleep after learning on the 

lexicalisation of novel words. One group of participants was trained on novel words 

through a phoneme-monitoring task at 8 am (am group) and another group of 

participants was trained at 8 pm (pm group). Recognition memory and lexical 

competitions effects, through pause-detection, were measured in both groups 

immediately after training, as well as 12hr and 24hr later. As in the previous 

experiment, participants showed good recognition performance immediately after 

training and at other retests. For the pause-detection task, the results showed that 

training on the novel words had no effect on lexical competition immediately after 

training in both groups. After a 12hr delay, the pm group showed a reliable lexical 

competition effect whereas the am group did not. A reliable lexical competition effect 

emerged in the am group after a 24hr delay after they had had the opportunity to 

sleep. The results thus suggest that sleep, rather than the mere passage of time, 

contributes to the lexicalisation of novel phonological forms since they start engaging 

in lexical competition only after a period including sleep. In sum, these lexical 

competition studies (see Bowers, Davis, & Hanley (2005) for similar lexical 

competition effects emerging when using written words) are consistent with a CLS 

account of word learning (see Davis & Gaskell, 2009) suggesting that the 

hippocampus provides the initial means to encode new phonological forms and that 
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the neocortex integrates these new phonological forms into the lexicon. Using 

polysomnography, Tamminen et al. (2010) as well as Tamminen, Lambon Ralph, and 

Lewis (2013) have further suggested a role for sleep in supporting this integration. 

They showed that spindle activity during sleep is positively correlated with subsequent 

lexical competition effects. Spindles are temporally aligned with SWRs. As noted 

earlier in the chapter, SWRs are synchronised with neocortical oscillations and 

consequently have been implicated in the hippocampal – neocortical crosstalk that 

supports systems consolidation.  

 Using fMRI, Davis, Di Betta, Macdonald, and Gaskell (2009) examined the 

neural bases of lexical learning and consolidation. The studies reporting consolidation 

effects in lexical learning described above (Gaskell & Dumay, 2003; Bowers et al., 

2005; Dumay & Gaskell, 2007, 2012) all used a single training session followed by 

multiple test sessions potentially confounding consolidation-related changes in lexical 

learning with practice effects on the test tasks. To circumvent this methodological 

limitation, Davis et al. (2009) trained participants on two sets of novel words on two 

consecutive days using a phoneme-monitoring task and tested recognition 

performance and lexical competition effects only once on the second day. This design 

allowed testing within a single session for consolidation-related changes in the lexical 

representation of newly-learned words by comparing recognition performance and 

lexical competition effects for words trained on the day of testing or on the previous 

day. In a first behavioural experiment, Davis et al. (2009) found high levels of 

recognition performance for both sets of words. In contrast, only the sets of words 

trained on the previous day engaged in lexical competition with phonologically 

similar existing words confirming that earlier findings were not dependent on practice 

effects on the test tasks. In a second fMRI experiment, Davis et al. (2009) examined 

the neural bases of this lexical integration by comparing activations elicited by the set 

of novel words trained on the day of scanning (unconsolidated) or on the preceding 

day (consolidated) to similar untrained nonsense words and real words. A region of 

interest (ROI) analysis revealed that the average response to novel words was 

significantly reduced for consolidated relative to unconsolidated words in the left 

STG. Davis et al. (2009) interpreted this reduction in activation in response to 

consolidated words in areas of the brain involved in phonological processing as 
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indexing representations becoming more word-like following overnight 

consolidation. To assess the neural bases of the initial learning of new words, Davis et 

al. (2009) conducted an ROI analysis in the left hippocampus, which showed higher 

activation to untrained than unconsolidated words in the first scanning run 

suggesting hippocampal engagement upon first exposure to new words. Together, 

these findings are consistent with a CLS account of word learning whereby the 

hippocampus is involved in the initial learning of new words and the neocortex is 

involved in the representation of newly-learned words, which are subject to the 

influence of overnight consolidation. 

 Further evidence for the role of the hippocampus in word learning comes from 

an fMRI study by Breitenstein et al. (2005). During scanning, participants learned 

picture-pseudoword associations over five training blocks and were asked to press a 

button to report whether the associations were correct or not. This provided a 

behavioural measure of vocabulary proficiency, which was correlated with neural 

activity during learning. Increased vocabulary proficiency over the course of scanning 

was paralleled by a decrease in activity in the left hippocampus and an increase in 

activity in the left inferior parietal cortex, the latter having been suggested as an 

amodal semantic hub (Geranmayeh, Wise, Mehta, & Leech, 2014). While this study 

did not include a re-test after sleep, the results suggest that a consolidation process 

involving hippocampal-neocortical interactions begins at the onset of word learning. 

Adaptation to the novel words could not explain the reduction in hippocampal 

activity over the course of scanning since a control condition where novel words and 

pictures were randomly paired from trial to trial did not show the effect.   

2.3.2. Consolidation of morphology 

While there is accumulating evidence for a role for overnight memory consolidation 

in the domain of word learning, there is still limited behavioural and neural evidence 

for its role in morphological learning. Merkx, Rastle, and Davis (2011) examined the 

role of semantic information and memory consolidation in morphological learning. 

Participants were trained on novel affixes (e.g. ‘–nept’), which combined with existing 

words (e.g. ‘sleep’) to form new affixed words (e.g. ‘sleepnept’). During training, one 

group of participants heard the words alone whereas another group of participants 
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heard the words together with their definition. To assess knowledge of the trained 

words, participants in both groups completed a recognition task and a lexical decision 

task. To assess consolidation-related changes in the representation of the newly-

learned affixed forms, participants were tested both two days and two months after 

training. The results showed that episodic affix knowledge, as indexed by performance 

on the recognition memory task, could be acquired after a single training session in 

either the form only or semantic learning groups. In contrast, the development of 

lexicalised affix representations, as indexed by slower reaction times in rejecting 

words containing trained novel affixes compared to words containing untrained novel 

affixes, benefited from the provision of semantic information and emerged only at re-

test two months after training. Using a similar paradigm, subsequent studies have 

reported the formation of context-independent lexicalised affix representations, as 

indexed by participants’ ability to generalise semantic affix knowledge to untrained 

stems, but only two days after training (Tamminen, Davis, Merkx, & Rastle, 2012; 

Tamminen, Davis, & Rastle, 2015). These studies are considered in more detail when 

discussing the role of consolidation in generalisation in Chapter 3.  

 Using MEG, Leminen et al. (2016) recently examined the neural mechanisms 

underpinning morphological learning and consolidation. Participants were trained on 

novel affixes (e.g. ‘–pe’, ‘–tu’), which combined with existing Finnish words (e.g. 

‘kukka’, ‘savu’) to form new affixed words (e.g. ‘kukkape’, ‘savutu’) through a word-

picture association task. The affixes referred either to the size or artificiality of familiar 

objects, two derivational categories that are not present in Finnish. Neural responses 

to combinations of real word stems (e.g. ‘tuma’, ‘savu’) not encountered in training 

with either trained (e.g. ‘–pe’, ‘–tu’) or untrained (e.g. ‘–ku’, ‘–ti’) affixes were 

measured both immediately after training and the next day. On the day of training, 

trained affixes combined with real word stems elicited greater activity in the left 

inferior frontal gyrus (IFG) around 50ms after the onset of the affix compared to 

untrained affixes. Leminen et al. (2016) suggest that these results are consistent with 

the involvement of the left IFG in morphological decomposition and the development 

of affix representations early in training. On the next day, the left STG showed a 

similar effect around 200 to 300ms after the onset of the affix. The authors argue that 

this result could reflect the development of a lexico-semantic affix representation 
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following overnight consolidation. The authors do acknowledge that their data does 

not permit to disentangle whether the development of these new lexico-semantic affix 

representations is driven just by the affix, the whole affixed form, or both, but they 

suggest that overnight consolidation plays a role in this process. Nonetheless, the 

results are consistent with those reported by Merkx et al. (2011) and suggest that the 

development of lexicalised representations for newly-learned affixed forms benefits 

from periods of overnight consolidation. The authors augment previous findings by 

reporting changes in neural responses to newly-learned affixes in the left IFG 

immediately after training. The authors further suggest that their results extend the 

morpho-phonological decompositional model of morphology processing (Marslen-

Wilson & Tyler, 2007) to morphological learning.  The left IFG could immediately 

support morphological parsing during learning whereas the development of lexico-

semantic representations in the left STG may benefit from overnight consolidation.  

2.4. Summary 

Newly-acquired labile memories become more stable over time through a process of 

memory consolidation. The CLS model provides a computational and neurobiological 

framework to characterise the types of computations performed by the hippocampal 

and neocortical systems and how these systems interact, particularly during sleep, to 

support learning and generalisation. The ideas articulated in the CLS model have 

recently been applied to the study of language learning and have been particularly 

successful in the domain of word learning. Converging behavioural and neuroimaging 

evidence suggests differential contributions of the hippocampal and neocortical 

systems to the rapid initial learning and long-term storage of newly-acquired words, 

respectively. The CLS model has also been applied to the domain of morphology 

although it remains rather under-explored in this area. Results so far seem to indicate 

that the learning of new affixed forms also benefits from periods of overnight 

consolidation. Given that morphology plays a key role in supporting linguistic 

generalisation and that the CLS model provides a detailed account of the 

computations supporting learning and generalisation, the latter offers a well-suited 

framework to study the former. The next chapter details how CLS support 

generalisation broadly and morphological generalisation more specifically.  
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Chapter 3: Generalising morphology 

3.1. Generalisation 

Generalisation refers to the application of knowledge derived from specific 

experiences to new stimuli or situations (Seger & Peterson, 2013). This general 

knowledge develops by integrating information across multiple experiences such that 

their similarities can be detected. These similarities allow experiences to be grouped 

into meaningful categories or concepts that can guide future behaviour. As such, 

generalisation forms the basis of adaptive behaviour and skill development. For 

example, consider a sommelier’s ability to correctly identify a wine they have not tried 

before as a Rioja. This ability is predicated on retaining episodic memories for having 

tried different Riojas over the years such that their common appearance, aroma, and 

taste can support the development of general knowledge about wines from this 

particular region. Correspondingly, theories of declarative memory have suggested an 

episodic – semantic distinction such that knowledge about specific experiences 

(episodic memory) and decontextualised, abstract knowledge (semantic memory) are 

retained in separate memory systems (Tulving, 1972, 1985; Moscovitch, 1995; 

Moscovitch et al., 2005). A similar distinction has been proposed for recognition 

memory between recall of specific details about previously studied items and 

familiarity with previously studied items in the absence of recollection for the context 

in which they occurred (Yonelinas, 2002; Rotello, Macmillan, & Reeder, 2004). Both 

of these proposals share the assumption that different processes and, possibly 

representations, distinguish specific from general knowledge.   

 Developing in parallel to these memory theories, different cognitive models of 

category learning and their computational implementations have debated the nature 

of the representations supporting generalisation (Smith & Medin, 1981; Estes, 1994; 

Ashby & Maddox, 1998, 2005, 2010; Joseph, 2001; Humphreys & Forde, 2001; 

Murphy, 2002; Barsalou, 2003; Cree & McRae, 2003; Martin, 2007; Mahon & 

Caramazza, 2009; Seger & Miller, 2010). A powerful means to generalisation involves 

the use of categories, which capture the shared properties of items through organising 

principles that account for their relatedness. Cognitive models of category learning 

have mostly disagreed on the nature of these organising principles. Exemplar models 
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suggest that category representations consist of laying down episodic memories for all 

exemplars belonging to a category. When a new exemplar is encountered, its 

similarity to every exemplar within each of the various candidate categories is 

computed. It is then assigned to the category for which the sum of its similarities is 

greatest (Homa & Vosburgh, 1976; Brooks, 1978; Medin & Schaffer, 1978; Estes, 1986, 

1994; Hintzman, 1986, 1988; Nosofsky, 1986; Nosofsky & Zaki, 1998; Lamberts, 2000; 

Nosofsky & Johansen, 2000). On this account, a sommelier’s knowledge of the wine 

category ‘Rioja’ arises from the knowledge that specific experiences tasting a ‘Viña el 

Pisón’, a ‘Gran Reserva 904’, and a ‘Baron de Chirel’ are exemplars of ‘Rioja’ wines. If a 

new wine is more similar to these known exemplars than it is to known exemplars of 

another wine category, it will be classified as belonging to the ‘Rioja’ category. Thus, 

there is no decontextualised, abstract representation of a set of necessary features that 

define a ‘Rioja’, or a derived summary representation of a ‘Rioja’. Generalisation is 

supported solely by the retrieval of the episodic representations of similar exemplars. 

 By contrast, abstractionist models suggest that category representations are 

summary representations abstracted over specific experiences with several category 

exemplars. A new exemplar is compared to the summary representation of the various 

candidate categories and assigned to the category of the one it best matches (Posner & 

Keele, 1968, 1970; Franks & Bransford, 1971; Reed, 1972; Rosch, 1973, 1975, 1977; 

Homa, Sterling, & Trepel, 1981; Rosch & Mervis, 1975; Smith & Minda, 1998; Minda 

& Smith, 2001). For example, a summary representation for a ‘Rioja’ wine might blend 

the appearance, aroma, and taste of all experienced exemplars of ‘Rioja’ wines. As 

such, a summary representation of a ‘Rioja’ is a decontextualised, abstract 

representation that can be independent of any specific episodic reference to 

exemplars, which can be discarded. It is this abstract summary representation and not 

episodic representations for specific exemplars that supports generalisation.  

 Both exemplar and abstractionist models are single-system models of category 

learning and generalisation since they posit a unique form of representation 

underlying all categories. In fact, they can be considered as extremes on a continuum. 

At one extreme, exemplar models propose separate representations for each 

previously encountered category exemplar. At the other extreme, abstractionist 
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models suggest a single representation summarising all category exemplars. Both 

models have had success in accounting for learning and generalisation patterns on a 

range of categorisation tasks such that it is has proven difficult to differentiate them 

empirically (Ashby & Maddox, 1993; Minda & Smith, 2001, 2002; Smith & Minda, 

2000; Zaki, Nosofsky, Stanton, & Cohen, 2003). Furthermore, the observation that 

participants retain exemplar information in performing classification tasks has posed 

a challenge to abstractionist models (e.g. Homa & Vosburgh, 1976). Similarly, the fact 

that summary representations that are not experienced during training can be 

classified as well or sometimes better than trained exemplars has challenged exemplar 

models (e.g. Homa, 1984 but see Nosofsky, 1988, 1991 for a dissenting view). These 

findings led to the suggestion that both episodic and abstract representations may 

contribute to generalisation.  

 Several dual-system models positing the operation of two types of 

representation supporting category learning and generalisation have been put forward 

(Anderson, 1991; Nosofsky, Palmeri, & McKinley, 1994; Palmeri & Nosofsky, 1995; 

Vandierendonck, 1995; Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & 

Kruschke, 1998; Smith & Minda, 1998; Anderson & Betz, 2001; Love, Medin, & 

Gureckis, 2004). Although differing in detail and implementation, these models share 

the common assumption that one system computes abstract category representations, 

whilst a second system stores specific exemplar representations. These models 

typically perform better and explain a broader range of behavioural findings than 

single-system models (Nosofsky et al., 1994; Erickson & Kruschke 1998; Ashby et al., 

1998). Dual-system models are also consistent with various observations suggesting 

that the formation of semantic memories largely depends on episodic memory 

(Rosenbaum, Winocur, & Moscovitch, 2001; Moscovitch et al., 2005 but see Gardiner, 

Brandt, Baddeley, Vargha-Khadem, & Mishkin, 2008 for a different account) and an 

intact hippocampal system (Gordon Hayman, Macdonald, & Tulving, 1993; Manns, 

Hopkins, Reed, Kitchener, & Squire, 2003; Bayley & Squire, 2005). Correspondingly, 

recent neurobiological models of category learning have posited interactions between 

the hippocampus and the neocortex in learning specific exemplars and integrating 

across multiple exemplars, respectively (Ashby & Ell, 2001; Seger, 2008; Kumaran, 

Summerfield, Hassabis, & Maguire, 2009; Seger & Miller, 2010; Davis, Love, & 
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Preston, 2012; Seger & Preston, 2013). However, such interplay must withstand the 

computational constraints associated with having to extract similarities among 

experiences whilst retaining specific information. The CLS model offers a possible 

solution by having the hippocampal and neocortical systems interact during systems 

consolidation as reviewed in Chapter 2. The next section focuses on the 

computational and neurobiological basis of generalisation derived from the CLS 

model.  

3.2. Generalisation and Complementary Learning Systems 

The CLS model suggests that the hippocampal system is chiefly involved in the rapid 

acquisition of item-specific, context-dependent information based on non-

overlapping, pattern-separated representations that minimise interference between 

similar items. However, as differences between items are emphasised, similarities fall 

by the wayside, offering little possibility for generalisation (McClelland et al., 1995; 

Kumaran & McClelland, 2012). This seemingly serious limitation of the hippocampal 

system can be overcome by the neocortical system’s ability to efficiently extract 

similarities across related items during memory consolidation. Indeed, neural 

network simulations of the neocortical system can successfully learn the similarity 

structure underlying sets of items and generalise to novel items. For example, neural 

networks have shown how semantic facts (e.g. ‘can fly’) shared by several concepts 

(e.g. ‘robin’, ‘canary’) can generalise to novel concepts (e.g. ‘sparrow’) (Hinton, 1986; 

Touretzky, 1987; Touretzky & Geva, 1987; Rumelhart, 1990; McClelland et al., 1995; 

Rogers & McClelland, 2003; Mcclelland et al., 2010). Neural networks of reading have 

shown how similarities in the spelling-to-sound mappings among related words (e.g. 

‘save’, ‘cave’) can generalise to novel words (e.g. ‘mave’) (Sejnowski & Rosenberg, 

1987; Seidenberg & McClelland, 1989; Plaut, 1995). The neural networks of the 

English past tense discussed in Chapter 1 have shown how similarities in the 

transformation from stem to past tense form among related verbs (e.g. ‘crept’, ‘slept’) 

can generalise to novel verbs (e.g. ‘flept’) (Plunkett & Marchman, 1991, 1993; 

Daugherty & Seidenberg, 1992). The capacity of these neural networks to generalise 

derives from the fact that they generate overlapping, distributed representations for 
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similar items in contrast to the non-overlapping, pattern-separated representations 

associated with the hippocampal system.  

 In its earliest formulation, the CLS model proposes that the development of 

similarity structure that can support generalisation proceeds slowly. The main goal of 

the neocortical system is to develop overlapping distributed representations that are 

optimised for an entire domain rather than for individual items. Each encounter with 

an item gives rise to small adjustments to the synaptic connections among the 

neurons involved in its representation. A slow learning rate allows the neocortical 

system to estimate the underlying distribution statistics of an entire domain more 

accurately by integrating over several samples. Many repetitions of the same item (cf. 

Chapter 1, token frequency) will lead to changes in the synaptic connections involved 

in the representation of that specific item (McClelland et al., 1995; Kumaran & 

McClelland, 2012). While this may improve behaviour relying on knowledge of a 

specific item, it will not support the discovery of similarity structure. Encountering 

several items that reflect some sort of systematic relationship (cf. Chapter 1, type 

frequency) allows the discovery of similarity structure as more examples of the 

distribution of possible items within a domain can be sampled (McClelland et al., 

1995; Kumaran et al., 2016). Consider Plunkett & Marchman's (1993) network 

simulation of the English past tense discussed in Chapter 1. The ability of the network 

to discover the similarities shared across regular mappings and generalise to novel 

verbs required the training corpus to reach a critical mass of regular verbs (i.e. high 

type frequency). Extensive training on a small corpus was insufficient to support 

generalisation. Evidence for the importance of type frequency in promoting 

generalisation also comes from statistical learning studies showing that the learning 

and generalisation of non-adjacent dependencies between the ‘A’ and ‘B’ elements of 

an ‘AXB’ structure is facilitated by high variability of ‘X’ (i.e. high type frequency) 

(Gómez, 2002; Gómez & Maye, 2005; Onnis, Christiansen, Chater, & Gomez, 2003; 

Onnis, Monaghan, Christiansen, & Chater, 2004).  

 The development of similarity structure must also proceed slowly so that new 

item-specific information that is initially dependent on the hippocampus can become 

integrated into an existing neocortical network of related items without causing 
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catastrophic interference. This integration requires slow adjustments to the 

connection weights of the network structure to incorporate new items. Items that are 

similar to existing items will be most rapidly integrated because they will require small 

adjustments to the connection weights of the existing network structure. Items that 

are less similar to existing items or have idiosyncratic features will be integrated more 

slowly as they will require larger adjustments to the connection weights of the existing 

network structure (McClelland et al., 1995). Consequently, the development of 

similarity structure should be easier for highly regular domains (i.e. domains in which 

items consistently share the same features) than in quasi-regular domains (i.e. 

domains in which items do not consistently share the same features). These 

predictions are consistent with the results from Daugherty and Seidenberg’s (1992) 

network simulation of the English past tense discussed in Chapter 1. The network 

performed better on phonologically consistent regular verbs (e.g. ‘walk – walked’, cf. 

‘talk – talked’, ‘stalk – stalked’) than on phonologically inconsistent regular verbs (e.g. 

‘bake – baked’, cf. ‘take – took’, ‘make – made’). Analogous results have been reported 

for neural networks of reading where words with consistent spelling-to-sound 

mappings (e.g. ‘dust’, ‘must’, ‘just’, ‘crust’) are learned better than words with 

inconsistent spelling-to-sound mappings (e.g. ‘crown’, ‘down’ cf. ‘shown’, ‘grown’) 

(Plaut et al., 1996). Furthermore, in generalising to novel nonwords, both human 

readers and the network showed a greater tendency to produce irregular 

pronunciations for inconsistent nonwords compared with consistent nonwords (Plaut 

et al., 1996).    

 Whilst the early formulation of the CLS model attributes the development of 

similarity structure that can support generalisation to the slow-learning neocortical 

system, evidence suggests that both humans and animals are able to rapidly utilise 

relationships among related items after limited exposure (Bunsey & Eichenbaum, 

1996; Dusek & Eichenbaum, 1997; Heckers, Zalesak, Weiss, Ditman, & Titone, 2004; 

Preston, Shrager, Dudukovic, & Gabrieli, 2004; Shohamy & Wagner, 2008; Zalesak & 

Heckers, 2009; Kumaran, 2012; Kumaran & McClelland, 2012; Zeithamova, 

Schlichting, & Preston, 2012; Schlichting, Mumford, & Preston, 2015; Eichenbaum, 

2017). For example, in the transitive inference paradigm, participants learn a set of 

relationships among stimuli through trial and error (e.g. A > B, B > C, C > D, D > E). 
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The ability to generalise to novel inferential test trials (e.g. B ? D) immediately after 

training requires the ability to appreciate the hierarchical structure of the training 

pairs. Successful generalisation performance on this task has been shown to depend 

on the hippocampus in animals (Dusek & Eichenbaum, 1997) and humans (Zalesak & 

Heckers, 2009). The involvement of the hippocampus in this type of rapid 

generalisation (Kumaran & McClelland, 2012) contrasts sharply with the CLS model’s 

proposal that its non-overlapping representations underlie item-specific memory at 

the expense of capturing similarity structure. It also runs contrary to empirical 

evidence for the role of the dentate gyrus and CA3 subregion of the hippocampus in 

pattern separation (Treves et al., 2008; Bakker et al., 2008; Lacy et al., 2011). Hence, 

there appears to be a tension between the computational and neurobiological 

principles underlying hippocampal representations and their proposed role in rapid 

generalisation.  

 To address this tension, the CLS model was revised to include a computational 

model accounting for rapid generalisation while preserving the assumption that the 

hippocampal system generates non-overlapping representations (Kumaran & 

McClelland, 2012). On this view, rapid generalisation in the transitive inference 

paradigm to novel pairs of items (e.g. B ? D) arises from the simultaneous activation of 

memory traces for trained pairs (e.g. B > C, C > D). As such, this addition to the 

original CLS model extends classical exemplar models of category learning discussed 

at the outset of this chapter (e.g. Medin & Schaffer, 1978; Hintzman, 1986, 1988; 

Nosofsky, 1986). Recurrent connections within the hippocampal system are argued to 

drive the simultaneous activation of episodic memory traces. This proposal is 

consistent with neural recordings in rats showing that hippocampal outputs 

originating in CA1 and subiculum reenter hippocampal subfields via the entorhinal 

cortex (Kloosterman, van Haeften, & Lopes da Silva, 2004). This recurrence is posited 

to allow the hippocampal system to compute similarity among related items that can 

support rapid generalisation whilst maintaining non-overlapping representations. 

Network simulations implementing recurrence have replicated patterns of rapid 

generalisation in transitive inference paradigms (Kumaran & McClelland, 2012). 

Furthermore, whilst in its original formulation the CLS emphasises hippocampal 

replay of individual episodes during memory consolidation, the proposal of 
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recurrence yields the prediction that it may replay multiple related traces (i.e. 

generalised replay, Kumaran & McClelland, 2012). This proposal is supported by 

neural recordings in rats showing that path trajectories replayed during SWRs can 

occasionally represent the construction of novel path trajectories, including 

‘shortcuts’, never experienced during wakefulness (Gupta, van der Meer, Touretzky, & 

Redish, 2010; Wu & Foster, 2014). It remains unclear, however, whether emergent 

generalisations created through recurrence within the hippocampal system are 

themselves stored in memory or indeed whether they enhance neocortical learning in 

comparison to the replay of individual episodes (Walker & Stickgold, 2010; 

McClelland & Kumaran, 2012; Kumaran, 2012). 

 In an early account of memory consolidation supporting the development of 

similarity structure, McClelland et al. (1995) referred to a protracted process lasting 

days to months to even years. However, more recent proposals suggest that memory 

consolidation could be accomplished much more quickly, within days or even hours. 

Recent evidence suggests that new information that is highly consistent with existing 

structured knowledge can be rapidly integrated into neocortical networks without 

catastrophic interference (McClelland, 2013; Tse et al., 2007, 2011). For example, Tse 

et al. (2007) trained rats to associated six unique flavour cues with six specific 

locations where they could find food rewards in a complex spatial environment. Two 

weeks of daily training sessions were required for rats to learn all six flavour – location 

associations. They were then trained on four of the learned flavour – location 

associations whilst the remaining two associations were replaced with two new ones 

whose locations were close to the old replaced locations. A test the next day revealed 

that the rats had learned the two new associations as they searched for food rewards at 

the new cued locations far more than at the old cued locations. The following day, 

they received either hippocampal or sham control lesions. Rats that had received 

hippocampal lesions retained both the original and the new flavour – location 

associations. Importantly, Tse et al. (2007) showed that this learning was dependent 

on the presence of prior structured knowledge, or schema. No such learning was 

observed when rats that had been trained in one spatial environment were trained on 

new flavour – location associations in a novel spatial environment. The results suggest 

that new memories that are consistent with an existing schema become hippocampally 
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independent much faster than new memories that lack prior schema. Recent fMRI 

studies in humans also suggest that new information becomes independent of the 

hippocampus more rapidly when it conforms to a schema. During a rest period 

shortly after encoding new visual information, functional connectivity between the 

hippocampus and the medial prefrontal cortex (mPFC) has been found to decrease for 

schema consistent compared to schema inconsistent information (van Kesteren, 

Fernández, Norris, & Hermans, 2010) whilst successful retrieval of schema consistent 

information has been found to be associated with increased functional connectivity 

between mPFC and a network of somatosensory regions coding the new information 

(van Kesteren, Rijpkema, Ruiter, & Fernández, 2010). These results support the view 

that schema consistent novel information is integrated more rapidly into neocortical 

networks than schema inconsistent novel information and that this process may be 

mediated by the mPFC.  

 A separate line of research has also shown that a single period of sleep could 

enhance generalisation performance (Ellenbogen, Hu, Payne, Titone, & Walker, 2007; 

Durrant, Taylor, Cairney, & Lewis, 2011; Lau, Alger, & Fishbein, 2011; Coutanche, 

Gianessi, Chanales, Willison, & Thompson-Schill, 2013). For example, Ellenbogen et 

al. (2007) used a transitive inference paradigm to test two groups of participants on 

their memory for the set of relationships learned during training (e.g. A > B, B > C, C 

> D, D > E) as well as on their ability to generalise to novel inferential test trials (e.g. B 

? D) after an interval of sleep or wakefulness. Both groups performed similarly on the 

trained pairs, but only the sleep group showed evidence of generalisation on 

inferential tests. These results may be interpreted as providing evidence for the role of 

sleep in supporting the rapid development of overlapping neocortical representations 

that can support generalisation. However, as discussed above, the CLS model would 

predict the development of overlapping experiences to proceed over a considerably 

longer period of time, particularly in the absence of prior schema. Amendments to the 

original CLS model have suggested that recurrence within the hippocampal system 

can compute similarity among related experiences to support rapid generalisation. On 

this view, replay during sleep may increase the strength, robustness, and rate of 

activation of new hippocampally-dependent memories and this strengthening may 

account for the capacity for inference emerging only after sleep (Kumaran & 
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McClelland, 2012; Kumaran et al., 2016). By implementing their recurrent network 

architecture, Kumaran and McClelland (2012) replicated Ellenbogen et al.’s (2007) 

results by appealing to these simple hippocampal mechanisms rather than to the 

development of overlapping neocortical representations.  

 An alternative interpretation put forward by Lewis and Durrant (2011) 

proposes that replay of new hippocampal memories can actively support the 

development of overlapping neocortical representations. On this view, neurons that 

code for overlapping elements across memories will be more strongly activated than 

neurons that code for the idiosyncratic elements of individual memories. Through 

long-term potentiation, the synaptic connections between neocortical neurons coding 

for overlapping elements become stronger than the synaptic connections between 

neocortical neurons coding for idiosyncratic elements of individual memories. 

According to the synaptic homeostasis hypothesis (Tononi & Cirelli, 2003, 2006), SWS 

promotes a generalised downscaling of recently potentiated synaptic connections 

returning total synaptic weight to an energetically sustainable baseline level. All 

synaptic connections converging into the same neuron are downscaled proportionally 

such that total synaptic weight can be reduced whilst preserving the relative 

differences in the strength of synaptic connections that are important for preserving 

memories. Lewis and Durrant (2011) suggest that the more strongly potentiated 

synaptic connections for overlapping elements have a higher chance of withstanding 

synaptic downscaling (Figure 3). The repeated replay of newly-acquired memories in 

different combinations, acting synergistically with synaptic downscaling, allows the 

progressive development of overlapping representations. Thus, the sleep-related gains 

in generalisation performance reported by Ellenbogen et al. (2007) may be accounted 

for by overlapping replay of trained pairs allowing the construction of a 

representation of the full hierarchy, which can support generalisation to novel 

inferential trials. 
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Figure 3. Hippocampal replay and neocortical consolidation 
Schematic representation of the development of overlapping neocortical representations through 
hippocampal replay. a) two hippocampal memories are reactivated simultaneously during sleep. This 
reactivation includes some neocortical neurons unique to each memory, and some that are shared by 
both memories. b) shared neurons are potentiated more strongly and, as a result, develop stronger 
connections to each other than to neurons not involved in this overlap. c) following synaptic 
downscaling, only these strong connections between the shared neurons remain intact. This set of 
neurons now represents abstraction from the two memories, encoding their shared information only. 
Thicker lines indicate stronger synaptic connections. Adapted from Lewis and Durrant (2011).  
 

3.3. Morphological generalisation 

The ability to generalise from a limited number of experiences lies at the heart of 

morphological generalisation. From exposure to a finite number of inflected words 

(e.g. ‘walked’, ‘jumped’, ‘laughed’), language users can readily generalise to novel 

words that enter the language (e.g. ‘Skyped’) or nonwords (e.g. ‘wugged’). The debate 

introduced in Chapter 1 between single- and dual-mechanism theories of the 

acquisition, representation, and processing of regular and irregular English past tenses 

has naturally also considered the issue of generalisation. Both regular and irregular 

inflections have been shown to generalise to nonwords (e.g. wug – wugged’; ‘spling – 

splung’) (Bybee & Slobin 1982; Bybee & Moder, 1983; Prasada & Pinker 1993). Dual-

mechanism theories attribute regular generalisations to the application of symbolic 

rule and irregular generalisations to analogical processing in an associative memory 

network (Pinker & Prince, 1988, 1994; Pinker, 1991, 1999; Prasada & Pinker, 1993; 

Clahsen, 1999). By contrast, single-mechanism theories attributed all generalisations 
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to regularities extracted across mappings between stems and inflected forms within a 

single network of connections (Rumelhart & McClelland, 1986; Bybee, 1985, 1988; 

1995, 2001). The influence of frequency measures and phonological consistency 

discussed in Chapter 1 also bears on the issue of generalisation.  

3.3.1. Frequency  

The regular English past tense applies productively to novel forms much more than 

irregular inflections (Bybee & Moder, 1983; Prasada & Pinker, 1993; Albright & 

Hayes, 2003). Consequently, it has been characterised by proponent of dual-

mechanism theories as a default inflection reflecting the application of a rule (Prasada 

& Pinker, 1993). Single-mechanism theories have argued that default generalisation 

can be captured within a single network of connections without invoking a rule-based 

process. Network simulations of the English past tense are capable of treating the 

regular past tense as the default, generalising the ‘ed’ affix to the majority of untrained 

verbs and producing overregularisation errors similar to those produced by children 

when type frequency is sufficiently high (Rumelhart & McClelland, 1986; Plunkett & 

Marchman, 1991, 1993). Thus, single-mechanism theories argue that high type 

frequency is a determining factor of default generalisation.  

 Prasada and Pinker (1993) have criticised these network simulations on the 

basis that their ability to treat the regular past tense as a default is an artefact of the 

idiosyncratic frequency measures of the English past tense. Regular verbs have high 

type frequency, which allows networks to construct a well-populated default category 

that covers large portions of the language’s phonological space. Novel forms are thus 

more likely to fall close to a known regular verb and be regularised. By contrast, 

irregular verbs have low type frequency but relatively high token frequency allowing 

their memorisation in terms of a number of narrow phonological subcategories 

(Bybee & Slobin, 1982; Bybee, 1985; Hooper, 1976; Hare & Elman, 1995). However, 

other languages are argued to have low type frequency inflections that act as defaults. 

These are commonly referred to as minority defaults. The German –s noun plural, the 

German –t past participle and the Modern Standard Arabic sound plural have all been 

argued to represent examples of minority defaults (McCarthy & Prince, 1990; Clahsen 

& Rothweiler, 1992; Clahsen, Rothweiler, Woest, & Marcus, 1992; Marcus, Brinkman, 
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Clahsen, Wiese, & Pinker, 1995; Clahsen, 1999). Dual-mechanism theories argue that 

minority defaults provide evidence that default generalisation can be independent of 

high type frequency and further argue that network simulations would be unable to 

account for this phenomenon (Pinker, 1991, 1999; Prasada & Pinker, 1993; Marcus et 

al., 1995).  

 Daugherty and Hare (1993) as well as Hare, Elman, and Daugherty (1995) 

trained networks to map the phonological representation of verb stems to their past 

tense form given a training corpus representative of Old English. The training corpus 

comprised five classes of highly phonologically structured irregular verbs and a sixth 

class of phonologically varied regular verbs. Each class contained the same number of 

verbs presented the same number of times in training.  Both networks sought to show 

that the sixth class could act as default inflection by virtue of its phonological diversity 

despite having low type frequency. Generalisations to the first five classes were shown 

to be dependent on the phonological similarity of the novel forms to trained forms. By 

contrast, phonological similarity was irrelevant for generalisations to the sixth class. 

Hare and Daugherty (1993) and Hare et al. (1995) argue that the sixth class acts as an 

attractor for novel forms even when they do not resemble trained regulars. Thus, 

connectionist models are able to learn and generalise a default inflection even in the 

absence of higher type frequency. 

 Careful examination of the German –t participle and the Modern Standard 

Arabic sound plural call into question their description as minority defaults based on 

methodological flaws in calculating type frequencies (Bybee, 1995; Plunkett & Nakisa, 

1997; Boudelaa & Gaskell, 2002). In fact, both systems are more accurately described 

as majority defaults in which high type frequency plays a determining role in default 

generalisation. Whilst the German –s noun plural has been more accurately described 

as a minority default, it does not apply as uniformly as would be predicted by dual-

mechanism theories. Marcus et al. (1995) reported that German speakers were more 

likely to use the German –s noun plural to inflect nonwords that were intended to 

represent German nouns, borrowings, and proper names. They argued that the 

heterogeneity of these contexts suggests that the German –s noun plural serves as a 

default despite having low type frequency. However, reanalyses of Marcus et al.’s 
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(1995) results show that for nonwords intended to be like German common nouns 

and borrowings, the –s plural was preferred but only if the nonwords did not resemble 

existing German words. Surnames were the only case where the –s plural was used 

uniformly (Bybee, 1995; Hahn & Nakisa, 2000). Such specificity in application 

undermines the claim that the German –s noun plural acts as a default inflection and 

instead rallies more strongly with single-mechanism theories arguing that it is 

sensitive to phonological and contextual factors.  

 Bybee’s usage-based model (1985, 1988, 1995, 2001) provides a 

psycholinguistic account of the ways in which type and token frequency influence the 

generalisation of morphological patterns. When several distinct words share an affix 

(i.e. high type frequency), these words will be related to one another and the 

representation of the affix will emerge. The higher the type frequency, the stronger the 

affix representation will be and the easier it will be to access when generalising to new 

words. Words with high individual token frequency are more autonomous and less 

likely to be acquired by forming relations with other words. The higher the token 

frequency, the stronger the lexical representation of the word and the less likely it will 

be to contribute to the generalisation of a morphological pattern. For example, Bybee 

(1995) notes that the ‘strung’ and ‘swept’ classes of irregular verbs in English have 

approximately the same type frequency but the ‘strung’ class is much more productive 

than the ‘swept’ class. The total token frequency of the ‘swept’ class is almost three 

times that of the ‘strung’ class. Thus, for equal type frequency, higher token frequency 

may impede generalisation by preventing the emergence of relations among class 

members.  

3.3.2. Phonological consistency  

Whilst English speakers generalise the regular past tense much more, they sometimes 

generalise irregular patterns. For example, English speakers typically rate the form 

‘splung’ as an acceptable past tense of the novel verb ‘spling’ (Bybee & Moder, 1983; 

Prasada & Pinker, 1993; Albright & Hayes, 2003). This willingness to generalise an 

irregular pattern to the novel verb ‘spling’ is likely attributable to the fact that it is 

phonologically similar to its neighbours ‘cling’, ‘fling’, ‘sting’, ‘string’, ‘swing’, and 

‘wring’, which all follow the same vowel alternation pattern to form their past tense. 
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According to proponents of dual-mechanism theories, these occasional irregular 

generalisations occur because the associative memory network can block the 

application of the regular rule if novel forms are similar to known irregulars. On this 

view, phonological similarity to existing regular verbs should not influence the 

application of the rule.  

 Prasada and Pinker (1993) tested English speakers’ acceptability judgements 

for novel past tense forms that varied in their phonological similarity to existing 

regular and irregular verbs. Participants’ willingness to generalise irregular patterns 

was related to the phonological similarity between the novel forms and existing 

irregulars. That is, novel forms that were phonologically similar to existing irregulars 

(e.g. ‘spling - splung’ as in ‘cling – clung’) were more highly rated than novel forms that 

were phonologically dissimilar to existing irregulars (e.g. ‘nist –nust’). By contrast, 

participants’ willingness to generalise the regular past tense was unrelated to the 

phonological similarity between the novel forms and existing regulars. Novel forms 

that were phonologically similar to existing regulars (e.g. ‘plip – plipped’ as in ‘slip – 

slipped’) were rated similarly to novel forms that were phonologically dissimilar to 

existing forms (e.g. ‘ploamph – ploamphed’). Prasada and Pinker (1993) argue that 

these results provide evidence that regular generalisations are insensitive to 

phonological consistency. McClelland and Patterson (2002b) note that Prasada and 

Pinker’s (1993) results may be attributed to a confound in their stimuli. Indeed, a 

novel form can only be phonologically dissimilar to existing regulars by being 

phonologically dissimilar to all English words. Consequently, the novel forms that 

were phonologically dissimilar to existing regulars were also phonologically deviant as 

English words (e.g. ‘ploamph’). In fact, these verbs received low ratings suggesting that 

regulars are in fact sensitive to phonological consistency. In an attempt to correct for 

this, Prasada and Pinker (1993) subtracted ratings of the stem (e.g. ‘ploamph’) from 

ratings of the past tense forms (e.g. ‘ploamphed’). This may, however, have corrected a 

real effect.  

 Albright and Hayes (2003) avoided this confound by using novel forms that 

were high in phonological acceptability. Participants were asked to provide 

acceptability judgements for novel past tense forms that either fell in an island of 
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reliability or not. Albright and Hayes (2003) refer to a phonological context of 

relatively high phonological consistency for a particular inflectional pattern as an 

island of reliability. For example, every English verb stem that ends in a voiceless 

fricative has a regular past tense (e.g. ‘miss – missed’, ‘wish – wished’, ‘laugh – 

laughed’). Islands of reliability exist for regulars and irregulars. Albright and Hayes 

(2003) showed that participants were sensitive to such islands of reliability not only 

for novel irregular verbs (e.g. ‘fleep – flept’, ‘gleed – gled’) but also for novel regular 

verbs (e.g. ‘bredge – bredged’, ‘nace – naced’). These results go against the predictions 

of dual-mechanism accounts in which all regulars are derived by rule, and thus would 

not be expected to show phonological consistency effects.  

3.3.3. Generalisation of morphology and CLS  

The evidence reviewed in the previous section supports the view that frequency 

measures and phonological consistency influence how regular and irregular 

morphological patterns generalise. As discussed at the outset of this chapter, the CLS 

model also predicts that both of these factors influence the development of 

overlapping representations that capture the similarity structure among items in a 

given domain. The CLS model thus offers a well-suited framework to characterise the 

development of representations that can support morphological generalisation. As 

reviewed in Chapter 2, the CLS model has been successful in accounting for the 

integration of new words in the mental lexicon as well as morphological learning, 

albeit to a more limited extent. However, the application of the CLS model to the 

problem of morphological generalisation has received very little attention.  

 Tamminen et al. (2012) examined the development of generalisable affix 

knowledge in adults. Using a similar training procedure as in Merkx et al. (2011), 

participants learned the meaning of novel derivational affixes (e.g. ‘–afe’), which 

combined with existing words  (e.g. sleep) to form new affixed words (e.g. ‘sleepafe’). 

To assess participants’ knowledge of the trained affixes, Tamminen et al. (2012) used a 

speeded shadowing task in which participants had to repeat aloud a spoken affixed 

word as quickly as possible. Importantly, the task involved the novel affixes presented 

either in their training context (e.g. ‘sleepafe’) or in a new stem context (e.g. ‘sailnafe’). 

Shadowing of these stimuli was compared to matched controls with untrained affixes 
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(e.g. ‘–oke’ as in ‘floathoke’, ‘friphoke’). To assess the role of memory consolidation in 

the development of context-independent affix representations, a group of participants 

was tested immediately after training and another group of participants 2 days after 

training. Participants tested immediately after training showed an advantage for 

repeating affixes presented in their training context (e.g. ‘sleepafe’) compared to 

untrained affixes (e.g. ‘floathoke’). Only participants tested two days after training 

showed an advantage in shadowing affixes presented in novel contexts (e.g. ‘sailafe’) 

compared to untrained affixes (e.g. ‘friphoke’). Tamminen et al. (2012) argue that 

these results are consistent with context-independent affix representations developing 

with overnight memory consolidation. In a second, non-speeded generalisation task, 

participants had to select between two possible definitions for untrained stems 

combining with trained affixes (e.g. ‘sailafe’). Correct performance required 

participants to select the definition that was consistent with the affix meaning as 

encountered in training. Foil definitions combined the meaning of the stem with the 

meaning of a different trained affix. Participants performed well on this task 

regardless of the day of training. Tamminen et al. (2012) suggest that immediate 

generalisation on the definition task may reflect the use of context-dependent 

representations that may not be sufficient for online linguistic processing on the 

speeded task. This interpretation is reminiscent of the distinction in updated versions 

of the CLS model outlined above whereby generalisation based on retrieval of multiple 

episodic traces may depend on slower recurrent processes within the hippocampus 

compared to the more efficient generalisation possible with overlapping neocortical 

representations.   

 In another series of experiments, Tamminen et al. (2015) used a similar 

paradigm to examine some of the factors influencing the generalisation of newly-

learned affixes. Of particular relevance here, one experiment investigated whether 

type frequency influences morphological generalisation. Participants were trained on 

eight novel affixes, half of which were trained with high type frequency (combining 

with 8 stems each) and half of which were trained with low type frequency 

(combining with 2 stems each). To keep the number of affix presentations the same 

during training, the low type frequency affixes were presented more often (high token 

frequency) than the high type frequency affixes (low token frequency). Tamminen et 
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al. (2015) argue that this manipulation should enhance episodic memory for the novel 

words and affixes in the low type frequency condition, allowing to potentially 

dissociate episodic memory strength from emerging generalisation effects. The 

generalisation test involved a sentence congruency task in which participants read a 

sentence context and had to repeat the final word aloud. The final words were formed 

by combining untrained stems with trained affixes (e.g. ‘sailafe’). The sentence 

context could either be congruent or incongruent with the meaning of the affix. For 

affixes trained with high type frequency, participants were slower at reading novel 

affixed words presented in an incongruent sentence context whereas there was no 

such congruency effect for affixes trained with low type frequency. Performance on a 

recognition memory task, however, showed that participants were significantly more 

accurate at recognising affixes trained with low type frequency (but high token 

frequency) than affixes trained with high type frequency. Tamminen et al. (2015) 

argue that the accumulation of learning episodes (i.e. high token frequency) for the 

low type frequency affixes appears to benefit episodic memory, but not generalisation. 

By contrast, successful generalisation of semantic knowledge about affixes depends on 

high type frequency. These results are consistent with the CLS model in that high type 

frequency facilitates the development of overlapping representations that can support 

generalisation.  

3.4. Summary 

In sum, the ability to group items and experiences into meaningful categories or 

concepts is fundamental to generalisation. The CLS model provides a computational 

and neurobiological framework that balances the advantages and disadvantages of 

having to develop structured knowledge representations whilst maintaining item-

specific information. However, the way in which these different types of knowledge 

may support generalisation or the developmental course of overlapping neocortical 

representations remains unclear. The development of general knowledge that can be 

applied to novel instances is central to morphological generalisation. The factors that 

are known to influence morphological generalisation, such as type and token 

frequency and phonological consistency, are also suggested by the CLS model to 

influence the development of overlapping neocortical representations. Thus, the CLS 
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model offers an ideal framework to investigate the types of representations that 

support morphological generalisation. Thus far, the types of representations that 

support morphological generalisation have been mostly inferred on the basis of 

network simulations and behavioural experiments. However, no work has looked at 

characterising the neural representations that might support generalisation. The next 

chapter details how the work presented in this thesis aims to address this empirical 

lacuna by drawing upon the literature reviewed thus far.  
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Chapter 4: Learning, consolidating, and generalising 
morphology 

4.1. Building bridges 

The previous introductory chapters have provided a background to three ostensibly 

distinct literatures: morphological learning, memory consolidation, and 

generalisation. However, these chapters have also highlighted ways in which these 

three strands of research share important commonalities and how they can cross-

fertilise. The empirical work presented in this thesis makes an original contribution to 

the existing body of knowledge by building bridges between these three strands of 

research. In doing so, it aims to contribute to a better understanding of the cognitive 

and neural mechanisms supporting the learning, consolidation, and generalisation of 

morphology.  

 The evidence reviewed in Chapter 1 supports the view that morphological 

learning relies on the complex interplay of multiple competing factors, such as type 

and token frequency and phonological consistency, within a single network of 

connections. However, a paucity of behavioural studies has considered the influence 

of these factors on morphological learning with most evidence coming from child 

acquisition data, network simulations, and diachronic change data. As yet, there is no 

empirical demonstration of the influence of these factors on the neural 

representations and mechanisms underpinning morphological learning or how 

consolidation processes may modulate this influence.  

 A characterisation of the neural representations and mechanisms supporting 

morphological learning requires considering the functional organisation of memory. 

The CLS model introduced in Chapter 2 provides a computational and 

neurobiological framework to characterise hippocampal and neocortical 

representations and how these interact during consolidation to support learning. The 

CLS model has been successfully applied to word learning to account for the process 

of integrating new words into the mental lexicon (see Davis & Gaskell, 2009). This 

account is now well-supported by behavioural and neuroimaging evidence suggesting 

that the hippocampal system supports the rapid acquisition of new words whilst the 
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neocortical system supports the integration of new words into existing neocortical 

networks through memory consolidation processes. It is less clear, however, whether 

CLS principles can also provide an explanatory framework for morphological 

learning. To date, there is limited behavioural evidence concerning consolidation 

effects in morphological learning (e.g. Merkx et al., 2011; Tamminen et al., 2012, 

2015) and only one study has considered their neural basis (Leminen et al., 2016). It is 

thus clear that further functional imaging can provide crucial evidence for the role of 

consolidation in the formation of neocortical representations of new morphological 

knowledge and how it may modulate the influence of factors such as type and token 

frequency and phonological consistency. 

 At the lexical level, morphology offers a powerful example of linguistic 

generalisation. Thus, considering morphological learning and its underlying neural 

representations and mechanisms provides a window into the cognitive and neural 

bases of generalisation. Chapter 3 considered how CLS principles account for the 

development of representations that can support generalisation. It also highlighted 

some of the tensions relating to rapid generalisation based on hippocampal 

representations and the developmental course of overlapping neocortical 

representations. Thus, characterising the neural representations and mechanisms 

supporting morphological learning and how these may relate to generalisation could 

offer insight into resolving these tensions. The evidence reviewed in Chapter 3 also 

considered how morphological generalisation is subject to the influence of type and 

token frequency, phonological consistency, and overnight consolidation (e.g. Hare et 

al., 1995; Albright & Hayes, 2003; Tamminen et al., 2012, 2015). Again, how these 

factors influence the neural representations and mechanisms supporting new 

morphological knowledge and how they may influence generalisation, remains 

unexplored.  

 Across the three previous chapters, a particular emphasis has been put on 

network simulations of morphological learning and generalisation (e.g. Rumelhart & 

McClelland, 1986; Plunkett & Marchman, 1991, 1993; Hare & Elman, 1995; Hare et 

al., 1995). These networks capture important features of morphological learning and 

generalisation including type and token frequency effects, phonological consistency 
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effects, default generalisations, overregularisations, and irregular generalisations. 

These types of behaviour arise as emergent properties of neural networks discovering 

regularities shared among similar stem – past tense mappings using overlapping 

distributed representations. Usage-based models (e.g. Bybee, 1985, 1988, 1995, 2001) 

make similar claims. The formulation of the CLS model is grounded in the 

observation that neural networks can learn and generalise structured knowledge 

representation by gradually adjusting connections in overlapping, distributed 

networks of neurons. These observations are borne out by recent neuroimaging work, 

particularly in the domain of visual object recognition, showing more densely 

distributed coding and greater similarity-based overlap in the neocortex compared to 

the hippocampus. Thus, the CLS model and existing computational accounts can be 

fruitfully combined to derive predictions concerning the neural representations and 

mechanisms supporting morphological learning and generalisation.   

4.2. Thesis outline 

On the basis of these empirical gaps, the experiments described in this thesis focus on 

characterising the cognitive and neural representations supporting morphological 

learning and generalisation within a CLS framework. The first behavioural experiment 

explores the extent to which the contribution of overnight consolidation to 

morphological generalisation varies with the type and token frequency and the 

phonological consistency of new inflected words. It also introduces the behavioural 

paradigm used in subsequent experiments. This is the focus of the next chapter. The 

second experiment combines this behavioural paradigm with fMRI to examine the 

role of overnight consolidation in influencing the neural representations underlying 

new inflected words. Advanced multivariate fMRI analysis methods, namely 

Representational Similarity Analysis and task-based functional connectivity, are used 

to test CLS predictions. Overviews of these analysis methods are provided in Chapters 

6 and 7, respectively. Neuroimaging results are presented in Chapter 8. Finally, the 

third behavioural experiment attempts to shed some light on inconsistencies in the 

behavioural results obtained in the first two experiments. This is addressed in Chapter 

9. Chapter 10 discusses the conclusions that can be drawn from the experimental data 

and suggests directions for future research. 
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Chapter 5: Experiment 1 

5.1. Introduction 

As discussed in the introductory chapters, child acquisition data, neural network 

simulations, and a more limited number of behavioural studies have shown that type 

and token frequency, as well as phonological consistency, play a role in the learning 

and generalisation of morphology. However, the role of memory consolidation in 

modulating the influence of these factors has largely been ignored. Only one study has 

considered the influence of type and token frequency on the generalisation of newly-

learned derivational affixes (Tamminen et al., 2015). The few experiments that have 

considered the influence of phonological consistency on generalisation have focused 

on proficient speakers generalising to novel forms sharing phonological similarities 

with existing forms (Prasada & Pinker, 1993; Albright & Hayes, 2003). Thus, it 

remains unclear how the underlying representations of phonologically consistent and 

ambiguous forms come to be represented shortly after learning and how overnight 

consolidation may influence these representations. Relatedly, the only neuroimaging 

experiment that has considered the role of consolidation in morphological learning 

and generalisation has not considered the role of type and token frequency and 

phonological consistency (Leminen et al., 2016). 

 One previous behavioural study has examined the role of overnight 

consolidation in modulating the influence of type and token frequency as well as 

phonological consistency on the generalisation of novel morphology. Mirković and 

Gaskell (in prep.) trained participants on an artificial language containing 3 novel 

affixes (e.g. –aff, -eem, -esh), which combined with 18 novel singular nouns (e.g. nork) 

to form the plural forms (e.g. norkaff) of familiar objects (e.g. lemons). This novel 

morphological system was designed to mimic the type and token frequency and 

phonological consistency properties of the English past tense. The majority of nouns 

(12) took a high type frequency regular affix (e.g. –aff) whilst a minority of nouns (6) 

took one of two low type frequency irregular affixes (e.g. –esh, -eem). A subset of 

nouns (9) was phonologically diverse (e.g. nork, plass, thilt) and associated with the 

regular affix (e.g. norkaff, plassaff, thiltaff) similar to phonologically varied regular 

English verbs (e.g. called, turned, played). Another subset of nouns (3) contained a 
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phonological cue (e.g. –isp; jisp, slisp, tisp), which was consistently associated with one 

of the irregular affixes (e.g. –isp; jispeem, slispeem, tispeem) analogous to 

phonologically consistent irregular English verbs (e.g. clung, flung, stung). A final 

subset of stems (6) contained an ambiguous phonological cue (e.g. –arb; farb, clarb, 

yarb, harb, blarb, varb), which was associated with the regular affix for three nouns 

(e.g. –arb; farbaff, clarbaff, yarbaff) and with the second irregular affix for the other 

three nouns (–arb; harbesh, blarbesh, varbesh) mimicking phonologically ambiguous 

English verbs (e.g. show-showed; cf. blow-blew). Mimicking the type – token frequency 

distinction between English regular and irregular verbs, irregular plurals were 

presented with higher token frequency than regulars during training. Specifically, each 

irregular plural was presented 24 times during training whilst each regular plural was 

presented 6 times. The number of affix presentations was kept the same across regular 

and irregular plurals such that only their relative type and token frequencies were 

manipulated (Figure 4). 

 

  

 

 

 

Figure 4. Mirković and Gaskell (in prep.): training stimuli set 
a) example training stimuli set used by Mirković et al. (in prep.): phonologically diverse 
and phonologically ambiguous novel plurals taking a regular affix are in blue, 
phonologically ambiguous novel plurals taking an irregular affix are in green, and 
phonologically consistent novel plurals taking an irregular affix are in red. b) the type, 
token, and affix (type x token) training frequencies associated with each plural affix. c) 
example novel singular and plural nouns associated with a familiar object.  

 After training participants on this new morphological system, Mirković and 

Gaskell (in prep.) examined the degree to which type and token frequency and 

phonological consistency influenced generalisation and whether these influences 
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changed with overnight consolidation. A set of 18 novel singulars was created. Six 

were phonologically diverse (e.g. jeech), 6 were phonologically consistent (e.g. zisp), 

and 6 were phonologically ambiguous (e.g. narb). Participants were presented with 

these novel singulars and asked to supply what they considered to be appropriate 

plural forms. To assess consolidation-related changes in generalisation, one group of 

participants were tested immediately after plural training whilst another group of 

participants were tested after a 24hr delay (Figure 5). When presented with 

phonologically diverse novel singulars, both groups of participants produced mostly 

regular generalisations (e.g. jeechaff). When presented with phonologically consistent 

novel singulars, both groups of participants produced mostly irregular generalisations 

(consistent) (e.g. zispeem). When presented with phonologically ambiguous novel 

singulars, participants tested after a 24hr delay produced more irregular 

generalisations (ambiguous) than regular generalisations (e.g. narbesh > narbaff). By 

contrast, participants tested immediately after training produced a similar number of 

irregular generalisations (ambiguous) and regular generalisations (e.g. narbesh ≃ 

narbaff) (Figure 6). 

 

 

 

 

 

 

 

Figure 5. Mirković and Gaskell (in prep.): experimental design 
Participants were trained on a novel morphological system over 9 days in a between-subject design. Both 
groups were trained on the singulars on Day 1 and on the plurals of Day 8. One group performed the 
generalisation task immediately after training (immediate generalisation) and the other group 
performed the generalisation task on Day 9 after a 24hr delay containing sleep (delayed generalisation).  
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Figure 6. Mirković and Gaskell (in prep.): generalisation results 
Frequency of regular and irregular (consistent and ambiguous) generalisations in response to novel 
phonologically diverse, consistent, or ambiguous singulars produced by participants tested immediately after 
training (right panel) or after a delay of 24hr including sleep (left panel). 

 These results suggest that both groups of participants exploited the type and 

token frequency and phonological consistency properties of the training set to derive 

knowledge that they could generalise appropriately to novel singulars. The regular 

affix was applied preferentially to novel singulars that were phonologically diverse 

(e.g. jeechaff) consistent with network simulations suggesting that high type frequency 

and phonological diversity play an important role in supporting the development of 

default generalisation (Plunkett & Marchman, 1991, 1993; Hare & Daugherty, 1993; 

Hare et al., 1995). Participants’ willingness to apply the appropriate irregular affix to 

novel phonologically consistent nouns (e.g. zispeem) is in line with previous evidence 

of sensitivity to islands of reliability and high token frequency acting as a protective 

factor against regularisation (Plunkett & Marchman, 1991; Bybee, 1995; Albright & 

Hayes, 2003). There was no evidence for overnight changes in these two generalisation 

behaviours. For novel phonologically ambiguous nouns, participants tested 

immediately after training produced a mixture of regular (e.g. narbaff) and irregular 

(e.g. narbesh) generalisations whilst participants tested after a 24hr delay including 

sleep volunteered mostly irregular generalisations (e.g. narbesh). Albright and Hayes 

(2003) reported that novel regular verbs that were phonologically similar to existing 

irregulars were rated lower than novel regular verbs that were not phonologically 

similar to existing irregulars. In other words, novel regulars were rated lower if 

existing regulars and irregulars competed to influence participants’ ratings. These 

trade-offs effects are consistent with similar forms competing within a single network 

of connections. In Mirković and Gaskell’s (in prep.) study, participants tested 
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immediately after plural training produced a similar number of regular 

generalisations and irregular generalisations (ambiguous) in line with these 

competition effects. However, participants tested after a 24hr delay produced more 

irregular generalisations (ambiguous). These results suggest a role for overnight 

consolidation in modulating competition effects between regular and irregular 

mappings such that high token frequency irregular mappings are strengthened and 

preferentially generalised. 

 Why might overnight consolidation strengthen high token frequency irregular 

mappings for phonologically ambiguous plurals? Mirković and Gaskell (in prep.) 

suggest that their results can be explained within a CLS framework. They suggest that 

systematic mappings between stems and affixes, as is the case for phonologically 

diverse plurals and phonologically consistent plurals, may be rapidly encoded 

neocortically such that overnight consolidation may not provide any further benefit. 

In the case of arbitrary mappings between stems and affixes, as is the case for 

phonologically ambiguous plurals, learning may initially be more dependent on 

hippocampal pattern separation and subsequently more prone to overnight 

consolidation. Mirkovic & Gaskell (2016) report findings that go some way to 

supporting this proposal. Participants were trained on an artificial grammatical 

system containing arbitrary stem – referent mappings (e.g. scoiff = ballerina, heef = 

priest) and systematic determiner/affix – natural gender mappings (e.g. tib[fem] 

scoiffesh[fem] = ballerina, ked[masc] heefaff[masc] = priest). After training on this new 

grammatical system, participants were tested on their knowledge of the arbitrary and 

systematic mappings. One group of participants were tested after a 2hr nap whilst 

another group of participants were tested after a 2hr period of wakefulness. 

Participants in the nap group outperformed participants in the wakefulness group on 

tests assessing memory for the arbitrary mappings whilst both groups performed 

equally well on tests assessing knowledge of the systematic mappings. Mirković and 

Gaskell (2016) suggest that these results are consistent with the preferential 

involvement of sleep in prioritising the most hippocampally-reliant components over 

the multi-item generalisations that can also be supported by the neocortical system 

(McClelland et al., 1995; Stickgold & Walker, 2013). 
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 The aim of Experiment 1 was to build upon and extend Mirković and Gaskell’s 

(in prep.) design by developing a within-subject design better suited for the functional 

imaging study reported in Experiment 2. To this end, the experimental design used by 

Davis et al. (2009) in which participants were trained on two sets of novel words on 

two consecutive days and tested only once on the second day was adapted to examine 

the effect of overnight consolidation on the generalisation of newly-learned inflected 

words. Two sets of plural affixes, distinguished by grammatical gender, were trained 

on two consecutive days following the same type and token frequency and 

phonological consistency manipulations as in Mirković and Gaskell (in prep.). A 

plural elicitation task assessing generalisation to novel forms was administered 

following training of the second set of plural affixes. Consistent with the CLS model, 

differences in generalisation behaviour are predicted for generalisations requiring the 

use of plural affixes tested following a 24hr delay containing sleep and those requiring 

the use of plural affixes tested immediately after training. In line with the results 

obtained by Mirković and Gaskell (in prep.), when generalising to novel 

phonologically ambiguous singulars, participants are predicted to produce more 

irregular generalisations (i.e. based on token frequency) compared to regular 

generalisations (i.e. based on type frequency) for plural affixes having undergone 

overnight consolidation compared to those trained immediately prior to 

generalisation. 

5.2. Materials and methods 
5.2.1. Participants 

Eighteen participants (6 males) aged between 18 and 29 (mean age = 23, SD = 3) were 

recruited from the MRC Cognition and Brain Sciences Unit Participant Panel and 

provided their informed consent to take part in the study. Participants were tested 

under the approval of the Cambridge Psychology Research Ethics Committee. All 

were monolingual speakers of British English with little or no knowledge of a second 

language, no known hearing or language impairments, and no neurological or 

psychiatric disorders. Participants were paid to take part in the study. 
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5.2.2. Experimental stimuli 

5.2.2.1. Training stimuli 

Building upon and extending the stimuli set developed by Mirković and Gaskell (in 

prep.), a novel morphological system was implemented in an artificial language in 

which novel inflected words referred to the occupation of single or multiple male and 

female characters. Two sets of 18 novel stems (e.g. set 1: gleet; set 2: shiln) were 

generated from the ARC nonword database (Rastle, Harrington, & Coltheart, 2002). 

All were pronounceable monosyllabic monomorphemic English nonwords and 4 to 5 

phoneme long. For set 1, each novel stem was combined with a novel affix (e.g. –i) to 

create singular nouns referring to the occupation of single female characters (e.g. 

gleeti[fem:sing] = doctor [fem:sing]). For set 2, each novel stem was combined with another 

novel affix (e.g. –u) to create singular nouns referring to the occupation of single male 

characters (shilnu[masc:sing] = painter [masc:sing]). For set 1, each novel stem was combined 

with one of three novel affixes (–aff, –imm, –esh) to create plural nouns referring to 

three female characters depicting the corresponding occupation (e.g. gleetaff[fem:plur] = 

doctors[fem:plur]). For set 2, each novel stem was combined with one of three novel 

affixes (–opp, –oot, –ull) to create plural nouns referring to three male characters 

depicting the corresponding occupation (e.g. shilnopp[masc:plur] = painters[masc:plur]) 

(Figure 7). Thus, like many Indo-European languages, the new morphological system 

contained portmanteau affixes, which simultaneously specified number and gender 

information (Hockett, 1954). For instance, Italian expresses both gender and number 

simultaneously by single affixes (e.g. mela[fem:sing] = apple, mele fem:plur] = apples). Each 

training set contained the same phonological consistency and type and token 

frequency manipulations as in Mirković and Gaskell (in prep.) with some minor 

alterations to the phonological cues. Twelve lists were created to partially 

counterbalance the assignment of the plural affixes to regular and irregular conditions 

and the assignment of phonological cues (i.e. arb, isk) to phonologically ambiguous 

and consistent conditions. The assignment of each set of plural affixes (-aff, -imm, -

esh; -opp, -oot, -ull) to each gender was counterbalanced across participants.  
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Figure 7. Experiment 1: training stimuli set 
a) example training stimuli set: phonologically diverse and phonologically ambiguous novel 
plurals taking a regular affix are in blue, phonologically ambiguous novel plurals taking an 
irregular affix are in green, and phonologically consistent novel plurals taking an irregular 
affix are in red. b) the type, token, and affix (type x token) training frequencies associated 
with each plural affix. c) example novel singular and plural nouns associated with familiar 
occupations for female and male characters. 

 The singular affix –i was always associated with the –aff, –imm, and –esh 

plural affixes. Similarly, the singular affix –u was always associated with the –opp, –

oot, and –ull plural affixes. These groupings were designed to keep the onset vowels of 

each set of plural affixes as far apart as possible but similarly distributed in the vowel 

space to facilitate learning and reduce possible gender confusions (Figure 8). The 

assignment of the two sets of plural affixes to female or male characters was 

counterbalanced across participants. A male native speaker of southern British 

English recorded spoken forms of the novel singulars and plurals in a soundproof 

booth at a sampling rate of 44.1 kHz. The recording was divided into single audio 

files, one for each novel word, which were trimmed to length and normalised to 

equate their intensities. Each singular noun was paired with the picture of a single 

male or female character depicting a familiar occupation and each plural noun was 

paired with the picture of three male or female characters depicting the corresponding 

occupation9. The pictures were downloaded from a stock image website 

(www.dreamstime.com) after purchasing a Royalty-Free license, edited and resized 

where necessary. There was no phonological overlap between the novel nouns and the 

                                                        
9 These were pre-tested in an independent sample of 10 participants to ensure there was complete agreement on the gender and 
occupation of each character included in the stimuli set. 
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existing English words associated with each occupation. To further control for any 

unintended associations between the novel nouns and pictures, the pairing of nouns 

with specific occupations was varied across different training lists. 

 

 

 

 

  

 
 

Figure 8. Experiment 1: phonological distribution of novel affixes 
Phonological distribution of the two sets of novel affixes: –i, –aff, –
imm, –esh (red) and –u, –opp, –oot, –ull (blue). 

 

5.2.2.2. Generalisation stimuli 

A further 27 novel stems were selected from the ARC nonword database (Rastle et al., 

2002) to create generalisation stimuli. All were 4 to 5 phoneme long pronounceable 

monosyllabic monomorphemic English nonwords. Nine were phonologically diverse 

(e.g. woath), 9 were phonologically consistent (e.g. zisk), and 9 were phonologically 

ambiguous (e.g. slarb). Each novel stem was combined with both singular affixes (e.g. 

woathi[fem:sing], woathu[masc:sing]) yielding a total of 54 generalisation items. Each new 

singular noun was paired with the picture of a single female and male character 

depicting a familiar occupation not used in the training stimuli sets (e.g. woathi[fem:sing] 

= teacher[fem:sing], woathu[masc:sing] = teacher[masc:sing]) (Figure 9).  

5.2.3. Experimental design and procedure 

The experiment took place in three separate sessions over the course of 9 days. On 

Day 1, participants were trained on the novel singulars (e.g. gleeti[fem:sing] = doctor 

[fem:sing]; shilnu[masc:sing] = painter [masc:sing]) in one session lasting approximately 1hr30. To 

facilitate learning of the gender information encoded by the singular affixes, both 

masculine and feminine forms of each singular were trained in this first session (e.g. 

gleeti[fem:sing] = doctor [fem:sing]; gleetu[masc:sing] = doctor [fem:sing]; shilni[fem:sing] = painter [fem:sing]; 
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shilnu[masc:sing] = painter [masc:sing]). On Day 8, one week after learning the singulars, 

participants were trained on the first set of plural affixes by learning the plural forms 

of half of the singulars trained on Day 1 for one gender only. This session lasted 

approximately 1hr15. On Day 9, approximately 24 hours after learning the first set of 

plural affixes, participants were trained on the second set of plural affixes by learning 

the plural forms of the other half of singulars trained on Day 1 for the opposite gender 

to Day 8. Participants then took a short 10-minute break, which included a walk in the 

vicinity of the testing room, before completing the generalisation task in which they 

were asked to supply what they considered to be appropriate plural forms for new 

feminine (e.g. woathi[fem:sing]) and masculine (e.g. woathu[masc:sing]) singular nouns 

(Figure 9). This last session lasted approximately 2hr. All participants were tested 

individually in the same testing cubicle for all 3 sessions. They sat comfortably at 

approximately 60cm of a 17-inch computer monitor. Spoken words were delivered via 

high-quality headphones and participants’ verbal responses were audio recorded. All 

tasks were implemented in E-prime 2.0 (Psychology Software Tools Inc., Pittsburgh, 

PA). 

 Four important features of this design should be noted. First, it builds upon 

and extends the morphological system developed by Mirković and Gaskell (in prep.) 

by instantiating the morphosyntactic feature of gender in order to distinguish between 

two sets of affixes. This allowed training two sets of different affixes, distinguished by 

gender, on two successive days. Effects of initial learning (Day 9 affixes) and overnight 

consolidation (Day 8 affixes) could thus be compared in a within-subject (i.e. 

between-affix) design better suited for the fMRI study reported in Chapter 8. Second, 

effects of initial learning (Day 9 affixes) and overnight consolidation (Day 8 affixes) 

could be assessed within a single generalisation plural elicitation task administered on 

Day 9 comparing generalisations that required participants to use Day 8 or Day 9 

affixes. This design is similar to the one used by Davis et al. (2009) in the context of 

word learning. As a consequence of testing generalisation only once, it controls for 

potential practice effects that would arise from administering several generalisation 

tests to the same participants. It is also an efficient design for the functional imaging 

study reported in Experiment 2. This is discussed in more detail in Chapter 8. Third, 

each set of plural affixes was trained using a different set of stems, both trained on Day 
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1, to avoid introducing interference from onset overlapping competitors when 

training the second set of plural affixes on Day 9 (e.g. gleetaff[fem:plur] = doctors[fem:plur] 

and gleetopp[masc:plur] = doctors[masc:plur] were not trained in the same participants). 

Fourth, singulars were trained on Day 1 such that both sets of stems were learned and 

consolidated prior to training the plurals. Based on the evidence concerning the 

consolidation and lexicalisation of novel words reviewed in Chapter 2, training 

singulars on Day 1 and allowing a week to pass before training the plurals should be 

sufficient for their consolidation (Davis & Gaskell, 2009). Consolidation-related 

changes in generalisation behaviour could thus be attributed more confidently to 

changes in the representation of the affixes rather than the stems. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Experiment 1: experimental design 
Participants were trained on a novel morphological system over 9 days in a within-subject design. 
Participants were trained on the singulars on Day 1. They returned to the lab one week later to be 
trained on one set of plurals for one gender on Day 8. They were trained on a second set of plurals for 
the other gender on Day 9 following a 24hr delay containing sleep. They then performed a 
generalisation task, which required them to use plural affixes trained immediately before or on the 
previous day.  
 

5.2.3.1. Day 1 

Participants completed 4 blocks of training on the singulars. Each training block 

comprised 1) a word repetition task followed by 2) a picture naming task with 

feedback. Each singular was presented once per block in each task for a total of 8 

presentations over the course of all training blocks. Memory for the singulars was 

assessed by 1) a picture naming without feedback task followed by 2) a two-alternative 
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forced choice (2AFC) recognition memory task in a testing block presented 

immediately after the last training block (Figure 10).  

Word repetition task. Each trial began with a black fixation cross presented for 500ms 

in the centre of a white background, which was followed by the auditory presentation 

of a novel singular. The picture of the character corresponding to the spoken word 

together with the written form of the word presented below the picture were displayed 

in the centre of the screen 300ms after the onset of the spoken word and remained on 

the screen for 4000ms. Participants were instructed to repeat the word out loud. There 

was an inter-trial interval of 500ms. Each singular was presented once per block. The 

order of presentation of the trials was randomised for each participant. 

Picture naming with (without) feedback. Each trial started with a black fixation cross 

presented for 500ms in the centre of a white background, which was replaced by the 

target picture which remained on the screen for 4500ms. Participants were instructed 

to name the picture using the novel words they had learned in the previous training 

block. After 4000ms, the correct spoken word was played over the headphones. There 

was an inter-trial interval of 500ms. Each target picture and its associated spoken 

word were presented once per block. The order of presentation was randomised for 

each participant. The picture naming task without feedback used in the testing block 

was exactly the same but participants did not hear the correct response at the end of 

each trial. For both training and test picture naming tasks, participants’ verbal 

responses were audio recorded. 

2AFC recognition memory. Each trial started with a black fixation cross presented for 

500ms in the centre of a white background, which was followed by the auditory 

presentation of one of the novel singulars. Two pictures were presented on each side 

of the screen 300ms after the onset of the spoken word and remained on the screen 

until participants provided a response. There was an inter-trial interval of 500ms. 

Participants were instructed to press “z” on the keyboard to indicate that the spoken 

word corresponded to the picture on the left and “m” to indicate that it corresponded 

to the picture on the right. The two pictures were always of the same gender. The 

character corresponding to each word was presented once as a target and once as a 
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distractor. The position of the target picture on the screen was counterbalanced across 

trials. The order of presentation of the trials was randomised for each participant. 

5.2.3.1. Day 8 

Participants learned the first set of plural affixes for one gender (Figure 9). First, 

participants completed one top-up training block on the singulars alone comprising 

1) a word repetition task and 2) a picture naming task with feedback as described 

above. Each singular was presented 6 times during the word repetition task and once 

in the picture naming task. Participants then performed 3 training blocks including 

both the singulars trained in the first block and their corresponding plurals. Each 

plural training block comprised 1) a word repetition task and 2) a picture naming task 

with feedback as described for Day 1. During the word repetition task, each singular 

was presented twice per training block and the plurals were presented following the 

token frequencies presented in Figure 7. The regulars were presented a total of 6 times 

over the 3 training blocks (x2 per block) while each irregular was presented a total of 

24 times over the 3 training blocks (x8 per block). Memory for the singulars and 

plurals was assessed by 1) a picture naming without feedback task followed by a 2) 

2AFC recognition memory task in a testing block presented immediately after the last 

plural training block. The 2AFC recognition memory task was the same as the one 

described for Day 1 but this time included both singulars and plurals. The two 

pictures were always of the same gender and number. The character corresponding to 

each word was presented once as a target and once as a distractor. The position of the 

target picture on the screen was counterbalanced across trials. The order of 

presentation of the trials was randomised for each participant.  

5.2.3.1. Day 9 

Participants learned the second set of plural affixes for the opposite gender to the one 

trained on Day 8 (Figure 9). The training tasks were the same as for Day 8. The order 

in which the two genders were trained across the two plural training days (Day 8, Day 

9) was counterbalanced across participants.   

Generalisation. Each trial began with a black fixation cross presented for 500ms in the 

centre of a white background, which was followed by the auditory presentation of a 

novel singular word not previously presented in training. The picture of the 
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corresponding single character with the phrase ‘one [novel wordsing]’ (e.g. ‘one 

woathi’) displayed underneath it was presented in the centre of the screen 300ms after 

the onset of the spoken word and remained on the screen for 2000ms. A blank screen 

was then presented for 500ms, which was followed by the presentation of the same 

character depicted as a triplet with the phrase ‘three…?’ underneath it. This remained 

on the screen for 4500ms. Participants were instructed to say out loud what they 

thought was the most appropriate plural form of the new singular. There was an inter-

trial interval of 500ms. The experimenter checked with the participant to make sure 

they understood the instructions and went through a practice trial offline together. 

Each generalisation item was presented once and the order of presentation of the trials 

was randomised for each participant. 

5.2.4. Data analysis 

Data were analysed by fitting generalised linear models using the glm2 package 

(Marschner, 2011) in R version 3.3.1 (R Development Core Team, 2016). Accuracy on 

the picture naming and 2AFC recognition memory tasks were analysed using logistic 

regression with a binomial distribution since participants could either produce a 

correct or an incorrect response. Logistic regression is more appropriate and less 

prone to type I or type II errors than applying an analysis of variance (ANOVA) on 

proportional data even if the proportional data is arcsine transformed (Jaeger, 2008). 

For the picture naming tasks, only responses where participants produced the 

appropriate stem and affix (e.g. gleet + i for gleeti[fem:sing]) were deemed correct. For the 

plural elicitation generalisation task, data were analysed using loglinear regression 

with a Poisson distribution applied to the frequency counts of each response type. 

Loglinear regression is also less likely to result in type I or type II errors than an 

ANOVA applied to proportional data, even if the proportional data is arcsine 

transformed (Agresti, 2002; Jaeger, 2008). Loglinear regression also offers advantages 

over the most frequently used Chi-square tests used for the analysis of language 

acquisition data including its applicability to complex designs with multiple variables 

of the kind used in this thesis (Li, 2002). For the primary analysis of the plural 

elicitation generalisation task, responses in which participants correctly reproduced 

the stem of a novel singular (e.g. woath for woathi[fem:sing]) and inflected it with a 

gender-appropriate trained plural affix were deemed correct. 
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Figure 10. Experiment 1: experimental procedure and tasks 
a) summary of the experimental procedure. On Day 1, participants completed 4 blocks of training following by a 
test block on all singulars. On Day 8, participants were trained on the plurals for one gender. They began by 
completing one top-up block on the singulars only followed by three training blocks on the singulars and plurals 
and a test block on the singulars and plurals. The same procedure was followed on Day 9 for the plurals of the other 
gender. Additionally, participants completed a generalisation task after the testing block. b) summary of all 
experimental tasks: word repetition, picture naming with and without feedback, 2AFC, and generalisation plural 
elicitation task. 

 

These correct responses were classified as regular generalisations (e.g. woathaff[fem:plur]), 

irregular generalisations (consistent) (e.g. woathimm[fem:plur]), and irregular 

generalisations (ambiguous) (e.g. woathesh[fem:plur]) on the basis of the plural affix used. 

All other responses were classified as incorrect. This approach was preferred to 
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analysing accurate responses (e.g. producing a regular generalisation, woathaff[fem:plur], 

in response to a phonologically diverse singular, woathi[fem:sing]) to examine differences 

in the use of different types of generalisations as a function of the training day of the 

novel affixes and the phonological consistency of the novel singulars. In all analyses, 

the terms phonologically diverse, phonologically consistent, and phonologically 

ambiguous are used to refer to both singulars and plurals. It should be noted that this 

classification refers to the type of phonological cues contained in the stems.  

 A model simplification approach was followed in building the generalised 

linear models. Full models with all the predictor variables and their interactions were 

considered first. The significance of each predictor was evaluated by carrying out 

likelihood ratio tests (LRT) comparing a model including a predictor of interest to an 

identical model excluding the predictor of interest (Barr, Levy, Scheepers, & Tily, 

2013). Elimination of non-significant predictors began with the highest order 

interactions moving backwards to lower order interactions and main effects. For LRT, 

Chi Square and p values are reported. The statistics for non-significant effects are not 

reported in the text, except if there are marginally significant (p ≤ .06). For significant 

predictors (p < .05), pairwise comparisons were performed using the multcomp 

package (Hothorn, Bretz, & Westfall, 2008). For these, the estimated coefficient (b), 

the z statistic associated with the coefficient, and the p-value based on the z statistic 

are reported. The p-values reported in the text are uncorrected for multiple 

comparisons. However, Bonferroni corrections were also applied based on the 

number of contrasts examined for each significant predictor. Uncorrected p-values 

that did not survive Bonferroni correction are marked with the symbol †. This 

approach provides information about the significance level of each contrast as well as 

its robustness to multiple comparisons. The same data analysis approach is used for 

similar tasks in experiments presented in subsequent chapters.   

5.3. Results 
5.3.1. Training 

Accuracy on the picture naming tasks presented at the end of each training block in 

each training session was analysed to examine how participants’ mastery of the new 

words improved over the course of training (Figure 11). Singulars and plurals were 
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analysed separately as there was no plural training on Day 1, there were only 3 

training blocks for plurals on Day 8 and Day 9 (compared to 4 blocks for singulars), 

and because phonologically ambiguous plurals were split according to whether they 

were associated with a regular or an irregular plural affix.  

 For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 

Day 9), training block (Block 1, Block 2, Block 3, Block 4), and their interaction was 

fitted. The three-way interaction between condition, training day, and training block 

was not significant. The two-way interaction between condition and training block 

was significant, χ2
(6) = 16.72, p = .010. Accuracy increased significantly over the course 

of training blocks for phonologically diverse singulars (Block 2 vs. Block 1: b = 0.71, z 

= 7.58, p < .001, Block 3 vs. Block 2: b = 0.68, z = 6.70, p < .001, Block 4 vs. Block 3: b 

= 0.62, z = 5.25, p < .001) and for phonologically ambiguous singulars (Block 2 vs. 

Block 1: b = 0.96, z = 8.23, p < .001, Block 3 vs. Block 2: b = 0.59, z = 4.69, p < .001, 

Block 4 vs. Block 3: b = 0.53, z = 3.61, p = .003), but did not increase further after the 

third training block for phonologically consistent singulars (Block 2 vs. Block 1: b = 

0.97, z = 5.88, p < .001, Block 3 vs. Block 2: b = 1.14, z = 5.77, p < .001). The two-way 

interaction between training block and training session was significant, χ2
(6) = 50.10, p 

< .001. Participants improved significantly across training blocks on Day 1 (Block 2 vs. 

Block 1: b = 1.48, z = 15.50, p < .001, Block 3 vs. Block 2: b = 0.86, z = 10.30, p < .001, 

Block 4 vs. Block 3: b = 0.60, z = 6.42, p < .001) but not on Day 8 or Day 9. The two-

way interaction between condition and training session was marginally significant, 

χ2
(4) = 9.33, p = .053. For phonologically ambiguous singulars, participants were 

marginally more accurate on Day 9 compared to Day 8 (Day 9 vs. Day 8: b = 0.60, z = 

1.92, p = .060) but were equally accurate across Day 8 and Day 9 for phonologically 

diverse and phonologically consistent singulars. The main effect of condition was 

significant, χ2
(2) = 8.25, p = .020. Participants were more accurate on phonologically 

consistent than phonologically diverse (b = 0.24, z = 2.86, p = .004) and 

phonologically ambiguous (b = 0.19, z = 2.06, p = .040†) singulars but performed 

similarly on phonologically diverse and phonologically ambiguous singulars. The 

main effect of training day was significant, χ2
(2) = 1141.23, p < .001. Participants were 

more accurate on Day 8 compared to Day 1 (b = 3.04, z = 24.06, p < .001) and on Day 
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9 compared to Day 1 (b = 3.02, z = 24.13, p < .001) but performed similarly on Day 8 

and Day 9. The main effect of training block was significant, χ2
(3) = 1173.84, p < .001. 

Participants’ accuracy increased significantly over the course of training blocks (Block 

2 vs. Block 1: b = 1.23, z = 14.80, p < .001, Block 3 vs. Block 2: b = 0.86, z = 10.62, p < 

.001, Block 4 vs. Block 3: b = 0.61, z = 6.74, p < .001).  

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), training block (Block 1, Block 2, 

Block 3, Block 4), and their interaction was fitted. Note that phonologically 

ambiguous plurals were split according to whether they were associated with a regular 

or an irregular affix. The three-way interaction between condition, training day, and 

training block was not significant. None of the two-way interactions were significant. 

The main effect of condition was significant, χ2
(3) = 27.29, p < .001. Participants were 

significantly more accurate on phonologically diverse than on phonologically 

ambiguous (regular) (b = 0.86, z = 5.02, p < .001) and phonologically ambiguous 

(irregular) plurals (b = 0.51, z = 2.80, p = .005). Participants were also more accurate 

on phonologically consistent than on phonologically ambiguous (regular) plurals (b = 

0.73, z = 3.36, p < .001). The main effect of training block was also significant, χ2
(2) = 

83.08, p < .001. Participants’ accuracy improved significantly across training blocks 

(Block 2 vs. Block 1: b = 0.83, z = 5.45, p < .001, Block 3 vs. Block 2: b = 0.66, z = 3.37, 

p < .001). The main effect of training day was not significant. 
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Figure 11. Experiment 1: training accuracy 
Mean accuracy on the picture naming task presented at the end of each training block (Block 1, Block 
2, Block 3, Block 4) on each training day (Day 1, Day 8, and Day 9) for a) singulars and b) plurals. 
Error bars represent +/- 1 standard error of the mean after removing between-subject variability 
(O’Brien & Cousineau, 2014). Phonologically ambiguous plurals are split into those associated with a 
regular (light blue line) and those associated with an irregular (green line) affix. All phonologically 
ambiguous singulars are depicted by a green line.  

 

5.3.2. Testing 

Accuracy on the picture naming (Figure 12) and 2AFC recognition memory (Figure 

13) tasks presented in a testing block at the end of each training session was analysed 

to ensure that words with different phonological consistencies and training 

frequencies (plurals) were learned equally well. Singulars and plurals were analysed 

separately as there was no plural training on Day 1, there were only 3 training blocks 

for plurals on Day 8 and Day 9 (compared to 4 blocks for singulars), and because 

phonologically ambiguous plurals were split according to whether they were 

associated with a regular or an irregular plural affix. 

5.3.2.1. Picture naming 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 
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Day 9), and their interaction was fitted. There was no significant interaction between 

condition and training day. The main effect of condition was significant, χ2
(2) = 7.79, p 

= .020. Participants were significantly more accurate on phonologically consistent 

compared to phonologically diverse  (b = 0.51, z = 2.19, p = .028†) and phonologically 

ambiguous singulars (b = 0.64, z = 2.66, p = .008) but performed similarly on 

phonologically diverse and phonologically ambiguous singulars. The main effect of 

training day was also significant, χ2
(2) = 116.58, p < .001. Participants were significantly 

more accurate on Day 8 compared to Day 1 (b = 2.78, z = 5.46, p < .001) and on Day 9 

compared to Day 1 (b = 1.95, z = 5.63, p < .001) but performed similarly on Day 8 and 

Day 9. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), and their interaction was fitted. 

Note that phonologically ambiguous plurals were split according to whether they were 

associated with a regular or an irregular affix. The interaction between condition and 

training day was not significant. The main effect of condition was significant, χ2
(3) = 

8.17, p = .043. Participants were significantly more accurate on phonologically diverse 

than on phonological ambiguous regular (b = 9.29, z = 2.48, p = .013†) and on 

phonologically consistent than on phonological ambiguous regular plurals (b = 1.35, z 

= 2.32, p = .021†). The main effect of training day was not significant.  

5.3.2.2. 2AFC recognition memory 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 

Day 9), and their interaction was fitted. Condition and training day did not interact 

significantly. There was no significant main effect of condition or training day. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), and their interaction was fitted. 

There was no significant interaction between condition and training day. Neither the 

main effect of condition nor the main effect of training day was significant. 
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Figure 12. Experiment 1: test accuracy (picture naming) 
Mean accuracy on the picture naming task presented in the testing block the end of each training 
day (Day 1, Day 8, Day 9) for a) singulars and b) plurals. Error bars represent +/- 1 standard error 
of the mean after removing between-subject variability (O’Brien & Cousineau, 2014). 
Phonologically ambiguous plurals are split into those associated with a regular (blue bar) and those 
associated with an irregular (green bar) affix. 

 
 
 

     

Figure 13. Experiment 1: test accuracy (2AFC) 
Mean accuracy on the 2AFC recognition memory task in the test block presented at the end of each 
training day (Day 1, Day 8, Day 9) for a) singulars and b) plurals. Error bars represent +/- 1 
standard error of the mean after removing between-subject variability (O’Brien & Cousineau, 
2014). Phonologically ambiguous plurals are split into those associated with a regular (blue bar) 
and those associated with an irregular (green bar) affix. 
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5.3.3. Generalisation 

5.3.3.1. Response type analysis 

The frequency of each response type (regular generalisations, irregular generalisations 

(consistent), irregular generalisations (ambiguous), incorrect) for novel 

phonologically diverse, consistent, and ambiguous singulars requiring participants to 

use Day 8 and Day 9 affixes are shown in Figure 14. A loglinear model with 

phonological consistency (diverse, consistent, ambiguous), affix training day (Day 8, 

Day 9), response type (regular generalisations, irregular generalisations (consistent), 

irregular generalisations (ambiguous), incorrect), and their interaction was fitted. The 

three-way interaction between phonological consistency, affix training day, and 

response type was significant, χ2
(6) = 17.60, p = .007. To break down this interaction, 

interactions between training day and response type were examined for each level of 

phonological consistency separately. For phonologically diverse novel singulars, the 

interaction between affix training day and response type was significant, χ2
(3) = 47.69, 

p < .001. Participants produced fewer regular generalisations for Day 8 compared to 

Day 9 affixes (b = -3.45, z = -2.43, p = .015†), fewer irregular generalisations 

(consistent) for Day 8 compared to Day 9 affixes (b = -1.20, z = -2.59, p = .010), and 

more incorrect responses for Day 8 compared to Day 9 affixes (b = 1.50, z = 5.09, p < 

.001). For phonologically consistent novel singulars, the interaction between training 

day and response type was also significant, χ2
(3) = 65.68, p < .001. Participants 

produced fewer regular generalisations for Day 8 compared to Day 9 affixes (b = -1.20, 

z = -4.09, p < p.001) and more incorrect responses for Day 8 compared to Day 9 

affixes (b = 1.79, z = 5.50, p = < .001). For phonologically ambiguous novel words, the 

interaction between training day and response type was also significant, χ2
(3) = 48.68, p 

< .001. Participants produced fewer regular generalisations (b = -8.60, z = -4.78, p < 

.001), more irregular generalisations (ambiguous) (b = 5.39, z = 2.53, p = .011), and 

more incorrect responses (b = 1.01, z = 3.87, p < .001) for Day 8 affixes compared to 

Day 9 affixes.  
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Figure 14. Experiment 1: generalisation results  
Frequency of each response type supplied within each phonological consistency category of novel 
words requiring participants to use affixes of Day 8 (left) and on Day 9 (right).  
 

 To mitigate potential confounds due to a difference in the number of correct 

responses for Day 8 compared to Day 9 affixes, the analysis was repeated with a 

random sup-sample of correct responses for Day 9 affixes to artificially match the 

number of correct responses produced for Day 8 affixes (see Liu et al., 2016 for a 

similar approach in the context of emotional memory consolidation) (Figure 15). The 

three-way interaction between phonological consistency, affix training day, and 

response type was replicated, χ2
(4) = 15.00, p = .005. For phonologically diverse novel 

singulars, the two-way interaction between affix training day and response type was 

not significant. For phonologically consistent novel singulars, there was a significant 

two-way interaction between affix training day and response type, χ2
(2) = 21.09, p < 

.001. Participants produced fewer regular generalisations for Day 8 compared to Day 9 

affixes (b = -1.17, z = -3.81, p < .001) and more irregular generalisations (consistent) 

for Day 8 compared to Day 9 affixes (b = 3.51, z = 2.03, p = .042†). For phonologically 

ambiguous singulars, the two-way interaction between affix training day and response 

type was significant, χ2
(2) = 21.26, p < .001. Participants produced fewer regular 

generalisations (b = -0.54, z = -2.83, p = .005) and more irregular generalisations 

(ambiguous) (0.82, z = 3.44, p = .001) for Day 8 compared to Day 9 affixes (Figure 15).  
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Figure 15. Experiment 1: generalisation results for equalised correct responses 
Frequency of each response type supplied within each phonological consistency category of novel 
words requiring participants to use affixes of Day 8 (left) and on Day 9 (right).  
 

5.3.3.2. Error analysis 

A secondary analysis focused on the errors produced by participants. Incorrect 

responses were subcategorised as a failure to provide any response (no response), the 

production of a legal but gender-inappropriate affix (gender error), and the 

production of an illegal affix (illegal affix) (Figure 16). A loglinear model with 

phonological consistency (diverse, consistent, ambiguous), affix training day (Day 8, 

Day 9), error type (no response, gender error, illegal affix), and their interaction was 

fitted. There was no significant three-way interaction between phonological 

consistency, affix training day, and error type. The two-way interaction between affix 

training day and error type was significant, χ2
(2) = 8.29, p = .016. To break down this 

interaction, differences between the numbers of each error type were examined for 

Day 8 and Day 9 affixes separately. For Day 8 affixes, the main effect of error type was 

significant, χ2
(2) = 106.25, p < .001. Participants produced more illegal affix errors than 

no response errors (b = 1.43, z = 6.28, p < .001) and more illegal affix errors than 

gender errors (b = 1.61, z = 9.86, p < .001) but a similar number of gender errors and 

no response errors. For Day 9, the main effect of error type was also significant, χ2
(2) = 

10.95, p = .004. Participants produced more no response errors than gender errors (b 

= 0.97, z = 2.64, p = .008) and more illegal affix errors than no response errors (b = 

1.03, z = 2.88, p = .004) but a similar number of no response errors and illegal affix 

errors. The two-way interaction between affix training day and phonological 

consistency was not significant nor was the two-way interaction between phonological 
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consistency and error type. The main effect of phonological consistency was not 

significant. 

 

 

 

 
 
 

 
 
 
 
 
Figure 16. Experiment 1: generalisation errors 
Frequency of each error type (no response, gender error, illegal affix) supplied within each 
phonological consistency category of novel singulars requiring participants to use affixes trained on 
Day 8 (left) or on Day 9 (right).  
 

5.4. Discussion 

Experiment 1 investigated the role of overnight consolidation in influencing the 

contribution of type and token frequency and phonological consistency to the 

generalisation of newly-learned plural affixes. It adapted and extended the between-

subject design used by Mirković and Gaskell (in prep.) to develop a within-subject 

design better suited for the fMRI study reported in Experiment 2. Three experimental 

sessions were run over the course of 9 days. On Day 1, participants learned novel 

singular nouns corresponding to the occupation of single female and male characters. 

One week later, on Day 8, participants learned one set of plural affixes for half of the 

singulars trained on Day 1 for one gender. On Day 9, participants learned a second set 

of plural affixes for the other half of the singulars trained on Day 1 for the opposite 

gender to the one trained on Day 8. After plural training on Day 9, participants 

completed a generalisation plural elicitation task during which they were presented 

with novel feminine and masculine singulars and asked to supply what they 

considered to be appropriate plural forms. Effects of initial learning and overnight 

consolidation could then be assessed by comparing generalisations requiring the use 

of plural affixes trained on Day 8 to those requiring the use of plural affixes trained on 

Day 9. This design adapts the method used by Davis et al. (2009) in the context of 
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lexical learning and consolidation and extends it to consider morphological learning 

and generalisation. 

 Behavioural results from the training sessions confirm that the training 

schedule was successful in allowing participants to become highly proficient on the 

novel morphological system. Participants became increasingly more accurate at 

naming the novel singulars over the course of four training blocks on Day 1. There 

was evidence that learning phonologically consistent singulars (e.g. hiski, hisku) was 

easiest as performance plateaued at the penultimate training block. These singulars 

were indeed the smallest and most consistent set to learn. After completing one top-

up training block on singulars on Day 8 and Day 9, participants performed with high 

levels of accuracy, which did not increase further across subsequent training blocks or 

differ between Day 8 and Day 9. These results suggest that participants had retained 

some knowledge of the singulars trained on Day 1 such that only one top-up training 

block was sufficient to yield accuracy levels comparable to those achieved at the end of 

training on Day 1. Overnight changes in generalisation behaviour could thus be 

attributed more confidently to changes in the representations of the plural affixes 

rather than to changes in the representations of the stems (which are shared with 

singulars). For plurals, participants’ naming accuracy also improved across training 

blocks. Participants showed sensitivity to the phonological consistency of the plurals. 

Phonologically diverse plurals were named more accurately than phonologically 

ambiguous plurals (regular and irregular) in line with the role of high type frequency 

in facilitating the learning of inflectional affixes. Phonologically consistent plurals 

were named more accurately than phonologically ambiguous regular plurals. This is 

likely attributable to the fact that phonologically consistent plurals were a small group 

of highly consistent mappings supported by high token frequency. Phonologically 

ambiguous regulars, by contrast, were a small group of ambiguous mappings trained 

with low token frequency. 

 These patterns of results were further borne out in the picture naming tasks 

presented in the testing blocks administered at the end of each training session. 

Performance on the 2AFC recognition memory tasks presented during these testing 

blocks was at ceiling indicating that participants had mastered the meaning of the 
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novel words by the end of each training session. Importantly, across picture naming 

tasks and 2AFC recognition memory tasks, participants performed similarly for both 

sets of plurals as evidenced by a lack of significant main effects or interactions 

involving affix training day across all analyses. This suggests that training two sets of 

plural affixes with different sets of stems was a successful strategy to avoid interference 

that could have arisen from having onset overlapping competitors when training the 

second set of plural affixes (e.g. gleetaff, gleetopp). It also suggests that learning the 

first set of plural affixes did not facilitate the learning of the second set of plural 

affixes. Thus, generalisations requiring participants to use plural affixes trained 

immediately before the generalisation plural elicitation task (Day 9 affixes) or trained 

before a period of overnight consolidation (Day 8 affixes) could be compared for two 

sets of plural affixes that were learned equally well. Differences in generalisation 

behaviour could not be attributed to differences in the initial learning of the plural 

affixes.  

 In the generalisation plural elicitation task, participants were presented with 

novel singulars in both their feminine (e.g. woathi[fem:sing]) and masculine (e.g. 

woathu[masc:sing]) forms and asked to supply what they considered to be appropriate 

plural forms. Thus, the task required participants to use Day 8 and Day 9 affixes as 

required by the gender of the novel character. For novel phonologically ambiguous 

singulars (e.g. varbi, varbu) containing a phonological cue that had been associated 

with both high type frequency regular affixes (e.g. harbaff, jarbopp) and high token 

frequency irregular affixes (e.g. tarbimm, blarboot) during training, participants 

produced more irregular generalisations (ambiguous) (e.g. varbimm) than regular 

generalisations (e.g. varbaff) for Day 8 affixes. For Day 9 affixes, participants 

produced more regular generalisations (e.g. varbopp) than irregular generalisations 

(ambiguous) (e.g. varboot). The increase in irregular generalisations (ambiguous) 

following overnight consolidation replicates the result that Mirković and Gaskell (in 

prep.) obtained using a between-subject design. The results found here further suggest 

that the increase in irregular generalisations (ambiguous) is coupled with a decrease in 

regular generalisations. For novel phonologically diverse singulars, participants 

produced fewer irregular generalisations (consistent) for Day 8 affixes (e.g. woathesh) 

compared to Day 9 affixes (e.g. woathull). For novel phonologically consistent 
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singulars, participants produced fewer regular generalisations for Day 8 affixes (e.g. 

tiskaff) compared to Day 9 affixes (e.g. tiskopp). These latter two effects could reflect 

the strengthening of the regular and irregular mappings for Day 8 affixes following 

overnight consolidation which manifests in a reduction of inappropriate 

generalisations perhaps reflecting more ‘optimal’ processing (Stickgold & Walker, 

2013).   

 As discussed in Chapter 2 and Chapter 3, memory consolidation has been 

implicated in the strengthening of memories for individual items, as evidenced by 

improvements on declarative memory tasks following overnight sleep, (e.g. Plihal & 

Born, 1997) and the extraction of similarities across related memories, as evidenced by 

improvements in generalisation performance (e.g. Ellenbogen et al., 2007; Lewis & 

Durrant, 2011). Stickgold and Walker (2013) argue that in cases where neither 

strengthening individual memories nor extracting similarities across several memories 

is clearly preferable as a ‘path to integration’ into long-term memory, memory 

consolidation may be particularly important in selecting one path. This account 

would be consistent with the shift from regular generalisations to irregular 

generalisations (ambiguous) observed for phonologically ambiguous novel singulars 

seen for Day 8 compared to Day 9 affixes. In such cases, an increase in irregular 

generalisations (ambiguous) could be governed by salience tags attached to memories 

for high-token frequency irregulars during encoding. A growing body of evidence 

suggests that memory consolidation is ecologically guided by the properties of the 

items to be remembered. For example, emotionality (Wagner, Gais, & Born, 2001; Hu, 

Stylos-Allan, & Walker, 2006; Atienza & Cantero, 2008; Nishida, Pearsall, Buckner, & 

Walker, 2009), reward motivation (Fischer & Born, 2009; Wilhelm et al., 2011; van 

Dongen, Thielen, Takashima, Barth, & Fernández, 2012), and explicit instructions to 

remember items (Fischer, Drosopoulos, Tsen, & Born, 2006; Saletin, Goldstein, & 

Walker, 2011), have all been shown to lead to preferential memory consolidation. It is 

conceivable that high token frequency irregulars were ‘tagged’ as being of particular 

importance or relevance to future behaviour and thus preferentially consolidated (but 

see Drosopoulos, Schulze, Fischer, & Born, 2007). As suggested by Stickgold and 

Walker (2013), this may be particularly important for phonologically ambiguous 

plurals where two types of mappings are competing for consolidation.  
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 It should be noted that affix training day had an effect on overall performance 

on the generalisation plural elicitation task. Indeed, significantly more incorrect 

responses were produced for Day 8 compared to Day 9 affixes. A more detailed 

analysis of the responses produced in error showed that participants produced more 

gender errors and illegal affixes for Day 8 affixes compared to Day 9 affixes. This 

could be due to forgetting of Day 8 affixes or interference from Day 9 affixes. The 

present data do not allow distinguishing between these possibilities (Mensink & 

Raaijmakers, 1988; Anderson, 2003). However, the fact that for phonologically 

ambiguous novel singulars the two-way interaction between regular generalisations 

and irregular generalisations (ambiguous) remained after equalising the number of 

correct trials across the two training days suggests that the effect is not confounded by 

forgetting of Day 8 affixes or interference from Day 9 affixes. Furthermore, Mirković 

and Gaskell (in prep.) report similar results in a between-subject design in which 

interference between newly-learned and consolidated affixes can be ruled out. It 

should also be noted that the design employed in the current experiment and the 

subsequent experiments reported in this thesis is not intended to directly test whether 

overnight consolidation effects are driven by sleep or the passage of time since 

learning. As discussed at the outset of this chapter, however, previous research in 

which participants remained awake or slept for equivalent periods of time suggests a 

role for sleep in the learning of arbitrary mappings (Mirković & Gaskell, 2016). It thus 

seems likely that the increase in irregular generalisations (ambiguous) and decrease in 

regular generalisations for Day 8 affixes is related to overnight, sleep-related 

consolidation of the newly-learned affixes. It will be for further research to assess the 

role of sleep more directly. It is also worth mentioning that the circadian time of 

testing was not controlled in this experiment or the subsequent experiments reported 

in this thesis. Young adults have been shown to be at the peak of their cognitive 

abilities in the afternoon or evening (Hasher, Goldstein, & May, 2005). The possibility 

that time of testing may have affected the results thus cannot be ruled out. However, it 

is likely that all circadian times, encompassing morning and afternoon, were 

represented in the group of participants tested in this and subsequent experiments 

minimising the effects of circadian factors.   
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 In sum, in line with the results obtained by Mirković and Gaskell (in prep.) 

and the prediction outlined at the outset of this chapter, when generalising to novel 

phonologically ambiguous singulars, participants produced more irregular 

generalisations (high token) compared to regular generalisations (high type) for novel 

plural affixes having undergone overnight consolidation compared to those trained 

immediately prior to generalisation. This lends support to the hypothesis that 

overnight consolidation may provide greater benefit in ambiguous cases where no 

single path to integration is clearly preferable. The results obtained here suggest that 

high token frequency mappings may be preferentially consolidated in such cases. A 

characterisation of the neural representations and mechanisms underpinning the 

newly-learned plural affixes is necessary to flesh out these proposals. This is the focus 

of the fMRI study presented in Chapter 8. The next two chapters introduce the 

methods, namely Representational Similarity Analysis (RSA) (Chapter 6) and task-

based functional connectivity (Chapter 7), which were used to analyse the fMRI data.  
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Chapter 6: The representation of morphology 

6.1. Decoding mental representations 

Information coming from the environment or generated by inner thought is 

represented in patterns of neural activity. One of the key challenges for cognitive 

neuroscience lies in decoding these mental representations from their associated 

patterns of neural activity. The recent introduction of powerful pattern-classification 

algorithms to the analysis of fMRI data, grouped under the umbrella term 

‘multivariate pattern analysis’ or ‘MVPA’, offers useful tools to decode mental 

representations (Norman, Polyn, Detre, & Haxby, 2006; Haynes & Rees, 2006; 

Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte, Mur, & Bandettini, 2008; Pereira, 

Mitchell, & Botvinick, 2009; Naselaris, Kay, Nishimoto, & Gallant, 2011; Tong & 

Pratte, 2012; Kriegeskorte & Kievit, 2013; Haxby, Connolly, & Guntupalli, 2014). 

 Most past and current fMRI studies have employed conventional univariate 

analyses to identify how experimental tasks or stimuli affect the overall activity of 

individual voxels or the mean engagement of voxels across the whole brain or an ROI 

(Friston, Jezzard, & Turner, 1994; Poldrack, 2011). That is, activity from many 

thousands of individual voxels is measured and analysed separately to identify those 

voxels that show a statistically significant activation in response to the experimental 

tasks or stimuli. Thus, the goal of this type of analysis is very much to relate brain 

topography to function. Brain regions that are activated by specific experimental tasks 

or stimuli are inferred to be functionally relevant to the perceptual or mental states 

that are being targeted. Conventional univariate analyses have several limitations. For 

example, to increase sensitivity, a smoothing kernel is typically applied to the data to 

spatially average across voxels. While this reduces noise in the data, it also reduces 

signal. Voxels with weaker activations (i.e. non-significant) may still be carrying 

information about the presence or absence of a particular experimental task or 

stimuli. Spatial smoothing also smears out fine-grained patterns of activation that may 

distinguish between experimental tasks or stimuli. 

 The MVPA approach also seeks to increase sensitivity in detecting differences 

between experimental tasks or stimuli but looks at the contribution of multiple rather 
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than individual voxels. Spatial smoothing is not typically applied to the data, which 

addresses some of the limitations relative to noise reduction strategies in univariate 

analyses. Pattern-classification algorithms are used to extract the signal that is present 

in the pattern of neural activity across multiple voxels, even if voxels are not 

individually significantly responsive to experimental tasks or stimuli (Norman et al., 

2006). The core concept of high-dimensional representational vector space underlies 

all MVPA methods. Patterns of neural activity across voxels are converted to vectors 

in neural representational space. Each dimension of the neural representational space 

corresponds to a local feature in the distributed pattern of neural activity. For 

example, in fMRI, local features are usually voxels. If fMRI responses are measured for 

100 voxels, then the response vectors are analysed in a 100-dimensional neural 

representational space (Haxby et al., 2014). Experimental tasks or stimuli also need to 

be converted to vectors in high-dimensional representational space. For example, 

spoken syllables can be converted to vectors of phonological and acoustic features in 

stimuli representational space. Different algorithms can then be applied to relate 

vectors in neural representational space to vectors in stimuli representational space.   

 A seminal study by Haxby et al. (2001) illustrates how the MVPA approach to 

fMRI analysis can be used to decode mental representations of visual stimuli. Patterns 

of neural activity were measured whilst participants viewed pictures of faces, cats, and 

other categories of objects. The pattern of neural activity elicited by each category in 

the ventral temporal (VT) cortex was examined to determine whether it could be 

distinguished from the pattern of neural activity elicited by all other categories. To 

this end, the data from each participant was split into two sets (i.e. odd and even 

scanning runs). By correlating patterns of activity elicited in the odd runs with those 

elicited in the even runs, Haxby et al. (2001) demonstrated that each category was 

associated with a distinct pattern of neural activity. For example, the pattern of neural 

activity elicited by viewing houses was more similar across odd and even runs than it 

was to the patterns of neural activity elicited by viewing other categories of objects. 

Importantly, the distinction between stimulus categories was found even in VT 

regions that responded maximally to only one category in a univariate analysis. This 

latter result highlights the increased sensitivity of MVPA methods over conventional 

univariate analyses. Several studies have since demonstrated that categories of visual 
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objects can be distinguished using MVPA methods (Spiridon & Kanwisher, 2002; 

Tsao, Freiwald, Knutsen, Mandeville, & Tootell, 2003; Carlson, Schrater, & He, 2003; 

Cox & Savoy, 2003; Hanson, Matsuka, & Haxby, 2004; O’Toole et al., 2005; Diana, 

Yonelinas, & Ranganath, 2007). 

 Subsequent work extended these findings to show that distinct patterns of 

neural activity can distinguish low-level visual features such as edge orientation 

(Haynes & Rees, 2005; Kamitani & Tong, 2005) and motion direction (Kamitani & 

Tong, 2006), the categorical content of sounds (Formisano, De Martino, Bonte, & 

Goebel, 2008; Staeren, Renvall, De Martino, Goebel, & Formisano, 2009), whether 

participants are looking at pictures or sentences, reading ambiguous or non-

ambiguous sentences, and the semantic category of the words they are viewing 

(Mitchell, Hutchinson, Niculescu, Pereira, & Wang, 2004). MVPA approaches have 

also been used to decode more abstract mental states that are not directly related to 

the features of the experimental stimuli including lying about the identify of a playing 

card (Davatzikos et al., 2005), which of two tasks participants are covertly intending to 

perform (Haynes et al., 2007; Soon, Brass, Heinze, & Haynes, 2008), the contents of 

visual working memory (S. A. Harrison & Tong, 2009), and which categories of 

stimuli participants are thinking about during memory retrieval (Polyn, Natu, Cohen, 

& Norman, 2005). 

6.2. Representational Similarity Analysis 

RSA is a more recently introduced type of MVPA, which applies the notion of 

representational geometry to the analysis of neural activity patterns (Kriegeskorte et 

al., 2008; Nili et al., 2014). In order to characterise the geometry of a mental 

representation, RSA examines the dissimilarity between the patterns of neural activity 

elicited by different experimental stimuli or conditions. The dissimilarity between two 

patterns of neural activity represents the distance between their associated vectors in 

neural representational space. The dissimilarity between each pair of experimental 

stimuli or conditions is computed and yields a representational dissimilarity matrix 

(RDM). In its simplest form, a RDM is a square symmetric matrix with experimental 

stimuli or conditions indexed horizontally and vertically. The diagonal represents 

comparisons between pairs of identical stimuli or conditions and thus equals 0. All 
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other values represent the dissimilarity (distance) between the patterns of neural 

activity elicited by pairs of experimental stimuli or conditions. Different measures can 

be used to compute the dissimilarity (distance) between two vectors including 

correlation (1 – Pearson correlation, computed across voxels of two vectors), the 

Euclidean distance (the square root of the sum of squared differences between two 

vectors), and the Mahalanobis distance (the Euclidean distance measured after 

linearly recoding the space to whiten noise) (Kriegeskorte et al., 2008; Kriegeskorte & 

Kievit, 2013; Nili et al., 2014; Diedrichsen, Provost, & Zareamoghaddam, 2016). To 

draw inferences about the processing and representational properties of these neural 

RDMs, they can be compared against theoretical models, expressed as model RDMs 

(Figure 17). 

 

 

 

 

 
 
 

Figure 17. Representational Similarity Analysis (RSA)  
Schematic of RSA steps for a simple design with four auditory stimuli. a) experimental stimuli (or, more generally, 
the experimental conditions to which the stimuli belong). b) the multivariate pattern of brain activity (here 
depicted over 9 voxels) elicited by each of the stimuli (white to black colour scale for small-to-large activity). c) the 
neural representational dissimilarity matrix (RDM) contains the dissimilarity values for all pairwise stimuli 
comparisons (blue-to-red colour scale for small-to-large dissimilarities). Here the RDM is symmetric about a 
diagonal of zeros (white elements). The first two stimuli ‘shilnopp’ and ‘noltopp’ (curved black arrow) have similar 
multivariate patterns of brain activity (i.e. low dissimilarity value) whilst all other stimuli have dissimilar 
multivariate patterns of brain activity (i.e. high dissimilarity values). d) The neural RDM is correlated with a model 
RDM (curved double arrow) to assess the extent to which the model RDM (blue elements = similar; red elements = 
dissimilar) reflects the multivariate patterns of brain activity elicited by the stimuli. Here, the model RDM is a good 
fit for the neural RDM. Several model RDMs can be tested against the same neural RDM. Model RDMs can be 
derived from theory, computational models, behaviour, other brain regions, other participants or even other 
species (Kriegeskorte et al., 2008a, 2008b).  
 

 The introduction of similarity analysis to fMRI data dates back to a study by 

Edelman, Grill-Spector, Kushnir, and Malach (1998) investigating object category 

representation in the visual cortex. The authors presented participants with pictures of 

object from five categories and converted patterns of neural activity for each category 

to multi-dimensional vectors in neural representational space. To visualise the 

representational geometry of these vectors, Edelman et al. (1998) used 
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multidimensional scaling10 (MDS) (Torgerson, 1958; Kruskal & Wish, 1978; Shepard, 

1980; Borg & Groenen, 2005) to embed them in two-dimensional space. The 

configuration obtained from the MDS distinguished some clustering among object 

categories. Subsequent work applied explicit similarity analyses to patterns of neural 

activity in human fMRI and monkey electrophysiology. Reanalyses of the first MVP 

classification by Haxby et al. (2001) described in the previous section found similarity 

structure in the representation of visual objects based on intermediate-layer weights in 

a neural network (Hanson et al., 2004) and misclassifications (O’Toole et al. 2005, 

2007). In both cases, greater dissimilarity between animate and inanimate objects was 

found. The similarity structure of visual object categories was corroborated and 

further characterised by Kiani and colleagues (2007) in the monkey inferior temporal 

(IT) cortex. Single-cell recordings in monkey IT in response to different categories of 

visual objects were obtained. The authors calculated correlations among response 

vectors as measures of the similarity of the population response vector. The results 

were consistent with those of Edelman et al. (1998) and showed greater dissimilarity 

between animate and inanimate stimuli. Using a subset of the stimuli from Kiani et al. 

(2007) in an fMRI study in humans, Kriegeskorte et al. (2008a, 2008b) reported a 

similarity structure of object representations in human VT cortex that was consistent 

to that of object representations in monkey IT cortex and formally introduced RSA as 

a data-analytical framework.  

 The distinction between first-order and second-order isomorphism (Shepard 

& Chipman, 1970) lies at the heart of RSA and underpins many of its advantages over 

more traditional MVPA methods. A first-order isomorphism refers to the relationship 

between an individual object and its corresponding internal representation. For 

example, when participants view images in an fMRI study, the patterns of neural 

activity that are elicited by the images in the visual cortex bear a topological 

resemblance to the images themselves. That is to say, a first-order isomorphism 

requires that a neural representation (e.g. multivariate BOLD response pattern) be 

                                                        
10 MDS refers to a set of methods that allow visualising the level of (dis)similarity between data points by embedding them in a n-
dimensional space such that the distances between the points in the n-dimensional space match, as well as possible, the original 
(dis)similarities among the data points (Borg & Groenen, 2005). 
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related to the structural properties of the objects represented (e.g. line orientation). By 

exploring the relationships between experimental stimuli or conditions and patterns 

of neural activity, univariate analyses and early MVP classifications focused on first-

order isomorphisms. A second-order isomorphism does away with the requirement of 

structural similarity between internal representations of objects and objects 

themselves. Instead, second-order isomorphism posits a functional equivalence 

between the relationships among objects and the corresponding relationships among 

their representations. RSA examines these second-order isomorphisms by comparing 

neural activity patterns across every pair of experimental stimuli or conditions in 

RDMs.    

 By converting patterns of neural activity to a set of relative distances among 

vectors (i.e. second-order isomorphism) in representational space rather than vectors 

in a feature-based representational space (i.e. first-order isomorphism), RSA allows to 

examine the geometry of the representational space in a way that is independent from 

the feature coordinate axes (Haxby et al., 2014). Exploiting second-order 

isomorphism in this way makes RSA a flexible method, which allows quantitatively 

relating representations in different brain regions in the same individual, 

corresponding brain regions in different individuals, corresponding brain regions in 

different species (e.g. humans and monkeys), a brain region to a computational model 

representation, a brain region to behavioural data, and representations derived from 

different measurement modalities (e.g. single-cell recordings and fMRI) (Kriegeskorte 

et al., 2008a, 2008b) by computing correlations between RDMs.  

6.2. RSA and morphology 

While RSA has been first and mostly used to characterise the similarity structure of 

visual representations, the method has been used in other fields including auditory 

perception (Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013; Evans & 

Davis, 2015; Blank & Davis, 2016), memory (Schurger, Pereira, Treisman, & Cohen, 

2010; Ritchey, Wing, Labar, & Cabeza, 2012; Staresina, Henson, Kriegeskorte, & 

Alink, 2012; LaRocque et al., 2013; Liu et al., 2016), action and motor control 

(Wiestler, Mcgonigle, & Diedrichsen, 2011; Diedrichsen, Wiestler, & Krakauer, 2013) 

as well as language (Bozic, Tyler, Su, Wingfield, & Marslen-Wilson, 2013; Carota, 
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Bozic, & Marslen-Wilson, 2013; Devereux, Clarke, Marouchos, & Tyler, 2013; Tyler, 

Cheung, Devereux, & Clarke, 2013; Bozic, Fonteneau, Su, & Marslen-Wilson, 2015; 

Klimovich-Gray, Bozic, & Marslen-Wilson, 2017). 

 In the domain of morphology, a series of recent fMRI studies have used RSA 

to further examine the morpho-phonological decompositional model introduced in 

Chapter 1 (Bozic et al., 2013, 2015; Carota et al., 2016; Klimovich-Smith et al., 2017). 

For example, Bozic et al. (2015) used RSA to compare the neural representations 

supporting the processing of two types of grammatically complex sequences, namely 

inflected words (e.g. sings) and simple phrases (e.g. I sing). Model RDMs coding for 

the representational similarity among inflected words or simple phrases were 

compared to the neural RDM of all pairwise comparisons across complex words and 

simple phrases. The model RDM for inflected words provided a significant fit to the 

neural RDM in the left IFG and posterior superior temporal gyrus (STG), regions that 

have previously been associated with the processing of inflectionally complex words 

(Tyler, Stamatakis, et al., 2005). The model RDM for simple phrases generated a 

significant fit to the neural RDM in bilateral posterior and anterior MTG, consistent 

with previous report of these regions being involved in the processing of simple 

canonical sequences (Tyler et al., 2010). Bozic et al. (2015) suggest that the 

engagement of the left IFG in the representation of inflected words reflects its role in 

parsing phonologically separable affixes. Simple phrases, by contrast, do not require 

this type of morpho-phonological decomposition and accordingly do not engage left 

frontal regions. While these results provide further evidence for the morpho-

phonological decompositional model of morphology, they also provide evidence for 

RSA’s sensitivity to detect differences in the representations underlying the processing 

of morphologically complex words. Studies so far have applied RSA to characterise the 

representations of morphologically complex words in fluent speakers. However, no 

work has used RSA to characterise the neural representations of newly-learned 

morphologically complex words, or how these may change with consolidation.  

6.4. RSA and consolidation 

Recall from Chapter 2 that the CLS model posits that the main goal of the neocortical 

system is to develop overlapping distributed representations that capture the 
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similarity structure across sets of items. As mentioned previously, RSA of the brain 

activity patterns elicited during passive viewing of visual objects has provided 

evidence for this similarity-based coding in both primate IT cortex and human VT 

cortex (e.g. Kiani et al., 2007; Kriegeskorte et al., 2008a, 2008b). As discussed in 

Chapter 3, this similarity structure may be particularly important in allowing the 

development of generalisable knowledge. The developmental course of such similarity 

structure remains largely unexplored but it likely depends, at least in part, on 

overnight sleep (Lewis & Durrant, 2011). 

 To date, only one study has applied RSA to probe consolidation-related 

changes in the neural representations of experimental stimuli. Liu et al. (2016) 

examined the neural representations underpinning the suppression of aversive 

memories before and after overnight memory consolidation. Participants were trained 

to memorise unfamiliar face-aversive picture associations. In a design similar to the 

one used in Experiment 1 reported in Chapter 5, half of the face-aversive picture 

associations were trained 24hr and the other half 30 min before an fMRI scanning 

session. During scanning, participants were presented with faces trained either 24hr 

or 30min previously and cued to either recall the previously learned associated 

aversive picture or to suppress it. Liu et al. (2016) found that aversive memories 

become more resistant to suppression after overnight consolidation as evidenced by 

less-suppression induced forgetting and enduring skin conductance levels for face-

aversive picture associations trained 24hr before compared to 30 min before scanning. 

This was concurrent with an increase in representational similarity in bilateral 

hippocampi for face-aversive picture associations trained 24hr before scanning and 

having potentially undergone consolidation. 

 These results may seem to be at odds with the predictions of the CLS model in 

that similarity-based coding would be expected in neocortical regions but not in the 

hippocampus, which encodes pattern-separated memories. Indeed, LaRocque et al., 

(2013) found representational similarity within categories of visual objects in human 

VT cortex but not in any hippocampal subregion. Instead, the authors found 

similarity-based coding in the perirhinal and parahippocampal cortex which both 

project to the entorhinal cortex. As mentioned in Chapter 3, the CLS model considers 
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the entorhinal cortex as being an intermediate between the hippocampal and 

neocortical systems (Kumaran et al., 2016). However, as mentioned in Chapter 2, the 

hippocampus also performs pattern completion, which has been argued to lead to 

integration in some circumstances (McClelland et al., 1995; O’Reilly & Rudy, 2001; 

Guzowski, Knierim, & Moser, 2004; Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004). 

Using RSA, Schlichting et al., (2015) showed that the anterior hippocampus maintains 

distinct memories for newly-learned object pairs as indexed by low representational 

similarity. By contrast, the posterior hippocampus was found to integrate across 

memories for newly-learned object pairs as indexed by high representational 

similarity. Liu et al.’s (2016) hippocampal results have a peak in posterior hippocampi 

consistent with the integration results of Schlichting et al. (2015). They further 

highlight a role for overnight-consolidation in supporting the development of 

similarity structure. Thus, the role of the hippocampus in integrating over memories, 

or in generalisation more broadly as discussed in Chapter 3, remains unclear. Liu et al. 

(2016) nonetheless present results suggesting that RSA is sensitive to overnight-

changes in the neural representations of new memories.    

6.5. Summary 

Before the emergence of MVPA methods, conventional fMRI analyses were mostly 

focused on describing which experimental task or stimuli activates a brain region 

globally. The introduction of MVPA methods shifted the focus away from describing 

where the information was represented in the brain to asking what type of 

information is represented, in terms of perceptual or mental states associated with 

distinct patterns of activity, and how this information is encoded and organised. RSA 

is a flexible MVPA method that allows characterising the similarity structure among 

sets of items. As such, it is ideally suited to test predictions derived from the CLS 

model regarding the development of similarity structure in the neocortical system. 

RSA has been successfully applied to the study of morphological processing but no 

work so far has looked at morphological learning. One study so far has provided 

evidence for consolidation-related changes in the neural representation of new 

emotional memories but no work has considered memories for new morphological 

knowledge. 
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Chapter 7: The connectivity of morphology 

7.1. Functional connectivity 

As discussed at the outset of Chapter 6, conventional univariate fMRI analyses have 

mostly focused on characterising how functional specialisation is anatomically 

segregated to specific brain regions. RSA allows characterising what type of 

information is represented in specific brain regions in terms of multivariate patterns 

of brain activity associated with stimuli or experimental conditions. However, both 

conventional univariate fMRI analyses and RSA disregard how several brain regions 

may work together to process information (Friston, 2011). One way to characterise 

how brain regions may work together, or be functionally integrated, is in terms of 

functional connectivity. Functional connectivity refers to the correlations between the 

activity fluctuations of spatially remote brain regions (Biswal, Van Kylen, & Hyde, 

1997; Fox & Raichle, 2007; Guye, Bartolomei, & Ranjeva, 2008). Resting-state 

functional connectivity measures spontaneous brain activity fluctuations at rest, in the 

absence of any task (Fox & Raichle, 2007; Smith et al., 2013). Task-dependent 

functional connectivity, by contrast, focuses on statistical dependencies between the 

activity fluctuations of different brain regions whilst participants perform particular 

tasks or in response to different experimental stimuli or conditions (Friston et al., 

1997). The next section is concerned with psychophysiological interactions (PPI) 

analysis, a particular type of task-dependent functional connectivity analysis (Friston 

et al., 1997; Friston, 2011; O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 

2012). 

7.2. Psychophysiological interaction analysis 

The goal of PPI analysis is to identify a set of voxels in the brain whose activity 

fluctuations are correlated with the activity fluctuations of a seed ROI in a given 

context, such as during a particular behavioural task or experimental condition. That 

is, PPI analysis aims to identify brain regions whose activity depends on an interaction 

between psychological factors (i.e. behavioural task or experimental conditions) and 

physiological factors (i.e. the activity fluctuations of a seed ROI). A PPI effect is 

reflected by a task-dependent (or experimental condition-dependent) increase in the 
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functional coupling between brain regions (Friston et al., 1997; O’Reilly et al., 2012). It 

should be noted that PPI does not allow causal inference. In other words, a PPI effect 

does not imply that the seed region is the driver rather than driven brain region. 

Incidentally, PPI does not allow to address whether the functional coupling between a 

seed region and another brain region is direct or mediated by other brain regions. 

Nonetheless, PPI affords the possibility to characterise how the functional interplay 

between brain regions is changed as a function of tasks or experimental conditions 

(Figure 18). 

 

 

 

 

 

 

 
 

Figure 18. PPI functional connectivity analysis 
Schematic of PPI functional connectivity analysis steps. a) experimental auditory stimuli belonging to four (N) 
experimental conditions b) a left STG seed region is selected for the PPI analysis c) brain activity fluctuations (i.e. 
timecourse over scanning events) for each condition are extracted from the seed region (blue arrows) c) brain 
activity fluctuations from the seed region (blue lines) are correlated with every other brain voxel (ROI-to-voxel 
PPI) or with voxel within another ROI (ROI-to-ROI PPI). Here, the activity fluctuations of the left STG seed 
region are correlated with the activity fluctuations of a set of voxels in the left IFG for the first two experimental 
conditions (full pink lines) but not for the bottom two experimental conditions (dashed pink lines) d) the 
functional coupling between the left STG seed region and the left IFG (white double arrow) is increased in the 
context of the first two conditions (here reflecting a main effect of the regularity of the plural affix ‘opp’ shared by 
‘shilnopp’ and ‘noltopp’).  
 

7.3. PPI and morphology 

Only two studies have applied PPI analysis to the study of morphology. Stamatakis, 

Marslen-Wilson, Tyler, and Fletcher (2005) examined differences in the functional 

connectivity patterns elicited by the processing of regular and irregular English verbs. 

Participants performed an auditory same – different task in which they were 

presented with two successive spoken words and asked to judge whether the second 

word was the same as the first. Spoken words included regular (e.g. played – play) and 

irregular past tenses (e.g. taught – teach). Stamatakis et al. (2005) used the left IFG and 

the anterior cingulate cortex (ACC) as seeds as they were previously reported to show 

differential activation in response to regular and irregular verbs in a univariate 
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analysis reported by Tyler et al. (2005). The left IFG seed was found to be functionally 

connected to a cluster of voxels in the left posterior MTG for regular verbs. The ACC 

seed itself was not significantly connected to any voxels. However, the functional 

connectivity between the left IFG and ACC seeds covaried with activity in the left 

posterior MTG more for regular than irregular verbs. Stamatakis et al. (2005) argue 

that these findings are consistent with regular verbs being more strongly dependent 

on the fronto-temporal network than irregular verbs. Regular verbs are argued to 

require modulation by the left IFG morpho-phonological parsing functions. 

Stamatakis et al. (2005) further argue, on the basis of previous work showing strong 

reciprocal connections between the ACC and prefrontal areas (Vogt, Rosene, & 

Pandya, 1979; Goldman-Rakic, 1988; Petrides & Pandya, 1988), that the ACC may 

play a monitoring role on the fronto-temporal network.  

 In an fMRI study of Russian morphology, Kireev, Slioussar, Korotkov, 

Chernigovskaya, & Medvedev (2015) replicated Stamatakis et al.’s (2005) results. The 

authors examined differences in the functional connectivity patterns elicited during 

the production of regular and irregular Russian verbs. A left IFG seed region showed 

greater functional coupling with clusters of voxels in bilateral STG for regular verbs 

compared to irregular verbs. Kireev et al. (2015) argue that their findings provide 

some cross-linguistic validation of the results obtained by Stamatakis et al. (2005). 

Kireev et al. (2015) attribute their findings of bilateral temporal connectivity, 

compared to the left lateralised connectivity reported by Stamatakis et al. (2005), to 

self-monitoring required by the production task, which has previously been associated 

with bilateral STG activation (Indefrey, 2011). Together, these results provide further 

evidence for the morpho-phonological decomposition model of morphology. They 

also provide evidence that PPI analyses can reveal differences in the functional 

networks underlying the processing or regularly and irregularly inflected words. 

Similarly to RSA, no work has applied PPI analyses to characterise the functional 

networks underlying newly-learned inflected words, or how these may change with 

overnight consolidation.  
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7.4. PPI and consolidation 

As described in Chapter 2, the CLS model suggests that new memories undergo 

notable changes in functional organisation between the hippocampal and neocortical 

systems (McClelland et al., 1995). However, there has been very little work looking at 

consolidation-related changes in functional connectivity within and between these 

systems. Some studies have examined the role of sleep in influencing functional 

connectivity patterns among putative memory brain areas across different groups of 

subjects and different experimental conditions but without directly addressing the 

role of memory consolidation (Addis, Wong, & Schacter, 2007; Gais et al., 2007; 

Sterpenich et al., 2009). As mentioned in Chapter 2, Paz et al. (2007) provided 

evidence that the mPFC can facilitate hippocampal-neocortical interactions during 

reward-based learning. Using single-cell recordings in cats, Paz and colleagues (2007) 

found that after several days of training, mPFC activity was found to enhance 

entorhinal to perirhinal communication leading them to suggest that the mPFC is 

involved in the slow iterative processing supporting the integration of hippocampal 

memories into neocortical networks.  

 In an elegant study, Takashima et al. (2009) provided the first human evidence 

for consolidation-related changes in functional connectivity between the hippocampal 

and neocortical systems. Participants were trained, on two consecutive days, to 

associate the pictures of unfamiliar male and female faces with one of six spatial 

locations. One subset of face – location associations was trained on Day 1 and another 

subset was trained on Day 2. After being trained on the second set of face – location 

associations, participants performed a cued recall task during an fMRI scanning 

session in which they had to retrieve the correct spatial location when cued with a 

trained face. Using PPI, Takashima et al. (2009) compared functional connectivity 

patterns for correctly recalled face – locations associations trained on Day 1 and Day 2 

using a bilateral hippocampal seed region showing reduced activation in a univariate 

analysis for correctly retrieved spatial locations for Day 1 compared Day 2 

associations. The functional connectivity between the bilateral hippocampal and early 

visual areas extending into the fusiform face area (FFA) and between the bilateral 

hippocampal and the posterior parietal cortex (PPC) decreased with overnight 
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consolidation. Conversely, the authors noted increased functional connectivity with 

overnight consolidation between the FFA and the PPC as well as between the FFA and 

early visual areas. Takashima et al. (2009) argue that these patterns of functional 

connectivity are consistent with the CLS model and provide evidence that memory 

retrieval networks shift from being initially dependent on hippocampal – neocortical 

interactions towards relying on neocortical – neocortical interactions. 

 Only two studies have assessed consolidation-related changes in functional 

connectivity in the context of language learning (Takashima, Bakker, van Hell, Janzen, 

& McQueen, 2014, 2016). For example, Takashima et al. (2014) examined 

consolidation-related changes in the functional networks involved in learning new 

words in their phonological form only or with their visual referent. On Day 1, 

participants learned novel words via a phoneme-monitoring task, in which half of the 

words were phonological forms only (form-only) and half were associated with a 

picture referent (picture-present). Results showed lexical competition effects emerging 

24hr later for form-only words but not for picture-present words. Takashima et al. 

(2014) argued that this delay in lexicalisation reflects reduced phonological processing 

during learning as a result of the need to learn semantic associations (cf. Leach & 

Samuel, 2007; Hawkins & Rastle, 2016). Participants also performed recognition 

memory tests during fMRI scanning sessions on Day 1 and again on Day 2. Since the 

recognition memory tests required participants to match the novel spoken words with 

their memory representations, Takashima et al. (2014) focused on the functional 

connectivity arising from a seed region in bilateral STG identified from contrasting all 

novel words with baseline in a univariate analysis. On Day 1, there was significantly 

greater functional connectivity between bilateral STG and a cluster of voxels within 

the right STG for correctly recognised form-only compared to correctly recognised 

picture-present words. On Day 2, the bilateral STG was not significantly connected to 

any voxels. When restricting the analysis to phonological representational areas in left 

posterior MTG and STG, Takashima et al. (2014) found that the magnitude of the 

lexical competition effect for form-only words was positively correlated with the 

magnitude of the functional connectivity between bilateral STG and a cluster of voxels 

in left posterior MTG. The positive correlation between lexical competition effects 

and bilateral STG – left posterior MTG connectivity on Day 2 for form-only words is 
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argued by Takashima et al. (2014) to reflect stronger associations between newly-

learned words and existing words leading to lexical competition. However, unlike the 

design used by Davis et al. (2009), the design used by Takashima et al. (2014) does not 

allow to differentiate consolidation-related changes in the functional networks 

underlying word learning from changes due to re-exposure to the words on Day 2.  

7.5. Summary 

PPI analyses allow characterising the functional networks involved in performing 

different tasks or experimental conditions. As such, it provides a complementary 

method to traditional univariate analysis and MVPA methods in that it seeks to 

understand how several brain regions are functionally integrated in processing 

information. PPI is well-suited to examine consolidation-related changes in functional 

organisation between the hippocampal and neocortical system that are predicted by 

the CLS model. PPI has been successfully applied to characterising the functional 

networks involved in morphological processing but there is a lack of evidence 

concerning the functional networks involved in the processing of newly-learned 

morphology. Previous studies have provided evidence for consolidation-related 

changes in the functional networks underlying newly-learned visuospatial associations 

and words but no work has considered novel morphology. The next chapter reports 

on Experiment 2, which applied RSA and PPI analyses to fMRI data in the context 

morphological learning and consolidation. 
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Chapter 8: Experiment 2 

8.1. Introduction 

The overnight changes in generalisation behaviour observed in Experiment 1 suggest 

overnight changes in the representations underlying knowledge of the plural affixes. 

Indeed, one cognitive marker of morphological knowledge is the ability to generalise 

to novel forms (Bybee & Slobin, 1982, Bybee & Moder, 1983, Prasada & Pinker, 1993, 

Tamminen et al., 2015). The results of Experiment 1 as well as those obtained by 

Mirković and Gaskell (in prep.) further suggest a role for overnight consolidation in 

modulating the influence of type and token frequency and phonological consistency 

on the development of this morphological knowledge. Recall that, in both 

experiments, participants produced more irregular generalisations (ambiguous) (e.g. 

varbimm) than regular generalisations (e.g. varbaff) for novel phonologically 

ambiguous singulars (e.g. varbi) after a period of overnight consolidation. As 

discussed in Chapter 2, these results are consistent with the suggestion that effects of 

overnight consolidation may be particularly apparent in cases where different types of 

mappings are competing for consolidation (Stickgold & Walker, 2013). In such cases, 

high token frequency mappings may be preferentially consolidated. To flesh out this 

proposal and since new morphological knowledge must be represented neurally, the 

main goal of Experiment 2 was to build upon the paradigm developed in Experiment 

1 to characterise the neural representations underlying the newly-learned plurals.  

 RSA and PPI analyses described in the previous two chapters were applied to 

fMRI data collected in a new independent group of participants. The same 

experimental design as in Experiment 1 was used with some minor changes, which are 

described in section 8.2. Participants were trained on two sets of plural affixes, with 

varying phonological consistency and type and token frequency, on Day 8 and Day 9. 

Effects of initial learning and overnight consolidation could be assessed by comparing 

the neural representations of plurals trained on Day 8 to those trained on Day 9. This 

design adapts the method developed by Davis et al. (2009) in the context of lexical 

learning and consolidation. Training the same participants on two sets of plurals and 

testing for effects of overnight consolidation in a single fMRI session is an efficient 

design to address potential variability of functional imaging results arising when 
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scanning the same participants across different sessions (Noll et al., 1997; Rombouts 

et al., 1997; Mcgonigle et al., 2000; Waldvogel, van Gelderen, Immisch, Pfeiffer, & 

Hallett, 2000; Maitra, Roys, & Gullapalli, 2002). It also avoids multiple exposures to 

the same training materials such that overnight changes in neural representations can 

be more confidently attributed to consolidation processes rather than to additional 

learning taking place (cf. Takashima et al., 2014, Chapter 7).  

 Previous work, reviewed in Chapter 6, has shown that RSA can pick out 

similarity structure among inflected words in putative language representational areas 

in the context of natural language processing (e.g. Bozic et al., 2015). Here, the 

method is applied for the first time to characterise the similarity structure 

underpinning newly-learned inflected words trained with varying phonological 

consistency and type and token frequency in an artificial morphological system. 

Furthermore, the role of overnight consolidation in modulating the influence of these 

experimental factors on the development of similarity structure is considered. On the 

basis of the overnight changes in generalisation behaviour observed in Experiment 1 

and the similar results reported by Mirković and Gaskell (in prep.), overnight changes 

in similarity structure were predicted to be mostly apparent for phonologically 

ambiguous plurals. In such cases, representational differences between phonologically 

ambiguous (regular) (e.g. harbaff) and phonologically ambiguous (irregular) (e.g. 

tarbimm) plurals were predicted to grow larger after a period of overnight 

consolidation. On the basis of increased irregular generalisations (ambiguous) 

observed for Day 8 compared to Day 9 affixes in Experiment 1, the similarity structure 

among phonologically ambiguous (irregular) plurals (e.g. tarbimm, clarbimm, 

slarbimm) was predicted to increase for Day 8 compared to Day 9 plurals. As reviewed 

in Chapter 2, the CLS model predicts that high type frequency should support the 

development of overlapping neocortical representations (i.e. similarity structure). It 

also predicts that the development of such similarity structure should proceed slowly 

and thus benefit from overnight consolidation. Consistent with this prediction, 

Tamminen and colleagues (2012, 2015) have provided behavioural evidence in the 

context of derivational morphology that both consolidation and high type frequency 

support generalisation to novel forms. Hence, greater similarity structure among Day 

8 compared to Day 9 high type frequency regular plurals was also expected.  
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 As reviewed in Chapter 7, the CLS model also predicts consolidation-related 

changes in the functional networks supporting learning and memory. With 

consolidation, new memories should gradually become less reliant on the 

hippocampus and integrated into neocortical networks such that hippocampal-

neocortical functional connectivity should become weaker and neocortical-

neocortical functional connectivity should become stronger. As discussed in Chapter 

7, only two studies have reported consolidation-related changes in functional 

connectivity in the context of lexical learning (Takashima et al., 2014, 2016). Here, 

changes in the functional networks supporting newly-learned inflected words are 

considered for the first time. In line with the CLS model, plurals trained on Day 9 

were predicted to involve stronger functional connectivity between the hippocampus 

and putative language representational areas. By contrast, plurals trained on Day 8 

were predicted to involve stronger functional connectivity between putative language 

representational areas, while hippocampal connectivity to these areas was predicted to 

be weaker. On the basis of the overnight changes in generalisation behaviour observed 

in Experiment 1 and reported by Mirković and Gaskell (in prep.), overnight changes 

in functional connectivity were predicted to be mostly apparent for phonologically 

ambiguous plurals. In such cases, functional connectivity differences between 

phonologically ambiguous (regular) (e.g. harbaff) and phonologically ambiguous 

(irregular) (e.g. tarbimm) plurals were predicted to change with overnight 

consolidation. An increase in irregular generalisations (ambiguous) may reflect the 

development of similarity structure among high token frequency phonologically 

ambiguous (irregular) plurals. To the extent that this similarity structure may reflect 

the development of a new schema (i.e. an inflectional pattern), stronger neocortical-

neocortical functional connectivity between language representational areas was 

predicted for Day 8 compared to Day 9 phonologically ambiguous (irregular) plurals. 

Recall from Chapter 3 that greater neocortical-neocortical functional connectivity has 

been implicated in the retrieval of schema consistent information (Van Kesteren et al., 

2010a, 2010b) and that sleep has been implicated in supporting schema formation 

(Lewis & Durrant, 2011). As such, stronger neocortical-neocortical functional 

connectivity between language representational areas was also predicted for 

phonologically consistent and high type frequency regular plurals. 
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8.2. Materials and methods 
8.2.1. Participants 

Twenty-two participants aged between 18 and 34 (mean age = 23, SD = 4, 8 males) 

were recruited from the MRC Cognition and Brain Sciences Unit Participant Panel 

and provided their informed consent to take part in the study. Participants were tested 

under the approval of the Cambridge Psychology Research Ethics Committee. All 

were native monolingual speakers of British English with little or no knowledge of a 

second language, no known hearing or language impairments, and no neurological or 

psychiatric disorders. Participants were paid to take part in the study. One participant 

had to be excluded from behavioural and fMRI analyses due to floor performance on 

the training tasks and excessive movement in the scanner. The final dataset included 

21 participants. 

8.2.2. Experimental stimuli 

8.2.2.1. Training stimuli 

The training stimuli described in Experiment 1 were used with some minor changes. 

Within each set of stems, 3 phonologically varied stems were replaced with stems 

containing a new phonological cue (e.g. –olt; zolt, grolt, tolt), which was consistently 

associated with a regular affix (e.g. zoltaff, groltaff, toltaff) analogous to 

phonologically consistent regular English verbs (e.g. walked, talked, stalked). This 

modification was made to embed a factorial design manipulating the phonological 

consistency (consistent, ambiguous) and the affix regularity (regular, irregular) of the 

novel plurals (Figure 19). That is, phonological consistency and affix regularity were 

fully crossed such that observed changes in the neural representations of the novel 

plurals could be attributed to these experimental factors rather than reflecting word-

specific idiosyncrasies. As these changes were made to both sets of plurals, the 

experimental factors were further crossed with affix training day (Day 8, Day 9) such 

that the role of overnight consolidation in modulating their influence could be 

assessed. The same type and token frequency manipulations as in Mirković and 
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Gaskell (in prep.) and Experiment 1 were used. Twenty-four training lists11 were 

created to counterbalance the assignment of plural affixes to regular and irregular 

conditions and the assignment of phonological cues to consistent and ambiguous 

conditions. The assignment of each set of plural affixes (-aff, -imm, -esh; -opp, -oot, -

ull) to each gender was counterbalanced across participants, as was the order of 

gender training across Day 8 and Day 9. As in Experiment 1, the pairing of nouns with 

specific occupations was varied across different training lists to further control for any 

unintended associations between the novel nouns and pictures.   

 

 

 

 

 
 

 

 
 
 

Figure 19. Experiment 2: training stimuli set 
a) example training stimuli set. Phonologically diverse, phonologically consistent, and 
phonologically ambiguous novel plurals taking a regular affix (blue), phonologically 
ambiguous novel plurals taking an irregular affix (green), and phonologically consistent 
novel plurals taking an irregular affix (red). The factorial design embedded in the stimuli 
set is outlined in orange. b) type, token, and affix (type x token) training frequencies 
associated with each plural affix. c) example novel singular and plural nouns associated 
with familiar occupations for female and male characters.  

8.2.2.2. Generalisation stimuli 

The generalisation stimuli were the same as described for Experiment 1 except that 

they now included a further 9 stems containing the new phonological cue (e.g. –olt; 

crolt) for a total of 36 novel stems. Each novel stem (e.g. woath) was combined with 

both singular gender affixes (e.g. woathi, woathu) yielding a total of 72 generalisation 

items. Each new singular noun was paired with the picture of a single female and male 

                                                        
11 Twenty-four participants (one per training list) were due to be scanned. Twenty-two participants were scanned before an 
unexpected MRI scanner quench. As the MRI scanner required a new calibration and because of time constraints, it was decided 
not to scan an additional 2 participants.  
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character depicting a familiar occupation not used in the training stimuli sets (e.g. 

woathi[fem:sing] = teacher[fem:sing], woathu[masc:sing] = teacher[masc:sing]). 

8.2.3. Experimental design and procedure 

The training schedule was the same as described for Experiment 1 (see Chapter 5, 

section 5.2.3). On Day 9, participants additionally completed a 3AFC generalisation 

task and an fMRI scanning session (Figure 20). The procedure for these additional 

tasks is described in section 8.2.3.1. All other tasks followed the same procedure as 

described in Experiment 1. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Experiment 2: experimental design 
Training took place over 9 days. Participants were trained on the singulars on Day 1. They returned to 
the lab one week later to be trained on one set of plurals for one gender on Day 8. They were trained 
on a second set of plurals for the other gender on Day 9 following a 24hr delay containing sleep (i.e. 
overnight consolidation). They then performed a plural elicitation generalisation task and a 3AFC 
generalisation task, which assessed knowledge of the plural affixes trained immediately before or on 
the previous day. Participants then completed an fMRI scanning session.  

8.2.3.1. Day 9 

8.2.3.1.1. Generalisation - 3AFC 

To address the fact that participants produced fewer correct responses for Day 8 

compared to Day 9 affixes on the plural elicitation generalisation task in Experiment 

1, an additional 3AFC generalisation task was administered that ensured the same 

number of correct responses for both sets of affixes. Each trial began with a black 
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fixation cross presented for 250ms in the centre of a white background followed by the 

auditory presentation of a novel singular. The picture of the corresponding single 

character with the phrase ‘one [novel word[sing]]’ displayed underneath it were 

presented in the centre of the screen 300ms after the onset of the spoken word and 

remained on the screen for 2000ms. A blank screen was then presented for 250ms, 

which was followed by the presentation of the same character depicted as a triplet. 

The written form of one possible plural was presented for 1000ms on the left of the 

screen together with its spoken form. The first word disappeared from the screen and 

a second possible plural was presented for 1000ms in the centre of the screen together 

with its spoken form. The second word disappeared from the screen and a third 

possible plural was presented for 1000ms on the right of the screen together with its 

spoken form. All three words had the same correct stem but a different affix selected 

from the gender-appropriate set of plural affixes (e.g. woathaff[fem:plur]; 

woathimm[fem:plur]; woathesh[fem:plur]; for woathi[fem:sing]). There was a 250ms interval from 

the last plural disappearing to all three words reappearing on the screen with the 

phrase “which is the most appropriate?” above the three words. Participants were 

instructed to respond by pressing the “1”, “2”, or “3” key on the keyboard to indicate 

that the word on the left, centre, or right, respectively, was the most appropriate 

plural. There was an inter-trial interval of 250ms. Response time analyses were 

precluded since participants were cued to respond after a delay. Each singular was 

presented once and the order of presentation of the trials was randomised for each 

participant. The same generalisation items as in the plural elicitation task were used. 

Each affix appeared the same number of times in each location for plurals in each 

condition (i.e. phonologically diverse, phonologically consistent (regular), 

phonologically consistent (irregular), phonologically ambiguous (regular), 

phonologically ambiguous (irregular)). 

8.2.4. fMRI scanning 

8.2.4.1. fMRI procedure 

During the fMRI scanning session, participants were presented with three types of 

trials: spoken word trials, null events, and test trials (Figure 21). Each spoken word 

trial started with the auditory presentation of a trained word in the 1000ms silent gap 

between two functional scans and was followed by a single functional scanning 



Chapter 8: Experiment 2 

 126 

volume acquired in the subsequent 2000ms (i.e. TR = 3000ms). Null events followed 

the same timeline except that no word was presented in the silent gap. These null 

events provided an implicit resting baseline against which responses to the plurals 

could be compared. In occasional test trials, a visual display prompted participants’ 

knowledge of the affix or whole word form for the trained word heard on the previous 

trial. The visual display remained on screen for 4000ms during which participants’ 

responses were recorded. The entire test trial procedure spanned 6000ms (i.e. 2 TRs). 

Except for when a test trial visual display was presented, a black fixation cross 

presented in the centre of a grey background remained on screen for the entire 

scanning session. Test trials consisted of 4AFC word-to-picture matching trials. For 

test trials assessing affix knowledge, participants were presented with the pictures of 

four characters corresponding to words sharing the same stem but having different 

affixes (e.g. gleeti[fem:sing], gleetaff[fem:plur], gleetu[masc:sing], gleetopp[masc:plur] for a test of 

gleetaff[fem:plur]). For test trials assessing whole word knowledge, participants were 

presented with the pictures of four different characters corresponding to words of the 

same gender and number (e.g. gleetaff[fem:plur], torthaff[fem:plur], harbaff[fem:plur], 

hiskesh[fem:plur] for a test of gleetaff[fem:plur]). For whole word test trials, each word 

appeared once as a target and three times as a distractor. For both types of test trials, 

the four pictures were presented simultaneously along the horizontal axis in the 

middle of the screen against a grey background. Participants pressed a button with 

their right index, middle, ring, or little finger to select the picture of the character 

corresponding to the spoken word they heard on the previous trial. The location of 

the target was counterbalanced across trials. Since responses to test trials were made 

after the auditory presentation of the words (i.e. a spoken word trial), the fMRI 

analyses could be focused on trials where words were presented intact in the absence 

of a button press response. Response time analyses were precluded since participants 

were cued to respond after a delay. Participants were given the opportunity to practice 

the 4AFC task before going in the scanner.   

 Each of six scanning runs contained 216 trials. Each of the 72 trained spoken 

words (18 Day 8 plurals, 18 Day 9 plurals, 36 singulars (18 associated with Day 8 

plurals; 18 associated with Day 9 plurals)) was presented twice in each scanning run 

for a total of 144 spoken word trials per run.  Null events accounted for 24 trials per 
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run and test trials made up 48 trials per run (24 test trials spanning two TRs each). 

Test trials were distributed across the 6 scanning runs such that participants were 

tested on their affix and whole word knowledge for each trained word (i.e. two tests 

for each word amounting to 144 test trials for the entire scanning session). Including 

three initial equilibration scans, each run lasted 11 minutes. The overall scanning 

session lasted approximately 70 minutes including the acquisition of a structural scan. 

Stimulus delivery was controlled and behavioural responses were recorded with E-

Prime 2.0 software (Psychology Software Tools, Inc.). 

 

 
 
 
 

 

 
 
Figure 21. Experiment 2: fMRI scanning procedure 
Timeline of the fast sparse fMRI procedure illustrating the rapid alternation of spoken word presentation and 
single scan volumes and the different types of trials: a) spoken word trial, b) test trial assessing affix knowledge, 
c) test trial assessing whole word knowledge, d) null event trial providing an implicit baseline. 
 

8.2.4.2. Scanning parameters 

8.2.4.2.1. Structural scanning 

MRI data were acquired on a 3-Tesla Siemens Tim Trio scanner using a 32-channel 

head coil. A high-resolution T1-weighted structural scan was acquired for each 

participant using a three-dimensional MPRAGE sequence (TR = 2250ms, TE = 

2.99ms, flip angle = 9°, field of view = 256 x 256 x 192mm, matrix size = 256 x 256 x 

192mm, spatial resolution = 1 x 1 x 1 mm). 

 

8.2.4.2.2. Functional imaging 

The fMRI session was split into 6 runs of approximately 11 min each. For each 

participant and each scanning run, 220 echo planar imaging (EPI) volumes 

comprising 32 slices with a thickness of 3mm were acquired using a continuous, 

descending acquisition sequence (TR = 3000ms, TA = 2000ms, TE = 30ms, flip angle 

= 78°, matrix size = 64 x 64, field of view = 192mm x 192mm, in-plane resolution = 3 x 
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3mm, interslice gap = 25%). The field of view allowed covering most of the brain 

except for the most superior portion of the parietal lobe. To avoid interfering effects of 

scanner noise when presenting the spoken words, sparse acquisition was used such 

that a single volume (TA = 2000ms) was acquired following a silent period (1000ms) 

during which a single spoken word was presented. Fieldmaps (~5min) were also 

acquired for use in prepocessing and normalisation. Visual stimuli for the test trials 

were projected on a screen at the head-end of the scanner table and reflected onto a 

mirror attached to the head coil above the participants’ eyes. Auditory stimuli were 

presented over Sensimetrics insert headphones (http://www.sens.com) and manual 

responses for test trials were recorded with a MR-compatible button-box.  

8.2.5. Data analysis 

8.2.5.1. Behavioural analysis 

The training, testing, and generalisation tasks were analysed following the same 

method described for corresponding tasks in Experiment 1 (see Chapter 5, section 

5.2.4). For the additional 3AFC generalisation task, data was analysed using loglinear 

regression with a Poisson distribution applied to the frequency counts of each 

response type. Accuracy on the 4AFC test trials presented in the scanner was analysed 

using logistic regression with a binomial distribution.  

8.2.5.2. Univariate fMRI analysis 

Data were analysed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) in conjunction 

with automatic analysis (aa) pipelines (version 4.2) (Cusack et al., 2015). The first 

three volumes of each scanning run were removed to allow for T1 equilibrium effects. 

Scans were realigned to the first functional image. Functional images were corrected 

for motion by realigning them to the first functional image. Fieldmaps were used to 

correct for geometric distortions to the functional images resulting from 

inhomogeneities in the magnetic field (Cusack, Brett, & Osswald, 2003). Structural 

scans were coregistered to the mean of the realigned, undistorted functional image. 

Coregistered structural images were normalised to the 152-subject T1 MNI stereotaxic 

template brain. The resulting segmentation parameters were used to normalise the 

functional images, which were resampled to 2mm isotropic voxels. To compensate for 

residual variability after normalisation and to facilitate inter-subject comparisons, 
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realigned, normalised functional images were smoothed with a Gaussian kernel of 

8mm with full width half maximum.  

 Data were analysed using a general linear model (GLM) with a 128s high-pass 

filter and AR1 correction for auto-correlation. The onsets of 22 event types were 

included in the GLM, each convolved with the canonical SPM haemodynamic 

response, in addition to 6 movement parameters estimated at realignment included as 

regressors of no interest. The null events provided an implicit resting baseline. Eight 

conditions came from specifying the onset of plurals trained on successive days (Day 

8, Day 9), crossed with phonological consistency (consistent, ambiguous), and affix 

regularity (regular, irregular) (i.e. the factorial design embedded in the training 

stimuli, see section 8.2.2.1) (8 event types). The onset of phonologically diverse plurals 

trained on Day 8 and Day 9 were also specified (2 event types). The onset of the 

singulars associated with the plurals just described was also specified (10 event types). 

The onset of test trials assessing affix knowledge and whole word knowledge were also 

specified (2 event types). Following parameter estimation of the first-level model and 

to focus on addressing the research questions and predictions outlined at the outset of 

the chapter, a second-level analysis consisted of a repeated-measures ANOVA with 

affix training day (Day 8, Day 9), phonological consistency (consistent, ambiguous), 

and affix regularity (regular, irregular) conducted on the plurals to assess the main 

effects and interactions of these factors on blood-oxygen-level dependent (BOLD) 

activity. All statistical parametric maps and statistics reported in tables were 

thresholded at p < .001 uncorrected at the voxel level and p < .05 family-wise-error 

(FWE) corrected at the cluster level. 

 In addition to a whole-brain analysis, an ROI analysis focused on the effects of 

affix training day, phonological consistency, and affix regularity in the left STG, the 

left HC, and the left IFG. As discussed in Chapter 2, consolidation-related changes in 

neural activity have been reported in the left STG in the context of lexical (Davis et al., 

2009, Takashima et al., 2014) and morphological learning (Leminen et al., 2016). Left 

superior temporal regions have also been associated with the processing of 

inflectionally complex words (Tyler et al., 2005; Bozic et al., 2015) and shown to 

produce greater activity in response to pseudowords compared to real words 
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(Newman & Twieg, 2001; Kotz, Cappa, von Cramon, & Friederici, 2002). Current 

neuroanatomical accounts of auditory language processing suggest distinct dorsal and 

ventral processing streams radiating out of primary auditory cortex (Hickok & 

Poeppel, 2004, 2007; Davis & Johnsrude, 2007). There is also evidence for differential 

involvement of the anterior and posterior superior temporal gyrus in grammatical 

processing (Friederici, 2002, 2011; Humphries, Binder, Medler, & Liebenthal, 2006).  

In line with these proposals, and for greater anatomical precision, anterior (aSTG) and 

posterior (pSTG) STG ROIs were defined. The left aSTG and left pSTG ROIs were 

defined based on two clusters identified in a meta-analysis contrasting neural 

responses to pseudowords and real words (i.e. pseudowords > real words) (Davis & 

Gaskell, 2009): an aSTG ROI with a centre of mass of x = -56, y = -6, z = -1 (128 

voxels) and a pSTG ROI with a centre of mass of x = -61, y = -28, z  = 10 (510 voxels).  

 Based on the CLS model and previous work implicating the left hippocampus 

(HC) in word learning and consolidation (Breitenstein et al., 2005, Davis et al., 2009), 

a left hippocampal ROI was defined anatomically using the Automatic Anatomical 

Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). As discussed in Chapter 6, the 

anterior HC (aHC) and posterior HC (pHC) have been implicated in separating and 

integrating novel memories, respectively (Schlichting et al., 2015). The aHC and pHC 

have also been implicated in encoding and retrieving new information, respectively 

(Lepage, Habib, & Tulving, 1998; Schacter & Wagner, 1999; Spaniol et al., 2009). In 

keeping with the suggestion of a functional dichotomy along the anterior-posterior 

axis of the hippocampus, the left HC ROI was segmented into aHC and pHC based on 

a recent coordinate-based definition (Poppenk, Evensmoen, Moscovitch, & Nadel, 

2013). The left aHC was defined as the portion anterior to y = -21mm within the left 

HC region of the AAL atlas and the pHC was defined as the portion posterior to y = -

21mm. This coordinate incorporates the uncal apex, a landmark for long-axis 

segmentation of the hippocampus (Poppenk et al., 2013).  

 Given the parsing functions ascribed to the left IFG by the morpho-

phonological decomposition model of morphology and its involvement in the 

processing of inflectionally complex forms (Tyler et al., 2005, Marslen-Wilson & 

Tyler, 2007, Bozic et al., 2010, Bozic & Marslen-Wilson, 2010), a left IFG ROI was 
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defined anatomically by combining pars opercularis (BA44) and pars triangularis 

(BA45) of the AAL atlas. MarsBaR (http://marsbar.sourgeforget.get/) was used to 

extract mean BOLD parameter estimate values within each ROI for each condition 

and each participant. Repeated-measures ANOVAs with affix training day (Day 8, 

Day 9), phonological consistency (consistent, ambiguous), and affix regularity 

(regular, irregular) assessing the main effects and interactions of these factors were 

fitted to the data extracted.  

8.2.5.3. RSA analysis 

RSA analyses were performed on realigned data without normalisation or smoothing, 

generating native space statistical maps. An additional first-level model was 

constructed for each participant that contained the same regressors as the first-level 

model described above for the univariate analysis, except that regressors for individual 

words were used for item-specific modelling. This resulted in 80 regressors per 

participant per run reflecting the 72 words (18 Day 8 plurals, 18 Day 9 plurals, 36 

singulars (18 associated with Day 8 plurals; 18 associated with Day 9 plurals)) and the 

remaining 8 regressors from the univariate model (2 for the test trials and the 6 

motion parameters). For each of the 72 words, single-subject T-statistic maps were 

estimated for the contrast of word onset compared to the implicit baseline provided 

by the null events, averaged over the six scanning runs. T-statistic maps were used so 

that the effect sizes were weighted by their error variance, which reduces the influence 

of large but highly variable response estimates for multivariate analyses (Misaki, Kim, 

Bandettini, & Kriegeskorte, 2010). 

 These resulting T-statistic maps were submitted to RSA analyses (Kriegeskorte 

et al., 2008) using the RSA toolbox (Nili et al., 2014). As discussed in Chapter 6, RSA 

involves testing whether the observed similarity in the multivariate brain activity 

patterns elicited by items belonging to specific conditions (neural RDM) corresponds 

to the hypothesised similarity among these items (model RDM). Neural RDMs were 

generated by computing the dissimilarity (1 – Pearson correlation across voxels) of T-

statistics between all pairs of plurals. In a searchlight analysis (Kriegeskorte, Goebel, & 

Bandettini, 2006), data were extracted from native space T-statistic maps masked with 

a grey-matter mask generated during segmentation in order to restrict the analysis to 
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grey matter voxels. Data were extracted from spherical searchlights with an 8-mm 

radius (with a voxel size of 3 x 3 x 3.75mm, i.e. a maximum of 65 voxels per sphere). 

This was repeated for all searchlight locations in the grey matter mask. The similarity 

between the neural RDM and each of the model RDMs was computed using a 

Spearman correlation for each searchlight location, and the resulting correlation 

coefficient returned to the voxel at the centre of the searchlight. This resulted in a 

Spearman correlation map for each participant in each grey-matter voxel.  

 To assess searchlight similarity values across participants at the second-level, 

the Spearman correlation maps for each participant were Fisher-z-transformed to 

conform to normality assumptions, normalised to MNI space, and spatially smoothed 

with a Gaussian kernel of 10mm with full width half maximum. Similarity values from 

searchlights within the same ROIs as described in the univariate analysis were 

extracted using MarsBaR. For each ROI and for each participant, one Fisher-z-

transformed Spearman correlation value for each model tested was obtained. Second-

level analyses used repeated-measures ANOVAs similar to those described for the 

univariate analysis. A detailed description of the model RDMs tested against the 

neural RDMs is provided in the RSA results section 8.3.3. Where significant results 

were obtained, post-hoc one-sample t-tests were performed to test whether the Fisher-

z-transformed Spearman correlations were significantly greater than zero.   

8.2.5.4. PPI analysis 

PPI analyses were performed on the realigned, normalised, and smoothed data after 

preprocessing as described in the univariate analysis section and run using the CONN 

toolbox for SPM (version 17.a) (http://www.nitrc.org/projects/conn; (Whitfield-

Gabrieli & Nieto-Castanon, 2012). The CONN toolbox implements a generalised 

form of PPI (gPPI; http://www.nitrc.org/projects/gppi; McLaren, Ries, Xu, & Johnson, 

2012), which allows modelling all condition main effects and interactions 

simultaneously in a single model compared to the standard implementation in SPM 

which requires using separate models for each condition tested. Thus, this approach is 

particularly well-suited for experimental designs with several conditions. Data were 

analysed using a GLM including the same 22 event types as in the univariate model, 

each convolved with the canonical SPM haemodynamic response. Nuisance covariates 
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including cerebrospinal fluid and white-matter signals and their derivatives were 

estimated and regressed out following the CompCor method (Behzadi, Restom, Liau, 

& Liu, 2007). A linear detrending term was also added, eliminating the need for global 

signal regression (Chai, Castañón, Ongür, & Whitfield-Gabrieli, 2012; Murphy, Birn, 

Handwerker, Jones, & Bandettini, 2009). The six subject-specific motion parameters, 

the main effect of task condition, and their first order derivatives were also included as 

potential confounds. 

 Following parameter estimation of the first level model, an ROI-to-ROI 

analysis was performed in which functional connectivity between the BOLD signal of 

two ROIs (one seed ROI and one target ROI) is computed. The ROIs corresponded to 

the five ROIs used in the univariate and RSA analyses, except that they were defined 

as 6mm spheres. The spheres were drawn around the centre of mass of each ROI: left 

aSTG (x = -56, y = -6, z = -1), left pSTG (x = -61, y = -28, z = 10), left aHC (x = -28, y 

= -12, z = -20), left pHC (x = -28, y = -24, z = -12), and left IFG (x = -47, y = 24, z = 

14). This analysis allowed examining the influence of the experimental factors on the 

connectivity between neocortical ROIs as well as between hippocampal and 

neocortical ROIs. Second-level analyses examined functional connectivity between 

ROIs for the main effects and interactions involving affix training day (Day 8, Day 9), 

phonological consistency (consistent, ambiguous), and affix regularity (regular, 

irregular).  

 To further examine whether each ROI was functionally connected to other 

brain regions, a seed-to-voxel analysis was performed in which functional 

connectivity between the BOLD signal in a seed ROI and the BOLD signal in every 

brain voxel is computed. In a second-level analysis, functional connectivity between 

each seed ROIs (left aSTG, left pSTG, left aHC, left pHC, left IFG) and every brain 

voxel was examined for the main effects and interactions involving affix training day 

(Day 8, Day 9), phonological consistency (consistent, ambiguous), and affix regularity 

(regular, irregular). To help visualising and interpreting significant effects, the REX 

toolbox (http://www.nitrc.org/projects/rex) was used to extract the mean functional 

connectivity values for each condition and for each participant within significant 

clusters. For the ROI-to-ROI analysis, statistics reported in tables were thresholded at 
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p < .001 uncorrected and FDR-corrected for multiple comparisons among the 

different seeds. For the seed-to-voxel analyses, all statistical parametric maps and 

statistics reported in tables were thresholded at p < .001 uncorrected at the voxel level 

and p <. 05 FWE corrected at the cluster level. 

8.3. Results 
8.3.1. Behavioural results 

8.3.1.1. Training 

Accuracy on the picture naming tasks presented at the end of each training block in 

each training session was analysed to examine how participants’ mastery of the new 

words improved over the course of training (Figure 22). Singulars and plurals were 

analysed separately as there was no plural training on Day 1, there were only 3 

training blocks for plurals on Day 8 and Day 9 (compared to 4 training blocks for 

singulars), and because phonologically ambiguous plurals were split according to 

whether they were associated with a regular or an irregular plural affix.  

 For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous), training day (Day1, Day 8, Day 9), training block (Block 

1, Block 2, Block 3, Block 4), and their interaction was fitted. The three-way 

interaction between condition, training day, and training block was not significant. 

The two-way interaction between training day and training block was significant, χ2
(6) 

= 133.66, p < .001. Participants improved significantly across training blocks on Day 1 

(Block 2 vs. Block 1: b = 1.78, z = 19.54, p < .001, Block 3 vs. Block 2: b = 0.81, z = 

10.43, p < .001, Block 4 vs. Block 3: b = 0.49, z = 5.59, p < .001). On Day 8, participants 

only improved from the second to the third training block (Block 3 vs. Block 2: b = 

0.92, z = 3.14, p = .002). On Day 9, participants only improved from the third to the 

fourth training block (Block 4 vs. Block 3: b = 0.64, z = 2.17, p = .030†). The two-way 

interactions between condition and training block and between condition and 

training day were not significant. The main effect of condition was significant, χ2
(3) = 

10.30, p = .016. Participants were more accurate on phonologically consistent 

(regular) than phonologically diverse singulars (b = 0.17, z = 2.11, p = .035†), on 

phonologically consistent (irregular) than phonologically diverse singulars (b = 0.23, z 
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= 2.84, p = .004), and on phonologically consistent (irregular) than on phonologically 

ambiguous singulars (b = 0.18, z = 2.17, p = .030†). The main effect of training block 

was significant, χ2
(3) = 1426.30 p < .001. Participants became increasingly more 

accurate over the course of the training blocks (Block 2 vs. Block 1, b = 1.33, z = 17.84, 

p < .001, Block 3 vs. Block 2, b = 0.81, z = 11.08, p < .001, Block 4 vs. Block 3: b = 0.52, 

z = 6.32, p < .001). The main effect of training day was significant, χ2
(2) = 1654.80, p < 

.001. Participants were more accurate on Day 9 compared to Day 1 (b = 2.36, z = 

24.50, p < .001), on Day 8 compared to Day 1 (b = 2.87, z = 25.50, p < .001) and on 

Day 8 compared to Day 9 (b = 0.50, z = 3.65, p < .001). 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous (regular), phonologically ambiguous (irregular)), training 

day (Day 8, Day 9), training block (Block 2, Block 3, Block 4), and their interaction 

was fitted. The three-way interaction between condition, training day, and training 

block was not significant. None of the two-way interactions were significant. The 

main effect of training block was significant, χ2
(2) = 52.59, p < .001. Participants 

improved across training blocks (Block 3 vs. Block 2: b = 0.61, z = 4.46, p < .001, Block 

4 vs. Block 3: b = 0.44, z = 2.64, p = .008). The main effect of condition was significant, 

χ2
(4) = 19.70, p < .001. Participants were significantly more accurate on phonologically 

diverse than phonologically ambiguous (regular) (b = 0.52, z = 3.04, p = .002) and 

phonologically ambiguous (irregular) (b = 0.45, z = 2.60, p = .009†) plurals, on 

phonologically consistent (regular) than on phonologically ambiguous (regular) (b = 

0.75, z = 3.52, p < .001) and phonologically ambiguous (irregular) (b = 0.68, z = 3.17, p 

= .002) plurals, and on phonologically consistent (irregular) than on phonologically 

ambiguous (regular) (b = 0.40, z = 2.04, p = .041†) plurals. The main effect of training 

day was not significant. 
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Figure 22. Experiment 2: training accuracy 
Mean accuracy on the picture naming task presented at the end of each training block (Block 1, 
Block 2, Block 3, Block 4) on each training day (Day 1, Day 8, and Day 9) for a) singulars and b) 
plurals. Error bars represent +/- 1 standard error of the mean after removing between-subject 
variability (O’Brien & Cousineau, 2014). Phonologically ambiguous plurals are split into those 
associated with a regular (light blue line) and those associated with an irregular (green line) affix. 
All phonologically ambiguous singulars are depicted by a green line.  
 

8.3.1.2. Testing 

Accuracy on the picture naming (Figure 23) and 2AFC recognition memory (Figure 

24) tasks presented in a testing block at the end of each training session was analysed 

to ensure that words with different phonological consistencies and training 

frequencies (plurals) were learned equally well. Singulars and plurals were analysed 

separately as there was no plural training on Day 1, there were only 3 training blocks 

for plurals on Day 8 and Day 9 (compared to 4 blocks for singulars), and because 

phonologically ambiguous plurals were split according to whether they were 

associated with a regular or an irregular plural affix. 
 

8.3.1.2.1. Picture naming 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous), training day (Day 1, Day 8, Day 9), and their interaction 
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was fitted. The interaction between condition and training day was not significant. 

The main effect of condition was not significant. The main effect of training day was 

significant, χ2
(2) = 78.92, p < .001. Participants were more accurate on Day 8 compared 

to Day 1 (b = 2.47, z = 5.54, p < .001) and on Day 9 compared to Day 1 (b = 1.60, z = 

4.97, p < .001) but performed similarly on Day 8 and Day 9. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous (regular), phonologically ambiguous (irregular)), training 

day (Day 8, Day 9), and their interaction was fitted. The interaction between 

condition and training day was not significant. The main effect of condition was 

significant, χ2
(4) = 9.85, p = .043. Participants were more accurate on phonologically 

diverse than on phonologically ambiguous (irregular) (b = 1.11, z = 2.98, p = .003) 

plurals, on phonologically consistent (irregular) compared to phonologically 

ambiguous (irregular) (b = 0.96, z = 2.18, p = .029†) plurals, and on phonologically 

consistent (regular) than on phonologically ambiguous (irregular) (b = 0.84, z = 1.96, 

p = .049†) plurals. The main effect of training day was not significant.  

 

 

 

 

 

 

 
 
 

 
Figure 23. Experiment 2: test accuracy (picture naming) 
Mean accuracy on the picture naming task for each training day (Day 1, Day 8, Day 9) for a) 
singulars and b) plurals. Error bars represent +/- 1 standard error of the mean after removing 
between-subject variability (O’Brien & Cousineau, 2014). Phonologically ambiguous plurals are 
split into those associated with a regular (blue bar) and those associated with an irregular (green 
bar) affix. 
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8.3.1.2.2. 2AFC recognition memory 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous), training day (Day 1, Day 8, Day 9), and their interaction 

was fitted. Condition and training day did not interact significantly. There was no 

significant main effect of condition. The main effect of training day was significant, 

χ2
(2) = 6.35, p = .042. Participants were marginally more accurate on Day 8 compared 

to Day 1 (b = 0.98, z = 1.71, p = .088), more accurate on Day 9 compared to Day 1 (b = 

1.20, z = 1.96, p = .050†) but performed similarly on Day 8 and Day 9.  

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous (regular), phonologically ambiguous (irregular)), training 

day (Day 8, Day 9), and their interaction was fitted. Condition and training day did 

not interact significantly. The main effect of condition was significant, χ2
(4) = 12.13, p 

= .016. Participants were more accurate on phonologically diverse than on 

phonologically ambiguous (regular) (b = 1.29, z = 2.03, p = .042†) plurals. The main 

effect of training day was not significant. 

 

 

 

 

 

 

 
 
 
Figure 24. Experiment 2: test accuracy (2AFC) 
Mean accuracy on the 2AFC task for each training day (Day 1, Day 8, Day 9) for a) singulars and b) 
plurals. Error bars represent +/- 1 standard error of the mean after removing between-subject 
variability (O’Brien & Cousineau, 2014). Phonologically ambiguous plurals are split into those 
associated with a regular (blue bar) and those associated with an irregular (green bar) affix. 
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8.3.1.3. Generalisation 

8.3.1.3.1. Response type analysis 

The frequency of each response type (regular generalisations, irregular generalisations 

(consistent), irregular generalisations (ambiguous), incorrect) for novel 

phonologically diverse, phonologically consistent (regular), phonologically consistent 

(irregular), and phonologically ambiguous singulars requiring participants to use 

affixes trained on Day 8 or Day 9 are shown in Figure 25. A loglinear model with 

phonological consistency (diverse, consistent (regular), consistent (irregular), 

ambiguous), affix training day (Day 8, Day 9), response type (regular generalisations, 

irregular generalisations (consistent), irregular generalisations (ambiguous), 

incorrect) was fitted. The three-way interaction between phonological consistency, 

affix training day, and response type was significant, χ2
(9) = 19.98, p = .018. For 

phonologically diverse novel singulars, the interaction between affix training day and 

response type was significant, χ2
(3) = 14.93, p = .002. Participants produced more 

regular generalisations for Day 9 compared to Day 8 affixes (b = 0.25, z = 1.97, p = 

.049†) and more incorrect responses for Day 8 compared to Day 9 affixes (b = 0.80, z = 

3.17, p = .002). For phonologically consistent (regular) novel singulars, the interaction 

between affix training day and response type was significant, χ2
(3) = 41.31, p < .001. 

Participants produced more regular generalisations for Day 9 compared to Day 8 

affixes (b = 0.31, z = 2.52, p = .012) and more incorrect responses for Day 8 compared 

to Day 9 affixes (b = 1.46, z = 4.74, p < .001). For phonologically consistent (irregular) 

novel singulars, the interaction between affix training day and response type was 

significant, χ2
(3) = 22.32, p < .001. Participants produced more irregular generalisations 

(ambiguous) for Day 9 compared to Day 8 affixes (b = 1.01, z = 2.45, p = .014†) and 

more incorrect response for Day 8 compared to Day 9 affixes (b = 0.93, z = 3.60, p < 

.001). For phonologically ambiguous novel singulars, the interaction between affix 

training and response type was significant, χ2
(3) = 35.25, p < .001. Participants 

produced more irregular generalisations (consistent) for Day 9 compared to Day 8 

affixes (b = 1.61, z = 2.08, p = .038†) and more incorrect responses for Day 8 compared 

to Day 9 affixes (b = 1.41, z = 4.54, p < .001).  
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Figure 25. Experiment 2: generalisation results  
Frequency of each response type supplied within each phonologically consistency category of novel 
singulars requiring participants to use affixes trained on Day 8 (left) and on Day 9 (right).  

 To mitigate potential confounds due to a difference in the number of correct 

responses for Day 8 compared to Day 9 affixes, the analysis was repeated with a 

random sub-sample of correct responses for Day 9 affixes to artificially match the 

number of correct responses produced for Day 8 affixes (Figure 26). The three-way 

interaction between phonological consistency, affix training day, and response type 

was significant, χ2
(6) = 13.27, p = .039. For phonologically diverse, phonologically 

consistent (regular), and phonologically ambiguous novel singulars, there was no 

significant interaction between affix training day and response type. For 

phonologically consistent (irregular) novel singulars, there was a marginal two-way 

interaction between affix training day and response type, χ2
(2) = 5.12, p = .077. 

Participants produced more irregular generalisations (ambiguous) for Day 9 

compared to Day 8 affixes (b = 0.87, z = 2.05, p = .040†).  

 

Figure 26. Experiment 2: generalisation results for equalised correct responses 
Frequency of each response type supplied within each phonologically consistency category of novel 
words requiring participants to use affixes of Day 8 (left) and on Day 9 (right).  
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8.3.1.3.2. Error analysis 

A secondary analysis focused on the errors produced by participants. Incorrect 

responses were subcategorised as a failure to provide any response (no response), the 

production of a legal but gender-inappropriate affix (gender error), and the 

production of an illegal affix (illegal affix) (Figure 27). A loglinear model with 

phonological consistency (diverse, consistent (regular), consistent (irregular), 

ambiguous), affix training day (Day 8, Day 9), error type (no response, gender error, 

illegal affix), and their interaction was fitted. There was no significant three-way 

interaction between phonological consistency, affix training day, and error type. The 

two-way interaction between affix training day and error type was significant, χ2
(2) = 

7.84, p = .020. To break down this interaction, differences between the number of each 

error type were examined for Day 8 and Day 9 affixes separately. For Day 8 affixes, the 

main effect of error type was significant, χ2
(2) = 10.05, p = .007. Participants produced 

more no response than illegal affix errors (b = 0.45, z = 2.53, p = .011) and more 

gender than illegal affix errors (b = 0.52, z = 2.90, p = .004) but a similar number of 

gender and no response errors. For Day 9, the main effect of error type was not 

significant. There were no significant two-way interactions between affix training day 

and phonological consistency and between error type and phonological consistency. 

The main effect of phonological consistency was not significant.  
 

 

Figure 27. Experiment 2: generalisation errors 
Frequency of each error type (no response, gender error, illegal affix) supplied within each 
phonologically consistency category of novel singulars requiring participants to use affixes trained 
on Day 8 (left) or on Day 9 (right).  
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8.3.1.3.3. 3AFC 

Due to scheduling problems, 3 participants did not have time to complete the 3AFC 

generalisation task before the start of their planned scanning session so the analysis 

reported contains data from 18 participants. The frequency of each response type 

(regular generalisations, irregular generalisations (consistent), and irregular 

generalisations (ambiguous), incorrect) for novel phonologically diverse, consistent 

(regular), consistent (irregular), and ambiguous singulars requiring participants to use 

affixes trained on Day 8 or Day 9 are shown in Figure 28. A loglinear model with 

phonological consistency (diverse, consistent (regular), consistent (irregular), 

ambiguous), affix training day (Day 8, Day 9), response type (regular generalisations, 

irregular generalisations (consistent), irregular generalisations (ambiguous), 

incorrect)), and their interaction was fitted. The three-way interaction between 

phonological consistency, affix training day, and response type was not significant. 

The two-way interaction between phonological consistency and response type was 

significant, χ2
(2) = 125.33, p < .001. To break down this interaction, the numbers of 

each response type were compared for each phonological consistency separately. For 

phonologically diverse novel singulars, participants selected more regular affixes than 

other affixes (regular vs. irregular (consistent): b = 2.22, z = 11.83, p < .001, regular vs. 

irregular (ambiguous): b = 1.94, z = 11.07, p < .001). The same pattern was true for 

phonologically consistent regular novel singulars (regular vs. irregular (consistent): b 

= 2.70, z = 11.38, p < .001, regular vs. irregular (ambiguous): b = 2.51, z = 11.56, p < 

.001). For phonologically consistent irregular novel singulars, participants selected 

more irregular (consistent) affixes than other affixes (irregular (consistent) vs. regular: 

b = 1.30, z = 9.26, p < .001, irregular (consistent) vs. irregular (ambiguous): b = 2.33, z 

= 10.66, p < .001). For phonologically ambiguous novel singulars, participants selected 

a similar number of regular and irregular (ambiguous) affixes. The two-way 

interactions between affix training day and phonological consistency and between 

affix training day and response type were not significant.  
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Figure 28. Experiment 2: generalisation 3AFC results 
Frequency of each response type supplied within each phonologically consistency category of novel 
singulars requiring participants to use affixes train on Day 8 (left) and on Day 9 (right).  
 

8.3.1.4. Scanning test trials 

Accuracy on the test trials presented in the scanner is shown in Figure 29. Singulars 

and plurals were analysed separately because phonologically ambiguous plurals were 

split according to whether they were associated with a regular or an irregular plural 

affix. For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous), test type (affix knowledge, whole word knowledge), and 

their interaction was fitted. The interaction between condition and test type was not 

significant, nor were the main effects. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent (regular), phonologically consistent (irregular), 

phonologically ambiguous (regular), phonologically ambiguous (irregular)), affix 

training day (Day 8, Day 9), test type (affix knowledge, whole word knowledge), and 

their interaction was fitted. The three-way interaction between condition, affix 

training day, and test type was not significant. None of the two-way interactions were 

significant. The main effect of affix training day was significant, χ2
(1) = 11.36, p < .001. 

Participants were more accurate for Day 8 compared to Day 9 plurals (b = 0.55, z = 

3.33, p < .001). The main effects of condition and test type were not significant. 
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Figure 29. Experiment 2: fMRI test trials accuracy 
Accuracy on the test trials presented in the scanner for a) singulars, b) plurals (Day 8, Day 9). 
Experimental conditions are along the x axis. Opaque bars represent tests assessing affix knowledge 
and cross-hatched bars represent tests assessing whole word knowledge. Error bars represent +/- 1 
standard error of the mean after removing between-subject variability (O’Brien & Cousineau, 
2014). Phonologically ambiguous plurals are split into those associated with a regular (blue bar) 
and those associated with an irregular (green bar) affix.   
 

8.3.2. Univariate results 

8.3.2.1. Whole-brain analysis 

A first contrast tested for BOLD univariate activity associated with the processing of 

the plurals by subtracting the implicit baseline provided by the null events from all 

plurals. This contrast revealed activity in bilateral STG (Figure 30a; Appendix 1), 

largely consistent with the literature on spoken word and pseudoword processing. A 

three-way repeated-measures ANOVA with factors of affix training day (Day 8, Day 

9), phonological consistency (consistent, ambiguous), and affix regularity (regular, 

irregular) revealed a significant three-way interaction in left ACC and right medial 

orbitofrontal cortex (Figure 30b, Appendix 1). Mean BOLD parameter estimates 

extracted from the peak voxel in left ACC (x = -10, y = 22, z = 42) showed that for 

irregular plurals, the interaction between affix training day and phonological 

consistency was significant, F(1,20) = 7.22, p = .014. Day 9 phonologically ambiguous 

irregulars elicited greater activity than Day 8 phonologically ambiguous irregulars, 
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t(20) = 2.73, p = .013. Mean BOLD parameter estimates extracted from the peak voxel 

in right orbitofrontal cortex (x = 26, y = 42, z = 2) showed that for phonologically 

consistent plurals, the interaction between affix training day and affix regularity was 

significant, F(1,20) = 7.04, p = .015. Day 9 phonologically consistent regulars elicited 

greater activity than Day 8 phonologically consistent regulars, t(20) = 2.64, p = .016. 

For phonologically ambiguous plurals, the interaction between affix training day and 

affix regularity was also significant, F(1,20) = 5.40, p = .031. Day 9 phonologically 

ambiguous irregulars elicited greater activity than Day 8 phonologically ambiguous 

irregulars, t(20) = 2.41, p = .026. There were no significant clusters for the two-way 

interactions or main effects.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. Experiment 2: univariate whole-brain analysis results 
a) all plurals > baseline b) mean BOLD parameter estimates extracted from the peak voxel in left ACC (x 
= -10, y = 22, z = 42) and right medial orbitofrontal cortex (x = 26, y = 42, z = 2). The factorial crossing of 
phonological consistency and affix regularity is reported along the x axis (phonologically consistent 
(regular), phonologically consistent (irregular), phonologically ambiguous (regular), phonologically 
ambiguous (irregular)). Blue bars correspond to plurals taking a regular affix, red bars correspond to 
plurals taking an irregular (consistent) affix, and green bars correspond to plurals taking an irregular 
(ambiguous) affix. Cross-hatched bars represent Day 8 plurals, opaque bars represent Day 9 plurals. Error 
bars represent +/- 1 standard error of the mean after removing between-subject variability (O’Brien & 
Cousineau, 2014). 
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8.3.2.1. ROI analysis 

A three-way repeated-measures ANOVA with affix training day (Day 8, Day 9), 

phonological consistency (consistent, ambiguous), and affix regularity (regular, 

irregular) conducted on the mean BOLD parameter estimates extracted from the left 

STG, left pSTG, left aHC, left pHC, and left IFG revealed not significant main effects 

or interactions in any of the ROIs (Figure 31).  

 
Figure 31. Experiment 2: univariate ROI analysis results 
Mean BOLD parameter estimate extracted from the a) left aSTG, b) left pSTG, c) left aHC, d) left pHC, and e) left 
IFG for each experimental condition. The factorial crossing of phonological consistency and affix regularity is 
reported as four conditions along the x axis (phonologically consistent (regular), phonologically consistent 
(irregular), phonologically ambiguous (regular), phonologically ambiguous (irregular)). Blue bars correspond to 
plurals taking a regular affix, red bars correspond to plurals taking an irregular (consistent) affix, and green bars 
correspond to plurals taking an irregular (ambiguous) affix. Cross-hatched bars represent Day 8 plurals, opaque 
bars represent Day 9 plurals. Error bars represent +/- 1 standard error of the mean after removing between-subject 
variability (O’Brien & Cousineau, 2014).  

 

8.3.3. RSA results 

The univariate results did not reveal any effects of affix training day, phonological 

consistency, or affix regularity on the neural responses to the plurals in any of the 

ROIs where overnight changes were expected. As reviewed in Chapter 6, RSA has 
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increased sensitivity in detecting differences between experimental stimuli than 

univariate analyses. This is particularly relevant here given the subtle differences 

between plurals. Thus, RSA was used to perform more specific tests of the similarity 

structure underlying the plurals. The analyses focused on the same ROIs as the 

univariate analysis: the left aSTG, left pSTG, left aHC, left pHC, and left IFG.  

 Eight model RDMs were initially constructed to examine whether 

phonological consistency and affix regularity influenced the similarity structure of the 

plurals. Four model RDMs focused on the similarity structure among Day 8 plurals 

and another four focused on the similarity structure among Day 9 plurals such that 

effects of overnight consolidation could be assessed. The model RDMs tested for 

increased similarity structure between pairs of plurals sharing the same phonological 

consistency and affix regularity (e.g. skoltaff vs. groltaff) compared to pairs of plurals 

having a different phonological consistency and affix regularity (e.g. skoltaff vs. 

tarbimm) (Figure 32). More specifically, the model RDMs tested for increased 

similarity structure among plurals within each of the experimental conditions: Day 8 

phonological consistent (regular) (e.g. skoltaff, groltaff, woltaff), Day 8 phonologically 

consistent (irregular) (e.g. hiskesh, liskesh, fiskesh), Day 8 phonologically ambiguous 

(regular) (e.g. harbaff, yarbaff, narbaff), Day 8 phonologically ambiguous (irregular) 

(e.g. tarbimm, clarbimm, slarbimm), Day 9 phonological consistent (regular) (e.g. 

zoltopp, noltopp, quoltopp), Day 9 phonologically consistent (irregular) (e.g. tiskull, 

viskull, yiskull), Day 9 phonologically ambiguous (regular) (e.g. jarbopp, larbopp, 

glarbopp), Day 9 phonologically ambiguous (irregular) (e.g. . blarboot, marboot, 

farboot). The model RDMs also tested for decreased similarity structure between 

experimental conditions (e.g. phonological consistent (regular) (e.g. skoltaff, groltaff, 

woltaff) vs. phonologically ambiguous (irregular) (e.g. tarbimm, clarbimm, 

slarbimm)). In each model RDM testing for similarity structure among plurals within 

one experimental condition, every other within-condition similarity comparisons 

were excluded and replaced with NaN values. The model RDMs also excluded and 

replaced with NaN values comparisons between plurals having the same plural affix 

but a different phonological consistency (e.g. skoltaff vs. harbaff) and plurals having 

the same phonological consistency but a different affix (e.g. harbaff vs. tarbimm). The 

model RDMs thus focused on the influence of affix training day, phonological 
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consistency, and affix regularity on the similarity structure underlying plurals having 

similar phonological and morphological form but different lexico-semantics.  

 Analysing similarity of multivariate neural patterns for similar but non-

identical plurals allowed merging all six scanning runs into a single analysis which 

reduces noise in the estimation of T-statistic maps and makes the analysis insensitive 

to other forms of lexico-semantic similarity that could lead to similar neural 

representations of identical plurals (Correia, Jansma, & Bonte, 2015, see Blank & 

Davis, 2016 for a similar approach). The main diagonal of each model RDM coding 

for similarity between identical plurals was therefore excluded and replaced with NaN 

values. 

 

 

 

 

 

 

 

 
 

 
Figure 32. Experiment 2: RSA models RDMs (factorial design) 
The eight matrices on the right were used to test similarity between plurals sharing the same 
phonological consistency and the same affix regularity within each condition (Day 8 consistent regular 
(model 1), Day 8 consistent irregular (model 2), Day 8 ambiguous regular (model 3), Day 8 ambiguous 
irregular (model 4), Day 9 consistent regular (model 5), Day 9 consistent irregular (model 6), Day 9 
ambiguous regular (model 7), and Day 9 ambiguous irregular (model 8)). Similarity between pairs of 
identical plurals (the main diagonal) was excluded (“NaN” values in grey). Similarity between plurals 
sharing the same affix but having a different phonological consistency (i.e. consistent regular vs. 
ambiguous regular) and between plurals sharing the same consistency but different affixes (i.e. 
ambiguous regular vs. ambiguous irregular) was also excluded. The similarity among plurals belonging 
to only one condition was tested in each model so all other within-condition similarity comparisons 
were excluded (“NaN” values in grey). Within-condition similarity was calculated for each affix training 
day separately so comparisons of plurals from the opposite day were also excluded (“NaN” values in 
grey). Similarity structure among plurals sharing the same phonological consistency and affix regularity 
was predicted (zeroes depicted in blue), but not for plurals having a different phonological consistency 
and a different affix regularity (ones depicted in red). The 8 models RDMs were correlated with 
observed multivariate patterns of neural responses to the plurals (i.e. neural RDM).  
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 Fisher-z-transformed correlation coefficients between neural RDMs and each 

of the 8 model RDMs were extracted from searchlight locations within the left aSTG, 

left pSTG, left aHC, left pHC, and left IFG ROIs (Figure 33). As each of the 8 model 

RDMs assessed similarity structure among plurals corresponding to each of the 

experimental conditions, the mean Fisher-z-transformed correlation coefficients for 

each model for each ROI were submitted to a repeated-measures ANOVA with affix 

training day (Day 8 [models 1, 2, 3, 4], Day 9 [models 6, 7, 8, 9]), phonological 

consistency (consistent [models 1, 2, 5, 6], ambiguous [models 3, 4, 7, 8]), and affix 

regularity (regular [models 1, 3, 5, 7], irregular [models 2, 4, 6, 8]) (see Figure 32). For 

the left aSTG, the two-way interaction between affix training day and affix regularity 

was significant, F(1,20) = 17.09, p = .001. Collapsing across phonological consistency, 

there was greater within-condition similarity structure for plurals sharing a regular 

affix (i.e. phonologically consistent (regular), phonologically ambiguous (regular) 

[models 1, 3, 5, 7]) for Day 8 compared Day 9 plurals, t(20) = 3.24, p = .004. There was 

also greater within-condition similarity structure for plurals sharing an irregular affix 

(i.e. phonologically consistent (irregular), phonologically ambiguous (irregular) 

[models 2, 4, 6, 8]) for Day 9 compared to Day 8 plurals, t(20) = 3.70, p = .001. One-

sample t-tests revealed that similarity structure was significantly greater than zero for 

Day 8 regulars (collapsed across phonological consistency), t(20) = 1.82, p = .042, and 

for Day 9 irregulars, t(20) = 3.69, p = .001. None of the main effects or other 

interactions were significant. For the left pSTG, the two-interaction between affix 

training day and affix regularity was also significant, F(1,20) = 7.96, p = .010. Collapsing 

across phonological consistency, there was greater within-condition similarity 

structure for plurals sharing a regular affix for Day 8 compared to Day 9 plurals, t(20) = 

2.35, p = .030. There was also greater within-condition similarity structure for plurals 

sharing an irregular affix Day 9 compared to Day 8 plurals, t(20) = 2.51, p = .021. One-

sample t-tests revealed that similarity structure was marginally greater than zero for 

Day 8 regulars (collapsed across phonological consistency), t(20) = 1.52, p = .073, and 

significantly greater than 0 for Day 9 irregulars, t(20) = 3.66, p = .001. None of the 

main effects or other interactions were significant. For the left IFG, there was also a 

significant two-way interaction between affix training day and affix regularity, F(1,20) = 

9.59, p = .006. Collapsing across phonological consistency, there was greater within-
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condition similarity structure for plurals sharing an irregular affix for Day 9 compared 

to Day 8 plurals, t(20) = 4.71, p < .001. A one-sample t-test showed that similarity 

structure was significantly greater than 0 for Day 9 irregulars, t(20) = 4.52, p < .001. For 

the left aHC, there was a significant interaction between affix training day and affix 

regularity, F(1,20) = 6.67, p = .008. Collapsing across phonological consistency, there 

was greater within-condition similarity structure for plurals sharing a regular affix for 

Day 8 compared to Day 9 plurals, t(20) = 2.44, p = .024. There was also greater within-

condition similarity structure for plurals sharing an irregular affix for Day 9 compared 

to Day 8 plurals, t(20) = 2.29, p = .033. However, one sample t-tests showed that 

neither the similarity structure for regulars or irregulars was significantly greater than 

0. There were no significant main effects or interactions in the left pHC.  

 

 
Figure 33. Experiment 2: RSA ROI analysis results (factorial design) 
Mean Fisher-z-transformed Spearman correlation coefficient extracted from the a) left aSTG, b) left pSTG, c) left 
aHC, d) left pHC, and e) left IFG for each model RDM (numbered 1 to 8 on the graphs). The factorial crossing of 
phonological consistency and affix regularity is depicted as four conditions along the x axis (phonologically 
consistent (regular), phonologically consistent (irregular), phonologically ambiguous (regular), phonologically 
ambiguous (irregular)). Cross-hatched bars represent Day 8 plurals, opaque bars represent Day 9 plurals. Error 
bars represent +/- 1 standard error of the mean after removing between-subject variability (O’Brien & Cousineau, 
2014). 
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 To follow up on the significant two-way interaction between affix training day 

and affix regularity found in the left aSTG, left pSTG, and left IFG, two additional 

model RDMs were constructed to examine whether affix-similarity rather than whole-

form-similarity accounted for the increase in similarity structure among plurals 

sharing a regular affix. In other words, these model RDMs tested for similarity based 

on type frequency. One model RDM tested for increased similarity between all pairs 

of high type frequency Day 8 plurals sharing the same regular affix but having 

phonologically diverse stems (e.g. gleetaff, skoltaff, harbaff) and dissimilarity between 

pairs of plurals having different affixes and phonological consistencies (e.g. hiskesh, 

tarbimm). Another model RDM tested for the same similarity structure among all 

pairs of high type frequency Day 9 plurals (Figure 33). A significantly better fit of this 

model RDM for Day 8 compared to Day 9 plurals would be consistent with the 

increase in similarity structure among plurals sharing a regular affix observed in the 

initial analysis being driven by affix-similarity rather than whole-form-similarity.  

 

 

 

 

 

 

 

 
 

 
 
 
 
Figure 34. Experiment 2: RSA model RDMS (type frequency) 
The two matrices on the right tested similarity between plurals sharing the same regular affix. Similarity 
between pairs of identical plurals (the main diagonal) was excluded (“NaN” values depicted in grey). 
Similarity structure among plurals sharing the same regular affix was predicted (zeroes depicted in 
blue), but not for plurals sharing a different affix (ones depicted in red). The 2 models RDMs were 
correlated with observed multivariate patterns of neural responses to the plurals (i.e. neural RDM).  
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 For the left aSTG, this analysis showed a significant main effect of affix 

training day, F(1,20) = 5.37, p = .031. There was greater similarity structure for high 

type frequency regulars for Day 8 compared Day 9 plurals, t(20) = 2.32, p = .031. A 

one-sample t-test showed that similarity structure was significantly greater than 0 for 

Day 8 plurals, t(20) = 1.87, p = .038. There was no significant main effect of affix 

training day in the left pSTG or in the left IFG (Figure 34).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 35. Experiment 2: RSA ROI analysis results (type frequency) 
Mean Fisher-z-transformed Spearman correlation coefficient extracted from the a) left aSTG, b) 
left pSTG, and c) left IFG for models testing for increased similarity structure based on type 
frequency. Cross-hatched bars represent Day 8 plurals, opaque bars represent Day 9 plurals. Error 
bars represent +/- 1 standard error of the mean after removing between-subject variability (O’Brien 
& Cousineau, 2014).  
 

 As outlined at the outset of the chapter, overnight changes in similarity 

structure were predicted to be mostly apparent for phonologically ambiguous plurals. 

This prediction would have led to a three-way interaction between affix training day, 

phonological consistency, and affix regularity in the analysis of the initial 8 model 

RDMs (i.e. factorial design, see Figure 32). However, these models excluded 

comparisons between phonologically ambiguous (regular) (e.g. harbaff) and 
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phonologically ambiguous (irregular) (e.g. tarbimm). For completeness and to address 

the prediction that phonologically ambiguous regular and irregular plurals may 

become more dissimilar following consolidation, two additional model RDMs were 

considered. One model RDM tested for increased similarity between pairs of 

phonologically ambiguous plurals (e.g. harbaff, tarbimm) and dissimilarity between 

pairs of plurals sharing a different phonological consistency and affix regularity (e.g. 

harbaff vs. zoltopp) (Figure 36). A significantly better fit of this model RDM for Day 9 

compared to Day 8 plurals would be consistent with the prediction that dissimilarity 

between phonologically ambiguous regulars and irregulars may increase with 

overnight consolidation. This analysis revealed no main effect of affix training day or 

similarity structure significantly greater than 0 in any ROI.  
 

 
Figure 36. Experiment 2: RSA model RDMS (phonological ambiguity) 
The two matrices on the right tested similarity between phonologically ambiguous plurals. Similarity 
between pairs of identical plurals (the main diagonal) was excluded (“NaN” values depicted in grey). 
Similarity structure among phonologically ambiguous plurals was predicted (zeroes depicted in blue), 
but not for plurals having different a different phonological consistency and affix regularity (ones 
depicted in red). The 2 models RDMs were correlated with observed multivariate patterns of neural 
responses to the plurals (i.e. neural RDM).  
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8.3.4. PPI results 

8.3.4.1. ROI-to-ROI analysis 

An ROI-to-ROI analysis examined functional connectivity between the left aSTG, left 

pSTG, left aHC, left pHC, and left IFG ROIs (see methods section 8.2.5.4. for seed 

definition details) for main effects and interactions involving affix training day (Day 8, 

Day 9), phonological consistency (consistent, ambiguous), and affix regularity 

(regular, irregular) (Appendix 2). Functional connectivity within the hippocampus 

was not considered (i.e. between the left aHC and left pHC) since spurious motion-

related variance tends to be more similar at nearby voxels than distant voxels (Power, 

Schlaggar, & Petersen, 2014) and because no clear predictions regarding intra-

hippocampal patterns of connectivity could be derived from the emerging research 

examining issues of intra-regional connectivity. None of the ROIs were functionally 

connected for the three-way interaction, two-way interactions, or main effects of 

phonological consistency and affix regularity. For the main effect of affix training day, 

the left aHC was more functionally connected with the left pSTG for Day 9 than for 

Day 8 plurals, t(20) = 3.08, p = .003 (left pSTG – left aHC, t(20) = 3.05, p = .00312).  

 In light of the overnight increase in similarity structure among high type 

frequency regulars observed in the RSA analysis, a further contrast examined the 

functional connectivity between ROIs for all high type frequency regulars (i.e. 

phonologically diverse, phonologically consistent (regular), phonological ambiguous 

(regular)) trained on Day 8 and Day 9. This revealed that the left aSTG was more 

functionally connected to the left IFG, t(20) = 3.18, p = .003 (left IFG – left aSTG, t(20) = 

3.14, p = .004) and to the left pHC, t(20) = 3.19, p = .002 (left pHC – left aSTG, t(20) = 

3.18, p = .003) for Day 8 compared to Day 9 regulars. In addition to being more 

functionally connected to the left aSTG and the left pHC, the left IFG was more 

functionally connected to the left pSTG, t(20) = 1.89, p = .036, (left pSTG – left IFG, t(20) 

= 1.89, p = .037) for Day 8 compared to Day 9 regulars.  

                                                        
12 In PPI/gPPI analyses, the connectivity values between ROIs are non-symmetrical because the underlying models/measures are 
also non-symmetrical (Whitfield-Gabrieli & Nieto-Castanon, 2012). 
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8.3.4.2. Seed-to-voxel analysis 

To determine whether the seed ROIs showed greater functional connectivity with 

other brain regions, a seed-to-voxel analysis was performed for all main effects and 

interactions involving affix training day (Day 8, Day 9), phonological consistency 

(consistent, ambiguous), and affix regularity (regular, irregular). There were no 

significant effects for the three-way interaction for any seed. There were no significant 

effects for the two-way interactions between phonological consistency and affix 

regularity and between affix training day and phonological consistency for any seed.  

 For the two-way interaction between affix training day and affix regularity, the 

left aSTG was functionally connected to two clusters of voxels in the left middle 

frontal gyrus (MFG) (Appendix 3). Mean condition-specific connectivity values 

extracted within each significant cluster revealed greater functional connectivity 

between the left aSTG and the left MFG for Day 9 compared to Day 8 regular plurals 

(cluster 1: t(20) = 4.27, p < 0.001; cluster 2: t(20) = 5.83, p < .001) and greater functional 

connectivity between the left aSTG and the left MFG for Day 8 compared to Day 9 

irregular plurals (cluster1: t(20) = 3.19, p = 0.005; cluster 2: t(20) = 2.87, p = .009) (Figure 

37). The left pSTG was also functionally connected to a cluster of voxels in the left 

MFG (Appendix 3). Mean condition-specific connectivity values extracted within the 

significant cluster revealed greater functional connectivity between the left pSTG and 

the left MFG for Day 8 compared to Day 9 irregular plurals, t(20) = 5.10, p < 0.001, but 

only marginally more functional connectivity between the left pSTG and the left MFG 

for Day 9 compared to Day 8 regular plurals, t(20) = 1.84, p = 0.081 (Figure 37). There 

were no significant effects for the left aHC, left pHC, or left IFG.  
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Figure 37. Experiment 2: PPI seed-to-voxel analysis affix regularity x affix training day interaction 
Mean functional connectivity values extracted for each condition reported along the x axis for significant 
clusters showing an interaction effect between affix training day and affix regularity. a) the left aSTG seed was 
functionally connected to two clusters of voxels in the left MFG in 1) and 2). b) the left pSTG seed was also 
connected to a cluster of voxels in left MFG in 3). Cross-hatched bars represent Day 8 plurals, opaque bars 
represent Day 9 plurals. Error bars represent +/- 1 standard error of the mean after removing between-subject 
variability (O’Brien & Cousineau, 2014).  

 

 There were no significant effects for the main effect of affix training day for 

any seed. For the main effect of phonological consistency, the left aSTG was more 

functionally connected with two clusters of voxels in the left inferior parietal lobule 

(IPL) and one cluster of voxels in right inferior temporal gyrus (ITG) for 

phonologically consistent than phonologically ambiguous plurals (Appendix 3; Figure 

38). No significant effects were observed for the opposite contrast (i.e. ambiguous > 

consistent). The left pSTG was more functionally connected with a cluster of voxels in 

the left IPL for phonologically consistent than phonologically ambiguous plurals 

(Appendix 3; Figure 38). No significant effects were observed for the opposite contrast 

(i.e. ambiguous > consistent). The left aHC was more functionally connected with a 

cluster of voxels in left IFG for phonologically consistent compared to phonologically 

ambiguous plurals. The opposite contrast showed that the left aHC was more 

functionally connected with a cluster of voxels in the right supramarginal gyrus for 

phonologically ambiguous compared to phonologically consistent plurals (Appendix 
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3; Figure 38). No significant effects were found for the main effect of phonological 

consistency for the left pHC and left IFG seeds.  

 

 
Figure 38. Experiment 2: PPI seed-to-voxel analysis main effect of phonological consistency 
Mean functional connectivity values extracted for each condition reported along the x axis for significant 
clusters showing a main effect of phonological consistency. a) the left aSTG seed was more functionally 
connected to two clusters of voxels in the left IPL in 1) and 2) and one cluster of voxels in 3) right ITG for 
phonologically consistent than phonologically ambiguous plurals. b) the left pSTG was more functionally 
connected to a cluster of voxels in 4) the left IPL for phonologically consistent than phonologically ambiguous 
plurals. c) the left aHC was more functionally connected to a cluster of voxels in 5) left ITG for phonologically 
consistent than phonologically ambiguous plurals and more functionally connected to a cluster of voxels in 6) 
right supramarginal gyrus for phonologically ambiguous than phonologically consistent plurals. Significant 
clusters for the phonologically consistent > phonologically ambiguous contrasts are shown in red. The 
significant cluster for the opposite contrast (phonologically ambiguous > phonologically consistent) is shown in 
blue. Cross-hatched bars represent Day 8 plurals, opaque bars represent Day 9 plurals. Error bars represent +/- 
1 standard error of the mean after removing between-subject variability (O’Brien & Cousineau, 2014).  
 

 For the main effect of affix regularity, the left aHC was more functionally 

connected to clusters of voxels in left lingual gyrus, left superior occipital gyrus, and 

right fusiform gyrus for irregular compared to regular plurals (Appendix 3, Figure 39). 
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No significant effects were observed for the opposite contrast (i.e. regulars > 

irregulars). The left IFG was more functionally connected to clusters of voxels in the 

left IPL and right supramarginal gyrus for irregular compared to regular plurals 

(Appendix 3, Figure 39). No significant effects were observed for the opposite contrast 

(i.e. regulars > irregulars). No significant effects were found for the left aSTG, left 

pSTG, and left pHC seeds. Additional contrasts examining all high type frequency 

regulars trained on Day 8 and Day 9 revealed no significant effects for any seed. 

 
Figure 39. Experiment 2: PPI seed-to-voxel analysis main effect of affix regularity 
Mean functional connectivity values extracted for each condition reported along the x axis for significant 
clusters showing a main effect of affix regularity. a) the left aHC seed was more functionally connected to 
clusters of voxels in 1) the left superior occipital gyrus, 2) the left lingual gyrus, and 3) the right fusiform gyrus 
for irregular than regular plurals. b) the left IFG seed was more functionally connected to clusters of voxels in 
the 4) left IPL and 5) right IPL for irregular than regular plurals. Cross-hatched bars represent Day 8 plurals, 
opaque bars represent Day 9 plurals. Error bars represent +/- 1 standard error of the mean after removing 
between-subject variability (O’Brien & Cousineau, 2014).  

 

8.4. Discussion 
8.4.1. Learning and generalisation 

Experiment 2 combined the behavioural paradigm developed in Experiment 1 with 

RSA and PPI analyses of fMRI data to characterise the neural representations and 
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functional networks underlying the newly-learned plurals. Behavioural results from 

the training sessions largely replicated those obtained in Experiment 1 and further 

confirmed the efficacy of the training schedule in ensuring that participants developed 

high proficiency on the novel morphological system. Across the picture naming and 

2AFC recognition memory tasks presented at the end of each training session, 

participants performed similarly for both sets of plurals as evidenced by a lack of 

significant main effects or interactions involving affix training day. As such, 

differences in the generalisation of Day 8 and Day 9 plural affixes to novel singulars 

could not be attributed to differences in initial learning. Similarly, the neural 

representations underlying Day 8 and Day 9 plurals could be compared for plurals 

that were initially learned equally well.    

 The increase in irregular generalisations (ambiguous) following overnight 

consolidation for novel phonologically ambiguous singulars found in Experiment 1 

and reported by Mirković and Gaskell (in prep.) was not replicated. Instead, 

participants produced a similar number of regular generalisations and irregular 

generalisations (ambiguous) for both Day 8 and Day 9 affixes. For novel 

phonologically consistent (irregular) and phonologically ambiguous singulars, 

participants produced fewer irregular generalisations (ambiguous) and irregular 

generalisations (consistent), respectively, for Day 8 compared to Day 9 affixes. These 

latter two effects could reflect the strengthening of the representations underlying the 

irregulars following overnight consolidation manifesting in a reduction of 

inappropriate irregular generalisations. A similar observation was made in 

Experiment 1, where an increase in irregular generalisations (consistent) and irregular 

generalisations (ambiguous) was observed for Day 8 compared to Day 9 affixes. It is 

conceivable that a similar effect manifested here as a reduction of inappropriate 

irregular generalisations. Further data would be required to substantiate this proposal.  

 The reduction in irregular generalisations (ambiguous) remained marginally 

significant for novel phonologically consistent (irregular) singulars after equalising the 

number of correct responses across the two training days suggesting that the effect 

was not confounded, at least not entirely, by forgetting of Day 8 affixes or interference 

from Day 9 affixes. For novel phonologically diverse and phonologically consistent 
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(regular) singulars, participants produced more regular generalisations for Day 9 

compared to Day 8 affixes. However, this result was not replicated when equalising 

the number of correct responses across the two training days suggesting that 

forgetting of Day 8 affixes or interference from Day 9 affixes may have, at least 

partially, confounded the effect.  

 To address the fact that participants produced fewer correct responses for Day 

8 compared to Day 9 affixes in the plural elicitation generalisation task, an additional 

3AFC generalisation task was included in Experiment 2. Performance on this 

additional generalisation task showed that participants were sensitive to the 

phonological consistency of the novel singulars, supplying more appropriate than 

inappropriate generalisations given the phonological cue contained in the novel 

singulars. However, no effects of overnight consolidation were observed. It should be 

noted that the generalisation items in the 3AFC generalisation task were the same as 

in the plural elicitation generalisation task such that re-exposure to the generalisation 

items may have confounded the results. A more detailed consideration of the 

discrepancy in generalisation behaviour between Experiments 1 and 2 is the focus of 

Experiment 3, reported in Chapter 9. 

 Despite the absence of overnight changes in generalisation behaviour, 

participants were more accurate for Day 8 compared to Day 9 plurals on test trials 

presented in the scanner, assessing affix and whole-word knowledge. These results are 

consistent with previous work suggesting that overnight consolidation plays a role in 

the development of lexicalised representations for newly-learned words and affixes 

indexed by improved recognition performance (Gaskell & Dumay, 2003; Dumay & 

Gaskell, 2007, 2012; Tamminen & Gaskell, 2008; Davis et al., 2009; Tamminen et al., 

2010; Henderson et al., 2012; Merkx et al., 2011; Tamminen et al., 2012, 2015; 

Leminen et al., 2016). Thus, whilst there were no overnight changes in generalisation 

behaviour, improved performance on test trials presented in the scanner for Day 8 

compared to Day 9 plurals may reflect more ‘optimal’ representations following 

overnight consolidation (Stickgold & Walker, 2013).     
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8.4.2. Neural representations and functional networks 

Turning to the fMRI results, the univariate analysis showed that the processing of the 

plurals engaged bilateral STG largely consistent with the existing literature on the 

processing of both words and pseudowords (Newman & Twieg, 2001; Kotz, Cappa, 

von Cramon, & Friederici, 2002). It is particularly noteworthy that the peak activation 

found in left STG (x = -56, y = -6, z = 0) falls squarely on the centre of mass of the 

anterior STG cluster (x = -56, y = -6, z = -1) reported by Davis & Gaskell (2009), in a 

meta-analysis of 11 neuroimaging studies in which responses to pseudowords were 

compared to responses to words. It is this aSTG cluster that revealed the most 

compelling results in RSA and PPI analyses.  

 The whole-brain univariate analysis revealed a three-way interaction between 

affix training day, phonological consistency, and affix regularity in the left ACC and 

right orbitofrontal cortex. This interaction reflected greater activity in response to 

phonologically ambiguous irregulars for Day 9 compared to Day 8 plurals in the left 

ACC and right orbitofrontal cortex and greater activity in response to phonologically 

consistent regulars for Day 9 compared to Day 8 plurals in right orbitofrontal cortex. 

The ACC and prefrontal cortex have been implicated in conflict monitoring and 

resolution (Barch, Braver, Sabb, & Noll, 2000; Braver, Barch, Gray, Molfese, & Snyder, 

2001; Botvinick, Cohen, & Carter, 2004). The involvement of the ACC in the 

processing of regular English verbs (Tyler et al., 2005; Stamatakis et al., 2005) has been 

suggested to reflect increased demands on its monitoring functions as inflectionally 

complex forms need to be decomposed. The three-way interaction could suggest a 

shift in the demands put on the monitoring functions of the ACC and prefrontal 

cortex with overnight consolidation. However, this result does not provide 

information regarding the underlying representations of the newly-learned plurals or 

how they may change with overnight consolidation. Furthermore, analyses focused on 

the response profile of the hippocampus and neocortical representational areas where 

effects of affix training day, phonological consistency, and affix regularity were 

expected did not reveal any main effects or interactions.   
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8.4.1.2. Overnight changes in neural representations 

More informative results came from the RSA analysis, which revealed an interaction 

between affix training day and affix regularity in the left aSTG, left pSTG, and left IFG. 

In both STG regions, this interaction was characterised by an increase in similarity 

structure among regulars and a decrease in similarity structure among irregulars 

following overnight consolidation. Follow-up analyses testing whether this increase in 

similarity structure was driven by type frequency was shown to fit uniquely in the left 

aSTG. This finding is in line with the CLS model in which encountering several items 

sharing a common feature (here, an affix) supports the development of similarity 

structure (McClelland et al., 1995; O’Reilly & Norman, 2002; McClelland, 2013; 

O’Reilly et al., 2014; Kumaran et al., 2016). It is also consistent with the purported role 

of sleep in supporting the development of overlapping representations that underlie 

schema formation (here, a regular inflectional pattern) (Lewis & Durrant, 2011). A 

role for type frequency and consolidation in supporting the development of 

generalisable affix knowledge has previously been reported in behavioural 

experiments (Tamminen et al., 2012, 2015), but their influence on underlying neural 

representations was largely unknown. Previous evidence for overnight changes in the 

neural representations of newly-learned affixes in the left STG came from an MEG 

study, which lacked the spatial resolution of fMRI and sensitivity of RSA (Leminen et 

al., 2016). Here, neural evidence for the role of overnight consolidation and type 

frequency in supporting the development of an affix representation is provided for the 

first time. 

 The fact that neural representations consistent with the development of an 

affix representation were restricted to the left aSTG is significant, since it potentially 

relates to its role in representing lexical and semantic knowledge and mediating access 

to these representations (Scott & Johnsrude, 2003; Rogers et al., 2004; Scott, 2005; 

Patterson, Nestor, & Rogers, 2007; Lambon Ralph, Pobric, & Jefferies, 2009). The 

present results suggest, in line with previous neural network simulations and 

behavioural work, that an affix shared by several words (i.e. high type frequency) 

facilitates the development of an affix representation. They further suggest, in line 

with the CLS model and previous behavioural work, that overnight consolidation may 
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be necessary for such a representation to emerge. The role of the aSTG in representing 

lexical and semantic knowledge remains controversial and a perhaps more established 

view is that such functions are subserved by posterior middle temporal regions 

(Hickock & Poeppel, 2004, 2007). Neither account, however, makes specific 

predictions about the representations underlying newly-learned words or indeed 

about the role of consolidation in supporting the development of such 

representations. Thus, future data on the role of anterior temporal regions in 

supporting morphological learning will be valuable.  

 Another line of work has implicated anterior temporal regions in sentence 

(Stowe et al., 1998; Friederici, Meyer, & von Cramon, 2000; Vandenberghe, Nobre, & 

Price, 2002; Humphries et al., 2006; Rogalsky & Hickok, 2008), phrase (Bemis & 

Pylkkänen, 2011), and, more recently, morphological (Brooks & Cid de Garcia, 2015) 

processing leading to the hypothesis that it may be involved in syntactic structure-

building (Friederici & von Cramon, 2000; Grodzinsky & Friederici, 2006) or 

incremental semantic composition (Stowe, Haverkort, & Zwarts, 2005; Vandenberghe 

et al., 2002). Thus, an alternative explanation for the current results could be that high 

type frequency regulars engage combinatorial processes more strongly following 

overnight consolidation. However, model RDMs coding for similarity structure 

among high type frequency regulars did not show a significant fit in the left IFG, 

which has consistently been associated with combinatorial processes in the context of 

inflectional morphology in both univariate and multivariate fMRI analyses (Bozic et 

al., 2010, 2015). While it is difficult to argue from a null effect, the present results 

appear to be most clearly in line with the similarity structure in the left aSTG 

reflecting the development of an affix representation. Chapter 10 returns to and 

expands on this suggestion.    

 There was initial similarity structure among Day 9 irregulars, which was not 

observed for Day 8 irregulars in the left aSTG, left pSTG, and left IFG. This result is 

surprising and contrary to the prediction that was made on the basis of the results 

obtained in Experiment 1 and reported by Mirković and Gaskell (in prep.) whereby 

increases in irregular generalisations following overnight consolidation, particularly in 

the case of phonologically ambiguous novel singulars, were thought to reflect 
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increased similarity structure among irregulars. The present results instead point to a 

decrease in similarity structure among irregulars following overnight consolidation. 

One speculative explanation for this result is that high token frequency may support 

the development of whole-word representations. Behavioural findings have shown 

that high token frequency inflected and derived words yield faster reactions times and 

more accurate responding than low token frequency inflected and derived words in a 

range of tasks across different languages (Laine, Niemi, Koivuselkä-Sallinen, & Hyönä, 

1995; Sereno & Jongman, 1997; Bertram, Laine, & Karvinen, 1999; Bertram, Hyönä, & 

Laine, 2000; Bertram, Schreuder, & Baayen, 2000; Ford, Marslen-Wilson, & Davis, 

2003; Lehtonen & Laine, 2003; Soveri, Lehtonen, & Laine, 2007). The present results 

could be seen to be compatible with this work and further suggest a role for overnight 

consolidation in strengthening whole-word representations for high token frequency 

irregulars. Of course, this interpretation is entirely predicated on the assumption that 

the lack of similarity structure among Day 8 irregulars reflects a strengthening of their 

whole-word representations. Further research will be needed to provide support for 

this proposal.  

 This interpretation may initially seem to support dual-route models of 

inflectional morphology according to which regulars rely on combinatorial processing 

whilst irregulars rely on whole-form storage. However, behavioural token frequency 

effects have previously been successfully accounted for in distributed neural networks 

(Davis, van Casteren, & Marslen-Wilson, 2003). Furthermore, unlike English 

irregulars, the irregulars used in the present study were all made up of a stem and affix 

such that dual-route models would predict the engagement of decompositional 

processes. That is, irregulars were ‘irregular’ simply by virtue of their low type 

frequency and high token frequency. It is precisely in those conditions that the CLS 

model would predict a strengthening of item-specific representations and a lack of 

similarity structure (cf. Chapter 3; McClelland et al., 1995; Kumaran & McClelland, 

2012). On this view, it is the similarity structure before consolidation, rather than the 

lack of similarity structure after consolidation, which is most surprising. The current 

dataset does not allow distinguishing whether this initial similarity structure was 

driven by the whole-forms (i.e. hiskesh, liskesh, fiskesh all share iskesh) or by the affix 

alone. Indeed, comparisons isolating affix-based similarity, as were possible for high 
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type frequency regulars, were not possible for irregulars. Future investigations 

including high token frequency affixed forms sharing the same affix but having 

phonologically distinct stems (e.g. hiskesh, tarbesh) would go some way to addressing 

this limitation. It is plausible that high token frequency irregulars initially engage 

combinatorial processes across the left IFG and left STG more strongly as their low 

type frequency and high token frequency requires more effortful attempts to parse 

them into their constituent stem and affix. Salience tags attached to high token 

frequency irregulars during learning may be subsequently used during sleep to 

enhance item-specific (i.e. whole-word) representations (Stickgold & Walker, 2013). 

Chapter 10 further elaborates on this proposal.    

8.4.1.3. Overnight changes in functional networks 

Functional connectivity between the left aHC and the left pSTG was greater for Day 9 

compared to Day 8 plurals. This result is entirely consistent with predictions derived 

from the CLS model and previous functional connectivity work suggesting greater 

hippocampal involvement shortly after learning (McClelland et al., 1995; Takashima 

et al., 2009). The fact that the left aHC showed increased connectivity with the left 

pSTG is particularly interesting, since it potentially relates to the role of the aHC in 

memory encoding (Lepage et al., 1998; Schacter & Wagner, 1999; Spaniol et al., 2009). 

Recall from Chapter 2 that Davis et al. (2009) found reduced activity in the pSTG for 

consolidated relative to unconsolidated pseudowords. This result was interpreted as 

indexing more word-like phonological representations following overnight 

consolidation. The present results suggest that such representations may become 

independent of the hippocampus following overnight consolidation. This is entirely 

consistent with the CLS model. Stronger functional connectivity with the aHC may 

reflect continued encoding of Day 9 plurals.  

 Focusing on all high type frequency regulars revealed greater functional 

connectivity between the left aSTG and the left IFG for Day 8 compared to Day 9 

plurals. The increase in functional connectivity between the left aSTG and left IFG is 

consistent with the CLS model and previous work reporting increased neocortical – 

neocortical functional connectivity following overnight consolidation (Takashima et 

al., 2009). The overnight increase in similarity structure among Day 8 regulars in the 
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RSA analysis was argued to reflect the development of an affix representation. 

Increased functional connectivity between the left aSTG and left IFG following 

overnight consolidation may reflect more efficient combinatorial processes following 

overnight consolidation once an affix representation has emerged. Additionally, there 

was increased functional connectivity between the left aSTG and the left pHC 

following overnight consolidation. This result seems at odds with the CLS model and 

previous functional connectivity work predicting decreased hippocampal – 

neocortical functional connectivity following overnight consolidation (McClelland et 

al., 1995; Takashima et al., 2009). Given the suggested role of the left pHC in retrieval 

processes (Lepage et al., 1998; Schacter & Wagner, 1999; Spaniol et al., 2009) this 

finding may reflect more efficient retrieval of high type frequency regulars following 

overnight consolidation. Overall, these results point to differential roles for the left 

aHC and left pHC in the learning and consolidation of novel inflectional morphology. 

Future work capitalising on advances in high-resolution anatomical and functional 

scanning and subfield segmentation of the hippocampus will likely open up new 

opportunities to examine how hippocampal subregions may contribute to 

consolidation processes. 

 The seed-to-voxel PPI analysis showed that for the two-way interaction 

between affix training day and affix regularity, the left aSTG was functionally 

connected to the left MFG. The interaction reflected a profile that was opposite to that 

observed in the RSA analysis. Where there was an overnight increase in similarity 

structure among Day 8 regulars in the left aSTG, there was an overnight decrease in 

functional connectivity between the left aSTG and the left MFG. Conversely, where 

there was an overnight decrease in similarity structure among Day 9 irregulars, there 

was an overnight increase in functional connectivity between the left aSTG and the 

left MFG. The clusters of voxels in the left MFG were situated in dorsolateral 

prefrontal cortex (DLPFC), encompassing BA9 and extending inferiorly into BA46. 

The mPFC has more typically been implicated in memory consolidation and schema 

formation (van Kesteren et al., 2010a, 2010b, Preston & Eichenbaum, 2013). The 

DLPFC is thought to subserve inhibitory control processes (Ridderinkhof, Ullsperger, 

Crone, & Nieuwenhuis, 2004), which are engaged in memory retrieval suppression 

(Anderson, Bunce, & Barbas, 2016). The present results may be interpreted as 
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illustrating a shift in the types of representations being inhibited or suppressed in the 

retrieval of the newly-learned plurals. High token frequency irregulars may initially be 

prioritised as indexed by increased similarity structure. As a result, the retrieval of 

high type frequency regulars may be inhibited or suppressed as indexed by increased 

functional connectivity between the aSTG and DLPFC. Overnight consolidation may 

support the development of similarity structure among high type frequency regulars 

and enhance item-specific representations for salience-tagged high token frequency 

irregulars leading to the opposite pattern of similarity structure and functional 

connectivity with the DLPFC. Chapter 10 elaborates on this proposal. 

8.4.3. Summary 

In sum, RSA and PPI analyses have shown overnight changes in the representations 

and functional networks underlying newly-learned plurals. The clearest picture 

emerged from high type frequency regulars, where results were consistent with 

overnight consolidation supporting the development of an affix representation, 

enhancing functional connectivity between putative language representational areas, 

and reducing functional connectivity to inhibitory prefrontal areas. Together, these 

results point to a more optimal representation of high type frequency regulars 

following overnight consolidation. Results were less clear for high token frequency 

irregulars but a tentative suggestion is that overnight consolidation may act to 

strengthen whole-word representations. Overnight changes in similarity structure and 

functional connectivity were not mirrored by overnight changes in generalisation 

behaviour. Experiment 3, reported in the next chapter, explores one possible reason 

for the differences in generalisation behaviour in Experiments 1 and 2.  
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Chapter 9: Experiment 3 

9.1. Introduction 

Experiment 2 revealed overnight changes in the neural representations and functional 

networks underlying the newly-learned plurals. These changes were argued to be 

consistent with the development of an affix representation for high type frequency 

regulars and, more tentatively, suggested to reflect a strengthening of whole-word 

representations for high token frequency irregulars. Participants performed better on 

Day 8 compared to Day 9 plurals on test trials presented in the scanner, which 

assessed affix and whole-word knowledge. This result was argued to provide some 

indication that the neural representations and functional networks underlying Day 8 

may reflect more ‘optimal’ representations (Stickgold & Walker, 2013).  

 However, Experiment 2 did not replicate the overnight changes in 

generalisation observed in Experiment 1. Recall that in Experiment 1 and in the work 

of Mirković and Gaskell (in prep.), participants produced more irregular 

generalisations (ambiguous) (e.g. varbimm) than regular generalisations (e.g. varbaff) 

for novel phonologically ambiguous singulars (e.g. varbi) after a period of overnight 

consolidation. These phonologically ambiguous singulars contained a phonological 

cue (e.g. arb) that had been associated with both a high type frequency regular affix 

(e.g. harbaff) and a high token frequency irregular affix (e.g. tarbimm) during 

training. Some of the predictions regarding the similarity structure and functional 

networks underlying the newly-learned plurals were derived from these generalisation 

results. As noted in Chapter 8, one cognitive marker of morphological knowledge is 

the ability to generalise to novel forms (Bybee & Slobin, 1982; Bybee & Moder, 1983; 

Prasada & Pinker, 1993; Tamminen et al., 2015). Accordingly, the work presented in 

this thesis operates on the assumption that generalisation behaviour can be used to 

derive predictions about the neural representations underlying morphological 

knowledge. Thus, the aim of Experiment 3 was to examine a potential factor that 

could have contributed to differences in generalisation across Experiments 1 and 2. 

 To examine differences in generalisation across Experiments 1 and 2 more 

directly, an additional analysis of the plural elicitation generalisation task was 
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performed adding Experiment (1, 2) as an additional predictor. To this end, 

generalisations to novel phonologically consistent (regular) singulars were excluded 

from Experiment 2 (Figure 40). A loglinear model with Experiment (1, 2), 

phonological consistency (diverse, consistent, ambiguous), affix training day (Day 8, 

Day 9), response type (regular generalisations, irregular generalisations (consistent), 

irregular generalisations (ambiguous), incorrect), and their interaction was then fitted. 

The four-way interaction between Experiment, phonological consistency, affix 

training day, and response type was significant, χ2
(6) = 18.49, p = .005. To break down 

this interaction, interactions between Experiment, affix training day, and response 

type were examined for each level of phonological consistency separately. For 

phonologically diverse novel singulars, the three-way interaction was not significant. 

For phonologically consistent novel singulars, the three-way interaction between 

Experiment, affix training day, and response type was significant, χ2
(3) = 14.59, p = 

.002. To further break down this interaction, interactions between Experiment and 

affix training day were examined for each level of response type separately. For regular 

generalisations, the interaction between Experiment and affix training day was 

significant, χ2
(1) = 9.75, p = .002. Participants produced more regular generalisations 

for Day 8 affixes in Experiment 2 compared to Experiment 1 (b = 0.83, z = 2.73, p = 

.006) but a similar number of regular generalisations for Day 9 affixes across both 

experiments. For irregular generalisations (consistent) and irregular generalisations 

(ambiguous), the two-way interactions between Experiment and affix training day 

were not significant. For incorrect responses, the two-way interaction between 

Experiment and affix training day was significant, χ2
(1) = 4.54, p = .033. Participants 

produced more incorrect responses for Day 8 affixes in Experiment 1 compared to 

Experiment 2 (b = 0.37, z = 2.03, p = .043†) but a similar number of incorrect 

responses for Day 9 affixes across both experiments. For phonologically ambiguous 

novel singulars, the three-way interaction between Experiment, affix training day, and 

response type was significant, χ2
(3) = 14.59, p = .002. For regular generalisations, the 

interaction between Experiment and affix training day was significant, χ2
(1) = 7.56, p = 

.006. Participants produced more regular generalisations for Day 8 affixes in 

Experiment 2 compared to Experiment 1 (b = 0.44, z = 2.36, p = .018) but a similar 

number of regular generalisations for Day 9 affixes across both experiments. For 



Chapter 9: Experiment 3 

 170 

irregular generalisations (ambiguous), the interaction between Experiment and affix 

training day was significant, χ2
(1) = 7.07, p = .008. Participants produced more 

irregular generalisations (ambiguous) for Day 9 affixes in Experiment 2 compared to 

Experiment 1 (b = 0.48, z = 2.30, p = .022) but a similar number of irregular 

generalisations (ambiguous) for Day 8 affixes across both experiments. For irregular 

generalisations (consistent) and incorrect responses, the two-way interactions 

between Experiment and affix training day were not significant. These results are 

summarised in Table 1.  

  

 

 

 

 

 

 

 

 

Figure 40. Experiment 3: generalisation results Experiments 1 vs. 2 
Frequency of each response type supplied within each phonological consistency category of novel 
singulars requiring participants to use affixes trained on Day 8 (left) and Day 9 (right) for a) 
Experiment 1 and b) Experiment 2. To allow direct comparisons between the two experiments, 
phonologically consistent (regular) novel singulars were excluded from Experiment 2.  
 

 To ensure that differences in generalisation across Experiments 1 and 2 were 

not attributable to differences in the learning of the novel morphological system 

across the two experiments, accuracy on the picture naming and 2AFC recognition 

memory tasks presented in the testing blocks at the end of each training session were 

reanalysed including Experiment (1, 2) as an additional factor (refer to Chapter 5  
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Table 1. Experiments 1 vs. 2 analysis summary 
Summary of the analysis comparing the plural elicitation generalisation task results in 
Experiments 1 and 2. The effects tested are listed on the left and p-values reported on the right. 
Significant effects are in red.  
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section 5.3.2 and Chapter 8 section 8.3.1.2 for the initial analyses of Experiment 1 and 

2, respectively). Phonologically consistent (regular) forms were excluded from 

Experiment 2 so that both experiments could be included in the same analysis. For 

singulars, logistic regression models with Experiment (1, 2), condition (phonologically 

diverse, phonologically consistent, phonologically ambiguous), training day (Day 1, 

Day 8, Day 9), and their interaction were fitted to the picture naming and 2AFC 

recognition memory data separately. There were no main effects or interactions 

involving Experiment on either task.  

 For plurals, logistic regression models with Experiment (1, 2), condition 

(phonologically diverse, phonologically consistent, phonologically ambiguous 

(regular), phonologically ambiguous (irregular)), training day (Day 8, Day 9), and 

their interaction were fitted to the picture naming and 2AFC recognition memory 

data separately. There were no main effects or interactions involving Experiment on 

either task. Thus, differences in generalisation between Experiments 1 and 2 could not 

be attributed to differential learning outcomes. It should also be noted that the two 

experiments had similar sample sizes (Experiment 1: n = 18; Experiment 2: n = 22) 

and participants of similar ages (Experiment 1: mean age = 23, SD = 4; Experiment 2: 

mean age = 23, SD = 3) recruited from the same volunteer panel following the same 

procedures. It is thus unlikely than differences in generalisation reflected sample 

differences across Experiments 1 and 2. 

 Together, these observations suggest that differences in generalisation across 

the two experiments may be attributable to differences in the training stimuli set. 

Recall that in Experiment 2, 3 phonologically varied stems from Experiment 1 were 

replaced with stems containing a new phonological cue (e.g. –olt; zolt, grolt, tolt), 

which was consistently associated with a regular affix (e.g. zoltaff, groltaff, toltaff) 

analogous to phonologically consistent regular English verbs (e.g. walked, talked, 

stalked). This change introduced a set of highly phonologically consistent regulars 

within a set of more phonologically diverse regulars. As discussed in Chapters 1 and 3, 

phonological consistency effects in the processing and generalisation of English 

regular past tenses have been reported (Seidenberg & Bruck, 1990; Seidenberg, 1992; 

Daugherty & Seidenberg, 1992; Albright & Hayes, 2003). It is thus plausible that in 
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Experiment 2, phonological consistency among a subset of regulars being supported 

by the overall high type frequency of the regular pattern may have biased participants 

towards generalising the regular inflectional pattern to a greater extent than in 

Experiment 1. The analysis comparing generalisation across Experiments 1 and 2 

indeed showed that for both phonologically consistent and phonologically ambiguous 

novel singulars, there were more regular generalisations following overnight 

consolidation in Experiment 2 compared to Experiment 1. Furthermore, whilst 

participants produced more irregular generalisations (ambiguous) for phonologically 

ambiguous singulars for Day 9 affixes in Experiment 2 compared to Experiment 1, 

there was no increase in irregular generalisations (ambiguous) following overnight 

consolidation. Together, these results suggest that the changes made to the training 

stimuli set in Experiment 2 may have supported the preferential consolidation of high 

type frequency regulars over high token frequency irregulars, at least to a greater 

extent than in Experiment 1. The RSA analysis showing overnight changes in the 

similarity structure underlying the neural representations of high type frequency 

regulars provides some support for this interpretation.  

 The introduction of phonologically consistent regulars in Experiment 2 may 

also be argued to have shifted the conditional probabilities (G. A. Miller & Selfridge, 

1950) of the training stimuli set. In each training stimuli set, let the probability of a 

regular or irregular plural affix (B) occurring given a phonologically structured stem 

(A) be defined as 

p(B|A) = p(A ∩ B)/p(A) 

 In Experiment 1, the conditional probability of a regular affix occurring given 

a phonologically structured stem (e.g. harbaff, yarbaff, narbaff) was 0.33 defined as  

p(regular affix|phonologically structured stem) = p(phonologically structured stem ∩ 

regular affix)/p(phonologically structured stem) 

or 

0.33 = (3/18)/(9/18) 
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 The conditional probability of an irregular affix occurring given a 

phonologically structured stem (e.g. hiskesh, liskesh, fiskesh, tarbimm, clarbimm, 

slarbimm) was 0.67 defined as  

p(irregular affix|phonologically structured stem) = p(phonologically structured stem 

∩ irregular affix)/p(phonologically structured stem) 

or 

0.67 = (6/18)/(9/18) 

 In Experiment 2, the conditional probability of a regular affix occurring given 

a phonologically structured stem (e.g. zoltaff, groltaff, toltaff, harbaff, yarbaff, 

narbaff) was 0.50 defined as  

p(regular affix|phonologically structured stem) = p(phonologically structured stem 

∩  regular affix)/p(phonologically structured stem) 

or 

0.50 = (6/18)/(12/18) 

 The conditional probability of an irregular affix occurring given a 

phonologically structured stem (e.g. hiskesh, liskesh, fiskesh, tarbimm, clarbimm, 

slarbimm) was 0.50 defined as  

p(irregular affix|phonologically structured stem) = p(phonologically structured 

stem∩  irregular affix)/p(phonologically structured stem) 

or 

0.50 = (6/18)/(12/18) 

 The shift in conditional probabilities in the training stimuli set across 

Experiments 1 and 2 may have biased the consolidation and generalisation towards 

high type frequency regulars. The aim of Experiment 3 was to manipulate the 

phonological consistency and type and token frequency of the plurals during training 
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to bias the consolidation and generalisation of the plurals towards high token 

frequency irregulars. It was hypothesised that such manipulations, described in detail 

in the methods section 9.2.2.1, would increase irregular generalisations following 

overnight consolidation thereby replicating the results of Experiment 1 and Mirković 

and Gaskell (in prep.). 

9.2. Materials and methods 
9.2.1. Participants 

Twenty-three participants (7 males) aged between 20 and 35 (mean age = 25, SD = 4) 

were recruited from the MRC Cognition and Brain Sciences Unit Participant Panel 

and provided their informed consent to take part in the study. Participants were tested 

under the approval of the Cambridge Psychology Research Ethics Committee. All 

were monolingual speakers of British English with little or no knowledge of a second 

language, no known hearing or language impairments, and no neurological or 

psychiatric disorders. Participants were paid to take part in the study.  

9.2.2. Experimental stimuli 

9.2.2.1. Training stimuli 

The training stimuli described in Experiment 1 were used with some minor changes. 

Removing the 3 phonologically consistent (regular) stems (e.g. zoltaff, groltaff, toltaff) 

introduced in Experiment 2 allowed re-establishing the same conditional probabilities 

as in Experiment 1. Unlike Experiments 1 and 2, the phonologically ambiguous and 

phonologically consistent irregulars were associated with the same irregular affix (e.g. 

tarbesh, hiskesh) analogous to irregular English verbs having phonologically distinct 

stems but following the same type of transformation to form their past tenses (e.g. 

draw – drew, blow – blew; hang – hung, cling – clung) (Figure 41; refer to Chapter 5 

Figure 7 and Chapter 8 Figure 19 for the training stimuli for Experiment 1 and 2, 

respectively). This modification was made to increase the type frequency of the 

irregular inflectional pattern. Re-establishing the conditional probabilities of 

Experiment 1 and increasing the type frequency of the irregular inflectional pattern 

were expected to bias the consolidation and generalisation towards the irregulars. 

Increasing the type frequency of the irregular inflectional pattern required reducing 

the token frequency of the irregulars to 12 presentations across training in order to 
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keep the affix frequency the same across conditions. The token frequency of the 

irregulars was nonetheless twice that of the regulars. Eight training lists were created 

to counterbalance the assignment of plural affixes to regular and irregular conditions 

and the assignment of phonological cues to consistent and ambiguous conditions. The 

assignment of each set of plural affixes (-aff, -esh; -opp, -ull) to each gender was 

counterbalanced across participants, as was the order of gender training across Day 8 

and Day 9. As in Experiments 1 and 2, the pairing of nouns with specific occupations 

was varied across different training lists to further control for any unintended 

associations between the novel nouns and pictures. 

 

 

 
 

 

 

 

Figure 41. Experiment 3: training stimuli set 
a) example training stimuli set. Phonologically diverse and phonologically ambiguous 
plurals taking a regular affix are in blue, phonologically consistent and phonologically 
ambiguous plurals taking an irregular affix are in red. b) type, token, and affix (type x 
token) training frequencies associated with each plural affix. c) example singular and plural 
nouns associated with familiar occupations for female and male characters.  

 

9.2.2.3. Generalisation stimuli 

The generalisation stimuli were the same as for Experiment 1. Nine were 

phonologically diverse (e.g. woath), 9 were phonologically consistent (e.g. zisk), and 9 

were phonologically ambiguous (e.g. slarb). Each novel stem was combined with both 

singular affixes (e.g. woathi[fem:sing], woathu[masc:sing]) yielding a total of 54 generalisation 

items. Each new singular noun was paired with the picture of a single female and male 

character depicting a familiar occupation not used in the training stimuli sets (e.g. 

woathi[fem:sing] = teacher[fem:sing], woathu[masc:sing] = teacher[masc:sing]).  
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9.2.3. Experimental design and procedure 

The training schedule was the same as for Experiments 1 and 2. On Day 1, 

participants were trained on the novel singulars in one session lasting approximately 

1hr30. On Day 8, participants were trained on the first set of plural affixes in one 

session lasting approximately 1hr15. On Day 9, approximately 24 hours after learning 

the first set of plurals, participants were trained on the second set of plurals before 

completing the plural elicitation and 3AFC generalisation tasks.  

9.3. Results 
9.3.1. Training 

Accuracy on the picture naming tasks presented at the end of each training block in 

each training session was analysed to examine how participants’ mastery of the new 

words improved over the course of training (Figure 42). Singulars and plurals were 

analysed separately as there was no plural training on Day 1, there were only 3 

training blocks for plurals on Day 8 and Day 9 (compared to 4 blocks for singulars), 

and because phonologically ambiguous plurals were split according to whether they 

were associated with a regular or an irregular plural affix. 

 For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 

Day 9), training block (Block 1, Block 2, Block 3, Block 4), and their interaction was 

fitted. The three-way interaction between condition, training day, and training block 

was not significant. The two-way interaction between training day and training block 

was significant, χ2
(6) = 77.03, p < .001. Participants improved significantly across 

training blocks on Day 1 (Block 2 vs. Block 1: b = 1.77, z = 19.03, p < .001, Block 3 vs. 

Block 2: b = 0.49, z = 6.94, p < .001, Block 4 vs. Block 3: b = 0.44, z = 6.14, p < .001). 

On Day 8, participants improved from the second to the third block (Block 3 vs. Block 

2: b = 0.58, z = 2.36, p = .019†) and from the third to the fourth block (Block 4 vs. 

Block 3: b = 0.93, z = 2.64, p = .008†). On Day 9, participants improved from the first 

to the second block (Block 2 vs. Block 1: b = 0.53, z = 2.52, p = .012†) and from the 

second to the third block (Block 3 vs. Block 2: b = 0.55, z = 2.07, p = .038†). The two-

way interactions between condition and training block and between condition and 

training day were not significant. The main effect of training block was significant, 



Chapter 9: Experiment 3 

 178 

χ2
(3) = 1222.50 p < .001. Participants became increasingly more accurate over the 

course of the training blocks (Block 2 vs. Block 1, b = 1.37, z = 18.42, p < .001, Block 3 

vs. Block 2, b = 0.52, z = 7.81, p < .001, Block 4 vs. Block 3: b = 0.46, z = 6.71, p < .001). 

The main effect of training day was significant, χ2
(2) = 2668.20, p < .001. Participants 

were more accurate on Day 9 compared to Day 1 (b = 2.99, z = 30.95, p < .001), on 

Day 8 compared to Day 1 (b = 2.97, z = 30.96, p < .001) but performed similarly on 

Day 8 and Day 9. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), training block (Block 2, Block 3, 

Block 4), and their interaction was fitted. The three-way interaction between 

phonological consistency, training day, and training block was not significant. The 

two-way interaction between condition and training day was significant, χ2
(3) = 12.25, 

p = .007. Participants were more accurate on phonologically ambiguous (regular) 

plurals on Day 9 compared to Day 8 (b = 0.64, z = 2.60, p = .009). The two-way 

interactions between condition and training block and between condition and 

training day were not significant. The main effect of training block was significant, 

χ2
(2) = 69.88 p < .001. Participants became increasingly more accurate over the course 

of the training blocks (Block 3 vs. Block 2, b = 0.77, z = 5.83, p < .001, Block 4 vs. 

Block 3, b = 0.31, z = 2.01, p = .044†). The main effect of condition was significant, χ2
(3) 

= 37.74, p < .001. Participants were more accurate on phonologically consistent than 

on phonologically ambiguous (regular) (b = 0.82, z = 4.12, p < .001) and 

phonologically ambiguous (irregular) (b = 0.86, z = 4.31, p < .001) plurals. 

Participants were also more accurate on phonologically diverse than on 

phonologically ambiguous (regular) (b = 0.63, z = 4.25, p < .001) and phonologically 

ambiguous (irregular) (b = 0.67, z = 4.51, p < .001) plurals. The main effect of training 

day was not significant.  
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Figure 42. Experiment 3: training accuracy 
Mean accuracy on the picture naming task presented at the end of each training block (Block 1, 
Block 2, Block 3, Block 4) on each training day (Day 1, Day 8, and Day 9) for a) singulars and b) 
plurals. Error bars represent +/- 1 standard error of the mean after removing between-subject 
variability (O’Brien & Cousineau, 2014). Phonologically ambiguous plurals are split into those 
associated with a regular (light blue line) and those associated with an irregular (green line) affix. 
All phonologically ambiguous singulars are depicted by a green line.  
 

9.3.2. Testing 

Accuracy on the picture naming (Figure 43) and 2 AFC recognition memory (Figure 

44) presented in a testing block at the end of each training session was analysed to 

ensure that words with different phonological consistencies and training frequencies 

(plurals) were learned equally well. Singulars and plurals were analysed separately as 

there was no plural training on Day 1, there were only 3 training blocks for plurals on 

Day 8 and Day 9 (compared to 4 blocks for singulars), and because phonologically 

ambiguous plurals were split according to whether they were associated with a regular 

or an irregular plural affix.  

9.3.2.1. Picture naming 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 

Day 9), and their interaction was fitted. The interaction between condition and 
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training day was not significant. The main effect of condition was significant, χ2
(2) = 

8.00, p = .018. Participants were more accurate on phonologically consistent (b = 0.40, 

z = 2.34, p = .020†) and phonologically ambiguous (b = 0.28, z = 2.14, p = .032†) than 

on phonologically diverse singulars. The main effect of training day was significant, 

χ2
(2) = 170.35, p < .001. Participants were more accurate on Day 8 compared to Day 1 

(b = 2.08, z = 7.21, p < .001) and on Day 9 compared to Day 1 (b = 2.12, z = 7.37, p < 

.001) but performed similarly on Day 8 and Day 9. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), and their interaction was fitted. 

The interaction between condition and training day was not significant. Nor the main 

effect of condition or the main effect of training day was significant.  

 

 

 

 

 

  
 
 
 
 
 
 
 
Figure 43. Experiment 3: test accuracy (picture naming) 
Mean accuracy on the picture naming task presented in the testing block the end of each training 
day (Day 1, Day 8, Day 9) for a) singulars and b) plurals. Error bars represent +/- 1 standard error 
of the mean after removing between-subject variability (O’Brien & Cousineau, 2014). 
Phonologically ambiguous plurals are split into those associated with a regular (blue bar) and those 
associated with an irregular (red bar) affix. 
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9.3.2.2. 2AFC recognition memory 

For singulars, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous), training day (Day 1, Day 8, 

Day 9), and their interaction was fitted. The interaction between condition and 

training day was not significant. The main effect of training day was significant, χ2
(2) = 

8.41, p = .015. Participants were more accurate on Day 9 compared to Day 1 (b = 1.13, 

z = 2.41, p = .016) but performed similarly on Day 8 and Day 1 and on Day 8 and Day 

9. The main effect of condition was not significant. 

 For plurals, a logistic regression with condition (phonologically diverse, 

phonologically consistent, phonologically ambiguous (regular), phonologically 

ambiguous (irregular)), training day (Day 8, Day 9), and their interaction was fitted. 

The interaction between condition and training day was not significant. Nor the main 

effect of condition or training day was significant. 

 

 

 

 

 

 

 

 
Figure 44. Experiment 3: test accuracy (2AFC) 
Mean accuracy on the picture naming task presented in the testing block the end of each training 
day (Day 1, Day 8, Day 9) for a) singulars and b) plurals. Error bars represent +/- 1 standard error 
of the mean after removing between-subject variability (O’Brien & Cousineau, 2014). 
Phonologically ambiguous plurals are split into those associated with a regular (blue bar) and those 
associated with an irregular (red bar) affix. 
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9.3.3. Generalisation 

9.3.3.1. Plural elicitation 

9.3.3.1.1. Response type analysis 

The frequency of each response type (regular generalisations, irregular 

generalisations, incorrect) for novel phonologically diverse, phonologically consistent, 

and phonologically ambiguous novel singulars requiring participants to use plural 

affixes trained on Day 8 or Day 9 are shown in Figure 45. A loglinear model with 

phonological consistency (diverse, consistent, ambiguous), affix training day (Day 8, 

Day 9), response type (regular generalisations, irregular generalisations, incorrect), 

and their interaction was fitted. The three-way interaction between phonological 

consistency, affix training day, and response type was not significant. The two-way 

interaction between phonological consistency and response type was significant, χ2
(4) = 

95.28, p < .001. For novel phonologically diverse singulars, participants produced 

more regular than irregular generalisations (b = 0.61, z = 5.33, p < .001), and more 

correct responses than incorrect responses (regular generalisations vs. incorrect: b = 

1.14, z = 8.20, p < .001; irregular generalisations vs. incorrect: b = 0.52, z = 3.44, p < 

.001). For novel phonologically consistent singulars, participants produced more 

irregular than regular generalisations (b = 0.91, z = 7.41, p < .001) and incorrect 

responses (b = 1.17, z = 8.64, p < .001) but a similar number of regular generalisations 

and incorrect responses. For novel phonologically ambiguous singulars, participants 

produced a similar number of regular and irregular generalisations and produced 

more correct than incorrect responses (regular generalisations vs. incorrect: b = 0.89, z 

= 6.41, p < .001; irregular generalisations vs. incorrect: b = 0.68, z = 4.78, p < .001). 

The two-way interaction between affix training day and response type was significant, 

χ2
(2) = 99.41, p < .001. Participants produced a similar number of regular 

generalisations for Day 8 and Day 9 affixes but produced more irregular 

generalisations for Day 9 compared to 8 affixes (b = 0.50, z = 5.40, p < .001) and more 

incorrect responses for Day 8 compared to Day 9 affixes (b = 1.24, z = 7.53, p < .001). 

The two-way interaction between affix training day and phonological consistency was 

not significant. The main effect of response type was significant, χ2
(2) = 141.24, p < 

.001. Participants produced a similar number of regular and irregular generalisations 

and produced more correct than incorrect responses (regular generalisations vs. 



Chapter 9: Experiment 3 

 183 

incorrect: b = 0.82, z = 9.98, p < .001; irregular generalisations vs. incorrect: b = 0.83, z 

= 10.18, p < .001). 

 

 

 

 

 

 

 
Figure 45. Experiment 3: generalisation results  
Frequency of each response type supplied within each phonologically consistency category of novel 
singulars requiring participants to use affixes trained on Day 8 (left) and on Day 9 (right). Regular 
generalisations are in blue (e.g. woathaff) and irregular generalisations are in red (e.g. varbesh).  

 To mitigate potential confounds due to a difference in the number of correct 

responses for Day 8 compared to Day 9 affixes, the analysis was repeated with a 

random sub-sample of correct responses for Day 9 affixes to artificially match the 

number of correct responses produced for Day 8 affixes (Figure 46). The three-way 

interaction between phonological consistency, affix training day, and response type 

was not significant. The two-way interaction between phonological consistency and 

response type remained significant, χ2
(2) = 70.40, p < .001. For novel phonologically 

diverse singulars, participants produced more regular than irregular generalisations (b 

= 0.55, z = 4.63, p < .001). For novel phonologically consistent singulars, participants 

produced more irregular than regular generalisations (b = 0.82, z = 6.25, p < .001). For 

novel phonologically ambiguous singulars, sub-sampling the data revealed significant 

more regular generalisations than irregular generalisations (b = 0.24, z = 2.03, p = 

.043). The two-way interaction between affix training day and response type remained 

significant, χ2
(1) = 15.35, p < .001. Sub-sampling the data revealed that participants 

produced more regular generalisations for Day 8 compared to Day 9 affixes (b = 0.25, 

z = 2.59, p = .010) and more irregular generalisations for Day 9 compared to Day 8 

affixes (b = 0.26, z = 2.62, p = .009). None of the main effects were significant.  
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Figure 46. Experiment 3: generalisation results for equalised correct responses 
Frequency of each response type supplied within each phonologically consistency category of novel 
words requiring participants to use affixes of Day 8 (left) and on Day 9 (right).  
 

9.3.3.1.1. Error analysis 

A secondary analysis focused on the errors produced by participants. Incorrect 

responses were subcategorised as a failure to provide any response (no response), the 

production of a legal but gender-inappropriate affix (gender error), and the 

production of an illegal affix (Figure 47). A loglinear model with phonological 

consistency (diverse, consistent, ambiguous), affix training day (Day 8, Day 9), error 

type (no response, gender error, illegal affix), and their interaction was fitted. There 

was no significant three-way interaction between phonological consistency, affix 

training day, and error type. The two-way interaction between affix training day and 

error type was significant, χ2
(2) = 6.80, p = .033. To break down this interaction, 

differences between the numbers of each error type were examined for Day 8 and Day 

9 affixes separately. For Day 8 affixes, the main effect of error type was not significant. 

For Day 9 affixes, the main effect of error type was significant, χ2
(2) = 12.18, p = .002. 

Participants produced more illegal affix errors than no response (b = 0.83, z = 2.20, p 

= .028†) and gender errors (b = 1.12, z = 3.38, p < .001) but a similar number of gender 

errors and no response errors. The two-way interactions between affix training day 

and phonological consistency and between phonological consistency and error type 

were not significant. The main effect of affix training day was significant, χ2
(1) = 67.97, 

p < .001. Participants produced more incorrect responses for Day 8 compared to Day 

9 affixes (b = 1.24, z = 7.53, p < .001). The main effect of error type was significant, 

χ2
(2) = 9.41, p = .009. Participants produced more illegal affix errors than no response 
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(b = 0.56, z = 2.88, p = .004) and gender errors (b = 0.36, z = 2.36, p = .018†) but a 

similar number of gender errors and no response errors. The main effect of 

phonological consistency was not significant.  

 

 

 

 

 

 
 
 

Figure 47. Experiment 3: generalisation errors 
Frequency of each error type (no response, gender error, illegal affix) supplied within each 
phonological consistency category of novel singulars requiring participants to use affixes trained on 
Day 8 (left) or on Day 9 (right).  
 

9.3.3.1. 3AFC 

The frequency count of each response type (regular generalisations, irregular 

generalisations) for novel phonologically diverse, consistent, and ambiguous singulars 

requiring participants to select affixes trained on Day 8 or Day 9 are shown in Figure 

48. A loglinear model with phonological consistency (diverse, consistent, ambiguous), 

affix training day (Day 8, Day 9), response type (regular generalisation, irregular 

generalisation), and their interaction was fitted. The three-way interaction between 

phonological consistency, affix training day, and response type was not significant. 

The two-way interaction between phonological consistency and response type was 

significant, χ2
(2) = 125.33, p < .001. To break down this interaction, the numbers of 

each response type were compared for each phonological consistency separately. For 

phonological diverse novel singulars, participants selected more regular than irregular 

generalisations (b = 0.77, z = 7.16, p < .001). For phonological consistent novel 

singulars, participants selected more irregular than regular generalisations (b = 0.86, z 

= 7.80, p < .001). For phonologically ambiguous novel singulars, participants selected 

more regular than irregular generalisations (b = 0.20, z = 2.01, p = .045†). The main 

effect of response type was not significant. 
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Figure 48. Experiment 3: generalisation 3AFC results 
Frequency of each response type supplied within each phonological consistency category of novel 
singulars requiring participants to use affixes train on Day 8 (left) and on Day 9 (right).  
 

9.4. Discussion 

Experiment 3 sought to address the discrepancy in generalisation results between 

Experiments 1 and 2. Recall that in both Experiment 1 and the work of Mirković and 

Gaskell (in prep.), participants produced more irregular generalisations (ambiguous) 

(e.g. varbimm) than regular generalisations (e.g. varbaff) for novel phonologically 

ambiguous singulars (e.g. varbi) after a period of overnight consolidation. However, 

this particular overnight change in generalisation was not replicated in Experiment 2. 

It was hypothesised that such differences in generalisation results may be attributable 

to changes made to the training stimuli set across the first two experiments. It was 

argued at the outset of this chapter that these changes may have biased the 

consolidation and generalisation towards high type frequency regulars. Experiment 3 

examined whether modifying the phonological consistency and type and token 

frequency of the training stimuli could bias consolidation and generalisation towards 

high token frequency irregulars thereby replicating the pattern of results obtained in 

Experiment 1 and reported by Mirković and Gaskell (in prep.). Behavioural results 

from the training sessions largely replicated those obtained in Experiments 1 and 2. 

Across the picture naming and 2AFC recognition memory task presented at the end 

of each training session, participants performed similarly for both sets of plurals as 

evidenced by a lack of significant main effects or interactions involving affix training 

day. As such, differences in the generalisation of Day 8 and Day 9 plural affixes to 

novel singulars could not be attributed to differences in initial learning. 
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 The increase in irregular generalisations (ambiguous) following overnight 

consolidation for novel phonologically ambiguous singulars found in Experiment 1 

and reported by Mirković and Gaskell (in prep.) was again not replicated. Instead, 

participants produced a similar number of regular and irregular generalisations for 

both Day 8 and Day 9 affixes. However, equalising the number of correct responses 

across the two training days revealed more regular generalisations. This result was 

further borne out in the 3AFC generalisation task. These results again suggest that 

forgetting of Day 8 affixes or interference from Day 9 affixes may have confounded 

the initial analysis. Indeed, as in Experiments 1 and 2, affix training day had an effect 

on overall performance on the plural elicitation task as evidence by participants 

producing significantly more incorrect responses for Day 8 compared to Day 9 affixes. 

It is noteworthy that, unlike in Experiments 1 and 2, there was no three-way 

interaction between affix training day, phonological consistency, and response type on 

the plural elicitation generalisation task. It thus appears that the modifications made 

to the training stimuli were ineffective in boosting the consolidation and 

generalisation of high token frequency irregulars. Increasing the type frequency of the 

irregulars required lowering their token frequency to ensure affix frequency was kept 

the same across conditions. In both Experiments 1 and 2, an argument was made for 

the role of high token frequency in potentially tagging new memories as being 

particularly relevant to future behaviour leading to their preferential consolidation. In 

Experiment 1, this was argued to be particularly important in ambiguous cases where 

different mappings are competing for consolidation. This was evidenced by an 

increase in irregular generalisations (ambiguous) for novel phonologically ambiguous 

singulars. There was also evidence of a reduction in regular generalisations for novel 

phonologically consistent singulars, which was argued to reflect a reduction in 

inappropriate generalisations supported by a strengthening of the representation of 

high token frequency consistent irregulars. Whilst the generalisation results in 

Experiment 2 were less straightforward than those of Experiment 1, there was 

nonetheless evidence of more optimal generalisations for both phonologically 

consistent and phonologically ambiguous novel singulars. In both cases, there was an 

overnight decrease in inappropriate irregular generalisations. This reduction in 

inappropriate generalisations was argued to reflect an overnight strengthening of the 
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whole-word representations for high token frequency irregulars. The RSA analysis 

pointed to an overnight reduction in similarity structure among high token frequency 

irregulars, which was argued to reflect a strengthening of their whole-word 

representations. This argument remains tentative and awaits further empirical 

support. However, whilst it is difficult to argue from a null effect, it is conceivable that 

a reduction in the token frequency of the irregulars in Experiment 3 explains, at least 

in part, the lack of overnight changes in generalisation characterised by a non-

significant three-way interaction between affix training day, phonological consistency, 

and response type. Hypothetically, a certain threshold level of token frequency may be 

required to strengthen whole-word representations.  

 Alternatively, the lack of consolidation-related changes in generalisation in 

Experiment 3 might reflect a ceiling effect in the sense that overnight consolidation 

may not enhance associations that are already strong at encoding. Higher type 

frequency for the irregulars may have supported stronger encoding by facilitating the 

emergence of relationships among them. The suggestion that weakly encoded newly-

learned associations benefit more from periods of offline consolidation including 

sleep than more strongly or overlearned associations has been discussed previously 

(Empson & Clarke, 1970; Ekstrand, 1977; Tilley & Empson, 1978; Cipolli, 1995). 

Previous work has reported greater consolidation benefits from sleep on the recall of 

weakly encoded compared to strongly encoded lists of word pairs (Drosopoulos et al., 

2006). Stronger encoding has also been suggested to account for the failure of 

previous study to reveal sleep-related improvements in the retention of material after 

certain learning tasks (Smith, 2001; Paller & Voss, 2004; Rauchs, Desgranges, Foret, & 

Eustache, 2005). It is thus conceivable that similar effects may extend here to the 

development of representations that can support generalisation. While further data 

will be required to substantiate this proposal, it seems that the distributional statistics 

of the material to be learned may play a key role in its subsequent consolidation 

trajectory and generalisation. 

 In sum, the results obtained in Experiment 3 did not replicate the results 

obtained in Experiment 1 or those reported by Mirković and Gaskell (in prep.). The 

aim of the experiment was to examine whether manipulating the phonological 
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consistency and type and token frequency of the training stimuli would allow boosting 

the consolidation and generalisation of high token frequency irregulars. Unlike 

Experiments 1 and 2, the results provided no evidence of consolidation-related 

changes in generalisation. These findings highlight the fact that overnight 

consolidation may be highly sensitive to the distributional statistics of novel material 

to be remembered such that seemingly small changes to the training stimuli can alter 

measurable overnight changes in generalisation. The next chapter concludes this 

thesis by summarising its key findings and relating them to consolidation and 

generalisation theory more broadly. 
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Chapter 10: Conclusions and future directions 

10.1. Thesis summary 

The experiments reported in this thesis aimed to characterise the cognitive and neural 

representations and mechanisms supporting morphological learning and 

generalisation within a CLS framework. To this end, the work presented was uniquely 

situated at the intersection of three literatures pertaining to morphological learning, 

memory consolidation, and generalisation. Experiment 1 examined the extent to 

which the contribution of overnight consolidation to morphological generalisation 

varies with the type and token frequency and phonological consistency of newly-

learned inflected words. Experiment 2 employed RSA and PPI analyses of fMRI data 

to characterise the neural representations and functional networks underlying newly-

learned inflected words. Experiment 3 addressed differences in generalisation results 

between the first two experiments.  

 As reviewed in Chapters 1 and 3, child acquisition data, neural network 

simulations, diachronic change data, and more limited behavioural experiments have 

shown type and token frequency as well as phonological consistency to play important 

roles in morphological learning and generalisation (Seidenberg & Bruck, 1990; 

Daugherty & Seidenberg, 1992; Plunkett & Marchman, 1991, 1993; Bybee & Newman, 

1995; Hare & Elman, 1995; Hare et al., 1995; Ellis & Schmidt, 1998; Albright & Hayes, 

2003). These chapters also highlighted the lack of empirical evidence for the influence 

of these factors on the neural representations and mechanisms underlying 

morphological learning and generalisation. The view was adopted that neural network 

simulations and the single-mechanism theories of morphology they most clearly align 

with best capture the influence of type and token frequency and phonological 

consistency on morphological learning and generalisation. Chapter 2 introduced the 

CLS model of learning and memory and emphasised that its formulation is grounded 

in the observation that neural networks can learn and generalise by gradually 

adjusting connections in overlapping, distributed networks of neurons. Importantly, 

the CLS model suggests a central role for memory consolidation in supporting the 

development of such overlapping, distributed representations. Thus, the CLS model 

and computational accounts of morphology could be fruitfully combined to derive 
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predictions regarding the neural representations and mechanisms supporting 

morphological learning and generalisation, how they might be influenced by type and 

token frequency and phonological consistency, and change with overnight 

consolidation.  

 Building on the work of Mirković and Gaskell (in prep.), Experiment 1 

presented in Chapter 5 tackled the issue of whether overnight consolidation changes 

the influence of type and token frequency and phonological consistency on the 

generalisation of novel inflectional affixes. Participants were trained on a novel 

morphological system in which novel stems (e.g. gleet; shiln) combined with novel 

plural affixes (e.g. –aff, -opp) to form new plural nouns (e.g. gleetaff; shilnopp) 

referring to the occupation of male and female characters (e.g. gleetaff[fem:plur] = 

doctors[fem:plur]; shilnopp[masc:plur] = painters[masc:plur]). A morphological learning paradigm 

was developed in which participants learned two sets of novel plural affixes, 

distinguished by gender, on two successive days. Extending previous work looking at 

word learning and consolidation (Davis et al., 2009), this paradigm allowed 

comparing effects of initial learning and overnight consolidation on the generalisation 

of the newly-learned plural affixes. The new morphological system was designed to 

mimic the type and token frequency and phonological consistency characteristics of 

the English past tense such that the influence of overnight consolidation in 

modulating their influence on generalisation could be assessed. Replicating the results 

of Mirković and Gaskell (in prep.), participants produced more irregular 

generalisations and less regular generalisations for novel phonologically ambiguous 

singulars after a period of overnight consolidation. These novel phonologically 

ambiguous singulars contained an ambiguous cue, which had been associated with 

both a high type frequency regular plural affix and a high token frequency irregular 

plural affix during training, analogous to phonologically ambiguous English verbs 

(e.g. ‘flow – flowed’; ‘blow – blew’). 

 Having replicated the results of Mirković and Gaskell (in prep.) and 

established overnight changes in the influence of type and token frequency and 

phonological consistency on the generalisation of newly-learned plural affixes, 

Experiment 2, discussed in Chapter 8, focused on characterising their underlying 



Chapter 10: Conclusions and future directions 

 192 

neural representations and functional networks. As reviewed in the introductory 

chapters, whilst the neural representations and mechanisms underlying 

morphological processing have been the object of extensive investigation, those 

underlying morphological learning remain largely unexplored. Chapters 6 and 7 

introduced RSA and PPI analyses and emphasised their suitability to test predictions 

derived from the CLS model. During fMRI scanning, participants listened to the 

plurals trained immediately before and thus having remained largely unconsolidated 

and to those trained on the previous day and hence having had a chance to undergo 

overnight consolidation. The RSA analysis showed increased similarity structure 

among high type frequency regulars in the left aSTG and decreased similarity 

structure among high token frequency irregulars in the left aSTG, left pSTG, and left 

IFG following overnight consolidation. The PPI analysis revealed greater functional 

connectivity between left aSTG and the left DLPFC for high type frequency regulars 

before overnight consolidation and greater functional connectivity between the same 

two regions for high token frequency irregulars after overnight consolidation. These 

overnight changes in neural representations and functional networks were not directly 

mirrored by changes in generalisation behaviour and the generalisation results of 

Experiment 1 were not replicated.  

 Experiment 3, reported in Chapter 9, sought to examine whether the small 

changes made to the training stimuli between Experiments 1 and 2 could account for 

the differences in generalisation results. To this end, the training stimuli was modified 

with the aim of biasing consolidation and generalisation towards high token 

frequency irregulars. As in Experiments 1 and 2, participants showed sensitivity to the 

phonological consistency of the novel singulars in generalising the newly-learned 

plural affixes but there was no evidence of consolidation-related changes. The next 

section relates the main contributions of this thesis to the CLS model as well as to 

consolidation and generalisation theory more broadly. 

10.2. Main contributions  

As reviewed in Chapters 2 and 3, the CLS model provides a detailed computational 

and neurobiological framework to characterise the representations and mechanisms 

supporting learning and generalisation. One motivation for the formulation of the 
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CLS model comes from the observation of catastrophic interference (McCloskey & 

Cohen, 1989; Ratcliff, 1990; McClelland et al., 1995; French, 1999) in connectionist 

networks whereby, if learned too quickly, new information disrupts or erases existing 

information. A proposed solution assumes a functional and anatomical separation 

between a hippocampal system that supports the rapid acquisition of information 

about individual items and a neocortical system that uses slower, interleaved learning 

to generate distributed, overlapping representations that capture similarities across 

items (McClelland et al., 1995; Kumaran et al., 2016). Within the CLS model, 

interactions between the hippocampal and neocortical system play an important role 

in supporting consolidation. Patterns of hippocampal activity that characterise the 

encoding of new information drive the gradual integration of this new knowledge in 

the neocortex. This is thought to occur when the hippocampus replays the contents of 

a new item or event back to the neocortex during offline periods such as sleep (Wilson 

& McNaughton, 1994; Skaggs & McNaughton, 1996; Peigneux et al., 2004; Rasch et al., 

2007).  

 The CLS model also emphasises different representational schemes in the 

hippocampal and neocortical system. While the hippocampus uses non-overlapping, 

pattern-separated representations to emphasise differences between items or events 

(Bakker et al., 2008; Lacy et al., 2011), the neocortical system employs overlapping, 

similarity-based representations (McNaughton, 2010; Yamins et al., 2014) that 

emphasises commonalities across them. It is these overlapping representations that 

are thought to support generalisation. As highlighted in Chapter 3, however, the 

developmental course of such overlapping representations, the factors that influence 

their development, and how they support generalisation remains unclear.  

10.2.1. Overnight changes in generalisation 

Experiment 1 demonstrated changes in the generalisation of novel plural affixes as a 

consequence of learning and overnight consolidation. More specifically, it suggested a 

role for overnight consolidation in modulating the influence of type and token 

frequency and phonological consistency on generalisation. Recall that participants 

produced more irregular generalisations (ambiguous) and less regular generalisations 

for phonologically ambiguous novel singulars after a period of overnight 
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consolidation. Previous work considering the influence of these factors on 

generalisation has either focused on proficient speakers generalising to novel forms 

(Prasada & Pinker, 1993; Albright & Hayes, 2003) or learners generalising to novel 

forms immediately after training (Bybee & Newman, 1995). The work presented here 

adds to this body of work by suggesting a role for overnight consolidation in 

modulating the influence of type and token frequency and phonological consistency 

on generalisation. The overnight changes in generalisation partly replicate those of 

Mirković and Gaskell (in prep.) obtained in a between-subject design in which 

participants remained awake or slept for an equivalent period of time suggesting a role 

for sleep, rather than the mere passage of time, in accounting for the results.  

 As discussed in Chapter 5, Mirković and Gaskell (2016) argue for a graded 

contribution of sleep-dependent consolidation to morphological learning such that 

arbitrary mappings may show stronger consolidation effects than systematic 

mappings. By this account, arbitrary mappings may be more dependent on 

hippocampal pattern separation and subsequently show greater effects of sleep 

through hippocampal replay whereas systematic mappings may be more swiftly 

integrated into neocortical networks such that effects of sleep may not be as apparent. 

The results obtained by Mirković and Gaskell (in prep.) and in Experiment 1 go some 

way to supporting this proposal. For arbitrary mappings between stems and affixes, as 

is the case for phonologically ambiguous plurals, the increase in irregular 

generalisations and the decrease in regular generalisations, may reflect greater 

dependence on hippocampal pattern separation to keep the two mappings distinct 

during encoding and lead to greater subsequent effects of overnight consolidation.  

 However, these results do not necessarily need to imply greater reliance on 

hippocampal pattern separation. On the one hand, the hippocampal system is not 

only involved in pattern separation but also in pattern completion, which has been 

argued to lead to integration in some circumstances (McClelland et al., 1995; O’Reilly 

& Rudy, 2001; Guzowski et al., 2004; Leutgeb et al., 2004; Schlichting et al., 2015). On 

the other hand, there have now been several empirical demonstrations that the 

hippocampus is involved in, and even necessary, for rapid statistical learning (Strange, 

Duggins, Penny, Dolan, & Friston, 2005; Harrison, Duggins, & Friston, 2006; Turk-



Chapter 10: Conclusions and future directions 

 195 

Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, Scholl, Johnson, & Chun, 

2010; Schapiro, Kustner, & Turk-Browne, 2012; Schapiro, Turk-Browne, Norman, & 

Botvinick, 2016) leading to revisions of the CLS model (Kumaran & McClelland, 

2012; Kumaran et al., 2016; Schapiro, Turk-Browne, Botvinick, & Norman, 2017) that 

outline a role for the hippocampus in representing similarities across items or 

episodes and in supporting generalisation in some cases. 

 Furthermore, recall that in Experiment 1 participants produced fewer irregular 

generalisations (consistent) for novel phonologically diverse singulars after a period of 

overnight consolidation as well as fewer regular generalisations for novel 

phonologically consistent singulars. Both of these effects were interpreted as reflecting 

a strengthening of the regular and irregular mappings manifesting in a reduction of 

inappropriate generalisations reflecting more ‘optimal’ representations (Stickgold & 

Walker, 2013). Whilst less straightforwardly than in Experiment 1, the generalisation 

results in Experiment 2 also showed a reduction in inappropriate responses with 

overnight consolidation. Thus, overnight changes in generalisation performance 

reported in this thesis add to the work of Mirković and Gaskell (2016) and suggest 

that the picture is likely more complex than consolidation simply prioritising arbitrary 

over systematic mappings.  

 A more cautious, and arguably more biologically plausible, suggestion is that 

consolidation processes are ecologically guided by the features of the to-be-

remembered items evoked at encoding or in the peri-encoding period (Stickgold & 

Walker, 2013). While arbitrariness (here, phonological ambiguity) may constitute one 

such feature, the results obtained in Experiments 1 and 2 suggest that frequency 

measures are also relevant. Thus, different features likely contribute to determining 

the consolidation trajectory of newly-learned information. By this account, 

hippocampal replay may preserve features evoked at encoding or in the peri-encoding 

period rather than indiscriminately replay all items or events or prioritising arbitrary 

over systematic mappings.  

10.2.2. Overnight changes in neural representations 

Using RSA, Experiment 2 demonstrated overnight changes in the neural 

representations of newly-learned inflected words for the first time. Recall that there 
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was increased similarity structure among plurals sharing the same high type frequency 

regular affix in the left aSTG and decreased similarity structure among plurals sharing 

the same high token irregular affix in the left aSTG, left pSTG, and left IFG following 

overnight consolidation. The increase in similarity structure among high type 

frequency regulars is consistent with previous behavioural work suggesting that the 

formation of context-independent derivational affix representations occurs after a 

period of offline consolidation (Merkx et al., 2011; Tamminen et al., 2012, 2015) and 

benefits from high type frequency (Tamminen et al., 2015). It is also consistent with 

single-mechanism theories of morphology which consider type frequency to be a 

determining factor of productivity and previous network simulations (Plunkett & 

Marchman, 1991, 1993; Plunkett & Juola, 1999) showing that high type frequency is 

needed for a network to shift from memorising specific mappings to discovering 

regularities shared across several mappings.  

 Furthermore, as noted in Chapter 3, the CLS model predicts that 

generalisation emerges from stored knowledge of the shared features across items 

encoded in memory by overlapping representations. On this view, affixes with high 

type frequency should benefit more from the overlap in neocortical representations 

and consequently be more likely to form representations that are independent of the 

stem contexts in which they were learned. In their MEG study, Leminen et al. (2016) 

reported increased responsiveness of the left STG to real stems combined with trained 

derivational affixes following overnight consolidation. The authors argued that this 

result could be consistent with the development of an affix representation following 

overnight consolidation. As acknowledged by the authors, however, their result could 

not distinguish whether the development of such an affix representation was driven 

by just the affix, the whole affixed form, or both. Leminen et al. (2016) also used the 

same stimuli in two MEG recording sessions such that effects of overnight 

consolidation could not be disentangled from effects of re-exposure to the trained 

affixes.  

 In contrast, Experiment 2 employed a single scanning session following two 

days of training with different plurals. Changes in the underlying representation of the 

plurals could therefore be more confidently attributed to consolidation processes 
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rather than additional learning taking place from re-exposure. Furthermore, the 

combination of fMRI and RSA used in Experiment 2 augment the results of Leminen 

et al. (2016) by providing evidence for similarity structure among newly-learned 

plurals being driven by inflected forms sharing the same regular affix. The results 

reported in this thesis thus make a unique contribution to the existing body by 

providing the first neural evidence consistent with an affix representation emerging as 

a consequence of learning and overnight consolidation and that high type frequency 

plays a key role in supporting the development of such representation. Leminen et al. 

(2016) also suggested that their results are consistent with the left STG playing a key 

role in the representation of lexico-semantic knowledge. The results obtained in 

Experiment 2 showed that the best fit for a model testing for an affix representation 

was restricted to the left aSTG. As discussed in Chapter 8, the characterisation of the 

anterior portion of the STG remains elusive and future work will be required to gain a 

better understanding of its roles in morphological learning, consolidation, and 

generalisation. However, the results of Experiment 2 suggest that it may be implicated 

in the representation of newly-acquired morphological knowledge.  

 The development of similarity structure among high type frequency regulars 

consistent with the development of an affix representation following overnight 

consolidation also bears upon the existing literature on the role of sleep in schema 

formation. Recall from Chapter 3 that Lewis and Durrant’s (2011) model of schema 

formation suggests that more strongly potentiated connections for overlapping 

elements between memories have a higher chance of withstanding synaptic 

downscaling during sleep and thus facilitate the emergence of a schema. Whilst 

further work assessing the role of sleep in the learning, consolidation, and 

generalisation of novel morphology will be required, the emergence of similarity 

structure among high type frequency regulars observed in Experiment 2 would be 

consistent with this account. Furthermore, previous studies (Ellenbogen et al., 2007; 

Durrant et al., 2011; Lau et al., 2011; Coutanche et al., 2013) have reported enhanced 

generalisation performance following a single period of sleep consistent with the rapid 

development of overlapping neocortical representations that can support 

generalisation.  
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 Despite not observing increases in regular generalisations following overnight 

consolidation in the work presented in this thesis, the increase in similarity structure 

among high type frequency regulars is nonetheless consistent with the suggestion that 

sleep may play a role in schema formation. These results are significant since they 

provide evidence for similarity structure emerging in neocortical representational 

areas after a 24hr period of offline consolidation containing sleep. As reviewed in 

Chapter 3, the earliest formulation of the CLS model (McClelland et al., 1995) 

considered the development of similarity structure as being a protracted process 

spanning several days to months. The evidence provided here suggests that a single 

night’s sleep may be sufficient to support the development of similarity structure and, 

as such, aligns more clearly with Lewis and Durrant’s (2011) model of schema 

formation during sleep.  

 Another important, and perhaps more intriguing, finding concerns the 

decrease in similarity structure among high token frequency irregulars in neocortical 

representational areas following overnight consolidation. As discussed in Chapter 3, 

the CLS model predicts that many repetitions of the same item will lead to changes in 

the synaptic connections involved in the representation of that specific item but not 

support the development of similarity structure (McClelland et al., 1995; Kumaran & 

McClelland, 2012). The decrease in similarity structure among high token frequency 

irregulars could thus be interpreted as strengthening their idiosyncratic 

representations. As already noted, Lewis and Durrant’s (2011) schema formation 

model predicts a role for high type frequency in supporting the development of 

overlapping representations during sleep. Could the model also account for the role of 

token frequency in strengthening idiosyncratic representations? In line with Lewis 

and Durrant’s (2011) model, Stickgold and Walker (2013) note that when replay of a 

recently formed memory is accompanied by the parallel activation of a larger set of 

recently formed memories sharing common features, schema formation may occur. 

They also note that when a single item memory is reactivated in conjunction with an 

existing network of connections or schema, item integration may occur. This would, 

for example, account for the emergence of lexical competition between new (e.g. 

cathedruke) and existing words (e.g. cathedral) with consolidation (Gaskell & Dumay, 

2003; Dumay & Gaskell, 2007, 2012). Of particular relevance here, Stickgold and 
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Walker (2013) argue that if neither schema formation nor item integration occurs, 

sleep may simply enhance the representation of recently encoded item-specific 

memories. Thus, the decrease in similarity structure among high token frequency 

regulars following overnight consolidation may reflect the fact that without 

sufficiently high type frequency to support the development of a new schema (here, an 

affix representation) or similarity with existing words to support integration, 

overnight consolidation may instead work to strengthen their idiosyncratic, whole-

word representations.  

 This kind of characterisation of the consolidation process may be seen as 

similar to Lewis and Durrant’s (2011) model but emphasises the relevance of type and 

token frequency in determining the consolidation trajectory of newly-learned items 

(Figure 49). As noted in Chapter 8, the initial similarity structure among high token 

frequency irregulars remains intriguing and more difficult to relate to existing 

theoretical frameworks. Speculatively, it may reflect their greater salience. As the 

consolidation process ensues, low type frequency may be insufficient to support the 

development of overlapping representations. Initial salience tags attached to high 

token frequency during learning may subsequently be used during sleep to enhance 

item-specific representations. Of course, this account is predicated on the assumption 

that similarity structure observed before (among high token frequency irregulars) and 

after (among high type frequency regulars) a period of overnight consolidation may 

index different kinds of representations (i.e. one based on salience, the other reflecting 

the formation of a schema). Thus, questions relating to the factors determining the 

consolidation process for different types of information as well as the possibility of 

wakeful tagging and its underlying neural mechanisms remain important unresolved 

issues for future research. 

 It should be noted that the changes in similarity structure observed in 

Experiment 2 are also largely consistent with Bybee’s usage-based model (1985, 1988, 

1995, 2001) introduced in Chapter 3. By this account, when several inflected words 

share the same affix (i.e. high type frequency), these inflected words will be related to 

each other and the representation of the affix will emerge. The increase in similarity 

structure among high type frequency regulars in Experiment 2 provides neural 
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evidence that is consistent with this account and further suggests a role for overnight 

consolidation in supporting the development of an affix representation. Bybee’s 

usage-based model (1985, 1988, 1995, 2001) also proposes that inflected words with 

high individual token frequency are less likely to be acquired by forming relations 

with other inflected words. The higher the token frequency of an inflected word the 

stronger its lexical representation. On this view, the decrease in similarity structure 

among high token frequency irregulars observed in Experiment 2 would be consistent 

with a strengthening of their whole-word representations. 

 

 

 

 

 

 

 

 

 

 

Figure 49. Overnight consolidation of type and token frequency 
Adaption of Lewis and Durrant (2011) model of schema formation to account for the development of 
neocortical representations for high token and high type frequency inflected plurals through 
hippocampal replay during overnight consolidation. a) hippocampal memories for two high token 
frequency irregular consistent plurals (red), two high token frequency ambiguous plurals (green), and 
three high type frequency regular plurals (blue) are reactivated during sleep. This reactivation includes 
some neocortical neurons unique to each memory, and some that are shared by memories. b) for high 
type frequency plurals (blue) shared neurons are potentiated more strongly and as a result develop 
stronger connections to each other (solid lines) than neurons not involved in this overlap (dotted 
lines). For high token frequency plurals (red and green), unique neurons are potentiated more strongly 
and as a result develop stronger connection to each other (solid lines) than overlapping neurons 
(dotted lines). c) following synaptic downscaling, only these strong connections remain intact. This set 
of neuron now represents abstraction from the high type frequency regulars, encoding their shared 
features only (i.e. affix representation) and item-specific representations for high token frequency 
irregulars. 
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10.2.3. Overnight changes in functional networks 

Using PPI, Experiment 2 showed overnight changes in the functional networks 

underlying newly-learned inflected words for the first time. Recall that there was 

greater functional connectivity between the left aSTG and the left DLPFC for high 

type frequency regulars before overnight consolidation and greater functional 

connectivity between the same two regions for high token frequency irregulars after 

overnight consolidation. These results are consistent with the suggestion outlined in 

the previous section that different types of information may undergo different 

consolidation trajectories. Two lines of evidence, each related to a different purported 

role of the DLFPC in memory processing, are relevant. As discussed in Chapter 8, one 

line of evidence suggests that prefrontal regions contribute to memory through 

control over retrieval processes within other brain areas (Moscovitch, 1992; Buckner 

& Wheeler, 2001; Miller & Cohen, 2001; Dobbins, Foley, Schacter, & Wagner, 2002) 

The DLPFC is thought to control memory retrieval by selecting memories relevant to 

the current context and suppressing irrelevant memories (Anderson et al., 2016). 

Much of the work on the role of the DLPFC in memory suppression has thus far 

focused on hippocampally-dependent memories. However, as noted by Anderson et 

al. (2016), it is likely that over time, memory consolidation leads to an integrated, 

established representation in the neocortex. The results obtained in Experiment 2 

suggest that the DLPFC may functionally interact with neocortical representational 

areas to orchestrate the retrieval of different mappings that are competing for 

consolidation.  

 Relatedly, previous work has suggested an important role for the DLPFC in 

resolving competition between memories at retrieval (Badre, Poldrack, Paré-Blagoev, 

Insler, & Wagner, 2005; Thompson-Schill, Bedny, & Goldberg, 2005). On this view, 

high token frequency irregulars may initially be prioritised given their greater 

representational structure. As a result, the DLPFC may work to inhibit or suppress the 

retrieval of high type frequency regulars as indexed by increased functional 

connectivity between the aSTG and DLPFC. As similarity structure among high type 

frequency regulars develops with overnight consolidation, the DLPFC may 

subsequently work to inhibit or suppress the retrieval of high token frequency regulars 
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as indexed by the opposite pattern of functional connectivity. This interpretation is, of 

course, limited by the lack of previous data available and poorly specified nature of the 

interactions between PFC and neocortical representational areas in memory 

inhibition and suppression or how they may be implicated in the consolidation 

process. Such questions remain open for future research.   

 A second line of evidence suggests that prefrontal regions contribute to 

memory through control over encoding processes within other brain regions. 

According to the Hemispheric Encoding Retrieval Asymmetry model (Tulving, 

Kapur, Craik, Moscovitch, & Houle, 1994; Habib, Nyberg, & Tulving, 2003) the left 

PFC is more involved in episodic memory encoding, whereas the right PFC is more 

involved in memory retrieval. In line with this model, repetitive transcranial magnetic 

simulation studies have provided evidence for a causal role for the left DLPFC in the 

encoding of novel verbal stimuli (Sandrini, Cappa, Rossi, Rossini, & Miniussi, 2003). 

At encoding, new stimuli are initially processed by representational neocortical areas 

before being transmitted to MTL structures. At this stage, PFC is though to play a role 

in providing top-down control over the encoding process by guiding, modifying, and 

elaborating the representations in representational neocortical areas and MTL 

structures on the basis of current goals and task demands, and by ensuring the 

representations are amenable to long-term storage (Simons & Spiers, 2003). The 

DLPFC has been suggested to play a key role in such organisational functions 

(Fletcher, Shallice, & Dolan, 1998).  

 By this account, the results reported in Experiment 2 may be interpreted as 

suggesting the differential involvement of the left DLPFC top-down control processes 

depending on the type and token frequency and training day of the novel inflected 

words. The lack of similarity structure among high type frequency regulars on Day 9 

may make them less amenable to long-term storage. As a result, greater functional 

connectivity between the left aSTG and the left DLPFC may reflect greater demands 

on the organisational functions of the left DLPFC to ensure successful subsequent 

consolidation and long-term storage. By contrast, top-down control processes from 

the left DLPFC may not be required for high token frequency irregulars that have 
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initial similarity structure and thus may already be amenable to consolidation and 

long-term storage. 

 The CLS model proposes that new memories are initially dependent on the 

hippocampus and that over the course of consolidation they become represented 

neocortically. Other accounts (see Preston & Eichenbaum, 2013) suggest that context-

guided retrieval of appropriate memory networks for new memories, supported by the 

PFC, plays a key role in the consolidation of new memories. While these studies 

typically focus on the mPFC as playing an important role in supporting schema 

formation, the results obtained here suggest that DLPFC may also play a role in 

memory consolidation. Strategic memory processing by the prefrontal cortex with 

regards to either encoding or retrieval may contribute to memory consolidation and 

underpin different consolidation trajectories for different mappings in a complex 

learning environment. Indeed, both RSA and PPI results obtained in Experiment 2 

may reflect different consolidation trajectories for high type and high token frequency 

inflected words.  

 Several questions remain open for future research. Most work thus far, 

including the work presented in this thesis, has examined brain processes related to 

consolidation either immediately or at relatively short time periods after learning. The 

suggestion that different types of information may undergo different consolidation 

trajectories would require further research at longer timescales. Another challenge 

moving forward will be to disentangle the roles of memory encoding and retrieval 

processes in the consolidation, and representation of new memories. It is particularly 

difficult to design experiments that unequivocally control for memory encoding and 

retrieval processes and it is likely that both occurred in Experiment 2 as participants 

listened to the trained plurals. Acquiring fMRI data as participants learn new inflected 

words may provide a means to isolate encoding processes. Similarly, recall tasks (e.g. 

picture naming) in the scanner may allow to better target retrieval processes.   

10.3. Limitations 

Experiment 2 showed differences in the neural representations and functional 

networks underlying inflected words learned on the same day as scanning and those 
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learned on the day before in a within-subject design. A similar comparison between 

groups of participants that sleep or remain awake following training has yet to be 

conducted. Therefore, the possibility that some of the findings might be due to 

interference between novel inflected words learned first and second, forgetting of the 

words trained first, or due to the mere passage of time in the absence of sleep cannot 

be ruled out. Results from the plural elicitation generalisation tasks in all three 

experiments showed that affix training day had an effect on overall performance with 

participants producing more incorrect responses for Day 8 compared to Day 9 affixes. 

As noted in Chapter 5, this could be due to forgetting of Day 8 affixes or interference 

from Day 9 affixes, two possibilities that cannot be distinguished on the basis of 

present data (Mensink & Raaijmakers, 1988; Anderson, 2003). Future studies that 

include between-group assessment of inflected words learned and tested on the same 

day or subsequent days would be helpful in addressing this limitation. It seems likely, 

however, that several processes including strengthening of item-specific memories, 

abstraction of features shared across several memories, reduction of interference 

between memories, and forgetting of irrelevant memories work synergistically to 

support the development and generalisation of new knowledge. A challenge for future 

research will be to gain a better understanding of how these processes contribute to 

learning, consolidation, and generalisation. As such, the limitations of the work 

presented in this thesis are testament to the complexities and intricacies of the field of 

learning and memory as a whole. It is difficult to design experiments that 

unequivocally target one process and this may be particularly true for complex, multi-

componential stimuli such as inflectional morphology.  

 The generalisation tasks employed in the three experiments were non-speeded. 

As discussed in Chapter 3, Tamminen et al. (2012) suggested that the extent to which 

generalisation tasks require rapid access to newly-learned information may be an 

important factor to consider. Recall that Tamminen al. (2012) found that participants 

were able to generalise new morphological knowledge in a non-speeded task 

immediately after learning, but in a speeded task generalisation was only present at a 

delayed test two days after training. Tamminen et al. (2012) suggested that immediate 

generalisation may reflect the use of context-dependent representations that may not 

be sufficient for online linguistic processing on the speeded task. The overnight 



Chapter 10: Conclusions and future directions 

 205 

changes in neural representations and functional networks observed in Experiment 2 

do suggest that different representations can underly very similar patterns of 

generalisation. Future studies that include both speeded and non-speeded 

generalisation tests may be helpful in establishing how different types of 

representations may underpin generalisation. Furthermore, future imaging data 

acquired whilst participants perform generalisation tasks would allow to characterise 

the kinds of representations and mechanisms that are recruited during generalisation.  

10.4. Future directions 

The main contributions and limitations outlined in the sections above raise a number 

of questions for future research. One of the major questions raised by the work 

presented in this thesis concerns the precise role of sleep in the consolidation and 

generalisation of novel morphology. As reviewed in Chapter 2, whilst a growing body 

of evidence suggests a central role for sleep in memory consolidation, a great deal of 

uncertainty remains about which stages of the complex sleep architecture are relevant. 

Using polysomnography, future work may examine whether particular stages or 

indices of sleep are associated with morphological learning and generalisation. Future 

work may also determine whether morphological learning and generalisation can be 

biased or enhanced experimentally by inducing replay of newly-learned 

morphological knowledge during sleep. A series of recent studies have shown that the 

presentation of memory cues associated with previously learned material during SWS 

benefits the consolidation of both declarative and procedural memories (Rasch et al., 

2007; Rudoy, Voss, Westerberg, & Paller, 2009; Antony, Gobel, O’Hare, Reber, & 

Paller, 2012; Bendor & Wilson, 2012; Fuentemilla et al., 2013; Rihm, Diekelmann, 

Born, & Rasch, 2014; Schreiner & Rasch, 2015; Creery, Oudiette, Antony, & Paller, 

2015; Cairney, Lindsay, Sobczak, Paller, & Gaskell, 2016). For example, as reviewed in 

Chapter 2, Rasch et al. (2007) have shown improvements in memory for object 

locations after sleep when odour cues associated with individual objects during 

learning are presented during SWS.  

 Together, these cueing techniques are known as targeted memory reactivation 

(TMR; Oudiette & Paller, 2013) and have recently begun to be applied to language 

learning paradigms (see Schreiner & Rasch, 2017 for a review). For example, Schreiner 
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and Rasch (2015) have shown that auditory re-exposure to previously trained Dutch 

words during SWS improves later memory for their German translations in native 

German speakers. More recently, Batterink and Paller (2017) have shown that 

auditory cueing of a previously trained artificial grammar containing dependency 

rules between nonwords during SWS led to modest but significant improvements in 

generalisation of the rules to novel sequences of nonwords. These initial findings 

suggest that TMR may function not only to strengthen item-specific memory but may 

also support the development of more abstract knowledge that can support 

generalisation. In the context of the work presented in this thesis, future work may 

look at the influence of TMR on the learning and generalisation of inflectional 

patterns trained with varying type and token frequency and phonological consistency. 

Such manipulations might allow delineating the potential effects of sleep on 

modulating the influence of these factors on consolidation and generalisation. For 

example, findings showing that the influence of type and token frequency and 

phonological consistency on generalisation might be differentially sensitive to 

reactivation during sleep might imply different mechanisms contributing to their 

consolidation. The overnight changes in the neural representations and functional 

networks underlying newly-learned inflected words reported in this thesis together 

with the emergence of TMR in language learning research provide a strong basis for 

future work to clarify the role of sleep in morphological learning and generalisation.  

 An important challenge for future research will be to determine which types of 

information may be preferentially consolidated when complex, multi-componential 

stimuli are encountered. The possibility of pre-sleep tagging of novel information as 

being particularly relevant to future behaviour has been considered in interpreting the 

results of Experiments 1 and 2 and offered as a potentially explanatory mechanism for 

the preferential consolidation of some inflectional patterns over others. Future work 

will need to characterise the neural mechanisms that might initially be responsible for 

creating such tags. Rauchs et al. (2011) have shown greater hippocampal activation 

during the initial encoding of novel items cued for remembering compared to those 

cued for forgetting. Importantly, this increase in hippocampal activity at encoding 

predicted subsequent recognition of the novel items after a night’s sleep. Rauchs et al. 

(2011) argue that the hippocampal activity at encoding may therefore reflect the 
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tagging of items for subsequent sleep-dependent consolidation. This interpretation is 

consistent with reports of wake-dependent hippocampal replay in rodents (Foster & 

Wilson, 2006) and enhanced post-learning hippocampal-neocortical functional 

connectivity following a task with high subsequent memory in humans (Tambini, 

Ketz, & Davachi, 2010). In the context of the work presented in this thesis, future 

work may include an encoding fMRI session such that hippocampal engagement, 

patterns of representational similarity, and functional connectivity during the initial 

learning of the novel morphological system may be related to subsequent changes in 

representation and generalisation following overnight consolidation. Such work 

would also provide an opportunity to gain further insights into the reciprocity 

between learning and consolidation processes. 

 Yet another direction for future research will be to clarify the conditions under 

which consolidation may strengthen item-specific representations or abstract features 

common to several items to generate new schemas. The evidence reported in 

Experiment 2 suggests that it is likely that this is not an either or process and that 

consolidation may support both. However, the precise features of learning episodes, 

the potential tagging processes that may occur at encoding or in the peri-encoding 

period, and the physiological sleep mechanisms that may lead to one type of 

consolidation over the other remain to be established. Clearly, the questions of how 

such representations may then support generalisation, the precise conditions under 

which consolidation may or may not benefit generalisation, and the underlying neural 

representations and mechanism of memory consolidation remain important 

unresolved issues. 

 In sum, a wealth of exciting new findings can be expected from future research 

aimed at uncovering the relationships between morphological learning, memory 

consolidation, and generalisation. Success will require an alliance between these 

traditionally separate research endeavours and the use of complementary research 

methods including behavioural experiments, neuroimaging, and polysomnography. 

Theoretical models and hypotheses about the role of memory consolidation in 

language learning and generalisation specifically but also in learning and 

generalisation more broadly will likely be transformed considerably in the process. 
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The work presented in this thesis has made a unique contribution to the existing body 

of knowledge by demonstrating overnight changes in the neural representations and 

functional networks underlying newly-learned inflectional morphology. It has also 

shown that behavioural paradigms coupled with advanced multivariate analyses of 

fMRI data can be successfully combined to test predictions derived from models of 

learning, consolidation, and generalisation. Finally, it has provided a strong basis and 

generated a number of questions for future work to clarify the role of consolidation in 

the learning and generalisation of morphological knowledge. 
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Appendix 1 

Peak voxels (maximum of three peaks/clusters, separated by > 8mm) showing 
significant effects in the univariate analysis  

Brain region (AAL) x y z
Cluster size 

(voxels) Z-value

Left superior temporal gyrus -56 -6 0 3948 6.44
-44 -20 6 6.31
-60 -26 6 5.99

Right superior temporal gyrus 54 -16 6 4121 6.41
48 -32 12 6.27
40 -30 8 5.99

Right medial orbitofrontal cortex 26 42 2 162 4.10
18 48 -6 3.93
26 34 0 3.64

Left anterior cingulate cortex -10 22 42 144 4.07
-16 24 32 3.99
-10 22 26 3.47

Plurals > baseline

Affix training day x phonological consistency x affix regularity interaction

 

Results thresholded at p < .001 uncorrected at the voxel level and p < .05 FWE corrected at the cluster level 
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Appendix 2 

Significant effects in the ROI-to-ROI functional connectivity analysis 

Seed Target T-value p-unc p-corr

day 9 > day 8
Left aHC Left pSTG 3.08 0.003 0.012

Left pSTG Left aHC 3.05 0.003 0.013

day 8 > day 9
left aSTG Left IFG 3.18 0.002 0.006

Left pHC 3.11 0.003 0.006

left IFG Left aSTG 3.14 0.003 0.010
Left pHC 1.89 0.036 0.049
left pSTG 1.89 0.036 0.049

Main effect day

Main effect day (type frequency)

 

Results thresholded at p < .001 uncorrected  (p-unc) and FDR corrected (p-corr) for multiple comparisons 
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Appendix 3 

Significant effects in the seed-to-voxel functional connectivity analysis  

Seed ROI Functionally connected brain region (AAL) x y z
cluster size 

(voxels)
p-FWE 

(cluster-level)

Left aSTG Left middle frontal gyrus -42 36 42 31 0.001
Left middle frontal gyrus -42 40 30 17 0.045

Left pSTG Left middle frontal gyrus -46 38 30 18 0.033

consistent > ambiguous
Left aSTG Left inferior parietal lobule -46 -42 50 36 < 0.001

Left inferior parietal lobule -46 -28 40 27 0.002
Right inferior temporal gyrus 48 -64 -8 20 0.015

Left pSTG Left inferior parietal lobule -50 -34 42 21 0.012

Left aHC Left inferior temporal gyrus -40 -46 -16 27 0.002

ambiguous > consistent
Left aHC Right supramarginal gyrus 56 -42 30 46 < 0.001

Left aHC Left lingual gyrus -22 -72 -4 34 < 0.001
Left superior occipital gyrus -14 -94 20 26 0.003
Right fusiform gyrus 28 -60 -8 17 0.046

Left IFG Left inferior parietal lobule -34 -52 50 30 0.001
Right inferior parietal lobule 40 -40 52 17 0.049

Affix training day x affix regularity

Main effect affix regularity
irregular > regular

Main effect phonological consistency

 

Results thresholded at p < .001 uncorrected at the voxel level and p < .05 FWE corrected at the cluster level 
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