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0.1 Abstract: Relativistic Quantum Tasks

Quantum mechanics, which describes the behaviour of matter and energy on very
small scales, is one of the most successful theories in the history of science. Ein-
stein’s theory of special relativity, which describes the relationship between space
and time, is likewise a highly successful and widely accepted theory. And yet
there is a well-documented tension between the two theories, to the extent that it
is still not clear that the two can ever be reconciled [1, 2].

This thesis is concerned with furthering the current understanding of the re-
lationship between quantum mechanics and special relativity. In the first part of
the thesis we study the behaviour of quantum information in relativistic space-
time. The field of quantum information arose from the realisation that quantum
information has a number of crucial properties that distinguish it from classical
information, such as the no-cloning property [3], quantum contextuality [4] and
quantum discord [5]. More recently, it has been realised that placing quantum
information under relativistic constraints leads to the emergence of further unique
features which are not exhibited by either non-relativistic quantum information
or relativistic classical information [6–8]; as part of this ongoing research pro-
gramme we develop a new relativistic quantum ‘paradox’ which puts pressure on
conventional views about the spatiotemporal persistence of quantum states over
time. This part of the thesis is based on a paper co-authored with Adrian Kent and
published in Phys Rev A (see ref [9]) and a second paper also co-authored with
Adrian Kent (see ref [10]) published in response to Finkelstein’s comments on our
original paper (see ref [11]). We then study a new set of relativistic quantum pro-
tocols which involve the distribution of entangled states over spacetime, defining
one task involving the distribution of the two halves of a known entangled state,
and another task involving the distribution of the two halves of an unknown en-
tangled state. This part of the thesis is based on unpublished work with Adrian
Kent.

The second part of the thesis deals with relativistic quantum cryptography,
a field which first began attracting serious attention when it was realised that a
cryptographic task known as ‘bit commitment,’ can be implemented with perfect
security under relativistic constraints [12, 13]. This result was highly significant,
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since it is provably impossible to implement bit commitment with perfect security
in a purely classical or purely quantum context [14,15], and hence bit commitment
is an ideal starting point for probing the power of relativistic quantum cryptogra-
phy. In this thesis we propose several new relativistic quantum bit commitment
protocols which have notable advantages over previously known protocols. This
part of the thesis is based on two papers co-authored with Adrian Kent and pub-
lished in Phys Rev A and the International Journal of Quantum Information (see
refs [16,17]). We then move to a related task, a generalization of zero-knowledge
proving which we refer to as knowledge-concealing evidencing of knowledge of
a quantum state; we prove no-go theorems concerning the possibility of imple-
menting this task with perfect security, and then set out a relativistic protocol for
the task which is asymptotically secure as the dimension of the state in question
becomes large. These results have interesting foundational significance above and
beyond their applications in the field of cryptography, providing a new perspective
on the connections between knowledge, realism and quantum states. This part of
the thesis is based on a paper co-authored with Adrian Kent (see ref [18]).

Emily Adlam, Relativistic Quantum Tasks
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Chapter 1

Introduction

The twin revolutions of quantum theory and relativity in the early twentieth cen-
tury led to an explosion of scientific progress whose implications have shaped not
only modern physics but the entire modern world [19, 20]. And yet it is striking
that these two contemporaneous theories have, to some extent, developed sepa-
rately in parallel, coming into contact many times over the course of the century
but never being fully reconciled [2,21]. A unification of quantum theory with gen-
eral relativity’s account of gravity remains elusive, and is unclear whether it will
ever be possible to achieve such a thing without profoundly altering the fundamen-
tal nature of at least one of the two theories [22]. We do now have formulations
of quantum theory which are consistent with special relativity under appropriate
conditions [23, 24], but there is still much to be learned about the way the two
theories relate to one another.

This thesis will, in large part, be concerned with furthering the current under-
standing of the relationship between special relativity and quantum theory. We
work principally in regimes where the theories are individually well understood
and believed to be empirically consistent [25, 26], but where nonetheless inter-
esting and surprising effects can result from their interaction. In this chapter, we
will briefly introduce the basics of quantum mechanics and special relativity, then
comment on some enduring difficulties.

11
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1.1 Special Relativity

Special relativity, as initially introduced by Einstein in his beautiful 1905 paper
[27], follows from two simple postulates:

1. The laws of physics are invariant in all inertial systems

2. The speed of light in a vacuum is the same for all observers, regardless of
the motion of the light source

These simple ideas turn out to have a staggering range of consequences, in-
cluding length contraction, time dilation, and mass-energy equivalence. But the
consequence with which we will be most concerned in this thesis is the no-
signalling principle, which states that no signal can travel faster than the speed
of light.

Because the no-signalling principle will be the cornerstone of many of the re-
sults we introduce here, it is most perspicacious for us to regard special relativity
as a theory about the causal structure of spacetime. Einstein’s postulates lead nat-
urally to a formulation of special relativity on a manifold of pointlike events with
three spatial dimensions and one temporal dimension, equipped with an indefi-
nite non-degenerate bilinear form (the Minkowski inner product) which defines a
frame-invariant ‘spacetime interval’ between pairs of events in spacetime [28–30].
When the interval between two points is negative, or ‘timelike,’ there exists a
frame of reference in which the corresponding events are simultaneous; when the
interval is positive, or ‘spacelike,’ it is possible in principle for a signal travelling
slower than the speed of light to travel from one event to the other; and when the
interval is zero, or ‘lightlike,’ a signal can be sent from one to the other if and only
if it travels at the speed of light. Two events can therefore stand in a cause-effect
relation only if they take place at points separated by a spacelike or lightlike inter-
val. Using this terminology we may define a past and future lightcone for every
point in Minkowski space, where the past lightcone of x is the set of all points
that are spacelike or lightlike related to x and in its past, and the future lightcone

of x is the set of all points that are spacelike or lightlike related to x and in its
future. Loosely speaking, the past lightcone contains all the points which could
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possibly influence an event at x and the future lightcone contains all points that
could possibly be influenced by an event at x [29, 30]. It is this causal structure
which constitutes the empirical content of Minkowski spacetime, and indeed, it
can be shown that the causal structure of Minkowski spacetime fully determines
its topological and metrical structure [31], so one could equally well regard the
causal structure as being the truly fundamental object of the theory.

For completeness, we recall that special relativity is now understood to be a
limiting case of a more general theory which, aptly, is known as general relativity.
Rather than the flat spacetime of special relativity, general relativity postulates a
curved spacetime, with the curvature determined by the energy and momentum of
the matter and radiation present in spacetime: this allows gravity to be described
as a geometric property of spacetime [32]. The results described in this thesis
are intended for use in standard terrestrial regimes where the approximation of
flat spacetime is valid, and therefore we have not provided general relativistic
formulations of our results. We note, however, that for a large class of physically
reasonable general relativistic spacetimes,1 the topological and metrical structure
is determined up to a scale factor by the causal structure [31], and therefore since
our theorems and proofs are couched directly in the language of causal structure,
we conjecture that these results would still be valid in a large class of curved
spacetimes, provided that participants in the protocols under consideration do not
have the ability to manipulate the structure of spacetime. Of course all bets are
off if one is faced with an adversary who is able to significantly alter the shape of
spacetime during a protocol, but it seems safe to assume this will not be the case
for the foreseeable future.

1Specifically, those where the condition of strong causality is upheld - which is to say, loosely
speaking, that every event has an arbitrarily small neighbourhood to which no causal curve returns
after having left that neighbourhood. The spacetimes that fail to satisfy this condition are usually
pathological in some way, and thus are not usually considered physically realistic [31]
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1.2 Quantum Mechanics

1.2.1 Basic postulates

At the genesis of quantum mechanics, the new theory was met with resistance
from many camps [33,34] - and understandably so, for the theory has a number of
features which seem entirely at odds with common-sense intuitions about space,
time and perhaps even the scientific process itself [35]. But quantum theory won
out in the end, its empirical successes leaving its critics with little alternative but to
concede defeat, although some never gave up hope that quantum mechanics might
ultimately turn out to be derivable from a fundamental theory more consistent with
their intuitions [36, 37].

Quantum mechanics is, in many ways, more a methodological prescription
than a concrete scientific theory [38,39]: it sets out a mathematical framework for
the construction of physical theories which must be supplemented with detailed
experimental work to determine which specific mathematical objects represent the
actual physical systems whose behaviour we would like to predict. However, in
this thesis we will be more concerned with the abstract structure than with any
specific realisation of it, and hence it is sufficient to regard quantum mechanics2

as being characterised by the following four postulates [38]:

1. To every physical system we ascribe a Hilbert space H known as the state

space of the system.3 At any given time, the system is completely described
by its state vector, which is a unit vector |ψ〉 in the state space.

2. Closed quantum systems evolve by unitary transformations.4 In particular,
a closed quantum system can be associated with a fixed Hermitian5 oper-
ator H , and the time evolution of the state of the system is then given by
H|ψ(t)〉 = i~d|ψ(0)〉

dt
(the Schrödinger equation).

2Throughout this thesis, we will use the terms ‘quantum mechanics’ and ‘quantum theory’
interchangeably to refer specifically to the non-relativistic theory.

3A Hilbert space is a complex vector space equipped with an inner product.
4A unitary transformation is a transformation that preserves the value of the inner product;

unitary operators U satisfy U†U = I, where U† denotes the conjugate transpose of U and I
denotes the identity operator.

5A Hermitian operator is defined as an operator which is equal to its own adjoint.
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3. A measurement is described by a Hermitian operator M on the state space
of the relevant system, with spectral decomposition M =

∑
mmPm, where

Pm is the projector onto the eigenspace of M with eigenvalue m. When a
system is prepared in the state |ψ〉 and the measurement M is performed,
the probability of obtaining the result m is equal to Tr(Pm|ψ〉〈ψ|), where
|ψ〉〈ψ| denotes the outer product of the state vector |ψ〉 with itself; after this
result has been obtained, the state of the system is Pm|ψ〉√

Tr(Pm|ψ〉〈ψ|)
.

4. When we combine two physical systems, the state space for the resulting
composite system is the tensor product of the individual state spaces; if we
combine n systems prepared in states |ψ1〉, |ψ2〉 , ... , |ψn〉, the resulting
joint state is |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.

1.2.2 Entanglement

Postulate 4 tells us that if we prepare the parts of a composite system indepen-
dently and then simply combine them, the resulting joint state will be a tensor
product of states on the individual parts of the system. But it is possible to pro-
duce other types of joint states by applying a unitary operation to or performing a
measurement on some composite system, and in general, the result of such opera-
tions will be an entangled state, i.e. a state which can no longer be written as the
tensor product of states on the individual subsystems. It seems that such compos-
ite systems have global properties that cannot be reduced to separate properties of
the individual subsystems [38, 40, 41].

One might imagine that this feature is no more than a quirk of our choice of
mathematical representation, but in fact, Bell showed in 1964 that the existence of
entanglement has profound physical consequences [42,43]. To do so, Bell studied
‘local hidden variable models’ - that is, models in which quantum systems have
a set of ‘hidden’ properties in addition to their quantum state, and all correlations
between measurements made at different spacetime points can be traced back to
correlations between hidden variables that were established during a local inter-
action at some point in their common past. It is possible to prove that in any
such model, given two systems Sa, Sb, and two different measurements {A,A′},
{B,B′} for each of the two systems respectively, each of these four measurements
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having two possible outcomes labelled by +1 or−1, then if 〈AB〉 denotes the ex-
pectation value of the product of the two results when we perform measurements
A,B on the two systems respectively, the following CHSH inequality6 must be
satisfied:7

〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 ≤ 2 (1.1)

But there exist entangled quantum systems exhibiting correlations that violate
this inequality, and therefore quantum mechanics cannot be fully explained by any
local hidden variable model [44]. Moreover, the existence of these correlations has
been verified by rigorous experiments successively eliminating larger and larger
numbers of possible loopholes [45–47], and thus it seems likely that unless we
wish to eschew a realist description of nature altogether, we will be forced to
postulate some kind of ‘spooky action at a distance.’8 This is one of the features of
quantum mechanics which has caused the most consternation over the last century
[40, 41].

One might naturally wonder if the peculiar non-local character of quantum
mechanics might violate the no-signalling principle we met in Special Relativity,
but fortunately, it is not so! Direct conflict is averted by the quantum mechan-
ical no-signalling theorem, which states that all operations on distinct quantum
systems commute with each other [48], implying that although the outcomes of
measurements on separate subparts of entangled systems can be correlated in a
non-local way, no information can be transferred directly via these correlations.
This theorem ensures that, despite the tension between quantum mechanics and

6Bell originally proved a related but different inequality, but the CHSH inequality originally
proved by Clauser, Horne, Shimony and Holt [44] is more commonly used in modern studies, and
hence we employ it here and throughout the thesis.

7This inequality applies to the case where the addition of the hidden variables makes the
results of all measurements deterministic and also to the case where the hidden variables simply
assign probabilities to outcomes.

8It should be acknowledged here that there are certain realist interpretations of quantum me-
chanics whose proponents would argue that this conclusion does not follow within their interpre-
tation, most notably certain versions of the Everett approach; however, in most cases these inter-
pretations save locality only by introducing something which is arguably just as counterintuitive,
such as the postulation of multiple worlds in the Everett approach.
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special relativity, the two do not make any predictions which are outright incon-
sistent. It is important to reinforce, however, that the quantum-mechanical and
special relativistic no-signalling principles are not identical, and neither one im-
plies the other: the relativistic principle does not rule out information transfer via
measurements on entangled systems in cases where one measurement takes place
in the future lightcone of the other, while the quantum-mechanical theorem has
nothing to say about whether an object can physically travel faster than light.

1.2.3 Monogamy

One of the most intriguing properties of quantum entanglement is the fact that it
is ‘monogamous’ - that is, there is a tradeoff between the amount of entanglement
that a given quantum system can share with other systems. In particular, in chapter
5 we will make use of the fact that if a given systemA is maximally entangled with
some system B, then it cannot share entanglement with any other system [49].

The usual quantitative expression of the monogamy of entanglement employs
the ‘concurrence’ (or ‘tangle’) to quantify the entanglement between various pairs
of systems [50]. But while concurrence is a mathematically tractable measure
of entanglement, its physical interpretation is not straightforward [51, 52], and
therefore it is sometimes preferable to describe monogamy in a more operational
way by stating it as a constraint not on entanglement itself but on the possible
sets of correlations which can be obtained from measurements on quantum sys-
tems [52, 53]. This operational formulation also enables us to make comparisons
to monogamy properties exhibited by other possible theories in the space of gener-
alized probabilistic theories [54]: in particular, it is known that all non-signalling
theories obey a monogamy bound ensuring that if some set of measurements
(A,A′) and (B,B′) on two fixed systems Sa, Sb are capable of jointly violat-
ing the CHSH inequality as in equation 1.1, then no set of measurements (C,C ′)

on any other system Sc combined with the same set of measurements (A,A′) on
system Sa can violate the analogous CHSH inequality 1.1 with B replaced ev-
erywhere by C [52]. Note the importance of using the same measurements on
system A in both inequalities: without such a restriction we could trivially violate
this monogamy bound in quantum theory by creating two maximally entangled
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pairs (β1
1 , β

1
2), (β2

1 , β
2
2), then naming β1

2 as Sb, β2
2 as Sc, and the combination of

β1
1 and β2

1 as Sa, and measuring β1
1 for the A,B inequality and β2

1 for the A,C
inequality.

It seems natural to hope that monogamy in quantum theory might be fully ex-
plained by the constraints arising from no-signalling. However, it can be shown
that the monogamy bound on tripartite quantum correlations is stronger than the
monogamy bound on non-signalling correlations, so the region of tripartite corre-
lations which can be achieved by measurements on entangled quantum systems is
actually smaller than the region which can be achieved in a general theory con-
strained only by no-signalling. [53] It remains an open question as to whether
some other physical principle might explain the gap between the quantum and
no-signalling bounds.

1.2.4 Mixed states and density operators

On the face of it, the postulates we have set out might seem to suggest that the
state of a quantum system must always be describable by a state vector in some
Hilbert space. But in fact there are two ways in which we can obtain different
types of states within this formalism. First, we can draw a state from an ensemble
of pure states {|ψi〉} with associated probability distribution {pi}, giving rise to
a probabilistic mixture ρ =

∑
i pi|ψi〉〈ψi|; this is known as a proper mixture

[55, 56]. Second, we can take two systems A,B in an entangled state ψ and
then throw away the information about the state of A, leaving B in a reduced
state ρ = TrA(|ψ〉〈ψ|); this is known as an improper mixture [55, 56]. Happily,
it turns out that these two methods of preparation give rise to exactly the same
type of mathematical object - to wit, a density matrix, a positive Hermitian matrix
of trace one. Indeed, even pure states can be written as density matrices of the
form ρ = |ψ〉〈ψ|, with the set of pure states coinciding with the set of idempotent
density matrices [38, 57, 58].

By applying the original four postulates consistently, we can derive analogous
statements describing evolution and measurement for density matrices. The set of
possible evolutions of a given system is now expanded to include all evolutions
that can be obtained by appending an ancilla to the system, applying a unitary
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evolution to the whole, and then tracing out the ancilla, which leads to the set of
all completely-positive trace-preserving (CPTP) maps; the set of possible mea-
surements on a given system is expanded to include all measurements that can be
implemented by appending an ancilla to the system in question and applying a
projective measurement to the whole, which leads to the set of all positive opera-
tor valued measures (POVMs), i.e. all sets of positive operators {Kn} satisfying∑

nKn = I , where the probability of obtaining the result indexed by n after per-
forming the measurement {Kn} on a system in the state ρ is given by Tr(Knρ).
Unfortunately there is no longer a unique formula for the post-measurement state
after a POVM, because any given POVM can be implemented in a number of dif-
ferent ways and the post-measurement state depends on the particular implemen-
tation [38, 57, 58]. It should be noted that since the ideal of pure states, unitary
operators and projective measurements cannot be perfectly realised in the labora-
tory, in real applications we are actually dealing with mixed states, CPTP maps
and POVMs [59].

We pause at this point to reinforce that the pedagogical approach of deriving
the existence of density matrices, CPTP maps and POVMs from the four postu-
lates set out in section 1.2.1 - an approach known as the ‘Church of the Larger
Hilbert Space,’ [60] - is not entirely uncontroversial. There are also advocates of
the ‘Church of the Smaller Hilbert Space’ who contend that the density matrix
should be thought of as the fundamental object of quantum mechanics and that
we have no reason to suppose quantum systems cannot be in mixed states with-
out being derived either from a larger pure state or a probabilistic mixture of pure
states [61]. It is our view that a resolution to this disagreement must wait upon
the solution to the problem set out in section 1.2.10, and thus we have adopted
this mode of presentation simply for ease of exposition, without any intention of
taking sides.

1.2.5 Quantum Contextuality

We have seen that in the most general picture, a quantum mechanical measure-
ment is described mathematically by a POVM - that is, a set of positive semidefi-
nite Hermitian operators on the Hilbert space of the measured system, where each
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operator in this set is associated with one of the possible outcomes of the mea-
surement. Prima facie it is tempting to imagine that measurement outcomes and
hence also measurement operators are in one-to-one correspondence with under-
lying properties like ‘spin up’ which any quantum system must either have or
not have, and this would suggest that it should always be possible to find a Non-
Contextual Hidden Value (NCHV) model for any set of quantum measurements
- that is, we should be able to assign either 1 or 0 to every measurement element
(with 1 representing ‘the system has this property’ and 0 representing ‘the system
does not have this property’), such that there is exactly one measurement element
with the value 1 in every possible measurement, thus specifying the outcome that
will be definitely be obtained if we perform this measurement on the given system.
But a theorem due to Kochen and Specker tells us that there exist sets of quantum
measurements for which it is impossible to find a NCHV model [62], and there-
fore it seems we cannot in general interpret quantum measurement elements in a
straightforward way as giving us information about pre-existing properties of the
world [63].

This original deterministic notion of contextuality has since been generalized
by Spekkens [64], using the ontological models framework, where it is assumed
that every system has a single real ‘ontic state,’ which determines the probabilities
for the outcomes of any measurement on that system. An ontological model thus
consists of a space Λ of ontic states λ, a set of probability distributions µP (λ)

giving the probability that the system ends up in the state λ when we perform the
preparation procedure P , a set of response functions ~ξM,O(λ) giving the proba-
bility that we obtain outcome O when we perform measurement M on a system
whose ontic state is λ, and a set of column-stochastic matrices TX representing
the way in which the ontic state is transformed when some operation X is applied
to the system.9 This allows us to say that a model is preparation non-contextual iff
it represents every quantum state by a unique probability distribution µ(λ); trans-

9A column-stochastic matrix is a matrix whose entries are all non-negative and whose columns
sum to one. Left-multiplication by a column-stochastic matrix is the most general possibility
for the representation of quantum operations in an ontological model, since such an operation
must map ontic state λi to λj with some probability, which is specified by entry (i, j) in the
transformation matrix: since the entries are all probabilities, they must be nonnegative, and since
each transformation must map λi to some state, the sum of the entries in a column must be one.



1.2. QUANTUM MECHANICS 21

formation non-contextual iff it represents every possible quantum transformation
by left multiplication by a unique transformation matrix; and measurement non-
contextual iff it represents every possible quantum measurement M by a unique
response function ~ξM,X(λ).10 Spekkens proved [64] that any ontological model
of quantum mechanics which reproduces all the correct measurement statistics
must exhibit preparation contextuality, but examples such as the Kochen-Specker
model [65] show that this is not true for measurement contextuality.11 In a differ-
ent direction, the recent work of Cabello, Severini and Winter [66] has uncovered
an intriguing connection between quantum contextuality and graph theory, and
it has also been suggested that contextuality may be partly responsible for the
computational power of quantum mechanics [4].

1.2.6 Quantum Information

The field of quantum information is the study of the storage, transmission and
manipulation of information encoded in quantum systems, with a special focus
on how these processes differ from comparable classical processes. Quantum
information is an exciting and dynamic area of study, in part because it is a
comparatively young field, first gaining momentum in the 1980s with the results
of Bennett, Brassard, Wootters, Zurek, Jozsa, Deutsch, Feynman, Benioff and
others [3, 38, 67–70]. It also has a number of important practical applications,
encompassing the subfield of quantum cryptography, where quantum phenom-
ena are employed to formulate improved protocols for traditional cryptographic
tasks [71–77], and quantum computation, where quantum effects are deployed to
achieve improvements on the best-known classical algorithms for some specific
computational tasks [38, 68, 78, 79].

10The use of this definition of contextuality does not necessarily imply the endorsement of
a description of quantum reality in terms of underlying states; the ontological models approach
could simply be regarded as a helpful language in which we may express mathematical facts about
the structure of quantum theory, such as its contextual character.

11Transformation contextuality has not been studied so thoroughly, and most existing explicit
ontological models omit transformations, so to our current knowledge the question of whether or
not quantum mechanics necessarily exhibits transformation contextuality remains unresolved.
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No-cloning

One of the cornerstones of quantum information theory is the no-cloning theorem,
a result which will play a starring role in this thesis (in particular, see chapter 4).
The theorem tells us that there can exist no quantum operation that (deterministi-
cally or probabilistically) creates perfect copies of an arbitrary unknown quantum
state; this is a straightforward consequence of the linearity of quantum operations,
and since it is really quite remarkable that such a profound and far-reaching result
can be proven in just a few simple lines, we feel compelled to rehearse the proof
here [3]:

Proof. Suppose there exists some unitary operation U that is capable of cloning
an arbitrary quantum state: that is, there exists some fixed state φo such that for
any ψ, we have that U(|ψ〉 ⊗ |φo〉) = |ψ〉 ⊗ |ψ〉.

Thus for any distinct states ψ1, ψ2, we have that U(|ψ1〉 ⊗ |φo〉) = |ψ1〉 ⊗ |ψ1〉
and U(|ψ2〉 ⊗ |φo〉) = |ψ2〉 ⊗ |ψ2〉.

Now consider applying U to an equal superposition of the states ψ1 and ψ2.
By linearity, U(( 1√

2
(|ψ1〉+ |ψ2〉)⊗ |φo〉) = 1√

2
(|ψ1〉 ⊗ |ψ1〉+ |ψ2〉 ⊗ |ψ2〉).

But from the definition of the cloning operation U , we ought to have
U(( 1√

2
(|ψ1〉+ |ψ2〉)⊗ |φo〉) = 1

2
(|ψ1〉+ |ψ2〉)⊗ (|ψ1〉+ |ψ2〉).

Since 1√
2
(|ψ1〉⊗ |ψ1〉+ |ψ2〉⊗ |ψ2〉) 6= 1

2
(|ψ1〉+ |ψ2〉)⊗ (|ψ1〉+ |ψ2〉) we have

obtained a contradiction, and therefore no such cloning operation U exists.

To be more precise, it can be shown that deterministic cloning (where two per-
fect copies are produced with probability one) is possible only for sets of mutually
orthogonal quantum states [80], while probabilistic cloning (where two perfect
copies are produced with probability strictly greater than zero but less than one)
is possible only for sets of linearly independent quantum states [81]. Moreover,
although in this thesis we will principally be concerned with cloning pure states,
the result can also be generalized to mixed states: the ‘no-broadcasting’ theo-
rem states that there is no quantum operation E that maps states on a Hilbert
space H to states on a Hilbert space HA ⊗ HB such that for any state ρ,
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TrA(E(ρ)) = TrB(E(ρ)) = ρ. We refer interested readers to the relevant liter-
ature for the proof of this theorem [82].

Quantum teleportation

We now turn to another stalwart of quantum information theory which will be an
important tool for several of the protocols described in later chapters. Quantum

teleportation [67] is a simple but powerful phenomenon which allows a generic
quantum state ψ to be transmitted between two cooperating agents (tradition-
ally named ‘Alice’ and ‘Bob’) who share a pair of maximally entangled parti-
cles. The process can be succinctly represented via the following identity, where
Ψ00,Ψ01,Ψ10,Ψ10 are the four maximally entangled Bell states [38]:

|ψ〉A ⊗ |Ψ00〉BC =
1

2

∑
z,x∈{0,1}

|Ψz,x〉AB ⊗XxZz|ψ〉C (1.2)

This expression tells us that the combination of system A in state ψ and sys-
tems B,C in the maximally entangled state |Ψ00〉 is mathematically identical to
a linear superposition of four states of the form |Ψz,x〉AB ⊗XxZz|ψ〉C , with z, x
taking values in {0, 1}. Thus suppose that Alice is in possession of system A

in the state ψ, and Alice and Bob also share a maximally entangled pair, with
Alice in possession of system B and Bob in possession of system C. Alice can
perform a measurement on systems A and B which has four possible outcomes,
{Ψz,x : z, x ∈ {0, 1}}, corresponding to the four branches of the superposition in
equation 1.2. We know from postulate 3 that after this measurement, if the result
obtained is z, x ∈ {0, 1}, the entire collection of three systems will be in the state
|Ψz,x〉AB⊗XxZz|ψ〉C , and therefore when Bob learns Alice’s measurement result
he can apply the inverse of the relevant operator XxZz to system C to recover the
state ψ [67].

Now, it may seem that we are in imminent peril of violating either the no-
cloning or no-signalling theorem with this procedure, but fear not. Teleportation
does not achieve cloning, because system A is no longer in the state ψ at the
end of the protocol. Nor does it achieve signalling, because immediately after
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Alice performs her measurement, the state of system C is, from Bob’s point of
view, an average over the four possible measurement results; this average turns
out to be indiscernible from the original state, so no information is obtainable
by Bob until after he has received Alice’s classical message. Nonetheless, it is
true that something seemingly miraculous has happened: a quantum state, which
contains an effectively infinite amount of information, has been transmitted by
means of only a two-bit classical message. The reason that this is possible is
that entanglement itself is a resource, and it is only by consuming this resource
that we have achieved the transfer of the quantum state [38]. Moreover, although
a quantum state in principle contains an infinite amount of information, only a
limited amount of information can be obtained from it: Holevo’s theorem puts
a precise bound on the amount of information about a quantum state that can
be retrieved by measurements on that state, and in the case of a qubit this limit
turns out to be only one bit [38, 83].12 Therefore in practice only a finite amount
of information can be transferred in this process, so teleportation is not quite as
paradoxical as it might first appear.

The von Neumann entropy

Our discussion now turns to a particularly important mathematical tool in the
study of quantum information. To provide context we will first introduce a related
classical concept known as the Shannon entropy,13 a measure of the ‘uncertainty’
associated with a probability distribution {pi}, and hence also of the average in-
formation content obtained when one learns the value of a random variable A de-
scribed by this probability distribution [85]. The Shannon entropy of a distribution
{pi} associated with a random variable A is defined as H(A) :=

∑
i−pi log(pi),

12We pause to note that it is possible to improve on this somewhat if entanglement is involved -
for example, in a technique known as superdense coding, Alice and Bob share a pair of entangled
qubits, and Alice sends a message to Bob by performing one of four operations on her qubit and
then sending it to Bob, who can then determine which operation Alice performed and thus extract
two bits of information from a single qubit. Superdense coding is thus, in a sense, the inverse of
teleportation: rather than sending one quantum bit with two classical bits and some entanglement,
we send two classical bits with one quantum bit and some entanglement. [38]

13The von Neumann entropy is, in fact, older than the Shannon entropy [84], and the related
concept of thermodynamical entropy predates them both [84], but we present the von Neumann
entropy as an analogue of the Shannon entropy rather than vice versa because this presentation
sheds some light on the interpretation of the two concepts.
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where the logarithm is used to ensure that the entropy associated with two inde-
pendent processes is additive. Indeed, it can be shown that the Shannon entropy is
the unique functional satisfying five conditions that we might reasonably expect
for a measure of information content (continuity, unitary invariance, normalisa-
tion, additivity, and arithmetic mean [86]) and hence it is not just an arbitrary
choice of measure but is, in a well-defined sense, the only possible such mea-
sure.14

The von Neumann entropy of a quantum system in the state ρ is defined as
S(A)ρ := −Tr(ρ log(ρ)) [38]. This quantity is often treated as a quantum ana-
logue of the Shannon entropy - and indeed, the von Neumann entropy is the unique
functional that satisfies the quantum generalization of the five conditions defining
the Shannon entropy [87], so the analogy is well founded. The relationship is rein-
forced by the fact that the von Neumann entropy reduces to the Shannon entropy
of the probability distribution over measurement outcomes for density matrices
that are diagonal, i.e. that are essentially classical systems [88].

Various derived quantities can be defined in terms of the Shannon entropy,
and analogues can be defined using the von Neumann entropy. One such quantity
is the mutual information. The classical mutual information I(A : B), which
quantifies the amount of information one obtains about variable A by learning the
value of variable B or vice versa, is defined as [85]:

I(A : B) :=
∑
x,y

p(A = x,B = y) log
p(A = x,B = y)

p(A = x)p(B = y)
= H(A)+H(B)−H(AB)

The quantum mutual information between two quantum systems, which can
be interpreted similarly, is defined by analogy as [38]:

I(A : B)ρAB
:= S(A)ρAB

+ S(B)ρAB
− S(AB)ρAB

Another useful quantity is the conditional entropy. The classical conditional
14However, we note in passing that it is possible to relax the ‘arithmetic mean’ property to give

a family of entropies known as the ‘Renyi entropies,’ [86] which all have interesting and important
properties, but which will not be employed in this thesis.
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entropy of a random variable A relative to a random variable B, which can be
interpreted as the amount of information needed to describe the outcome of a
random variable A when the value of B is known, is defined as [85]:

H(A|B) :=
∑
a,b

p(a, b) log(
p(b)

p(a, b)
) = H(A,B)−H(A)

The quantum conditional entropy of a quantum systemA relative to a quantum
system B is defined by analogy as [38]:

S(A|B)ρAB
:= S(A,B)ρAB

− S(B)ρAB

The interpretation of the quantum conditional entropy is less straightforward
because, unlike the classical conditional entropy, it can be negative. This prop-
erty is perhaps best understood via the operational interpretation of the quantum
conditional entropy: if two agents share a set of bipartite systems Ai, Bi, each
having overall state ρiAB, then in the limit of a large number of systems, S(A|B)

quantifies the total amount of quantum information per state that Alice must send
to Bob in order for him to be able to reconstruct the full state ρiAB. When S(A|B)

is negative, this means that classical communication alone is sufficient for Bob to
reconstruct the state, and furthermore, Alice and Bob will subsequently have the
ability to transfer additional quantum information at no cost to them (because they
will produce maximally entangled pairs which can be used to perform quantum
teleportation) [89].

1.2.7 Quantum Cryptography

Classical cryptography is the study of secure communication in the presence of
adversaries. In particular, the traditional task of classical cryptographers was to
combine a message with some other information known as a ‘key’ in such a way
that the message cannot be read by anyone who does not know the key; the result-
ing cryptosystem is ‘symmetric’ if both encoder and decoder use the same key,
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and ‘asymmetric’ otherwise. Unfortunately no asymmetric cryptosystems have
been shown to be secure without unproven assumptions, and while there do exist
secure symmetric protocols, these have the disadvantage of relying on the pos-
sibility of generating and sharing a secure random key between participants, a
cryptographic problem in and of itself for which, again, no classical protocol is
known to be secure without unproven assumptions [90, 91]. Beyond these tasks,
the field of classical cryptography has also expanded to include the study of other
related types of secure computation and communication, including tasks such as
bit commitment and zero-knowledge-proving which will play an important role in
this thesis.

The idea of using quantum mechanics to obtain cryptographic advantages first
arose in the 1970s with the work of Wiesner, Bennett and Brassard [90, 92, 93],
when it was observed that a number of properties of quantum physics lend them-
selves particularly well to cryptographic applications. For example, the fact that
generic quantum measurements disturb the state of the measured system gives us
a means of checking whether someone has accessed or attempted to access infor-
mation stored in the state of a quantum system, and this property is leveraged in
the first major quantum cryptographic protocol, the BB84 quantum protocol for
key distribution developed by Bennett and Brassard in 1984 [93].

The BB84 protocol requires two participants, traditionally named Alice and
Bob. Denote by {ψ00, ψ01} two states that form an orthogonal basis for a qubit,
and let M0 be a projective measurement in this basis; denote by {ψ10, ψ11} two
distinct states that also form an orthogonal basis for a qubit, and letM1 be a projec-
tive measurement in this basis. To begin the protocol, Alice generates two random
bit strings w and x of length N , then prepares a set of N qubits {Qi}, with the
state of Qi given by ψwixi . She then sends these N qubits to Bob, who generates a
random bit string y of length N and measures all N qubits, performing measure-
ment Myi on system Qi. Bob thus generates a bit string z of length N containing
the results of his measurements. Bob then announces the string y publicly and
Alice tells Bob the set of indices S on which y matches w; Alice forms a string x′

by removing all the bits of x in positions with indices not belonging to S, and Bob
likewise forms a string z′ by removing all bits of z in positions with indices not
belonging to S. Alice and Bob then randomly select some subset S ′ of the indices
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in S and publicly compare the values of x′ and z′ on all indices in S ′.15 If any
of the values do not match, Alice and Bob abort the protocol16. Otherwise, they
form strings x′′ and z′′ by dropping all the bits in positions with indices belonging
to S ′; with high probability x′′ and z′′ will be identical and hence can be used
as a shared secret key. In heuristic terms, the security of this protocol is derived
from the fact that even if an eavesdropper intercepts and measures the quantum
systems sent by Alice, the measurements will with high probability disturb the
states of a significant proportion of these systems, and thus with high probability
the comparison of bits in x′ and z′ will result in the protocol being aborted. More-
over, eavesdroppers cannot get around this by making copies of the states of the
systems they intercept and measuring the copies instead, because the no-cloning
theorem prohibits reliable copying of unknown quantum states.

The BB84 protocol represented a crucial advance for cryptography in that it
was the first unconditionally secure key distribution protocol, meaning that its
security depends only on the structure of quantum theory and on appropriate as-
sumptions about the physical properties of the devices employed in the proto-
col [94, 95]. In particular, we do not have to assume anything about the hardness
of certain computations - which is fortunate, because something else quantum
mechanics is good for is speeding up certain types of computations, with the
consequence that a number of classical cryptographic protocols whose security
depends on computational complexity assumptions become insecure when one is
faced with an adversary who could potentially have access to a quantum com-
puter [96].

There have been many developments since BB84 was first proposed. Although
we have endeavoured to give a simple intuition as to why BB84 might be secure,
a fully rigorous security proof was not available until around 2000, when a series
of proofs were produced by Mayers, Lo and Chau, Shor and Preskill, and Biham
et al. [94, 97–99] Moreover, our simplified description of the protocol assumed
zero probability of errors in Alice’s preparations and Bob’s measurements, but of

15For example, they could do this by computing the XOR of randomly selected pairs of bits
and announcing the results

16This description assumes there is no probability that the preparation or measurement devices
will make errors; if the possibility of errors is taken into account, Alice and Bob may have to allow
some small number of mismatched bits.
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course in real applications errors may arise, and error correction strategies have
been developed to deal with this possibility [90]. There are also techniques known
as privacy amplification designed to further lower the amount of information that
an eavesdropper could potentially have about the secret key [90,100]. Many vari-
ations on BB84 have been developed, such as Bennett’s two-state variant [101]
and a version due to Ekert which derives its security from the monogamy of en-
tanglement [71].

More generally, it has been shown that quantum mechanics can also be applied
to many other interesting cryptographic tasks. Another important feature of quan-
tum mechanics is that it exhibits what many physicists currently believe to be gen-
uine intrinsic randomness; this is useful for cryptographic purposes, because many
cryptographic protocols (including BB84!) require the parties to generate random
numbers that are secure in the sense that they cannot be predicted or guessed by
eavesdroppers and/or other parties in the protocol. Several protocols have been
developed to use quantum mechanics for (biased) coin-tossing [102, 103], and it
is also possible to do quantum-mechanical randomness expansion, where a small
random seed is turned into a much larger string of random numbers in an un-
conditionally secure way [103, 104]. Another useful technique which will see a
brief cameo in this thesis is quantum secret sharing. In classical cryptography,
(m,n)-secret sharing involves splitting a message into a number n of parts so that
the message can be read by anyone in possession of at least m parts but someone
who comes into possession of fewer than m parts will gain no information about
the message. This protocol can be implemented classically but is vulnerable to
eavesdropping, a problem which can be remedied by moving to (m,n)-quantum
secret sharing, where a quantum state is divided into n shares such that the state
can always be reconstructed from any number of shares greater than or equal to
m, but any number of shares less than or equal to m gives no information at all
about the state [105]. Note that in the quantum case, we must always havem > n

2
,

otherwise we would be able to violate the no-cloning theorem.

Thus quantum cryptography has become a large and active field, and it is now
known that many cryptographic tasks which were once believed impossible can
in principle be implemented using quantum techniques. On the other hand, quan-
tum cryptography cannot solve every outstanding problem in classical cryptog-
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raphy. For example, there is an important primitive of classical cryptography
known as bit commitment which cannot be implemented with unconditional se-
curity in a classical context in non-relativistic Galilean spacetime; in the early
days of quantum cryptography it was hoped that quantum techniques might en-
able us to perform unconditionally secure bit commitment, but it was eventually
shown by Mayers [8], and Lo and Chau [14], that this is also impossible in the
quantum context if we still assume that the protocols take place in non-relativistic
Galilean spacetime. Thus it is necessary to look elsewhere for solutions, and later
in this thesis we will do exactly that.

1.2.8 Quantum Field Theory

Because particles in scattering experiments are frequently accelerated almost to
the speed of light, it is not possible to neglect relativistic effects in the description
of scattering experiments, and therefore in order to do particle physics accurately
it is necessary to make some adjustments to standard quantum mechanics. There
exists a relativistic formulation of quantum mechanics where the Schrödinger
equation is replaced by the Klein-Gordon and Dirac equations, but it turns out
that this is not sufficient to allow us to study particle physics, because both non-
relativistic and relativistic quantum mechanics are defined only for scenarios that
can be described by a finite, constant number of degrees of freedom, whereas in
particle physics it is necessary to describe fields with an infinite number of de-
grees of freedom and scattering processes in which particles may be created or
destroyed. Thus in order to apply quantum mechanics to this realm it has been
necessary to create an extension of quantum mechanics accommodating an infi-
nite number of degrees of freedom. The extension, known as quantum field the-
ory, is now able to model successfully almost all features of elementary particle
physics - gravity alone, amongst the fundamental forces, still resists being cast in
this form [23, 24].

One might reasonably enquire at this juncture as to why the results of this the-
sis are couched within the framework of standard quantum mechanics rather than
relativistic quantum mechanics or quantum field theory, both of which come with
special relativity already built into their equations. However, we contend that stan-
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dard quantum mechanics is the most appropriate setting for our results, because
the protocols we describe are operational in nature, characterising processes that
take place in regimes known to be well-described by non-relativistic quantum me-
chanics. It would certainly be possible in principle to produce analogues of our
proofs using relativistic quantum mechanics or quantum field theory, but the cal-
culations would be inelegant, and are unnecessary given that quantum field theory
and relativistic quantum mechanics are known to reduce to non-relativistic quan-
tum mechanics in the low-energy, macroscopic limit. Furthermore, we note that
although the ‘heuristic’ formulation of quantum field theory is well-developed, we
are still lacking a mathematically precise formulation of it for interacting particles
in 3 + 1 dimensions [106, 107], This fact, together with continuing difficulties
over the treatment of gravity, gives good reason to be cautious about the existing
framework of quantum field theory, and motivates us to continue working in a
framework which does not presuppose it. Indeed, where possible in this thesis we
even avoid presupposing the details of non-relativistic quantum mechanics and in-
stead base our proofs on simple, general principles to ensure that our results have
maximum generality. For example, the security proofs in chapter 8 depend only

on the no-signalling principle, and since this is a highly robust physical principle
which appears under various guises not only in standard quantum mechanics but
also in relativity and quantum field theory, protocols whose security depends only
on this principle are likely to remain secure even if both quantum mechanics and
quantum field theory are eventually replaced by a more fundamental theory.

For clarity, we note that it is possible to derive analogues of many results
from quantum information theory within quantum field theory, and some of these
can even be extended in a qualified way to curved spacetime. The study of such
extensions is a rapidly developing field known as relativistic quantum information
[108–111]. In this thesis, however, our attention is confined to standard quantum
mechanics applied on flat Minkowski spacetime, so while this work could be said
to fall under the purview of ‘relativistic quantum information,’ it is somewhat
distinct from the main concentration of research activity in the field.
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1.2.9 Quantum Gravity

As we have noted, there exist underlying tensions between quantum mechanics
and relativity - both special and general - and combining the two has turned out
to be a remarkably difficult problem, with the quantization of gravity being a
particularly intractable problem [22]. Nonetheless, a number of promising av-
enues toward ‘quantum gravity’ have been proposed, including loop quantum
gravity [112] and string theory [113], which are the most prominent contenders
at the present time. Both of these approaches attempt to resolve the tension by
altering relativity in some way - for example, loop quantum gravity quantizes
spacetime by deriving it out of an underlying quantum substratum, while string
theory turns gravity into a mode of an oscillating string.

Quantum gravity is chiefly a problem about the behaviour of matter at very
small scales and very high energies, regimes where we anticipate either quantum
mechanics or special relativity may break down and therefore it is entirely up in
the air as to which, if either, will ultimately prevail. By contrast, in this thesis
we will be focusing on regimes in which the two theories are very well-defined
and, modulo some lingering doubts related to the measurement process, seem to
be consistent with one another. Thus, although we will be intimately concerned
with the relation between quantum mechanics and special relativity, we will not
be engaging with the disputes over quantum gravity.

1.2.10 The Measurement Problem

By many measures, quantum mechanics (or quantum field theory) is one of the
most successful scientific theories ever known - and yet there is trouble in par-
adise. We now pause to consider a serious conceptual problem in the foundations
of quantum theory which is yet to find a universally satisfactory resolution.

The third of the postulates of quantum mechanics (sometimes known as the
‘Born rule’), together with its generalisation to POVMs, tells us how to extract
precise quantitative values for the probabilities with which various measurement
outcomes will be obtained when a quantum measurement is performed, and these
predictions have been verified to a very high degree of accuracy; however, the
axiomatic formulation of quantum mechanics is conspicuously silent about the
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physical interpretation of these probabilities. Several questions about the nature
of quantum probabilities thus present themselves. First, quantum mechanics does
not easily to lend itself to an interpretation in which the probabilities can be un-
derstood as ignorance probabilities describing relative frequencies of occurrence
for some underlying set of hidden variables [114], and therefore it is common to
claim that quantum mechanics must be ‘inherently probabilistic,’ meaning that
the probabilities it assigns are fundamental features of the theory which cannot
be further analysed [115–117]. But this claim is a very extreme one: if true, it
would mean that quantum probabilities are unique in nature, probabilities unlike
any other forms of probability that we have encountered, and it is unclear that
the evidence really justifies this step. Second, even if we put aside the interpreta-
tion of probability itself, there remain unanswered questions about what exactly
the Born rule probabilities are probabilities for. Some schools of thought argue
that they describe nothing other than probabilities for observers to make observa-
tions [118], but this is unpalatable from the point of view of realism about science
and also seems to stymie any attempt to achieve greater understanding of quantum
measurement.

Of realist views, two broad categories of response can be distinguished: ‘ψ-
ontic’ views, which take the quantum state to be an element of reality, and ‘ψ-
epistemic’ views, which regard the quantum state as merely a description of an
observer’s knowledge of reality. ψ-ontic approaches may be further divided into
ψ-complete models, where there is a one-to-one relation between quantum states
and real (ontic) states, and ψ-supplemented models, where the ontic state space
is parametrised by the quantum state together with some other supplementary
variables (see Harrigan and Spekkens, 2007 [65]). An example of the former is
the Everett interpretation [119], which claims that all outcomes of a measurement
exist in separate branches of the wavefunction, and the Born rule probabilities
(very loosely speaking!) may be thought of as the probabilities for an observer to
find himself in one branch or another [119, 120]; an example of the latter is the
de-Broglie-Bohm approach which postulates a quantum state that acts as a ‘pilot-
wave’ for the set of particles on which the actual physical world of our experience
supervenes, causing them to occupy positions with probabilities corresponding
to the Born rule probabilities for those positions [37, 121]. There also exist a
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number of ψ-ontic views that invoke some form of wavefunction collapse, the
idea being that most of the time quantum states evolve unitarily, but on occasion -
perhaps at random [122–125], perhaps due to measurement [126] or perhaps due
to a gravitational interaction [127] - they undergo a non-unitary collapse into one
out of a range of possible states, with probabilities for the various possible states
corresponding to the Born rule probabilities. Some such models are ψ-complete,
while others may arguably be regarded as ψ-supplemented.

Well-developed, realist ψ-epistemic views seem harder to come by, but per-
haps the best example is Quantum Bayesianism, which claims that the quantum
state represents nothing objective at all - it is merely a measure of the observer’s
subjective degrees of belief in various outcomes of the measurement [128]. Al-
though the view is anti-realist about the quantum state itself, its proponents main-
tain that it should be nonetheless understood as a form of ‘participatory real-
ism,’ [129]: we are to remain realists about physics while accepting that the world
may not admit of a straightforward realist description [130].

We will largely put aside such questions of interpretation in this thesis, al-
though we will briefly return to these matters in our concluding remarks.



Chapter 2

Context

Having set out a general picture of the state of play in quantum mechanics and
special relativity, we now describe the more immediate context of the work pre-
sented in this thesis. The first part of the thesis draws on a long-standing tradition
of advancing our understanding of quantum mechanics using games and tasks, as
well as via the resolution of apparent paradoxes. In the second part of the the-
sis we move to relativistic quantum cryptography, where we will be particularly
concerned with protocols for bit commitment and zero-knowledge proving.

2.1 Tasks and Games

The study of information-theoretic games and general operational tasks has been
an important tool of quantum information theory ever since the birth of the field
[131–135]. Practically speaking, the study of games is useful because it offers
a precise way of quantifying the potential cryptographic advantages offered by
quantum theory, and on the more theoretical side it improves our understanding
of the difference between quantum and classical physics and may help us pin
down the source of these quantum cryptographic advantages [136–138].

Perhaps the first major work on quantum game theory was Meyer’s 1999 anal-
ysis of quantum strategies [139], and since then his operational methodology has
been employed in a wide range of contexts. It is of course very natural to parse
cryptographic protocols in the form of a game, with the communicating parties
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on one side and potential eavesdroppers on the other [71], but there are also many
less obvious applications: it has been shown that quantum cloning [140] can use-
fully be cast as a game with a single party playing against nature itself [141], and
that quantum computing algorithms can be understood as a game with classical
agents on one side and quantum agents on the other [142]. A number of interesting
classical games, such as the Prisoner’s Dilemma [138, 143, 144], the battle of the
sexes [145,146] and the Monty Hall problem [147,148], have been generalised to
the quantum realm and implemented experimentally [144, 144, 149], and optimal
strategies have been derived for general two-player games [138] and multiplayer
games [150].

However, relativistic quantum games and tasks are still comparatively unex-
plored. The first example of a relativistic quantum task was summoning, intro-
duced as a simple illustration of an operational task that distinguishes relativistic
quantum theory from both relativistic classical theories and non-relativistic quan-
tum theory [151]. In its original form, a summoning task involves two agencies,
‘Alice’ and ‘Bob’, each comprising collaborating networks of agents distributed
throughout spacetime: Bob secretly prepares a random quantum state in some
agreed Hilbert space and gives it to Alice at a point P , and at some later point,
not originally known to Alice, Bob then asks Alice to return the state. To de-
rive constraints on Alice’s ability to respond successfully, we must employ results
from both special relativity and quantum theory. Specifically, the (relativistic)
no-signalling principle and the (quantum) no-cloning theorem together imply that
no matter how densely Alice’s agents are distributed, in general there will be no
strategy which guarantees a successful response to Bob’s request. This result
is known as the ‘no-summoning theorem’ [151], and the result remains true for
variations of the task in which time delays in returning and some loss of fidelity
in the returned state are allowed [151]. Note that it is the relativistic version of
no-signalling - the prohibition on faster-than-light information transfer - which is
needed here: the quantum no-signalling theorem alone is not sufficient to derive
the result, and therefore the no-summoning theorem is indeed intrinsically both
quantum and relativistic.

Summoning was subsequently generalised by Hayden and May (HM) who
introduced a version of the task defined by a spacetime point PS and a set of N
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Figure 2.1: The causal diamond associated with the call-response pair (ci, ri).

ordered pairs of spacetime points (ci, ri) such that every point ri is in the future
lightcone of the corresponding point ci [7]. In this task, Alice is given a quantum
systemQB in some unknown state ψ at point Ps, and if a call is subsequently made
at point ci, Alice must return a quantum system in state ψ at the corresponding
response point ri. Let us say that a spacetime task is feasible if there exists any
protocol that is possible according to special relativity and quantum mechanics
such that if Alice employs this protocol, then she will be able to complete the task
with a one hundred percent success rate. HM found an intriguing characterisation
of the necessary and sufficient conditions for a given task to be feasible. Working
in Minkowski space, write x > y if the spacetime point x is in the causal future of
y, and x ≥ y if either x > y or x = y, then define the causal diamond Di to be the
set {p : ri ≥ p ≥ ci}, as shown in fig 2.1. Then, by using iterative applications of
quantum teleportation and secret sharing, it can be shown that:

Theorem 1. [7] Consider a summoning task defined by a start point PS and

a set of N ordered call-response pairs (ci, ri), such that ∀i ri ≥ ci, in which

Alice is given a quantum system QB in some unknown state ψ at PS , and if a call

is subsequently made at exactly one call point ci, Alice must return a quantum

system in the state ψ at the corresponding response point ri. The task is feasible

iff the following conditions hold:

1. Every response point ri ≥ Ps.

2. Every pair of causal diamonds Di and Dj are causally related, meaning

that there exists xi ∈ Di and xj ∈ Dj with xi ≥ xj , or vice versa.
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Figure 2.2: A 2 + 1 dimensional example, taken from Ref [7], which is feasible
even though there does not exist a continuous spatiotemporal path that starts from
s and runs sequentially through each of the causal diamonds. The black lines are
lightlike and in this case they represent the entirety of the casual diamond for each
pair; the red arrows are also lightlike. We have that c1 < r3, c2 < r1 and c3 < r2.

These conditions for feasibility are considerably weaker than naive intuition
might suggest. In particular, a task can be feasible even if there does not exist a
continuous spatiotemporal path that starts from s and runs sequentially through
the causal diamonds - fig 2.2 shows an example of such a task. This means that it
is sometimes possible to complete a summoning task even if it is not possible to
complete a comparable classical task in which an agent is given a single copy of a
physical object that they cannot duplicate and is required to return it at the appro-
priate call point in response to the occurrence of a call. Consequently, summoning
may indeed be regarded as a phenomenon that is both intrinsically quantum and
intrinsically relativistic.

In addition to its theoretical interest, this summoning task has important prac-
tical applications. In particular, many distributed quantum computations over
networks where relativistic signalling constraints are significant may usefully be
modelled as summoning tasks: one can imagine quantum data that needs to be
routed to one of a number of nodes, with the destination depending on classical
data generated at other nodes during the computation. Indeed, in the teleportation
model of distributed quantum computation [152], each round of adaptive compu-
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tation is essentially a summoning task: the measurement result from the previous
round determines the measurement to be made in the present round, and thus
plays the role of the ‘call’, while the locations of the gates for the various possible
measurements play the role of the ‘response points’.

However, HM’s definition of a summoning task is only one of many possi-
ble versions of the original summoning task. It is likely that other formalisations
might be equally relevant, or even more relevant, to the types of practical situa-
tions that are usefully modelled as distribution tasks. These other formalisations
might also shed new light on theoretical issues in the intersection between quan-
tum mechanics and special relativity. Thus in the first part of this thesis we study
two different generalisations, one where response points are not required to lie in
the future lightcone of the associated call point and one where Bob can make mul-
tiple calls; our results lead us to question the interpretation proposed by HM for
their theorem. We also define two new distribution tasks which require Alice to
distribute entangled states, and prove some preliminary results about these tasks.

2.2 Paradoxes

There is a long-standing tradition of using apparent paradoxes to refine our under-
standing of quantum theory - an incomplete list of recent examples includes the
quantum Cheshire Cat, the quantum Zeno paradox, the quantum Gibbs paradox,
and the quantum pigeonhole effect [153–158]. This venerable tradition might be
said to have begun with Einstein and his co-authors Podolsky and Rosen, who
set out what has become known as the ‘EPR Paradox’ - the supposed paradox
being that if distinct quantum systems satisfy separability and locality, quantum
mechanics cannot be complete [33, 159]. Of course, the EPR effect is no longer
regarded as a paradox now that we have accustomed ourselves to the realities of
quantum physics, and indeed, the same is true of all the paradoxes we have listed
above - with familiarity, the appearance of paradox greatly decreases and perhaps
vanishes altogether. This is to be expected, because it is generally agreed that there
are no actual physical paradoxes, if that term is used in the strong sense where a
paradox is not merely puzzling but literally a contradiction: all apparent physical
paradoxes arise from misunderstandings and/or attempts to extend a concept too
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far beyond its realm of applicability.
Of course, this is precisely the reason why the study of paradoxes can be

such a useful way to refine our understanding of a physical theory. Out of the
furore over the supposed EPR paradox arose our modern understanding of entan-
glement [159, 160]; from the Cheshire cat and pigeonhole effects we can obtain
proofs of contextuality [161]. These supposed paradoxes were signs that there
was something wrong with our classical way of thinking and in resolving them
we have developed new ways of thinking about the quantum world.

Likewise, there exist a number of relativistic ‘paradoxes’ that have been used
to test the limits of special relativity and deepen our understanding of its impli-
cations - the ‘twin paradox’ is perhaps the best known, but the ‘ladder paradox,’
and ‘Bell’s spaceship paradox’ remain firm favourites of undergraduate lecturers
and have had their part to play in the history of relativistic thought [162–164]. As
in the quantum case, these paradoxes can be resolved by careful treatment and
proper understanding, and thus they too cease to look like paradoxes once one is
sufficiently familiar with the theory.

In light of the role played by paradox in advancing theoretical understanding,
it is natural to wonder if we might similarly improve our understanding of the
relationship between quantum theory and special relativity by uncovering appar-
ently paradoxical effects that arise from the interaction between the two theories.
In chapter 4 we demonstrate the existence of such a paradox; to our knowledge
it is the first genuinely relativistic quantum paradox, in the sense that it can be
formulated only in the framework of relativistic quantum theory. Our paradox
does indeed seem to have implications for the current understanding of the nature
of quantum states as spatiotemporal objects, and after presenting the effect we
consider these implications carefully.

2.3 Relativistic Quantum Cryptography

The study of relativistic quantum tasks and games reveals that combining relativ-
ity with quantum mechanics can lead to surprising and counterintuitive phenom-
ena that cannot be reproduced in either of these theories individually. It is this fact
which is the starting point for the field of relativistic quantum cryptography, where
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the combined power of relativistic causality and quantum information theory is ex-
ploited to achieve cryptographic advantages over classical cryptography or stan-
dard quantum cryptography. A variety of interesting tasks (e.g. [77,165–169]) are
now known to be achievable within relativistic quantum cryptography, either with
unconditional security or with security significantly enhanced relative to classical
protocols. On the other hand, there also exist a number of negative results defin-
ing some of the limits of the field - for example, Colbeck has shown that for many
classes of function, unconditionally secure two-party classical computation is im-
possible even in the relativistic context [170], while Buhrman et al have shown
that secure-position verification is impossible if adversaries are allowed to share
an arbitrarily large entangled quantum state [171].

The first significant application of relativistic cryptography was to bit com-
mitment [13, 165, 172, 173], a basic cryptographic primitive whose applica-
tions include coin tossing [174–176], electronic voting [177], zero-knowledge
proofs [72, 178], oblivious transfer [179, 180], and secure two-party computa-
tion [8,14,15,181–183]. A bit commitment protocol involves two mistrustful par-
ties who control disjoint secure regions and exchange information: the committer
(henceforth called Alice) carries out actions that commit her to a particular bit
value, and later, if she chooses, she may give the receiver (henceforth called Bob)
some classical or quantum information that unveils the committed bit. Ideally, the
protocol should guarantee to Bob that Alice cannot change her mind about the
value of the bit after the time of the commitment, but also guarantee to Alice that
Bob can learn no information about the committed bit unless and until she unveils.

As we noted in section 1.2.7, it has long been known that it is impossible to
provide such guarantees using only classical information theory in non-relativistic
Galilean spacetime [184], and a no-go theorem due to Mayers, and to Lo and Chau
demonstrates that unconditionally secure bit commitment is also impossible in a
purely quantum context if it is assumed that the entire protocol takes place in
non-relativistic Galilean spacetime [8, 14, 15, 182, 183]. However, it is possible
to circumvent these obstacles by moving to relativistic bit commitment protocols
couched in Minkowski spacetime, where ‘Alice’ and ‘Bob’ now represent two sep-
arate networks of collaborating agents distributed in spacetime. Each set of agents
is assumed to be acting with perfect trust in one another, but because they are sep-
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arated in space, and because quantum information cannot be broadcast, on any
given spacelike hyperplane the collaborating agents may not all be in possession
of the same information, and by leveraging this fact we can come up with relativis-
tic bit commitments that are unconditionally secure [6, 134, 165, 173, 185, 186].

For example, in Kent’s original relativistic bit commitment protocol [12], Al-
ice has two separated agents A0 and A1 who share a list m0,m1,m2... of in-
dependently chosen random numbers in the range {0, 1...N} with N = 2q for
some integer q. To begin the protocol, Bob sends A0 a pair (n0, n1) of random
numbers in the range {0, 1...N} and A0 replies with n0 +m0 if she wants to com-
mit to bit value 0 and n1 + m0 if she wants to commit to bit value 1. At some
spacelike separated point, one of Bob’s agents sends A1 a set of q labelled pairs
(n1

0, n
1
1), (n2

0, n
2
1)...(nq0, n

q
1) and A1 similarly commits to the binary form of m0

by replying with n1
0 + m1 if the first bit of the binary encoding of m0 is 0 and

n1
1 + m1 if the first bit is 1, and so on. At some later spacelike separated point
A0 will likewise commit to the binary forms of m1,m2...mq, and this sequence
of communications continues until one of Alice’s agents Ai chooses to unveil
the commitment by revealing the set of random numbers used by the other agent
Ai⊕1 in the most recent round. The security of this protocol is thought to depend
only on Minkowski causality, and hence it is conjectured to be unconditionally
secure [172].

There also exist relativistic quantum bit commitment protocols, such as Kent’s
‘flying qubits’ scheme, which is defined by a commitment point (tc, xc) and two
unveiling points (t0, x0), (t1, x1) which are lightlike separated from (tc, xc) and
spacelike separated from each other: at (tc, xc) one of Bob’s agents gives one
of Alice’s agents a quantum system whose state she does not know, and she is
required to send it to (t0, x0) if she wishes to commit to bit value 0 and to (t1, x1)

if she wishes to commit to bit value 1. The security of this protocol depends on
both the special relativistic no-signalling principle and the quantum no-cloning
theorem, so the protocol uses both special relativity and quantum mechanics in
non-trivial ways [187]. Another relativistic quantum bit commitment scheme, also
due to Kent [188], uses an adaptation of the BB84 key distribution scheme that we
introduced in section 1.2.7; the feasibility of this scheme has been demonstrated
experimentally [186], and it seems likely that schemes of this kind will play an
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important role in the next generation of cryptographic technologies.
In the second part of this thesis, we propose several new relativistic quantum

bit commitment protocols that have a number of advantages over existing versions
- those described in chapter 7 require very little randomness, or even none at
all, while those described in chapter 8 are fully ‘device independent,’ [76, 103,
189–198]. These advantages may be useful for practical applications and are also
of theoretical interest in terms of our understanding of the relationship between
cryptographic protocols and physical laws.

2.4 Zero-Knowledge-Proving

Zero-knowledge-proving is a primitive of classical cryptography in which one
agent (henceforth called Alice) proves a fact to another agent (henceforth called
Bob) without giving away any information other than that the fact is true. It has
a wide range of practical applications, particularly in electronic voting schemes
[199] and digital signature schemes [200], and is also used for a variety of the-
oretical purposes, such as showing that a language is easy to prove [201]. Zero-
knowledge proving of knowledge, where Alice is required to prove that she knows
some fact without giving Bob any information about the fact, is a particularly
useful version of this task which plays a key role in a number of identification
protocols [202].

An ideal zero-knowledge-proving protocol has three key properties. First,
completeness: if Alice does indeed know the relevant fact and proceeds honestly
with the protocol, then her proof is accepted with probability one. Second, sound-
ness: if Alice does not know the relevant fact, then for any possible strategy that
she might employ, the probability that her proof is accepted is zero. And finally,
zero-knowledge: if Alice performs the protocol correctly, then for any possible
strategy that Bob might employ, he gains no information about the relevant fact
other than that it is true. In practice it is not always possible to ensure that these
properties hold exactly - in particular, in many zero-knowledge protocols Alice
has some small probability of producing a correct proof even if she does not ac-
tually know the relevant fact. However, this probability can usually be made arbi-
trarily small by iterating the protocol a sufficiently large number of times, so one
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can reasonably (modulo epsilonics) speak of classical zero knowledge proofs.

The possibility of a quantum generalisation of zero-knowledge proving was
explored by Horodecki et al. [203] who studied what they called ‘zero knowledge
convincing protocols on quantum bit’ [sic]. In their model, a verifier (henceforth
called Bob) knows he has a single copy of a pure qubit, but has no other in-
formation about the state. A prover (henceforth called Alice) wishes to make a
prediction that Bob can verify and that will hold with certainty only if she knows
what the state is, but to do so without giving Bob any additional information about
the identity of the state. Horodecki et al. showed that no non-relativistic protocol
involving classical information exchanges and quantum Alice-to-Bob communi-
cations can implement this task securely [203]. They also discussed some pro-
tocols that implement very weak versions of the task, either giving Bob a great
deal of information about the qubit, or giving him only weak evidence of Alice’s
knowledge, or both.

Given that relativistic quantum cryptography was born out of the demonstra-
tion that it is possible to bypass certain classical and quantum no-go theorems by
moving to the relativistic context, it is natural to wonder if the Horodecki et al.
no-go theorem might not also be bypassed by relativistic techniques. A number
of other interesting questions were also left open by the discussion of ref [203].
For example, how much evidence can Alice provide? Does it help to allow quan-
tum communication from Bob to Alice rather than just from Alice to Bob? What
bounds exist on the tradeoffs between the evidence Alice provides and the amount
of knowledge she gives away? How do the possible protocols depend on the di-
mension d of the state space?

An important preliminary observation is that Alice cannot prove that she
knows a precise classical description of a single quantum state, and this remains
true even if she is not concerned about giving Bob information in the course of
the proof. This is because the classical information about the state that can be
extracted by measurement is bounded by Holevo’s theorem [83], so Alice always
has a boundedly nonzero chance of guessing the outcome of any measurements
Bob might make, even if she knows nothing about the state: for example, she can
predict the outcome of a complete projective a on a qubit with probability 1

2
even

if she has no information about the state of the qubit. Alice may also have a high
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chance of guessing the relevant outcome even if she has only partial information
about the quantum state: for example, if she knows that the state of a qudit lies in
some dimension 2 subspace, she can specify a complete projective measurement
whose outcome she can predict with probability 1

2
. Moreover, Alice may have a

high chance of guessing the outcomes even if she has incorrect information: if
the state is η and Alice believes it is η′, where η 6= η′ but Tr(η, η′) is close to 1,
then she is almost as likely to pass any protocol testing her knowledge of η as she
would be if she actually knew η. And since we are considering a situation where
Bob only has a single copy of the state in question, it is not possible to make up
for these shortcomings by simply repeating the protocol as we would do in the
case of classical zero-knowledge-proving.

In view of these constraints, in this thesis we will work not with tra-
ditional zero-knowledge-proving, but with a generalisation which we refer
to as knowledge-concealing evidencing of knowledge about a quantum state

(KCEKQS). In the second part of this thesis we give a formal definition of
KCEKQS and generalize the no-go theorem of ref [203], before discussing some
existing protocols for KCEKQS and then putting forward our own protocol which
performs significantly better than any existing protocol.
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Distribution Tasks
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Chapter 3

Summoning Tasks with Nonexistent
Causal Diamonds

The properties of quantum information in spacetime can be investigated by study-

ing operational tasks, such as ‘summoning’, in which an unknown quantum state

is supplied to an agent and must be returned at a specified point when a corre-

sponding call is made. Hayden and May recently proved necessary and sufficient

conditions for a summoning task to be feasible. We prove comparable necessary

and sufficient conditions for a generalised version of the summoning task where

the point where the state is to be returned does not necessarily lie in the causal fu-

ture of the point where the call is made. This result has practical applications for

distributed quantum computing and cryptography and also implications for our

understanding of relativistic quantum information and its localisation in space-

time.

Based on a paper co-authored with Adrian Kent [9].

3.1 Introduction

Hayden and May’s result (theorem 1) assumes that summoning tasks are defined
such that each response point lies in the future lightcone of its associated call point
- after all, if this is not the case, then some of the causal diamonds referenced in
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the theorem will not even exist.

But in fact this assumption is slightly restrictive, since a task can be feasible
even when one of the causal diamonds does not exist. This is because in the case
of only two call points, c0 and c1, receiving the information that a call has not been
made at call point c0 is equivalent to receiving the information that either a call
will be made at c1 or no call will be made at all, since HM’s formulation of the
task comes with a guarantee that Bob will make no more than one call. It follows
that if the response point r1 lies in the future lightcone of some point in the causal
diamond D0, we can construct a successful protocol even if r1 does not lie in the
future lightcone of c1.

Thus, as a warm-up to the study of generalised summoning tasks, we define
an altered version HM’s original task to allow for this possibility and generalise
theorem 1 to cover this scenario.

3.2 Necessary and Sufficient Conditions

Here, and in all future discussion of distribution tasks, we adopt the approximation
that quantum states may be effectively localised to a point (see Ref. [7] for further
discussion of this approximation and its limitations), and for simplicity we work in
the coordinate system defined by Alice’s rest frame, using that coordinate system
to write Ps = (ts, xs), ci = (tci , x

c
i), ri = (tri , x

r
i ).

Theorem 2. Consider a summoning task defined by a start point PS and a set

of N ordered call-response pairs (ci, ri), in which Alice is given a quantum sys-

tem QB in some unknown state ψ at PS , and if a call is subsequently made at

exactly one call point ci, Alice must return a quantum system in the state ψ at the

corresponding response point ri. The task is feasible iff the following conditions

hold:

1. Every response point is in the future lightcone of the start point.

2. For every pair (ci, ri), (cj, rj), either both of the response points lie in the

future lightcone of ci, or both of the response points lie in the future light-

cone of cj .
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Proof. The necessity of condition 1) follows from no-signalling.

To see that condition 2) is necessary, suppose there exists a feasible task such
that this condition does not hold for some pair (ci, ri), (cj, rj). Then when we
employ a protocol that is guaranteed to succeed for this task, if calls are made at
both ci and cj , it follows from no-signalling that the unknown state will be returned
at both ri and rj , in violation of the no-cloning theorem. We have obtained a
contradiction, so the condition must hold for any pair (ci, ri), (cj, rj) if the task is
feasible.

To see that the conditions are sufficient, note that HM’s proof [7] shows that
a protocol for any number of call points can be built recursively out of a protocol
for two call points. Their argument extends to the more general configurations
we consider, so we need only show that there exists a protocol that guarantees
a successful response for any two call-response pairs that satisfy the conditions
of theorem 2 above, but not the conditions given in theorem 1, i.e. two pairs
(ci, ri), (cj, rj) such that ri > ci, rj > ci, rj 6> cj . The protocol is as follows.

1. Before the protocol begins, Alice creates a Bell pair on the systems BS, Bi,
sending BS to her agents at xS and Bi to her agents at xci .

2. At time ts, when Alice’s agents at xs receive a systemQB in the state ψ, they
perform a Bell measurement on the joint systems QB, BS , thus teleporting
ψ to Bi. They then broadcast their measurement result in all directions.

3. If a call is made at ci, Alice’s agents at xci sendBi to xri , otherwise they send
it to xrj .

4. If a call is made at ci, Alice’s agents at xci receive the teleportation data from
the start point and apply the appropriate operation on Bi to recover the state
ψ, then hand Bi over to Bob at ri.

5. If a call is not made at ci, Alice’s agents at xcj receive the teleportation data
from the start point and apply the appropriate operation on Bi to recover the
state ψ, then hand Bi over to Bob at rj .
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3.3 Summary

Examining theorem 2, it is straightforward to infer that for a feasible task there can
be at most one response point that does not lie in the future lightcone of its asso-
ciated call point, so clearly the generalisation we have made is a fairly minor one.
However, it could nonetheless be of practical importance. For example, suppose
we are modelling a distributed quantum computation as a summoning task: to in-
crease efficiency, it might be important to design the task so as to minimise the
average time taken per round, and placing one response point in a position that
is spacelike separated or even in the causal past of the corresponding response
point might be one way of making this average time smaller. If such tasks are
implemented a large number of times in the course of a computation, even a small
change such as this could potentially lead to a significant computational speedup.

We also suggest that the correction makes an important interpretational differ-
ence. HM comment that a qubit can be summoned from some call point to the
corresponding response point ‘if and only if the qubit is localized in the causal
diamond’ and therefore ‘the summoning task is possible if and only if the qubit’s
information is replicated in each and every one of the causal diamonds.’ [7] But
theorem 2 demonstrates that summoning can be completed successfully even in
cases where the causal diamond does not even exist; moreover, theorem 2 will
of course also apply to all cases covered by theorem 1, and therefore this result
demonstrates that there exists an alternative - and, arguably, equally simple - way
of characterising the set of feasible distribution tasks that does not make reference
to causal diamonds. This puts some pressure on the special ontological role played
by the causal diamonds in HM’s interpretation of their result, and thus makes it
less plausible to think of the conditions obtained as a description of the regions of
spacetime where quantum states may in some sense be ‘localised.’



Chapter 4

A Quantum Paradox of Choice

The properties of quantum information in spacetime can be investigated by study-

ing operational tasks, such as ‘summoning’, in which an unknown quantum state

is supplied to an agent and must be returned at a specified point when a cor-

responding call is made. Hayden-May recently proved necessary and sufficient

conditions for a summoning task to be feasible. We prove comparable necessary

and sufficient conditions for a generalised version of the summoning task where

several calls may be made and a correct response to any one call constitutes a

successful response to the task. Thus we demonstrate the existence of an apparent

paradox: this extra freedom makes it strictly harder to complete the summoning

task. This result has practical applications for distributed quantum computing and

cryptography and also implications for our understanding of relativistic quantum

information and its localisation in spacetime.

Based on two papers co-authored with Adrian Kent [9, 10].

4.1 Introduction

On a dark and stormy evening in an oddly named tavern in London, you come
across a man named Harry who insists that he can perform magic. When pressed
to prove his credentials, Harry the Magician (HM) agrees to a demonstration. He
asks you to give him an object that you are sure he cannot copy, and you reluc-
tantly hand over your prized signed first-edition of Speakable and Unspeakable
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in Quantum Mechanics [204]. Harry then goes behind a curtain, and when he
emerges, he presents you with N boxes and asks you to choose one. Opening
your chosen box, he reveals your book inside!

Being sceptical by nature, you float the possibility that he might simply have
been lucky, but Harry is happy to repeat the trick as many times as you like until
you are convinced that the result cannot simply be coincidence. You are still sus-
picious, however. You imagine that perhaps Harry has arranged some concealed
mechanism that passes your book sequentially through the boxes, allowing him
to stop the book when it reaches the box you have selected. But then, on Harry’s
next attempt, you trying pointing to two different boxes and asking Harry to open
either one of them. Harry picks a box and opens it, but to your surprise, your book
is not inside. Indeed, on repetition you discover that Harry is no longer reliably
able to make the trick work when you select more than one box, even though you
allow him to choose which of your selections to open. This argues against your
mechanical explanation, and indeed seems to make any mechanistic explanation
problematic - how can giving Harry more freedom make him unable to complete
the task?

The so-called paradox of choice, in which more choice makes consumers less
happy, is a familiar concept in economics [205]. Harry’s paradox, however, is
much sharper: more freedom in choosing how to execute a task makes it impos-

sible. Strange as this may sound, we show that such a situation can indeed arise
when quantum mechanics is combined with classical relativity. Our paradox is
derived from a different generalisation of HM’s summoning task [7]: we alter
the task so that Bob is no longer constrained to make exactly one call at exactly
one call point. Since the ri may be spacelike separated, the no-cloning theorem
means that Alice cannot return the state several times; hence we define a multiple-

call summoning task such that, if several calls are made at points ci, Alice need
only return the state at any one of the corresponding return points ri in order to
complete the task successfully. Using the no-sigalling and no-cloning theorems
we establish necessary and sufficient conditions on the geometric configuration of
call and return points for a multiple-call summoning task to be feasible, and we
show that these are strictly stronger conditions than those established by HM for
the case where it is guaranteed that at most one call will be made.
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4.2 Necessary and Sufficient Conditions

We use notation, terminology and approximations as defined in section 2.1 and
chapter 3. Note that for a multiple-call summoning task we assume once again
that every response point lies in the future lightcone of the associated call point,
as in the original summoning task. We then have the following result:

Theorem 3. Consider a multiple-call summoning task defined by a spacetime

point Ps and a set of N ordered pairs of spacetime points (ci, ri) such that ∀i ri ≥
ci, in which Alice is given a quantum system QB in some unknown state ψ at PS ,

and if a call is subsequently made at exactly the set of call points with indices in

the set K, Alice must return a quantum system in the state ψ at any response point

ri : i ∈ K. The task is feasible iff:

1. Every response point ri ≥ s

2. For any subset K of {1, . . . , N}, there is at least one k ∈ K such that

rk ≥ ci for all i ∈ K.

Proof.

Necessity: The necessity of condition 1) follows from the no-signalling princi-
ple.

To see that condition 2) is necessary, suppose for the purpose of obtaining a
contradiction there exists a feasible multiple-call summoning task that includes
some subsetM of M ≤ N call-response pairs such that for every call-response
pair (ci, ri) ∈ M, there exists at least one call-response pair (cj, rj) ∈ M such
that ri ≯ cj .

Let us then consider the subtask defined by dropping from the original task
all call-response points not inM. Since the original task is feasible, this subtask
is also feasible, so there exists some strategy S for Alice that is guaranteed to
produce a successful response for this subtask. The probability of a successful
response for a strategy containing probabilistic elements must be a convex combi-
nation of the probabilities of successful responses for various deterministic strate-
gies, which means that there exists a protocol guaranteeing a successful response
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to the task only if there exists a deterministic protocol guaranteeing a successful
response to the task. Thus we henceforth confine our attention to deterministic
strategies S.

Let QSi be the total number of subsets Q ⊆ {c1, c2, ...cM} such that when
Alice uses strategy S, ψ is returned at ri if calls are made at all points in Q.Each
return point is in the causal future of the corresponding call point, so Alice may
decline to return anything at ri if no call is made at ci, and we therefore assume
without loss of generality that strategy S returns no state anywhere if no calls are
made. From the no-signalling principle, for any i, j such that ri ≯ cj and any
fixed strategy for Alice, the response made at ri when calls are made at some set
of call points Q with ci, cj ∈ Q is the same as the response made at ri when calls
are made at the set {Q \ cj}. Thus for any ri for which there exists some j such
that ri ≯ cj , Qi must be even. In this subtask there exists some such j for every i
and therefore

∑M
i=1QSi must also be even.

Since S guarantees a successful response, Alice must respond at one or more
points to any possible set of calls; from the no-cloning theorem, Alice can respond
at no more than one point to each possible set of calls; and hence S must ensure
that Alice responds at exactly one point whenever calls are made at some subset
Q ⊆ {c1, c2, ...cM}. Thus we must have

∑M
i=1QSi =

∑M
j=1

(
M
j

)
= 2M − 1, which

is always odd.

We have defined a contradiction; thus we infer that there exists a successful
protocol for the sub-task defined by the set M only if there exists at least one
call-response pair (ci, ri) ∈M such that ∀(cj, rj) ∈M we have ri ≥ cj .

Since this reasoning may be applied to any sub-task, there exists a success-
ful protocol for a multiple-call summoning task only if for any subset S of call-
response pairs, at least one response point rk belonging to a pair in S lies in the
future lightcone of all the other call points belonging to pairs in S.

Sufficiency: We now show that the conditions are sufficient, by exhibiting a
protocol that always succeeds for a multiple-call summoning task that satisfies
the conditions of theorem 3.

Let d be the agreed dimension of the Hilbert space of the unknown state ψ.
Define SN = {1, . . . , N}. From condition 2) of theorem 3, there is at least one
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i ∈ SN such that ri ≥ cj for all j ∈ SN . Choose one such, iN , and define
SN−1 = SN \ {i}. Similarly, choose iN−1 ∈ SN−1 such that riN−1

≥ cj for all
j ∈ SN−1, and so on. We thus obtain an ordered sequence of call response pairs
(ci1 , ri1), . . . , (ciN , riN ) such that the return point of any pair in the sequence lies
in the causal future of the call points of all previous pairs. We relabel the cij , rij ,
writing j for ij .

Alice may now proceed as follows:

1. Before the protocol begins, she distributes maximally entangled pairs of
states in Cd ⊗ Cd on the systems (Qs, Q

c
1), (Qc

1, Q
c
2), . . . , (Qc

N−1, Q
c
N) be-

tween agents at the spatial locations (xs, x
c
1), (xc1, x

c
2), . . . , (xcN−1, x

c
N).

2. At time ts, when the state is given to Alice’s agent at xs, the agent imme-
diately uses Qs to teleport it to Qc

1, broadcasting the classical teleportation
data.

3. If a call is made at at c1, Alice’s agent at xc1 immediately sends Qc
1 to xr1,

where another agent uses the classical teleportation data from Ps to recon-
struct the original state and return it to Bob at r1.

4. If a call is not made at c1, Alice’s agent at xc1 immediately teleports the state
of Qc

1 to Qc
2, broadcasting the classical teleportation data.

5. If a call is made at c2, Alice’s agent at xc2 immediately sends Qc
2 to xr2. If a

call has already been made at c1, Alice’s agent at xr2 does nothing; otherwise
she uses the classical teleportation data from Ps and c1 to reconstruct and
return the state at r2.

6. The process continues until either a call is made at some ci, and the state
is reconstructed and returned at ri, or the protocol terminates without a call
being made. If no call is made, Alice may reconstruct the state at rN if she
wishes, but she does not return it to Bob.

Comments
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Figure 4.1: A 2 + 1 dimensional example, taken from Ref [7], which is feasible if
one call is guaranteed, but not if more than one call may arrive. The black lines
are lightlike and in this case they represent the entirety of the casual diamond for
each pair; the red arrows are also lightlike. We have that c1 < r3, c2 < r1 and
c3 < r2.

1. Any task satisfying the conditions of theorem 3 also satisfies those of the-
orem 1. However, it is easy to construct tasks that satisfy the conditions of
theorem 1 but not those of theorem 3. For example, Fig. 3 of [7], repro-
duced below as fig 4.1, describes one such set. Allowing the possibility of
more than one call thus makes the summoning task strictly harder, as we
claimed in our initial description of the quantum paradox of choice.

2. Nonetheless, the conditions of theorem 3 still do not imply that there is a
causal path running from the start point through each causal diamond. An
example is given in fig 2.

3. The ordered sequence of pairs used in the proof of sufficiency is not neces-
sarily unique. For example, a nested set of two pairs, with ci ≤ cj < rj ≤ ri

(and appropriate relations to the other diamonds) may be taken in either or-
der. More generally, one can construct examples including sets of n non-
overlapping diamonds (ci, ri) (for 1 ≤ i ≤ n) for which ci < rj for all i, j;
Fig. 2 gives an example of this type for n = 3.
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Figure 4.2: An example with c1, c2, c3 < r1, r2, r3. The task satisfies the condi-
tions of both theorem 3 and 1, so summoning with any number of calls is feasible,
even though there is no causal path running through all three causal diamonds.
The timelike black lines run between the call points and their return points and
define the centres of the diamonds at each time; the red arrows are lightlike.

4.3 Resolution

The resolution of the apparent paradox rests on a feature of summoning tasks
whose importance is easy to overlook. In HM’s original formulation of the sum-
moning task, it seems prima facie as if the guarantee of at most one call plays no
special role other than to ensure that Alice is never required to produce two copies
of an unknown state, which of course would make the task impossible since the
no-cloning theorem prohibits her from achieving such a thing. Thus it is initially
surprising that summoning becomes more difficult when more than one call is al-
lowed, even though we stipulate that Alice need only return the state at a single
point and thus will never be asked to violate the no-cloning theorem.

But in fact, the guarantee of at most one call plays a much more significant
role than previously appreciated. When Alice knows that no more than one call
will occur, as soon as she learns that a call has been made at one call point she can
assume that no call has been made at any other call point (or else Bob has made
the task invalid so she is not required to produce a response), and this knowl-
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edge serves as a non-local resource which improves her ability to coordinate the
behaviour of her agents. On the other hand, in a multiple-call summoning task,
learning that a call has been made at one point tells Alice nothing about the dis-
tribution of calls at other points. Thus although she has greater freedom, she also
has fewer resources available to her in terms of coordinating the behaviour of her
agents, and in some cases this loss of coordination prevents her from being able
to complete tasks that she is able to complete when the guarantee of only one call
is in force.

4.4 Finkelstein’s Objection

In ref [11], Finkelstein put forward a putative classical analogue of our multiple
summoning task. In Finkelstein’s proposed task, Alice has agents at space points
L and R, and Bob will either request for a signal to be sent from L to R at time
T and no signal to be sent from R to L, submitting his request to agent L at time
T , or for a signal to be sent from R to L and no signal to be sent from L to
R, submitting his request to agent R at time T . Finkelstein argued that if only
one request will be made, Alice can ensure compliance by simply having the two
agents do as they are requested, but if two requests may be made then Alice cannot
ensure compliance.

We pointed out in ref [10] that this example is not correct: Alice can ensure
compliance when two requests are made by simply stationing an agent halfway
between L and R who will intercept both signals and send only one of the two
onwards to its final destination. However, we acknowledge that it is certainly
possible to come up with classical tasks which do have the features that Finkelstein
intends. For example, suppose that Alice has two agents, A0 and A1 separated by
a distance D and Bob has agents B0 and B1 adjacent to A0 and A1 respectively,
with all these agents stationary in some mutually agreed inertial frame. At time
t = 0 in the agreed frame, each Bi sends the associated Ai a classical bit, with
a guarantee that at least one bit value 1 will be sent, and Alice’s task is to have
her agents Ai return, effectively instantaneously, two different classical bits to the
two agents Bi, ensuring that the agent who sent 1 also receives 1. The task is
clearly trivial if there is an additional guarantee that only one bit value 1 will be
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sent, but if it is allowed that both of Bob’s agents Bi send bit value 1, then Alice
cannot ensure that she always completes the task successfully, even though in the
case that both Bi send bit value 1 there are two valid ways of completing the task
rather than just one as in the trivial case.

Does the existence of such classical tasks threaten our description of our result
as a paradox? First of all, it should be noted that we do not claim that our result
represents a paradox in the sense that it is an actual physical contradiction - in-
deed, we have described the resolution to the apparent paradox in section 4.3. The
term ‘paradox’ is intended only to highlight the fact that the effect we describe
seems surprising from the point of view of a certain intuitive way of thinking
about quantum states and their spatiotemporal localisation. As noted in section
2.2, a paradox is characterised as such in terms of the limitations of human cog-
nition and of pre-existing mental models, which may of course be different for
different readers: if there are people whose pre-existing intuitions about summon-
ing relativistic quantum information assured them that theorem 3 must obviously
be true, for such people our result will of course not seem to present much of a
paradox, but most of our audiences have found the effect surprising and hence the
term ‘paradox’ is appropriate.

A more serious concern is that the existence of classical tasks like the one set
out above might threaten our contention that this result is a specifically relativis-
tic quantum phenomenon that is not exhibited in classical physics, or in quantum
physics alone, or relativistic physics alone. We of course acknowledge that the
mere existence of a task where being given more options makes the task harder
is not a specifically relativistic or quantum phenomenon, as demonstrated by the
example above. However, we maintain that the specific effect we have described
here is indeed irreducibly quantum, because the distinction between summoning
tasks with and without guarantees, and indeed the very fact that there are interest-
ing constraints on summoning tasks, relies on the no-cloning theorem; moreover
theorem 3 also relies on the delocalisability of quantum information via quantum
teleportation, which allows summoning even in configurations where sending the
state along any given causal path cannot succeed. We also maintain that the ef-
fect is irreducibly relativistic, because the distinction between summoning tasks
with and without guarantees, and the existence of interesting constraints on sum-
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moning tasks, also relies on the impossibility of superluminal signalling in special
relativity1 Thus, whether or not one finds it illuminating to describe our result as
a ‘paradox,’ it is certainly an intrinsically quantum and relativistic result, and thus
represents an advance in our understanding of the behaviour of quantum systems
in relativistic spacetime.

4.5 Applications

This generalisation of the original summoning task is a natural one to consider
in the context of a distributed quantum computation. In general, we are likely to
be interested in using such computations to perform calculations whose answers
we cannot efficiently calculate using ordinary computers, and therefore if we have
a scenario where calls may be made for a given state at any one out of several
distinct nodes, with the choice of call depending on the results of previous rounds
of computation, it might not always be possible to guarantee that only one call
will be made at any given round. We would not want the whole computation to
fail whenever more than one call was made, and therefore ideally we would like to
arrange distribution protocols that are able to cope with the possibility of multiple
calls. The results of this chapter show how to design distribution tasks for which
there exists a protocol that is able to complete the task with one hundred percent
success rate, and also provide an explicit protocol that is guaranteed to succeed
whenever there exists any protocol that is guaranteed to succeed.

Moreover, the original no-summoning theorem has already led to new appli-
cations in relativistic quantum cryptography [16, 17, 165, 173, 186]. The stronger
results reported here and in Ref. [7] suggest further ways of exploiting summoning
as a general way of controlling the flow of quantum information, and therefore we
expect these results to find application in future cryptographic protocols as well
as in quantum network algorithms.

1It is true that there exists a no-signalling theorem in quantum physics, but this is not sufficient
to derive theorem 3; we specifically make use of the relativistic no-signalling principle, as indi-
cated by the fact that theorem 3 is couched in the language of Minkowski spacetime. See section
1.2.2 for further comments.
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4.6 Summary

The mysterious man named Harry disappears into the night before you are able
to ask him for a more exciting demonstration of his powers, leaving behind only
your copy of Speakable and Unspeakable and what appear to be a few feathers
from a snowy owl. But no matter - we have learned a great deal from him already.

Like the original no-summoning theorem, our results rely crucially on both rel-
ativity and quantum theory. The paradox and its resolution thus allow us to probe
intuitions about the nature of quantum states as spatiotemporal entities. There is
a tradition in physics of describing quantum states and quantum information us-
ing the language of persisting physical objects [206]; for example, a widely cited
review by Horodecki et al. [207] states:

‘This is the essence of teleportation: a quantum state is transferred
from one place to another: not copied to other place, but moved to
that place.’

Hayden and May’s discussion of their work follows the same linguistic tradi-
tion. In particular, they interpret their results as giving a characterization of the
spatiotemporal location of the quantum information stored in a quantum state in
between preparations and measurements:

‘We fully characterize which regions of spacetime can all hold the
same quantum information. Because quantum information can be de-
localized through quantum error correction and teleportation, it need
not follow well-defined trajectories. Instead, replication of the in-
formation in any configuration of spacetime regions not leading to
violations of causality or the no-cloning principle is allowed . . . This
provides a simple and complete description of where and when a qubit
can be located in spacetime, revealing a remarkable variety of possi-
bilities.’ [7]

Yet the rationale for this common mode of description remains largely un-
analysed. Although much ink has been spilled over the question of the reality
of the quantum state, these arguments focus almost exclusively on instantaneous
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facts [65,208–214]; following Harrigan and Spekkens [65] it is usually held that a
quantum state may be regarded as an element of reality iff no two quantum states
(at a time) are compatible with the same underlying ontic state of the world (at
that time), and this is the definition which occupies the attention of most of the
community, so we seldom ask whether it is accurate or even useful to think of
quantum states as persisting physical entities.

In particular, our results cast doubt on this way of talking about HM’s result,
because our analysis of multiple-call summoning tasks makes it clear that the
guarantee of a single call plays a pivotal role in Alice’s ability to complete vari-
ous summoning tasks. This means that the special role of the future lightcones of
the call points in a summoning task is explained mainly by the fact that they are
regions where Alice is in possession of nontrivial information about which call
has been made, suggesting that the causal diamonds are in large part privileged
epistemologically rather than ontologically. Hence it is somewhat misleading to
regard the causal diamonds as regions in which some specific quantum informa-
tion is localised, since the possibility of this interpretation was an artifact of the
extra information imparted by the guarantee and not really anything to do with the
spatiotemporal history of a persisting quantum state.

Indeed, thinking about the quantum state as something akin to a persisting
physical object is in part what gives rise to the kind of thinking that makes our
result seem paradoxical in the first place, and hence one lesson to be leaned from
the apparent paradox and its resolution is that any supposed account of the spa-
tiotemporal location of a quantum state in between preparations and measure-
ments should be treated with great care. As ref [206] points out, quantum states
and quantum information are not persisting physical entities in the ordinary ev-
eryday sense, and describing them as such can give rise to a number of serious
fallacies.

Of course, we do not mean to suggest that one should never speak informally
about the spatiotemporal history of quantum states or quantum information in
between preparations and measurements, as this can be a helpful way of proving
and synthesising operational results. But we reinforce that such language should
not necessarily be taken literally, and that to guard against fallacies it is important
to use it precisely. In particular, if the behaviour of quantum information in a
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system depends on external events, such as the calls in a summoning task, any
discussion of its localisation should reflect that external dependence.

For example, one way of parsing HM’s statements about regions of spacetime
‘hold(ing) the same quantum information’ would be to say that if Alice follows
their prescribed strategy in a summoning task, and if a call arrives at ci and no
call arrives at any other call point, then the unknown state’s quantum information
becomes localised within Di and the state is reconstructed at ri. Another option
would be to observe that on a run of the protocol where the HM algorithm is fol-
lowed but no call is actually made, then each causal diamond contains a spacelike
hypersurface on which the unknown state could have been reconstructed, had a
call been made at the relevant call point. 2 Both of these ways of summarising the
HM result get across the key point about the accessibility of the relevant quantum
information within the various causal diamonds, without misleadingly appearing
to make ontological statements about the spatiotemporal history of a quantum
state in between preparations and measurements.

2Indeed, this suggestion was made in the course of conversation between A. Kent and P.
Hayden. It may not necessarily represent the position of any of the authors cited - as far as we
are aware HM have not produced a definitive response to the discussion of ref [9] - but it merits a
mention.





Chapter 5

Spooky Summoning

We introduce a new set of relativistic quantum protocols that involve distributing

entangled states over spacetime. We define two related tasks: distributing two

halves of a known entangled state, and distributing two halves of an unknown

entangled state. We derive necessary conditions on the spacetime configurations

of call and response points for a task to be feasible, and make some comparisons

between the sets of feasible tasks in different contexts.

Based on unpublished work with Adrian Kent.

5.1 Introduction

The work presented in the two previous chapters, together with the results of
Hayden and May [7], provides a comprehensive characterisation of the ways in
which a single quantum state can be distributed over spacetime. But many rela-
tivistic quantum communication and cryptographic protocols [6, 7, 215, 216] and
distributed quantum computing routines [217–219] also require participants to
share entanglement with networks of agents at arbitrary points throughout space,
and since in practice the creation and transmission of entanglement is a costly
resource [215, 220], it is of immediate practical concern to understand the exact
conditions under which it is possible to achieve various spacetime arrangements of
entangled states. For example, in measurement-based distributed quantum com-
puting schemes [221], certain entangled states may need to be shared between

67
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different pairs of spatially separated locations depending on the results of mea-
surements performed in the course of the protocol, so in order to achieve an op-
timal tradeoff between the number of entangled states that must be produced and
the speed of the computation, it is helpful to characterize the circumstances under
which agents can interactively distribute entanglement to various configurations
of spacetime points.

Working in the tradition of the summoning tasks discussed in previous chap-
ters, we consider the problem of disseminating entanglement as a quantum dis-
tribution task. We define two such tasks: distributing two halves of a known
entangled state, and distributing two halves of an unknown entangled state. For
each task we find necessary conditions on the spacetime configurations of call and
response points for a feasible task; we then compare the two tasks and discuss the
possibility of attaching labels to states and calls. Finally, we examine possibilities
for further research on this topic and call attention to the important role played by
asymmetry.

5.2 Entanglement distribution

Definition 1. An entanglement distribution task is defined by a set of N ≥ 3

ordered pairs {(ci, ri)} and a fixed maximally entangled bipartite state ξ on a joint
Hilbert space HA ⊗HB, where ξ is known to both Alice and Bob. For a given
run of the task, Bob makes calls at exactly two call points ci and cj; in order to
complete the task successfully, Alice must return systems Vi and Vj at ri and rj
respectively, such that the composite system Vi, Vj is in a joint state φ with either
EiAEjBφ = ξ or EiBEjAφ = ξ, where for x ∈ {i, j}, C ∈ {A,B} the map
ExC : Hx → HC is some pre-agreed isomorphism from the Hilbert space of Vx
to the Hilbert space HC .

Notes

1. In the most general case, one might allow that a response point rx may
not always lie in the future lightcone of the corresponding call point cx,
which would lead to a generalisation similar to that discussed in chapter



5.2. ENTANGLEMENT DISTRIBUTION 69

3. However, we will at present assume that for every x, rx is in the future
lightcone of cx.

2. Alice and Bob must agree in advance on the way in which Alice will return
the state ξ - for example, they might specify that Alice will return the state
in some specific form with respect to a pre-agreed basis. This amounts to
specifying the isomorphisms ExC , which will be known to both Alice and
Bob.

3. Since the state ξ is maximally entangled, it must always be pure.

Notation and terminology For any two call-reponse pairs (ci, ri), (cj, rj), let
i ⊥ j denote ri 6> cj ∩ rj 6> ci.

As in the previous chapters, we say that a task is ‘feasible’ iff there exists a
protocol that guarantees a successful response to the task.

5.2.1 Necessary conditions

Theorem 4. An entanglement distribution task defined by a set of N ≥ 3 ordered

pairs {(ci, ri)} is feasible only if, for any distinct x, y, z ∈ {1, 2, ...N}, if cx 6<
ry, cx 6< rz, then (cz < ry ∪ cz < rx) ∩ (cy < rx ∪ cy < rz)

Proof. Suppose there is a feasible task that includes a set of three response points
x, y, z such that cx 6< ry, cx 6< rz, cy 6< rx and cy 6< rz. Then the joint response
at ry, rz is independent of the occurrence of a call at cx and the joint response
at rx, rz is independent of the occurrence of a call at cy, so from no-signalling,
when we apply a protocol that is guaranteed to succeed, and calls are made at all
three call points cx, cy, cz, the system returned at rz will be maximally entangled
with the systems at both rx and ry, in violation of the monogamy of entanglement.
Hence such a task cannot be feasible.

The same applies if there exists a feasible task that includes a set of three
response points x, y, z such that cx 6< y, cx 6< z, cz 6< x and cz 6< y.
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5.2.2 Entanglement vs Correlations

We have chosen to define this task in terms of the distribution of a maximally
entangled state, and thus the proof for the necessary condition depends on the
monogamy of quantum entanglement [50]. However, a similar task can also be
defined for general non-signalling theories by moving from a description in terms
of entanglement to a description in terms of correlations: instead of a maximally
entangled state, Alice is required to return two sets of labelled systems at the rel-
evant response points, and Bob subsequently tests to see if an appropriate set of
measurements performed on these systems will violate the CHSH inequality. Un-
like in the entanglement distribution task, no (quantum) protocol can ever guaran-

tee success in this correlation task, since even if Alice does return an appropriate
set of maximally entangled states, it is always possible that a statistically unlikely
outcome will occur and the measurements performed on these states will fail to
violate the chosen CHSH inequality. However this could be dealt with by some
appropriate redefinition of a feasible task - for example, one might say such a task
is feasible if there exists a protocol that ensures the probability of success goes to
one as the number of pairs of systems returned by Alice goes to infinity.

It is then interesting to consider how the set of correlation tasks which are
feasible in the context of a general non-signalling theory where the set of achiev-
able correlations is restricted only by the no-signalling principle would relate to
the set of feasible entanglement distribution tasks. First, note that clearly any set
of sufficient conditions for the entanglement task would also be a set of suffi-
cient conditions for the correlation task in the most general non-signalling theory.
Moreover, although quantum correlations obey a stronger monogamy relation than
general non-signalling correlations [53], the proof for the necessary condition in
theorem 4 can be translated directly to the correlation task by simply replacing the
monogamy of entanglement with the general non-signalling tripartite monogamy
bound that we introduced in section 1.2.3, so the same necessary condition ap-
plies in the correlation task even for a theory restricted only by the no-signalling
principle. Suppose the same translation can be made for the proofs of all the other
necessary conditions required to make up a full set of necessary and sufficient con-
ditions for the entanglement distribution task; then the set of feasible tasks for the
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entanglement and correlation tasks will coincide. If indeed this turns out to be the
case, then it would be an interesting area for future investigation to look for vari-
ants on this type of distribution task where as a result of the different monogamy
relations that apply in quantum theory and the most general non-signalling the-
ory, the set of tasks that are feasible according to quantum mechanics is strictly
smaller than the set of tasks that are feasible in a theory restricted only by the
no-signalling principle.

5.3 Entanglement summoning

Definition 2. An entanglement summoning task is defined by a start point Ps
and a set of N ≥ 3 ordered pairs {(ci, ri)}. For a given run of the task, at the start
point Bob gives Alice a pair of systems QA, QB in some state ξ, where the state
ξ is unknown to Alice, and then makes calls at exactly two call points ci and cj; n
order to complete the task successfully, Alice must return systems Vi and Vj at ri
and rj respectively such that the composite system Vi, Vj is in a joint state φ with
either EiAEjBφ = ξ or EiBEjAφ = ξ, where for x ∈ {i, j}, C ∈ {A,B} the map
ExC : Hx →HC is a pre-agreed isomorphism from the Hilbert space of Vx to the
Hilbert space of QC .

Notes

1. As before, we will assume that for every x the point rx is in the future
lightcone of cx.

2. As before, Alice and Bob should agree in advance on the form in which
Alice will return the state ξ. Since Alice does not know the actual state in
this scenario, this will entail stipulating the ways in which she is allowed to
transform the state initially handed to her by Bob and the types of systems
she is allowed to transfer it to. This amounts to specifying the isomorphisms
ExC , which will be known to both Alice and Bob.

3. An entanglement summoning task will qualify as feasible only if there ex-
ists a protocol for Alice which guarantees a successful response for any



72 CHAPTER 5. SPOOKY SUMMONING

joint state ξ. The unknown state ξ is not guaranteed to be maximally en-
tangled, and indeed, might even be separable. In particular, the protocol
must still work in the case where ξ is asymmetric, i.e. TrQA

(ξ) 6= TrQB
(ξ).

For example, one could employ a state ξ = |ψ〉〈ψ| for ψ =
√

1
2
− δ|01〉 +√

1
2

+ δ|10〉 for some δ ∈ (0, 1
2
]; the two halves of this state are distinguish-

able since a system prepared in TrQB
(ξ) would be more likely than a system

prepared in TrQA
(ξ) to be found in the state |1〉.

5.3.1 Necessary conditions

Theorem 5. An entanglement summoning task defined by a start point Ps and a

set of N ≥ 3 ordered pairs (ci, ri) is feasible only if:

1. Every response point lies in the future lightcone of the start point.

2. For any set of three call-response pairs, (ci, ri), (cj, rj) and (ck, rk), at least

one response point from ri, rj, rk lies in the intersection of the three future

lightcones of ci, cj and ck.

3. There exists no more than one set of two call-response pairs (cx, rx),(cy, ry)

such that x ⊥ y, and if there exists such a pair (cx, rx),(cy, ry), then for ev-

ery (cz, rz) : z 6= x, z 6= y, the response point rz lies in the future lightcone

of cx and also the future lightcone of cy.

Proof. The necessity of condition 1) follows from no-signalling.

To see that condition 2) is necessary, suppose there exists a feasible task which
includes a set of three call-response pairs (ci, ri), (cj, rj) and (ck, rk) for which
none of ri, rj, rk lies in the intersection of the three future lightcones of ci, cj
and ck. We denote the two mixed states obtained from ξ by tracing out QA and
QB respectively as ξ0 and ξ1. Then suppose that we employ a protocol which
guarantees a successful response to the task; when calls are made at ci and cj , ξ0

and ξ1 must be returned at ri and rj or vice versa; likewise mutatis mutandis for
calls made at ci, ck and calls made at cj, ck. Moreover, since none of ri, rj, rk lies
in the intersection of the three future lightcones of ci, cj and ck, no pair of two
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calls can jointly prevent a response at the third response point. Thus suppose that
on some run, Bob makes calls at ci, cj and ck; from no-signalling, responses must
be made successfully at all three points ri, rj and rk, and therefore either ξ0 or ξ1

is returned at two distinct points, so Bob can retain these states in order to produce
two copies of the same state on some spacelike hypersurface, in violation of the
no-broadcasting theorem. Hence we have obtained a contradiction, so no such
task can be feasible.

To see that condition 3) is necessary, suppose there exists a feasible task such
that on some run of this task, a call is made at some call point cx and a successful
response is made at rx. We are then left with a summoning task as in ref [7] for
the second half of the entangled state, and from the conditions derived in [7], this
subtask is feasible only if for every remaining pair (cj, rj), (ck, rk), either ck < rj

or cj < rk. Since the subtask must be feasible if the larger task is feasible, it
must be the case that in this task, j ⊥ k implies either j = x or k = x. So for a
feasible entanglement summoning task, either there is no set of two call-response
pairs (ci, ri), (cj, rj) such that i ⊥ j, or there exists a call-response pair (cx, rx)

such that ∀j, k j ⊥ k =⇒ (j = x) ∪ (k = x).

Now suppose that for this unique pair (cx, rx), ∃y, z such that x ⊥ y and
also cx 6< rz or cy 6< rz; then the triple (cx, rx), (cy, ry), (cz, rz) fails to satisfy
condition 2) which we have already derived above. Thus there can be at most one
call-response pair (cy, ry) such that x ⊥ y, and for any z 6= x, z 6= y we must have
cx < rz ∩ cy < rz.

Note that wherever a task is feasible for entanglement summoning, the task
defined by removing the start point is also feasible for entanglement distribution,
since Alice can simply create a copy of ξ at some point in the past lightcone of
all the response points and then apply the protocol for entanglement summoning.
However, the converse is not true: there exist configurations which define a fea-
sible entanglement distribution task, but do not define a feasible summoning task
for any possible choice of start point. Fig 5.1 shows such a configuration: to show
that it defines a feasible entanglement distribution task, we describe a protocol
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that guarantees a successful response below, but not a feasible entanglement sum-
moning task, since we have both 1 ⊥ 2 and 3 ⊥ 0, in violation of condition 3) of
theorem 5.

r1 r2

r0 r3

c1 c2
c0c3

x
y

t

Figure 5.1: A spacetime configuration for a task defined by a set of four call-
response pairs with 1 ⊥ 2 and 3 ⊥ 0. For the case of the entanglement summoning
task, we take it that the start point is anywhere in the past lightcone of all four
response points.

c1 c2

c3 c0

r1 r2

r3 r0

Figure 5.2: Projection on the x-y plane of the four lightcones for a task defined by
a set of four call points with 1 ⊥ 2 and 3 ⊥ 0.
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Protocol for Entanglement Distribution

1. Before the start of the protocol, Alice prepares six copies
of the maximally entangled state ξ on the entangled pairs
(X0

01, X
1
01), (X0

02, X
2
02), (X1

13, X
3
13), (X2

23, X
3
23), (X0

03, X
3
03), (X1

12, X
2
12),

sending X0
01, X

0
02, X

0
03 to r0, X1

01, X
1
12, X

1
13 to r1, X2

02, X
2
12, X

2
23 to r2,

X3
03, X

3
13, X

3
23 to r3.

2. If a call is made at c0 and also at c1, Alice’s agent at r0 returns X0
01; if a call

is made at c0 and also at c2, Alice’s agent at r0 returns X0
02; if a call is made

at c0 and no other call is made in the past lightcone of r0, Alice’s agent at r0

returns X0
03.

3. Likewise mutatis mutandis for c1, c2 and c3.

5.3.2 Labelled calls

An alternative way of formulating an entanglement summoning task would be
for Bob to give Alice the unknown bipartite state with labels attached to the two
halves of the state and then also to include labels with his calls telling Alice which
half of the entangled state she is to return at the corresponding response point.

The necessary and sufficient conditions defining the set of feasible labelled
tasks would then be just the same as the necessary and sufficient conditions for
two separate summoning tasks, as set out in ref [7]. Comparing these conditions
to the necessary conditions set out in theorem 5, we observe that the distinction
between labelled and unlabelled tasks has some similar features to the paradox
discussed in the previous chapter.

In one sense, the labelled task is more difficult than the unlabelled task, be-
cause there exists no protocol which guarantees success for a task with labelled
calls if it includes any set of two call-response pairs (cx, rx), (cy, ry) such that
x ⊥ y, whereas there may exist a protocol that guarantees success for a task with
unlabelled calls if it includes no more than one such set. Fig 5.3 thus gives an
example of a spacetime configuration that defines a feasible unlabelled task (pro-
vided that the start point is somewhere in the past lightcone of all three response
points) but not a feasible labelled task.
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r1 r2

c1 c2

Figure 5.3: A spacetime configuration for an entanglement summoning task that
is feasible with unlabelled calls but not with labelled calls. We take it that the start
point is somewhere in the past lightcone of r1 and r2.

Yet in another sense, the unlabelled task is more difficult than the labelled task,
because the necessary conditions for a labelled task constrain only the relative
configuration of any two call-response pairs, whereas the necessary conditions
for the unlabelled task constrain the relative configuration of any three. Fig 5.4
thus gives an example of a spacetime configuration that defines a feasible labelled
task (provided that the start point is somewhere in the past lightcone of all four
response points) but not a feasible unlabelled task, since it violates condition 2) of
theorem 5.
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r0 r2r1

c0 c2c1

x
y

t

Figure 5.4: A spacetime configuration for a task that is feasible with labelled calls
but not with unlabelled calls. Every response point lies in the future lightcone of
two call points, but no response point lies in all three. We take it that the start
point is somewhere in the past lightcone of r0, r1 and r2.

The reason that the unlabelled task is sometimes easier is that Alice has greater
freedom about how to respond to certain tasks. Conversely, the reason the labelled
task is sometimes easier is that, as in chapter 4, giving Alice greater freedom
means she has less information to coordinate the actions of her distant agents: the
guarantee that two calls with different labels will be made provides Alice with a
nonlocal resource in much the same way as the guarantee that only one call will be
made provides a nonlocal resource. As a result of the two competing effects, the
set of feasible labelled tasks is not a proper subset of the set of feasible unlabelled
tasks and nor is the converse true, so neither form of the task is strictly speaking
‘easier’ than the other.

5.4 Summary

The work in this chapter is a starting point for the study of entanglement distri-
bution and summoning tasks, but clearly much remains to be done. Ideally one
would like to derive a full set of necessary and sufficient conditions defining the
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exact set of feasible tasks in each case, and for practical purposes it would also be
useful to have an explicit protocol that is guaranteed to succeed for any feasible
task, as we have for the original summoning task and the variants discussed in
preceding chapters.

Nonetheless, the necessary conditions we have set out already rule out a large
class of configurations and allow us to make meaningful comparisons beween the
two tasks and also between labelled and unlabelled tasks. The latter comparison
has some interesting features. In the case of our ‘quantum paradox of choice,’
when the guarantee of only one call was removed, the loss of global coordination
outweighed any advantage that might have arisen from the extra freedom, and
hence the conditions for the task with ‘more freedom’ turned out to be strictly
stronger than the conditions for the original task. But when we remove labels from
a labelled entanglement distribution task, we find that the advantage of greater
freedom and the disadvantage of losing global coordination are both significant,
and as a result of the two competing effects the conditions for the unlabelled task
are neither strictly stronger nor strictly weaker than the conditions for the labelled
task. This gives a more nuanced picture of the relationship between freedom and
global coordination in distribution tasks, and vindicates the intuition discussed in
chapter 4 that giving an agent greater choice about how to complete a task should,
all else being equal, make the task easier.

We also call attention to some interesting points raised by our choice of defini-
tion for entanglement summoning. We defined the entanglement distribution task
with respect to the distribution of a maximally entangled state1, but in the entan-
glement summoning task (ES1) we did not limit Bob to giving Alice maximally
entangled states. Indeed, had we done so, the proofs for conditions 2) and 3) of
theorem 5 would no longer have applied, because these proofs rely on the fact that
the two reduced states TrQA

(ξ) and TrQB
(ξ) are not known to Alice, whereas if

the state ξ were maximally entangled, both reduced states would be equal to the
maximally mixed state and hence would be known to Alice. One might of course
define an alternative entanglement summoning task (ES2) in which Alice is given

1Note that if we do not insist on a maximally entangled state for the entanglement distri-
bution task, the necessary condition set out in theorem 4 will not necessarily hold, because the
monogamy constraints for general entangled systems are more complex than the simple constraint
for maximally entangled states.



5.4. SUMMARY 79

a guarantee that the state provided by Bob will always be maximally entangled,
and it would be interesting to establish whether or not the set of feasible tasks
for the two variants would coincide. Clearly any configuration which defines a
feasible ES1 task would also define a feasible ES2 task, since by definition any
protocol which guarantees success for an ES1 task must also guarantee success in
the case where Bob chooses a maximally entangled state for ξ, but it is an open
question as to whether there might exist configurations which define feasible ES2
tasks but not feasible ES1 tasks. One argument suggesting that there may not exist
such configurations is that any strategy for Alice in an ES2 task must essentially
come down to sending the state ξ obtained from Bob through some set of quantum
channels to the relevant response points, and if there exists a set of quantum chan-
nels that faithfully transmit the two halves of any maximally entangled bipartite
quantum state while preserving the entanglement between them, then the channels
must be noiseless [222], so they will also faithfully transmit the two halves of any
other bipartite quantum state while preserving the entanglement between them,
which means that if Alice has a protocol that is guaranteed to succeed for some
ES2 task, the same protocol would also be guaranteed to succeed for the corre-
sponding ES1 task. However, this argument is informal and does not do enough to
rule out the possibility that there exists some special strategy that always succeeds
for maximally entangled states but that sometimes fails for states which are not
maximally entangled. Resolving this issue one way or another would not only be
of practical value in terms of our understanding of the ways in which entangled
states can be used in distributed quantum computing, but might further elucidate
some intriguing connections between entanglement, symmetry and indiscernibil-
ity for quantum states.
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Relativistic Quantum Cryptography
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Chapter 6

Definitions

We provide formal definitions of relativistic bit commitment and knowledge-

concealing evidencing of knowledge, and describe the criteria we will use to mea-

sure the security of these protocols.

Based in part on papers co-authored with Adrian Kent [16–18].

6.1 Relativistic Bit Commitment

Relativistic bit commitment protocols are based on a simple principle: the data
that fixes Alice’s commitment is revealed at a set of spacetime points that are
spacelike or lightlike separated from the commitment point. Consequently all this
data is in the possession of Bob’s agents on some spacelike hyperplane Σ passing
through the commitment point, so nothing Alice does at any point to the future
of this hyperplane will change her commitment. However, Bob cannot find out
Alice’s commitment until he can bring together information from the commitment
point and the other points where data was unveiled, and therefore there is some
region of spacetime in which Alice is committed but neither Bob nor any of his
agents know which bit she is committed to.

Idealisations As is usual in quantum cryptography, we initially present our pro-
tocols in an idealised form assuming perfect quantum state preparations, trans-
missions, measurements and computations. However, the protocols are tolerant to

83
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errors and losses, as we discuss later in chapters 7 and 8.
We also make standard idealisations about the background geometry and sig-

nalling speed. We suppose that spacetime is Minkowski, that signals are sent at
precisely light speed, and that all information processing is instantaneous; hence
we also assume that all actions are localised at some single spacetime point,
though of course in reality agents would be acting within a spatially small secure
laboratory during a small time interval.

Again, these assumptions can be relaxed. The protocols remain secure in real-
istic implementations with finite separations and near light speed communication.
If these corrections are small, the only significant change to the security is that
Bob is guaranteed that Alice’s commitment is binding from some point in the
near causal future of the ‘commitment point’ rather than from the commitment
point itself [165]. Allowing for small deviations from Minkowski geometry also
requires small corrections to the geometry when stating the security guarantees,
but does not essentially affect security beyond that [13].

In addition, we will assume agents are located at fixed points in space through-
out the protocol, relative to some chosen inertial frame. Since we allow arbi-
trary numbers of agents, this assumption involves no loss of generality, so long as
we assume that Alice’s agents have secure classical and quantum communication
channels.1

6.1.1 Definition

Our formal definition of relativistic bit commitment is as follows. All measure-
ments of space and time are given relative to some appropriate fixed reference
frame, such as Bob’s rest frame.

Definition 3. Relativistic bit commitment protocol: A protocol defined
by two verification functions V0 and V1 and a set of spacetime points
{(tc, xc), (t0, x0), (t1, x1, )}}, with the points (t0, x0) and (t1, x1) spacelike or
lightlike separated from (tc, xc), in which:

1Note, however, that this assumption may not always be justified; if not, the possibility of
mobile agents should be kept in mind.



6.1. RELATIVISTIC BIT COMMITMENT 85

1. At the commitment point (tc, xc), Bob gives Alice a classical bit string Bc

and a quantum system Xc in a state ψ(Xc), and Alice instantaneously re-
turns a classical bit string Cc and a quantum system Qc.

2. For y ∈ {0, 1}, at the unveiling point (ty, xy) Bob gives Alice a classical bit
string By and a quantum system Xy in a state ψ(Xy), and if Alice wishes
to commit to bit value y she instantaneously returns a classical bit string Cy
and a quantum system Qy.

3. For y ∈ {0, 1}, in order to verify a commitment to bit value y Bob performs
a measurement on Qc, Qy and/or other quantum systems he may have in his
possession, obtaining a joint outcome My.

4. For y ∈ {0, 1}, the verification function Vy mapsBc, By, Cc, Cy,My, ψ(Xc)

and ψ(Xy) to {0, 1}. For any given run of the protocol, Bob will accept that
Alice made a valid commitment to bit value y iff the verification function
Vy returns 1.

Notes

1. Any classical data can be written as a bit string of some fixed length, so for
convenience we will assume that all classical data is given in the form of bit
strings unless otherwise indicated.

2. The unveiling points (t0, x0) and (t1, x1) need not always be distinct - for
example, the two points coincide in Kent’s protocol [13] as described in
section 2.3.

3. We allow that any of the classical strings or quantum systems may be null, if
there are points where Bob hands over no classical strings and/or no quan-
tum systems, or Alice returns no classical strings and/or no quantum sys-
tems.

4. In condition 3) we specify only a single variable to represent Bob’s mea-
surement results, in order to allow for the possibility of joint measurements.
The case where separate measurements are performed on Qc and Qy can be



86 CHAPTER 6. DEFINITIONS

subsumed under this case, since two separate measurements can always be
regarded as a single measurement with a separable outcome space.

5. The verification functions would be written in full as
Vy(B,By, C, Cy,M, ψ(Xc), ψ(Xy)), but we sometimes omit the ar-
guments for notational convenience.

6. The verification functions are allowed to depend on the states
ψ(Xc), ψ(Xy), since these states are known to Bob, but can depend on the
states of quantum systems handed over by Alice only via the measurement
result My.

6.1.2 Security definitions

One needs to be careful about what, precisely, a bit commitment protocol is in-
tended to guarantee in relativistic scenarios. Here we follow the physically mo-
tivated definition first set out in Ref. [6], which requires that a bit commitment
should guarantee that the committed data was available to and input by Alice’s
committing agent Ac at the spacetime point (tc, xc). This definition allows for
the possibility of Ac inputting a quantum superposition of the values 0 and 12 but
excludes protocols in which the unveiling agents could influence the value of the
unveiled bit by using correlated information that they acquired independently of
Ac [6].3

For any strategies S, S ′ and for i ∈ {0, 1}, let pi(S, S ′) be the probability that
if Alice employs a fixed strategy S up to and including the time of the commit-
ment (in the relevant fixed reference frame), and her agents at (ti, xi) subsequently
attempt to unveil a commitment to bit value i using strategy S ′, a valid commit-
ment to bit value i is indeed unveiled. Define pΣ

i (S) = maxS′ pi(S, S
′) where the

2Like all technologically unconstrained quantum bit commitment protocols [223, 224], the
protocols we describe in chapters 7 and 8 do not prevent Alice from committing to a quantum
superposition of bits. This gives her no advantage in stand-alone applications of bit commitment,
such as making a secret prediction, but it does mean that one cannot assume that in a task involving
bit commitment subprotocols, any unopened bit commitments necessarily had definite classical bit
values, even if all unveiled bit commitments produced valid classical unveilings.

3Following Ref. [6], another discussion of security definitions from a somewhat different per-
spective was given in Ref. [134].
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maximum is taken over all strategies S ′ that are possible according to some set of
physical principles Σ.

Thus we will say that a general relativistic bit commitment protocol is Σ-
secure against both Alice and Bob, for some set of physical principles Σ, iff the
protocol has the following properties:

1. For any strategy S for Alice that is possible according to Σ, pΣ
0 (S) +

pΣ
1 (S) < 1 + ε(N) and ε(N) → 0 as N → ∞,4 where N is a variable

security parameter of the protocol.5

2. For any strategy for Bob that is possible according to Σ, if Alice’s agents
choose not to unveil, the probability of any of Bob’s agents correctly guess-
ing the committed bit at any point in spacetime is 1

2
.

Notes

1. Since we are dealing with relativistic protocols, we will assume that Σ al-
ways includes, at minimum, the relativistic no-signalling principle. Thus
for any allowed Σ, given a protocol is Σ-secure against Bob, may invoke the
no-signalling principle to conclude that there is no strategy that is possible
according to Σ such that when Alice does choose to unveil, Bob can guess
Alice’s commitment at some point that does not lie in the future lightcone
of the unveiling points.

2. We will say that a protocol is unconditionally secure if Σ includes only:

(a) Standard cryptographic assumptions, including the possibility of se-
cure classical computation and the existence of secure laboratories

4We need only consider the limit asN goes to infinity, because if the protocol is secure in some
other limit, either we can simply set the parameter equal to the (finite) limit as part of the definition
of the protocol, or we can redefine the parameter so that unconditional security is obtained in the
limit as the new parameter goes to infinity - for example, if the protocol is unconditionally secure
in the limit as some quantityN ′ goes to zero, either we just set that quantity to zero in the definition
of the quantity, or if it is not possible to set N ′ exactly equal to zero, we define a new parameter
N ′′ = 1

N ′ so that the protocol is unconditionally secure in the limit as N ′′ goes to infinity.
5Usually, the security parameter will be the length of the bit strings C0 and C1 and/or be the

size of the Hilbert space of the systems Q0 and Q1, but we allow for other possibilities. One could
also imagine protocols that employ more than one security parameter, but most existing protocols
require only a single parameter and for simplicity we will conform to that standard here.
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whose resident cryptographer controls all inward and outward infor-
mation flows.

(b) Known physical laws (in particular, the laws of quantum mechanics
and special relativity).

(c) Stipulations about the constitution of the devices used in the protocol.

3. We will say that a protocol has device-independent security if Σ includes
only a) and b) above.

4. In the protocols we consider in chapters 7 and 8 Alice has one committing
agent, Ac, and two unveiling agents, A0 and A1, who are responsible for
unveiling commitments to 0 and 1 respectively. In certain contexts it may be
desirable for Alice to have the option of committing to neither bit value, and
hence an additional security criterion may be required for protocols of this
type: if Ac does not make a valid commitment to bit value b, and Ab follows
the unveiling protocol and Ab̄ does not, then Bob’s agents, at any point in
spacetime, should gain no information about whether Ac committed to bit
value b̄ or declined to make a valid commitment. With simple modifications,
the protocols set out in chapters 7 and 8 also satisfy this stronger criterion.

5. One might reasonably choose to relax the requirement for security against
Bob so that the probability of any of Bob’s agents guessing the committed
bit need only lie in some range [1

2
−χ(N ′), 1

2
+χ(N ′)] such that χ(N ′)→ 0

as N ′ → ∞, where N ′ is a variable security parameter of the protocol.
However, all the protocols we describe are able to meet the security require-
ment given above and so we have chosen to define security with respect to
this stronger criterion. An advantage of this definition is that for protocols
which satisfy it, Bob learns strictly no information in the course of a sin-
gle bit commitment protocol, and therefore we do not need to be concerned
about accumulation of information in protocols where large numbers of bit
commitments are composed, such as bit string commitments or extended bit
commitment protocols as in ref [13].

6. In addition to the security features we have just described, note that any
useful bit commitment protocol must also have the property that Alice can
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reliably make her desired commitment - a property sometimes described as
‘completeness.’

Definition 4. Completeness: For any y ∈ {0, 1}, for any choice of Bc and
ψ(Xc), there exists a set of actions Alice can take at or before the point
(tc, xc) such that for any allowed choice of By and ψ(Xy), she can return
a string Cy and a system Qy ensuring that with probability close to 1 Bob
obtains a measurement result My which leads to Vy = 1.

Geometry Obviously, in any bit commitment protocol the unveiling should take
place ‘later’ than the commitment. There are several ways for this desideratum to
be realised in the relativistic context. One possibility is that the unveiling points
are in the lightlike causal future of the commitment point (e.g. see [165, 173]),
and hence the statement that the unveilings are later than the commitment is true
independent of the frame. We call these lightlike causal (LC) relativistic bit com-
mitments.

However, we also wish to consider protocols in which the unveiling points are
spacelike separated from the commitment point. The most obviously interesting
case is that in which all unveiling points are later than the commitment point with
respect to some fixed frame F ; we call such protocols fixed frame positive du-

ration (FFPD) relativistic bit commitments. One motivation for considering this
case is that it allows us to define sequences of protocols in which the unveiling
points tend towards the future light cone, and so to relate LC and FFPD com-
mitments. Another is that there are many practical situations – such as protocols
carried out on terrestrial computer networks – in which there is a generally agreed
(approximately) inertial frame and time coordinate. In such scenarios, commit-
ments are potentially useful provided they have a positive duration with respect to
this coordinate.

All the protocols that we set out in chapters 7 and 8 will use the same arrang-
ment of agents in spacetime: we have two distinct unveiling points (t0, x0) and
(t1, x1), both spacelike separated from (tc, xc) and from each other (see fig 6.1).
The distance between xc and x0 is equal to d and the distance between xc and x1 is
also equal to d. For these protocols both Alice and Bob must have agents located
in separate secure laboratories adjacent to each of the points (tc, xc), (t0, x0) and
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(tc, xc)

(t0, x0) (t1, x1)

Figure 6.1: Diagram showing the arrangement in spacetime of the commitment
and unveiling points for the protocols described in chapters refdrqbc and 8 . Di-
agonal lines indicate the boundary of the future lightcone of the point (tc, xc).

(t1, x1); we refer to the agents adjacent to (tc, xc) asAc andBc, and those adjacent
to (ti, xi) as Ai and Bi. Although it is not necessary for much of our discussion,
we assume that t0 and t1 are strictly greater than tc, so these are FFPD relativistic
bit commitments with respect to the inertial frame used to define the coordinate
system.

6.2 KCEKQS

As noted in section 2.4, we will work not with traditional zero-knowledge-
proving, but with a generalisation that we refer to as knowledge-concealing ev-

idencing of knowledge about a quantum state (KCEKQS). A KCEKQS protocol
requires Alice to give Bob evidence that she has some form of knowledge about a
quantum state whilst concealing as much information about the state as possible.
Ideally, a successfully completed protocol should give Bob a significant amount
of evidence without assuming Alice’s honesty. Ideally, too, the protocol should
ensure a small bound on the information about the state obtainable by Bob without
assuming Bob’s honestly or the successful completion of the protocol. At present
we will define the protocol so that Alice has no option to abort the protocol, al-
though we will return to that possibility in chapter 9 and in the supplementary
information.

We assume that each party has trusted error-free devices in their own labo-
ratory and that there are trusted error-free classical and quantum communication
channels between the laboratories.

Definition 5. Non-relativistic Knowledge-Concealing Evidencing of Knowl-
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edge of a Quantum State (Non-relativistic KCEKQS): A protocol involving
two mistrustful parties, Alice and Bob, occupying disjoint secure laboratories.
Bob begins in possession of a quantum system QB prepared in some pure state
η = |η〉 〈η| which is drawn uniformly at random from the Hilbert space ofQB and
which is not known to Bob. The protocol requires Alice and Bob to act on alter-
nate rounds and terminates after a fixed finite number of rounds; at each round,
Alice and/or Bob may be required to carry out unitary operations and/or measure-
ments on a quantum system in their possession, and/or to send classical and/or
quantum information to the other party. The final round of the protocol requires
Bob to generate a bit value b from the classical and quantum information in his
possession, where b = 1 means Bob accepts that Alice has provided evidence of
knowledge about η, and b = 0 means Bob rejects Alice’s evidence.

A relativistic KCEKQS protocol is defined similarly, but in the relativistic con-
text each party may have several trusted agents occupying separate secure labora-
tories, with secure communications between them, and the protocol will stipulate
that these agents must carry out their unitary operations and/or measurements on
quantum systems and/or classical communications and/or quantum communica-
tions within their agreed location regions and within agreed time intervals.

Security Definitions As in the case of bit commitment, one must be careful to
specify precisely what guarantees a KCEKQS protocol is intended to provide to
the two participants. We will characterise the effectiveness of a KCEKQS protocol
by three parameters εC, εK and εS; we discuss other relevant features of KCEKQS
protocols in chapter 9. When evaluating these parameters for specific protocols,
we will mostly consider the ideal case of error-free devices and channels. In
realistic implementations, channel noise, device errors and losses may alter the
parameter values,6 but the no-go theorems we set out in chapter 9 still hold in
reasonable models of noise, errors and losses, so long as these are uncorrelated
with η and with any knowledge Alice may have of or about η.

Let p(1) and p(0) be the probabilities for the two values of the bit generated
by Bob at the final round of the protocol, where the probabilties are calculated by

6Typically, uncorrected noise, errors and losses will increase εC and decrease εK, and uncor-
rected losses will decrease εS.
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averaging over over η under the stated conditions. Then we define our parameters
as follows:

• Completeness: εC is the value of 1 − p(1) in the case where Alice has a
precise classical description of η, assuming that both parties perform the
protocol correctly.

• Soundness: εS is the supremum of p(1) over all possible (honest or dishon-
est) strategies for Alice in the case where she has no classical or quantum
information about the state η, assuming that Bob performs the protocol cor-
rectly.

• Knowledge-concealing: εK is the supremum of the expected squared fi-
delity F 2(η, φ) = | 〈η|φ〉 |2 over (honest or dishonest) strategies that give
Bob the value of a pure state φ as a guess for η in the case where at the start
of the protocol Bob knows nothing about the state η, assuming that Alice
performs the protocol correctly.

Let εM be the supremum of the expected squared fidelity obtainable by Bob if
he does not take part in the protocol and instead simply carries out quantum oper-
ations and measurements on QB. εM depends only on the dimension of the state
in question and hence is not a parameter of the specific protocol: from previous
work on quantum state estimation, we have that εM = 2

d+1
[225]. We call εK− εM

the knowledge gain available from a given protocol for a dishonest Bob, and we
say a protocol is zero-knowledge if εK = εM. We say a protocol is non-trivial

if 1 − εC > εS. This definition of non-triviality is intended to characterise what
might reasonably be considered to be a useful knowledge-evidencing protocol.
To justify this choice, consider two possible hypotheses: the first is that Alice has
no classical or quantum information correlated with η and the second is that Al-
ice knows the classical value of η precisely and follows the protocol honestly. If
the protocol allows Alice to attain a higher or equal value of p(1) when the first
hypothesis holds than the value attained when the second holds, then outcome 1

gives Bob no evidence to prefer the second hypothesis over the first. Our non-
triviality condition excludes this possibility, meaning that outcome 1 gives Bob
at least some evidence to prefer the second hypothesis over the first. Of course,
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there are other possible hypotheses; for example, Alice could have some incom-
plete classical information about η, or some beliefs about η that she expresses in
a probability distribution, or some quantum information correlated with η. Non-
triviality does not necessarily imply that the outcome 1 gives Bob evidence that
favours the hypothesis that Alice knows η precisely over any of these other hy-
potheses; see section 9.6 for further discussion of this issue.

Classification As defined, general KCEKQS protocols allow both classical and
quantum communications in both directions. However, the protocols we discuss
will all employ some more restricted class of communications, which provides a
useful classification scheme. We will consider classical protocols, in which Alice
and Bob employ only classical communication, quantum A-to-B protocols, which
additionally allow quantum communications from A to B, and similarly quantum

B-to-A protocols. Classical and quantum A-to-B protocols were discussed in ref
[203], but to our knowledge our quantum B-to-A protocol is the first of its type,
and we will show that (under certain assumptions) it performs significantly better
than any of the existing classical or quantum A-to-B protocols.

Another common classification scheme describes zero-knowledge proving
protocols in terms of how close they are to true zero-knowledge. Let px denote
the probability distribution over the set of messages exchanged by Alice and Bob
which is obtained if the fact to be proved is indeed true and a correct proof is
indeed produced; let py be the probability distribution over the set of messages
produced by a probabilistic polynomial-time machine which simulates the pro-
tocol conditional on the relevant fact being true. In a perfect zero-knowledge
protocol, these distributions are identical; in a statistical zero-knowlege protocol,
the distributions have negligible statistical difference between them; in a compu-

tational zero-knowledge protocol, samples from the two distributions are indis-
tinguishable by any polynomial-time machine [201, 226]. Perfect and statistical
zero-knowledge protocols may also be described as ‘information-theoretically se-
cure,’ since their security depends only on information theory and not on any
assumptions about computational hardness.





Chapter 7

Deterministic Relativistic Quantum
Bit Commitment

We describe new unconditionally secure bit commitment schemes whose security

is derived from Minkowski causality and the monogamy of quantum entanglement.

We first describe an ideal scheme that is purely deterministic, in the sense that

neither party needs to generate any secret randomness at any stage. We also

describe a variant that is purely deterministic for the committer, requires only

local randomness generation from the receiver, and allows the commitment to be

verified in the neighbourhood of the unveiling point. We show that these schemes

still offer near-perfect security in the presence of losses and errors, which can be

made perfect if the committer uses an extra single random secret bit. We discuss

scenarios where these advantages are significant.

Based on a paper co-authored with Adrian Kent [16]

7.1 Introduction

Existing relativistic classical and quantum bit commitment protocols [13,165,173]
require at least one party to locally generate and then securely store and/or dis-
tribute secret classical random strings. While this is a reasonable capability to
assume in many cryptographic contexts, it may not always be practical - for ex-
ample, if protocols are being implemented over a network of many sites, it may

95
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not be desirable to set up random number generators or secure classical memo-
ries at every site. One might at first think that quantum protocols cannot have
any advantage here, since if a party can securely and reliably prepare, distribute
and measure entangled quantum states, they can obtain secure classical random
strings from those states as and when required. In many scenarios this argument
may indeed apply. However, quantum information has security advantages com-
pared to classical information, particularly when one considers a protocol as part
of a larger cryptographic exchange. For example, if a party is concerned that
there has been a security breach at one of their sites, they can check whether a
distributed quantum state remains in the correct form, whereas they cannot tell
for sure whether a purportedly secret distributed classical random string has been
read at some location by an adversary.

This provides motivation for the development of relativistic quantum bit com-
mitment protocols that do not depend so heavily for their security on trusted ran-
dom numbers. In this chapter we set out two new quantum protocols that do in-
deed minimise the use of randomness - in fact, one of these protocols, in its ideal
form, requires no randomness at all. In addition to the practical utility of these
protocols, they are also theoretically interesting: the fact that relativistic quan-
tum bit commitment can be implemented without the need for trusted randomness
adds new nuance to our understanding of the relationship between physics and
cryptographic primitives.

7.2 Protocols

For the sake of clarity, in the following protocols we describe a procedure in
which Alice and her agents exchange qubits by secure physical transportation
in the preparation phase. However, they may alternatively employ teleportation
or a secure quantum channel without significantly altering the protocols’ security.
Likewise, Bob and his agents may exchange qubits by any secure means. Bob
may also arrange to combine his qubits at a variety of locations, depending on
where he wishes to verify the unveiled bit.
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7.2.1 ETBC: Simple entanglement transfer protocol

1. Ac prepares a total of 2N Bell pairs in the state Ψ− = 1√
2
(|01〉 − |10〉),

labelling the first N pairs as (W j
0P ,W

j
0Q) and the second N pairs as

(W j
1P ,W

j
1Q), where j ∈ [1, N ]. She gives the qubits W j

0Q to A0, gives
the qubits W j

1Q to A1, and retains the qubits W j
0P , W j

1P .

2. A0 and A1 travel to the spatial locations x0 and x1 respectively. We assume
that Ac, A0 and A1 have secure laboratories that protect their qubits, so Bob
cannot interfere with them in any way after the initial preparation, including
during the transportation phase.

3. Commitment: At time tc, if Ac wishes to commit to bit value b, she gives
Bc the qubits W j

bP , for j ∈ [1, N ], labelled in sequence. Bob does not know
whether he has received {W j

0P} or {W j
1P}, so he simply labels these qubits

as W j .

4. Unveiling: For i ∈ {0, 1}, if the agent Ai wishes to unveil, then at time ti
she gives the labelled qubits W j

iQ to Bob’s agent Bi.

If the agent Ac wishes to unveil, then at some time later than tc she sends
to Bob’s neighbouring agent a classical message stating the bit value b. (If
preferred, one or both of the Ai may be assigned to play this role instead).

Note that in principle the agents Ac, A0 and A1 may make these decisions
independently. To coordinate them and ensure that all or none unveil, Alice
needs to give them instructions in advance. These instructions could depend
on separate events in the past lightcones of the unveiling points, if Alice
knows these events will be correlated.

5. Verification: Once at least one of Bob’s agents knows the bit value b to
which Alice purports to have made a commitment, Bob’s agents share this
information amongst themselves and securely transmit to a single agent all
the qubits given to Bc and Bb. The receiving agent then carries out pro-
jective measurements in the Bell basis on the qubits (W j,W j

bQ) for each
j ∈ [1, N ]. The verification function returns 1 iff all the outcomes corre-
spond to the Bell state Ψ− for all j. (This verification step can be carried
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out at a location of Bob’s choice: for example, it could be performed by an
agent half-way between xc and xb).

We prove that ETBC is Σ-secure against Alice and Bob, where Σ includes
the validity of quantum mechanics and special relativity and the assumption that
Bob’s measuring devices are reliable, together with standard cryptographic as-
sumptions as set out in chapter 2.1. ETBC is therefore unconditionally secure, but
since Σ includes an assumption about the functioning of Bob’s measuring devices,
ETBC does not have device-independent security.

Security against Alice Write the Hilbert spaces for theN qubits held byB0, B1

andBc as H0, H1 and Hc respectively, and write H = H0⊗H1⊗Hc. Bob tests
for a purported commitment to zero by a measurement defined by the projection

P0 = ⊗Nj=1(Ij1 ⊗ |Ψ−〉
j
0c 〈Ψ−|

j
0c) .

Bob tests for a purported commitment to one by a measurement defined by the
projection

P1 = ⊗Nj=1(|Ψ−〉j1c 〈Ψ−|
j
1c ⊗ I

j
0) .

Here Ijk is the identity operator on the j-th qubit in Hk and |Ψ−〉jkl is a Bell state
of the j-th qubits in Hk ⊗Hl. The operator Q = P0P1 can be written as Q =

⊗Nj=1Qj , where Qj acts on the triple of j-th qubits from each Hilbert space and
has operator norm ||Qj||op = 1

2
; hence Q has operator norm |Q| = 2−N .1

For any state |ψ〉 defining triples ofN qubits that Alice might hand over toBc,
B0 and B1, we thus have

||Q |ψ〉 ||op = ||P0 |ψ〉 − P0(1− P1) |ψ〉 ||op
≥ ||P0 |ψ〉 ||op − ||P0(1− P1) |ψ〉 ||op
≥ ||P0 |ψ〉 ||op − ||(1− P1) |ψ〉 ||op
≥ (p

1/2
0 − (1− p1)1/2))

1The operator norm of an operator C on a normed space V is defined by ||C||op =

maxx∈V
|Cx|
|x| where |..| denotes the norm associated with the space V [227]. In the quantum

context, the operator norm is equal to the greatest probability with which an outcome associated
with the operator in question can occur in any measurement performed on any quantum state.
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where p0 and p1 are the respective probabilities that Alice successfully persuades
Bob that 0 and 1 was unveiled if she prepares the state |ψ〉.

It follows that p0 + p1 ≤ 1 + 2−N+1 + 2−2N . As this inequality holds for
any possible state |ψ〉, it implies that the protocol is Σ-secure against Alice with
security parameter N .

Security against Bob At commitment, Bob receives a set ofN qubits entangled
with another N qubits not in his possession. They have the same reduced state (a
uniform mixture) regardless of the committed bit. Thus he cannot obtain any
information about the bit before unveiling, so the protocol is Σ-secure against
Bob.

7.2.2 ETRBC: Entanglement transfer protocol with randomi-
sation

A possible disadvantage of the protocol we have just set out is that since Bob
does not initially know whether Alice will choose to unveil a commitment to 0 or
to 1, and the no-summoning theorem [228] prevents him from having the qubits
W j available at spacelike separated points along the different directions associated
with 0 and 1, the time between Alice’s unveiling and the earliest time at which Bob
can verify her commitment is twice as long for this protocol as compared to other
protocols with a similar geometry, such as the protocol described in ref [165]. In
time-sensitive situations this may be a disadvantage.

This is what motivates the second version of our protocol. It eliminates this
potential drawback by allowing eachBi to perform a verification test at the earliest
possible point, i.e. as soon as a light signal from (tc, xc) can reach xi. In order
to achieve this, Alice proceeds just as above, but now Bc randomly selects half
the qubits given to him to send securely to B0, sending the other half to B1. This
allows both B0 and B1 to directly test the bit value as soon as they receive these
qubits, rather than waiting for Alice to confirm her choice of bit:

1. Ac prepares 2N Bell pairs, (W j
0P ,W

j
0Q) and (W j

1P ,W
j
1Q) with j ∈ [1, N ],

in the state Ψ−. She gives the qubits W j
0Q to A0 and the qubits W j

1Q to A1.
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We take N even for simplicity. (The protocol can easily be varied to also
allow for odd N ).

2. A0 and A1 travel to the spatial locations x0 and x1 respectively. We assume
that Ac, A0 and A1 have secure laboratories that protect their qubits, so Bob
cannot interfere with them in any way after the initial preparation, including
during the transportation phase.

3. Commitment: At time tc, if Ac wishes to commit to bit value b, she gives
Bc the qubits W j

bP , for j ∈ [1, N ], labelled in sequence. Bob does not know
whether he has received {W j

0P} or {W j
1P}, so he simply labels these qubits

as W j .

4. Distribution: Bc sends a randomly selected sizeN/2 subset J0 of the qubits
{W j} to B0 and the remaining subset, J1, to B1. All qubits are sent with
the corresponding labels j.

5. Unveiling: For i ∈ {0, 1}, if the agent Ai wishes to unveil, then at time
ti she gives the labelled qubits W j

iQ to Bob’s agent Bi. (Ac and/or either
or both of the Ai may also send to Bob’s neighbouring agent a classical
message stating the bit value b, although it is not necessary in this protocol.
In any case, as in the previous protocol, some advance instructions from
Alice are needed to ensure any unveiling decisions are coordinated.)

6. Verification: Once he has received the qubits sent by Bc, each Bi carries
out projective measurements in the Bell basis on the qubits (W j,W j

iQ) for
each j ∈ Ji. The verification function Vi returns 1 iff all the outcomes
correspond to the Bell state Ψ− for all j ∈ Ji

We prove that this protocol is Σ-secure against Alice and Bob, using the same
Σ as for ETBC. Thus ETRBC is likewise unconditionally secure but does not have
device-independent security.

Security against Alice Write the Hilbert spaces for the N qubits held by B0,
B1 and Bc as H0, H1 and Hc respectively, and write H = H0 ⊗H1 ⊗Hc. B0
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tests for a commitment of zero by a measurement defined by the projection

P J0
0 = ⊗j∈J0(I

j
1 ⊗ |Ψ−〉

j
0c 〈Ψ−|

j
0c) .

B1 tests for a commitment of one by a measurement defined by the projection

P J1
1 = ⊗j∈J1(|Ψ−〉

j
1c 〈Ψ−|

j
1c ⊗ I

j
0) .

Suppose that Alice prepares a state |ψ〉 such that the probability of passing the test
for zero is p ≥ p0. Then there must be at least one subset J0 for which:

pJ00 = 〈ψ|P J0
0 |ψ〉 ≥ p0

Consider any subset J ′0 such that J0 ∩ J ′0 ≤ N/3.

By a similar argument to that above, we obtain

||P J0
0 P

J ′1
1 ||op ≤ 2−N/6

and

p
J ′1
1 ≤ 1 + 2−N/6+1 + 2−N/3 − pJ00 ≤ 1− p0 + 2−N/6+1 + 2−N/3 .

The proportion of subsets J ′0 with J0 ∩ J ′0 > N/3 falls off exponentially
with N : to leading order it is bounded by (N/6)(2−10/63)N . Hence the prob-
ability p1 of passing the test for bit value 1 is bounded by p1 ≤ 1 − p0 +

2−N/6+1 + 2−N/3 +O(N/6(2−10/63)N), so the protocol is Σ-secure against Alice
with security parameter N .

Security against Bob As before, at (tc, xc) Bob receives a set of N qubits en-
tangled with another N qubits not in his possession. They have the same reduced
state (a uniform mixture) regardless of the committed bit. He thus cannot obtain
any information about the bit before he receives data from the unveiling points, so
the protocol is Σ-secure against Bob.
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7.3 Errors and Losses

In any realistic implementation, Alice’s state preparation and Bob’s measurements
will be imperfect and their communication channels and storage devices will have
some noise and losses. To show that the protocols remain feasible with imperfect
technology, we need versions adapted to allow for some non-zero level of errors
and losses.

We first assume that Bob follows the protocol and measures each singlet sep-
arately, and that the errors and losses for each singlet are small and statistically
independent. It then follows that for protocol ETBC Bob can test for a purported
commitment of zero, with negligible probability of getting a false negative result,
by checking that he gets positive answers for a proportion (1 − ε)N of tests for
the singlet |Ψ−〉20, where ε > 0 is small. The error model implies that the prob-
ability of a state |ψ〉 passing the test is no more than |P δ

0 |ψ〉 |2 + γ(δ,N), where
P δ

0 =
∑N

m=(1−δ)N P
0
m, where the function γ and the parameter δ > ε, which is

also small, is chosen so that γ(δ,N)→ 0 as N →∞. The operator P 0
m is the pro-

jection onto the subspace of states spanned by states of the form⊗Ni=1 |Ψi〉20 |Φi〉1,
where the |Ψi〉20 are Bell states, of which precisely m are |Ψ−〉, and the |Φi〉1 are
arbitrary qubits in H1.

Bob similarly tests for a purported commitment to bit value 1 by checking that
he gets positive answers for a proportion (1− ε)N of tests for the singlet |Ψ−〉12.
The probability of a state |ψ〉 passing this test is, up to negligible quantities, no
more than |P δ

1 |ψ〉 |2 + γ(δ,N), where P δ
1 =

∑N
m=(1−δ)N P

1
m is defined similarly

to P δ
0 .

The operator P δ
0 can be written as a sum of

∑Nδ
x=0

(
N

N−x

)
3x terms involving

one-dimensional projectors onto tensor products of Bell states in H0 ⊗Hc, ten-
sored with the identity on H1. The operator P δ

1 can be written similarly, using
Bell state projections on H1 ⊗Hc. The operator Qδ = P δ

0P
δ
1 can thus be writ-

ten as a sum of (
∑Nδ

x=0

(
N

N−x

)
3x)2 rank one operators, each of which has operator

norm no more than 2−N+2δN . This gives the (weak, but adequate for our purpose)
bound ||Qδ||op ≤ 2−N+2δN32δN(Nδ+ 1)2(CN

N−Nδ)
2, which tends to zero for large

N and fixed small δ. The security argument then runs as before. Moreover, a
similar analysis applies to protocol ETRBC, so we can reasonably say that both
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protocols remain Σ-secure even when we take accout of small errors and losses.
For completeness, we should note another possible security issue. If the er-

rors in Alice’s singlet state preparations vary over time in some predictable way,
then the reduced density matrices for the states handed over to Bc by Ac may also
vary predictably. Given a deterministic protocol, we have to assume that the order
in which Ac labels the singlets after producing them is public information. Bc

might then be able to infer some information about the committed bit by mea-
suring these states without waiting to combine them with states returned by the
Ai. This may not seem a significant practical worry, since in practice one might
reasonably expect the predictable component of any variation in Alice’s prepara-
tion devices to be very small. Moreover, Alice might employ various strategies
to reduce it further: for example, the information revealed by a monotonic drift
of some parameter over time could be greatly reduced by taking the odd time or-
dered singlets produced (the 1st, 3rd, and so on) to be the first N for the protocol,
and the even ordered to be the second N . Nonetheless, in a context where this
possibility were regarded as a serious concern, the problem could be eliminated
by requiring agent Ac to group the states into two batches of N singlets by some
deterministic method, then decide randomly which batch is labelled from 1 to N
and which from N to 2N . Note that this would require her to generate and store
a single random bit, which would have a small impact on the security advantages
described in the next section.

7.4 Summary

The first protocol we have described here has a theoretically interesting advantage
over any previous relativistic bit commitment protocol in that it is determinis-
tic: neither party needs to make any random choices of classical data or quantum
states. It thus satisfies the strongest possible form of Kerckhoff’s cryptographic
principle, which states that a cryptographic system should be secure even if ev-
erything about it except the choice of key is public knowledge [229]. This is
desirable because generating secure random numbers is itself a nontrivial crypto-
graphic problem [104] and the need to generate large strings of random numbers
is therefore a significant security loophole for many existing bit commitment pro-
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tocols [6, 134, 165, 173, 185, 186]. Eliminating the need for trusted randomness
removes some potential security issues and may result in a protocol that requires
fewer resources.

As noted above, however, these advantages come at a price in ETBC: Bob
cannot verify Alice’s commitment as soon as his agents B0 and B1 receive Alice’s
unveiling data, but must wait until that data can be brought together with the com-
mitment data initially handed over at Pc. In scenarios where there are significant
time constraints, it may therefore be preferable to use the protocol ETRBC. This
second version of the protocol is no longer entirely deterministic: Bc needs to be
able to generate a classical random string that is secure, at least in the sense that
Alice cannot predict it in advance, although it does not matter if Alice learns the
string immediately. However, this is still less demanding than requiring Bob to
generate a secure random quantum state or sequence of states and keep its classi-
cal description secure [165, 173]. The protocol also has an advantage over purely
classical relativistic protocols [13] in that Alice does not need to generate any
secure random data.

In addition to these practical advantages, it is of theoretical interest to see that
there exists a secure relativistic bit commitment protocol that does not depend on
generating secure random numbers. To the best of our knowledge, all previous rel-
ativistic bit commitment protocols required at least one agent to generate strings
of random numbers, and therefore one might have been forgiven for supposing
that the use of trusted randomness was an essential feature of any secure relativis-
tic bit commitment protocol. Our work demonstrates that this is not so. However,
there is an important nuance to be kept in mind: although our protocols do not
require the generation of trusted random numbers, they do require the production
of trusted entangled quantum states, and if an agent can generate trusted entan-
gled quantum states they can always use them to generate trusted randomness.
Thus although we have shown that it is possible to achieve secure bit commitment
without generating trusted random numbers, we have not shown that it is possible
to achieve secure bit commitment without being able to generate trusted random
numbers. The relationship between relativistic bit commitment and randomness
is certainly a subtle one that would merit further investigation. In particular, it
would be interesting to see if it is possible to come up with some relativistic bit
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commitment protocol - whether classical or quantum - that can be implemented
even if neither party has access to any resources that would allow them to generate
trusted random numbers.





Chapter 8

Device-Independent Relativistic
Quantum Bit Commitment

We examine the possibility of device-independent relativistic quantum bit commit-

ment. We describe relativistic quantum bit commitment schemes that offer device-

independent security and are even secure against hypothetical post-quantum ad-

versaries subject only to the no-signalling principle. We compare our protocols

to a relativistic classical bit commitment scheme with similar features, and note

some possible advantages of the quantum schemes.

Based on a paper co-authored with Adrian Kent [17].

8.1 Introduction

The protocols we described in chapter 7 require Bob to rely on his devices to
implement projective measurements for Bell states, up to known small levels of
losses and errors, and therefore these protocols are secure only insofar as Bob
can be confident that his devices do indeed implement the correct measurements
at all times. But if quantum cryptography were to go into widespread use, the
reality is that most people taking part in cryptographic protocols would not be
able to build their own quantum measuring instruments, so Bob would have to
trust some outside manufacturer to produce these devices for him. What if the
manufacturer conspires with Alice to include hidden features designed to give the
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appearance of normal functioning while actually compromising security? What
if the manufacturer is simply incompetent and his measuring devices are wildly
inaccurate? And what is Bob to do if he dares have the heretical thought that
quantum mechanics might not be completely correct and Alice might be using
some more advanced theory to cheat him?

In view of these potential security loopholes, we have good reason to as-
pire to ‘device-independent’ protocols, i.e. protocols whose security does not
depend on any assumptions about the properties of the devices employed to pre-
pare states and perform measurements, except that they are constrained by some
set of physical laws. In particular, there has been significant progress on the de-
velopment of quantum cryptographic protocols where the only assumption made
about the quantum devices employed is that they obey no-signalling constraints.
[76, 103, 189–198].1 To achieve even higher levels of security, the no-signalling
requirement may be enforced by designing protocols ensuring that relevant oper-
ations take place at a spacelike separation, so security is essentially guaranteed by
the causal structure of spacetime. Since the no-signalling principle is one of the
most robust principles in all of science, appearing under various guises in special
relativity, quantum mechanics and quantum field theory, participants may have
a high level of confidence in the security of these protocols, even if they do not
trust the manufacturers of the devices they are employing, and even if they are not
confident in the veridicality of any one of these theories individually. 2

In this chapter, we propose several new relativistic quantum bit commit-
ment protocols that are device-independent in this strong sense. Full device-
independence is an even more stringent constraint in relativistic quantum cryptog-
raphy than in standard quantum cryptography, because many device-independent
quantum cryptographic protocols rely on performing a large number of tests to es-
tablish the typical behaviour of the devices employed and then randomly selecting
which tests will actually be used in the protocol. This method cannot straightfor-

1Of course, these protocols still require standard classical cryptographic assumptions as set
out in chapter 2.1

2We note that certain types of protocols may not translate well to this context. For example,
if one assumes that one’s devices may be sending out messages to one’s adversaries, limited only
by the speed of light, then it is never going to be possible to generate a secret shared key whose
secrecy can be guaranteed for longer than some short finite period.
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wardly be applied to relativistic cryptographic protocols, because these protocols
require specific configurations of agents and devices in spacetime, arranged to
ensure that the agents cannot exchange data during critical parts of the protocol.
Thus if two separated agents are using devices that are supposed to produce out-
puts that are correlated in some way, they may be unable to check this behaviour
in the course of the protocol; performing tests of the devices before the protocol is
not sufficient to guard against this, because we must take account of the possibility
of spacetime location attacks, where devices that are able to track their own space
and time coordinates are programmed to reproduce the expected behaviour when
they are originally tested but not when they are implementing a critical part of the
protocol at specified spacetime locations. For example, if a particularly critical
bit commitment is going to be initiated at noon GMT by devices in Cambridge
and Auckland, one of Alice’s devices might be programmed so that it usually be-
haves as Alice expects but, if and only if it is in Cambridge at noon, it gives her
an output that should encrypt her committed bit but actually immediately reveals
it to Bob’s Cambridge agent. Moreover, comparing outcomes after the protocol
has terminated may suffice to detect that a location attack has taken place, but this
will usually be too late to prevent sensitive information from being revealed to
outsiders. Thus location attacks are potentially a very serious problem for rela-
tivistic device-independent quantum cryptography; nonetheless, the protocols we
describe in this chapter resist such attacks.

The existence of device-independent quantum relativistic bit commitment pro-
tocols is interesting theoretically, but from a practical point of view it is also
important to determine whether our protocols have significant advantages over
existing protocols. Since we have defined device-independence with respect to
quantum preparation and measurement devices, all classical relativistic bit com-
mitment protocols, such as those set out in refs [12,13], are automatically device-
independent in this sense simply in virtue of not employing any quantum prepa-
ration or measurement devices. Thus device-independence alone does not give
our protocols any advantages over classical relativistic bit commitment protocols,
so we must consider whether the quantum properties of these protocols offer any
further cryptographic advantages. Existing classical protocols involve configu-
rations of agents in spacetime somewhat different from the device-independent
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protocols we consider here, but in order to facilitate comparison, in section 8.4.1
we describe a new, unconditionally secure classical relativistic bit commitment
protocol that uses the same configuration of agents as our quantum protocols. We
then demonstrate that our quantum protocols have several potential advantages
over this particular classical protocol.

8.2 Protocols

Definitions, notation, geometry and idealisations are as set out in section 2.1. In
addition, for the security proofs we employ a binary notation, denoting measure-
ment directions X, Y by 0, 1, measurement directions X ′, Y ′ also by 0, 1, and
measurement outcomes +1,−1 also by 0, 1. A single Bell experiment is then de-
scribed by two measurement settings (x, y) ∈ {0, 1} and two measurement results
(t, s) ∈ {0, 1}. We are interested in the CHSH game score R(t⊕ s = xy), which
is the number of experiments in the set for which the settings (x, y) and outcomes
(t, s) satisfy the condition t ⊕ s = xy. In the case where the settings are random
and independent, the CHSH game score is asymptotically related to the average
value of the CHSH observable (XX ′ + XY ′ + Y X ′ − Y Y ′): for a set of N ex-
periments, this value is equal to is 4

N
(2R(t⊕ s = xy)−N) to leading order in N .

However, we do not assume independent random settings in all of our protocols.

8.2.1 CHSH 1: CHSH test protocol with fixed directions

1. Alice and Bob agree on a set of four directions X, Y,X ′, Y ′ such that all
four directions lie in a single plane, X is orthogonal to Y , X ′ is orthogonal
to Y ′, X ′ is separated from X by π

4
and Y ′ is separated from Y by π

4
. They

also agree on a bit string L0 with bitwise complement L1.

2. Ac instructs her devices to prepare 2N Bell pairs (W i
a,W

i
b ) in the singlet

state Ψ−, then randomly draws an integer w ∈ {0, 1}. If w = 0 she
gives the systems [W 1

b , ...W
N
b ] to an agent A0 and the remaining systems

[WN+1
b , ...W 2N

b ] to an agent A1; if w = 1 she instead gives the systems
[WN+1

b , ...,W 2N
b ] to A0 and the systems [W 1

b , ...,W
N
b ] to A1.
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3. A0 andA1 then travel to spatial locations x0 and x1 respectively. We assume
that Ac, A0 and A1 have secure laboratories that protect their qubits, so Bc

cannot interfere with them in any way after the initial preparation. In partic-
ular, A0 and A1 travel within secure laboratories. We also assume that the
first and second sets of states (i.e. the purported half-singlet states labelled
a and b respectively) are securely separated in sub-laboratories before Ac
chooses the value of w. Thus, even if the a states are actually malicious
devices operating within the laboratory, they obtain no information about
the value of w or the destinations of the b states, and vice versa.

4. Commitment: At time tc, Bc gives Ac a bit string L drawn uniformly
at random from Z⊗N2 . If Ac wants to commit to 0, she instructs her de-
vices to measure each qubit W j+wN

a ∈ [W 1+wN
a , ...,WN+wN

a ] in direction
(X)Lj(Y )1−Lj . If Ac wants to commit to 1 she instead instructs her devices
to measure each qubit WN+j−wN ∈ [WN+1−wN

a , ...,W 2N−wN
a ] in direction

(X)Lj(Y )1−Lj . In either case Ac immediately tells Bc her outcomes.

5. Unveiling: For i ∈ {0, 1}:

At time ti, if agent Ai wishes to unveil, she measures each qubit
W j+wN+iN−2iwN
b ∈ [W 1+wN+iN−2iwN

b ...WN+wN+iN−2iwN
b ] in direction

(X ′)L
i
j(Y ′)1−Li

j . At time ti she tells Bi her measurement outcomes.

Note that in principle the agents A0 and A1 may make their decisions about
whether or not to unveil independently. If Alice wishes to coordinate them
and ensure that all or none unveil, she needs to give them instructions in
advance. These instructions could depend on separate events in the past
lightcones of their unveiling decision points, if Alice believes these events
will be correlated.

6. Verification: For i ∈ {0, 1}:

Bob’s agents between xc and xi wait for the data from Ac and Ai, and then
calculate the CHSH game score for the received data. The verification func-
tion returns 1 iff the score is greater thanN((2+

√
2)/4−ξ). Here ξ is some

predetermined small security parameter, chosen such that ξ � N−1/2; this



112 CHAPTER 8. DEVICE-INDEPENDENT BIT COMMITMENT

ensures that the probability thatN correctly prepared and measured singlets
will fail Bob’s test is suitably small.

We prove that CHSH1 is Σ-secure against Alice and Bob, where Σ includes
the relativistic no-signalling principle, as well as the standard cryptographic as-
sumptions set out in chapter 2.1. CHSH1 is therefore unconditionally secure and
also has device-independent security.

Security against Alice A0, Ac and A1 announce their outcomes at spacelike
separation from one another during the protocol. They may pre-agree a collective
strategy S, which may rely on shared quantum or (hypothetical) post-quantum
no-signalling resources, but cannot involve signalling to one another during the
protocol. We are interested in bounding the probability that A0 and A1 both suc-
ceed in passing Bob’s tests for a valid commitment of 0 and 1 respectively.

Let pΣ
0 (S) and pΣ

1 (S) be defined as in chapter 6, and let pΣ
0 (S) + pΣ

1 (S) =

1 + εS(N). Note that the rules of the protocol allow for the possibility that Bob
accepts valid commitments to both 0 and 1 if both tests are passed.

For any strategy S which Alice may employ up to and including the time of
the commitment in the relevant fixed reference frame, and any subsequent choice
of strategy S ′ by Alice’s agents, εS(N) ≤

∑
L

pSL,L0

2N
where pSL,L0

is the probability
that on a run of the protocol when Alice employs strategies S and S ′ and Bob
chooses the bit string L, Alice and her agents produce three sets of outcomes
O,O0 and O1 such that:

d(O0 ⊕O,L0L) ≤ N(
1

2
− 1

2
√

2
+ ξ) (8.1)

d(O1 ⊕O,L1L) ≤ N(
1

2
− 1

2
√

2
+ ξ) (8.2)

Here d(x, y) denotes the Hamming distance between the bit strings x and y,
which is the number of positions on which the strings differ [85]; Oi ⊕ O is the
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string given by element-wise modular addition of Oi and O; and LiL is the string
given by element-wise multiplication of Li and L.

These equations can be simultaneously satisfied only if d(O0 ⊕ O1, L(L0 ⊕
L1)) ≤ N(1 − 1√

2
+ 2ξ). Since L0 is the bitwise complement of L1, this implies

that d(O0 ⊕O1, L) ≤ N(1− 1√
2

+ 2ξ).

Thus for givenO0⊕O1, equations 8.1 and 8.2 may be satisfied simultaneously
only if L lies within the Hamming ballH of radius r = N(1− 1√

2
+2ξ) centred on

O0⊕O1. For r ≤ N
2

, the volume of this ball is less than or equal to 2NH(r/N) where
H is the binary entropy, defined as H(x) = −x log(x)− (1−x) log(1−x) [230].

H(x) ≤ 1 with equality if and only if x = 1
2
, so for any ξ < 1

2
√

2
− 1

4
we have

H(r/N) < 1.

By the no-signalling principle, the probability distribution for O0 ⊕ O1 is in-
dependent of L. Thus since L is chosen uniformly at random from Z⊗N2 , we must
have εS(N) ≤ 2−N(1−H(r/N)), which for H(r/N) < 1 goes to zero as N goes to
infinity. Hence the protocol is Σ-secure against Alice.

Security against Bob Alice’s devices may perhaps have been designed by
Bob in an attempt to cheat the protocol. If the devices do something other
than performing CHSH measurements on a shared quantum singlet, Ac’s outputs
may give Bc information about whether Ac measured the qubits [W 1

a ...W
N
a ] or

[WN+1
a ...W 2N

a ]. This may allow Bc to update his prior values (which are origi-
nally equiprobable) for P (b|w), the conditional probability of the committed bit
value b given the value of Ac’s randomly chosen bit w. However, by assumption,
w is random and kept secret throughout the protocol. Before receiving unveiling
data, Bob’s estimate of P (b) = 1

2
(P (b|0) + P (b|1)) thus remains unaltered.

Security against Bob therefore relies on Alice being able to generate one un-
conditionally secure random bit per committed bit, and to store this bit securely
in Ac’s laboratory during the protocol.
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8.2.2 CHSH2: CHSH protocol with secret complementary bit
strings

CHSH1 may straightforwardly be varied so that Bob keeps the bit strings L0 and
L1 secret from Alice until the points Q0 and Q1. We simply add an extra prepara-
tion step:

1. Bc chooses a length N bit string L0 drawn uniformly at random from Z⊗N2 .
He communicates string L0 to B0 and its bitwise complement L1 to B1.

We also alter the unveiling step:

1. Unveiling: For i ∈ {0, 1}:

At time ti, agent Bi communicates the string Li to agent Ai. If
Ai wishes to unveil, she measures each qubit W j+wN+iN−2iwN

b ∈
[W 1+wN+iN−2iwN

b ...WN+wN+iN−2iwN
b ] in direction (X ′)L

i
j(Y ′)1−Li

j . She
then broadcasts her measurement outcomes.

The remaining steps are identical to those for CHSH1.

We prove that CHSH2 is Σ-secure against Alice and Bob, using the same Σ

as for CHSH1. CHSH2 is therefore unconditionally secure and also has device-
independent security.

Security against Alice The only change in this protocol is that Alice is given
less information, which can only decrease her probability of cheating successfully.
Hence the security of this protocol against Alice follows immediately from the
security of CHSH1 against Alice.

Security against Bob The proof of security against Bob is the same as for
CHSH1.

8.2.3 CHSH 3

CHSH1 may also be varied so that the measurement directions for A0 and A1 are
not fixed in advance. Instead, each Bi randomly selects a set of N measurement
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directions to be used by Ai, so the string L1 is no longer guaranteed to be the
bitwise complement of L0.

The steps in this protocol are identical to those for CHSH1 except for the
unveiling stage:

1. Unveiling: For i ∈ {0, 1}:

At time ti,Bi givesAi a bit string Li drawn uniformly at random from Z⊗N2 .
If agent Ai believes Alice wishes to unveil, she immediately measures each
qubit W j+wN+iN−2iwN

a ∈ [W 1+wN+iN−2iwN
a ...WN+wN+iN−2iwN

a ] in direc-
tion (X ′)L

i
j(Y ′)1−Li

j . She then broadcasts her measurement outcomes.

We prove that CHSH3 is Σ-secure against Alice and Bob, using the same Σ as
for CHSH1. CHSH3 is therefore unconditionally secure and also has device-
independent security.

Security against Alice As before, for any strategy S, let p0(S) and p1(S) be the
probabilities that when Alice employs the strategy, Alice’s agents convince Bob
that they have have validly unveiled 0 or 1 respectively according to the rules of
the protocol, and suppose p0(S) + p1(S) = 1 + ε2S(N).

By the no-signalling principle, A0’s success probability is independent of the
choice of L1, and A1’s success probability is independent of the choice of L0.
Hence we may calculate p0(S) and p1(S) assuming that L0 and L1 are bitwise
complements. We thus obtain the same bounds on p0(S) + p1(S) as for the first
two protocols.

Security against Bob The proof of security against Bob is the same as for
CHSH1.
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8.3 Extensions

8.3.1 Declining to commit

One possible security loophole in our analysis is that although we have shown
that Bob will be unable to learn the value of Alice’s commitment when she fol-
lows the instructions set out above, we have not considered what happens if Alice
simply does not make a commitment. As we noted in chapter 2.1, in certain cryp-
tographic contexts, it might be desirable for Alice to have the option of refraining
from making a commitment without Bob being able to tell that she has done so.
As written our protocols do not guarantee device-independent security in this sce-
nario: Ac might decline to commit by simply returning a random string of N bits
to Bc, but because the protocols is supposed to be device-independent, we must
assume that Bob may have designed Alice’s preparation devices, so he may be
able to distinguish between randomly chosen bit strings and strings produced by
measurements on Alice’s Bell pairs, meaning that he may be able to detect if Ac
tries this tactic to refrain from making a commitment.

However, our protocols can straightforwardly be altered to provide device-
independent security in this scenario as well. To do this, we simply require that
Alice and Bob simultaneously perform two runs of CHSH1, with the rule that
Alice commits to bit value b in both protocols if she wishes to produce a valid
commitment to b, but commits to different values in each protocol if she wishes
to refrain from commitment. Bob will then accept that Alice has made a valid
commitment to bit value b only if she unveils valid commitments to bit value b for
both protocols. CHSH2 or CHSH3 may similarly be altered in this way.

Device-independent security is then assured, both in the case where Alice
makes a commitment and in the case where she refrains from committing, be-
cause Bob obtains no information about the values of w used in either of the two
protocols unless and until Alice unveils, so he cannot tell whether or not she made
a valid commitment unless and until she unveils.
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8.3.2 Errors and Losses

We now consider how to allow for the possibility of small errors in preparations,
transmissions and measurements of quantum states. We consider an error model
in which any such errors occur randomly and independently, and where the com-
bined rate of errors and losses is bounded by a small parameter δ. In this model,
the expectation values of the distances d(Oi⊕O,LiL) are altered by no more than
δN from the theoretically expected values, with variance no larger than δ1/2N1/2.

Bob’s verification tests involve a security parameter ξ, and the security proof
for CHSH1 holds for

ξ <
1

2
√

2
− 1

4
. (8.3)

In particular, if δ is agreed to be the maximum tolerable rate of errors and losses,
and δ is small, Bob can use any value ξ > δ in his verification tests, consistent
with (8.3), and still ensure security against Alice.

The security proofs of CHSH2 and CHSH3 do not depend on additional as-
sumptions about errors and losses, and so similarly remain secure for small δ.
Thus we can ensure that both protocols are secure against Alice provided the ex-
pected rate of errors and losses is small.

The proofs of security against Bob do not depend on any assumptions about
errors or losses, and therefore no alteration is required for these proofs.

8.4 Discussion

Device memory attacks A general concern in device-independent quantum
cryptography is the possibility that maliciously designed devices may keep
records of their inputs and outputs and may make their future outputs depend
on these data [196]. Our protocols are secure against these attacks for a single bit
commitment, but if Alice reuses her devices for a sequence of commitments, our
protocols do not protect her from the possibility that data released in a later com-
mitment may give information about earlier commitments. This is not a concern
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if each one of her commitments is unveiled before the next commitment phase
begins, but in many common scenarios, some commitment data is unveiled and
some should be kept secret indefinitely - for example, this is likely to be the case
in protocols where a relativistic bit commitment protocol is extended to produce
a bit commitment protocol of longer duration by performing a series of protocols
over time [13]. Our protocols do not guarantee security for device reuse against
completely general attacks in such scenarios.

However, our protocols do guarantee security for device reuse against mem-
ory attacks under two additional conditions: first, the devices are not sensitive to
location and hence not able to carry out location attacks, and second, the agents
Ai make coordinated decisions about whether to unveil. To see this, observe that
if neither A0 and A1 accept any device input or supply any output unless they in-
tend to unveil a bit, and if the devices are not sensitive to their location, then the
devices can carry no information correlated with the choice of bit after a protocol
in which nothing is unveiled, so they have no ability to leak information about b
in future protocols.

Randomness We note that the unconditional, device-independent security of
both protocols depends on the assumption that Bob has access to a device inde-
pendent method of generating random numbers, which is secure in the sense that
Alice cannot predict its output in advance. As noted in the previous chapter, gen-
erating trusted randomness is not a trivial problem, and thus the need for random
numbers could be regarded as undermining our claim that these protocols have
device-independent security. However, although there exists no device indepen-
dent method of generating random numbers without any random seed, there do
exist device independent methods of randomness expansion [103,197], which can
create a long random string from some small random seed. Since the random seed
used in these protocols can be of a low quality of randomness (i.e. the expansion
still works if the ‘random’ input is partially correlated with variables which may
be known to the adversarial party [231]), it could be obtained by some classical
quasi-random process that Alice is unlikely to be able to predict or control per-
fectly, such as a coin flip. Therefore device-independent randomness expansion
suffices for effectively device-independent security of these protocols.
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The CHSH2 protocol requires Bob to generate 2N random bits and the
CHSH3 protocol requires him to generate 3N random bits, in contrast with only
N bits in CHSH1. However there may be contexts in which CHSH2 and CHSH3
are preferred - for example, if Bob wishes to control the time of Alice’s mea-
surements, which might be particularly important for chained protocols. In the
CHSH1 protocol, Alice may make the measurements whose results she unveils
at t0 and t1 at any time, even before the start of the protocol, but in CHSH2 and
CHSH3 she must wait until Bob tells her which measurement directions to use. In
such contexts CHSH3 offers greater security to Bob, because in CHSH2, L1 must
be the bitwise complement of L0 and therefore it follows from the no-signalling
principle that B0 and B1 must agree on these strings at some time in the causal
past of P . This is a potential security weakness, since if Alice can find out the
strings L0 and L1 in advance of the commitment, then A0 and A1 can perform
their measurements earlier than Bob expects.

8.4.1 Random code classical bit commitment protocol (RC-
CBC)

In order to make a fair comparison between our device independent quantum pro-
tocols and classical relativistic protocols, we now describe a classical bit commit-
ment protocol that uses the same geometry as our protocols:

1. Alice and Bob agree on a security parameter N ; for simplicity we take N
to be even.

2. Ac generates two independent N -bit random classical strings, S0 and S1,
and for i ∈ {0, 1} she securely shares string Si with agent Ai.

3. Commitment: At tc, Bc gives Ac a randomly chosen size N/2 subset J
of {1, . . . , N}. Ac immediately responds by giving Bc the string subset
{Sij : i = 0, 1 ; j ∈ J}. These string elements are sent with their labels
i and j. To commit to bit value b, Ac also sends the complementary string
subset Sb

J̄
= {Sbj : j ∈ J̄}. These string elements are sent with their labels

j, but not the value b. Hence Bc refers to this string as SJ̄ , with b unknown
to him.
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4. Unveiling: For i ∈ {0, 1}:

At time ti, if agent Ai wishes to unveil, she gives Bi the complete string Si.

5. Verification: On receiving the two substrings S0
J and S1

J , Bc checks that
their Hamming distances satisfy |d(S0

J , S
1
J)−N/4| < CN3/4, where C > 0

is an agreed parameter independent of N . He shares this information with
his agents. Bob’s agent between xc and xi waits for the data from Ac and
Ai. When he receives it, he applies a verification function that returns 1 iff
Bc’s check gave a positive outcome and in addition, the string Si reported
by Bi is the union of the strings SiJ and SJ̄ reported by Bc, with matching
labels for each element.

We prove that RCCBC is Σ-secure against Alice and Bob, using the same Σ

as for CHSH1. RCCBC is therefore unconditionally secure and also has device-
independent security.

Security against Alice A0, Ac and A1 announce their outcomes at spacelike
separation from one another during the protocol. They may pre-agree a collective
strategy S, which may rely on shared quantum or (hypothetical) post-quantum
no-signalling resources, but cannot signal to one another during the protocol. We
are interested in bounding the probability that A0 and A1 both succeed in passing
Bob’s tests for a valid commitment of 0 and 1 respectively.

Let pΣ
0 (S) + pΣ

1 (S) = 1 + εS(N).
Hence for any strategy S, εS(N) ≤

∑
L
pSJ
2N

where pSJ is the probability that
when Alice employs strategy S and Bob chooses the subset J , Alice’s agents
produce strings S0 and S1 such that |d(S0

J , S
1
J) − N/4| < CN3/4 and also that

S0
j = S1

j = Sj for j ∈ J̄ .
If Alice’s agents succeed in producing strings with these properties, they can

infer that the complement J̄ of Bc’s chosen subset J lies within a subset of size
no more than 3N/4 + CN3/4 of {1, . . . , N}. By the no-signalling principle, it
follows that εS(N)→ 0 as N →∞.

Security against Bob Alice’s strings are randomly generated. Bob thus receives
no information correlated with the bit value i unless and until at least one of the
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Ai unveils.

Note that this security argument relies on Alice being able to generate 2N

unconditionally secure classical random bits per committed bit, to share these
bits between Ac and the Ai before the protocol, and to keep them securely in the
agents’ laboratories before and during the protocol.

8.4.2 Comparison

The classical and quantum relativistic bit commitment protocols described in this
chapter all have the same configuration of agents for the two parties, and are all
unconditionally secure. All are ‘device independent’ in the sense we use that
term: while the quantum protocols do not require either party to trust the quantum
devices used, they still require both parties to have trusted classical computing
and memory devices, and thus have no advantage over the classical protocol in
this respect.

The classical protocols and the CHSH1 quantum protocol both require Bc to
generate a random string that Alice cannot predict in advance. The string may be
generated at Pc, and immediately handed over to Ac, so it does not need to be kept
secure or distributed securely to Bob’s other agents. The CHSH2 and CHSH3
protocols both require Bob to generate some additional random bits, and in the
case of CHSH2 some random bits must be distributed securely, so both protocols
are more demanding in this sense than the classical one. Thus from Bob’s point
of view, the quantum protocols have no advantage over the classical one in terms
of the amount of randomness required.

On the other hand, while the classical protocol requires Alice to generate two
N -bit random strings, to share them securely between Ac and A0 or A1, and to
store them securely in the various agents’ laboratories, the CHSH protocols each
require Ac to generate and keep secure only a single random classical bit. If the
devices are distinguishable, this bit is also shared and stored securely in A0 and
A1’s laboratories, since the set of physical devices given to these agents depends
on the bit value. Thus from Alice’s point of view the quantum protocols do have
a security advantage over the classical one in the sense of requiring less classical
randomness.
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One might worry at this juncture that there is no real advantage here, because,
as in the previous chapter, as long as Alice is in possession of the large number
of maximally entangled qubit pairs that is required to implement these protocols,
she can always choose to use these qubit pairs to produce random numbers, and
thus if Alice has the ability to implement CHSH1, CHSH2 or CHSH3, she also
has the ability to generate the random numbers needed to implement RCCBC.
And indeed, it is true that if the devices shared by A0 and A! do actually con-
tain sets of qubits, and each qubit is actually maximally entangled with a another
qubit in another appropriately located device, and the devices do actually carry
out projective CHSH measurements on these qubits, Alice could use them to gen-
erate classical random strings shared between Ac and each of the Ai in order to
implement the classical protocol RCCBC. However, this approach would no
longer be device-independent, because Alice would be making assumptions about
the quantum properties of the devices. To get around this, Alice might choose to
employ the purported qubits to perform device-independent randomness expan-
sion [104], turning a small amount of trusted randomness into a long string of
random numbers, but this would still require more than one bit of randomness and
thus the amount of trusted randomness required for Alice to implement RCCBC
under these circumstances would necessarily be greater than the amount required
by CHSH1, CHSH2 and CHSH3.

Moreover, although it may be harder to keep entangled quantum states secure
than to keep shared random classical strings secure, quantum states do offer a
potentially valuable security advantage. Imagine a scenario in which Alice has
a large network of agents who carry out commitments, generally relying on un-
trusted quantum devices. For example, Alice may not have the financial resources
to construct the measurement and preparation devices needed for all of her agents,
so she must rely on externally supplied devices, and cannot rule out the possibil-
ity that the manufacturer of the devices might be conspiring with Bob. However,
it might be possible for Alice to get hold of just a few trusted devices - perhaps
she can manufacture some personally, or buy them from a more expensive but
more reliable supplier. Even simply obtaining a few devices from a a different but
equally dubious source might be sufficient, as the probability that Bob will be able
to suborn two different manufacturers will usually be lower than the probability
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that any one manufacturer is in his pay. Alice could then use these additional de-
vices to verify some of the purported singlets used by her agents, and hence get
information about the extent of any potential security breaches. In the classical
protocol, on the other hand, there is no reliable way for her to verify the privacy
of the shared classical random strings she uses, so if Bob is able to breach her
security, he can gain information about the strings and hence about her bit com-
mitments without altering them or leaving any other physical trace.

8.5 Summary

The quantum relativistic bit commitment protocols that we have described in this
chapter eliminate all but very general and robust assumptions about the properties
of the devices employed in the protocols to prepare states and perform measure-
ments, so participants may perform them with untrusted devices safe in the knowl-
edge that their adversaries cannot cheat by interfering with their instruments in
advance. Indeed, due to the high level of confidence we have in the impossibility
of sending signals faster than light, it is likely that these protocols would be se-
cure even against adversaries who had knowledge of a theory more powerful than
quantum mechanics and/or special relativity.

Of course, the classical protocol we have described (and any classical rela-
tivistic bit commitment protocol), is trivially also device-independent in the sense
in which we have used that term. However, the device-independent quantum pro-
tocols have subtle advantages that might potentially be valuable in certain sce-
narios, so the choice between classical and quantum protocols will depend which
technology is most readily available and which potential security loopholes are
deemed most serious in the context of implementation. That said, we underline
that we have compared specific device-independent protocols against a specific
classical protocol; it remains an open task to identify the optimal protocols of
each type, for some natural measure of optimality, and without such a characteri-
sation it is not possible to state definitively that there exists a quantum advantage
here.

In addition to the practical advantages offered by our protocols, the results
presented in this chapter are also interesting from a theoretical point of view. Al-
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though this is not the first ‘device-independent’ relativistic bit commitment proto-
col, it is the first protocol that is device-independent in a non-trivial sense, in that
the agents involved are required to use quantum devices, but the security does
not depend on any assumptions about the quantum-mechanical properties of these
devices. This means the protocol exhibits an asymmetry between completeness
and security: the correlations that Alice is supposed to exhibit cannot be achieved
using only classical methods, so in order to demonstrate completeness we must
assume the validity of quantum mechanics, but the proofs of security against Alice
and Bob depend only on the no-signalling principle together with standard cryp-
tographic assumptions and thus these security proofs would be convincing even to
an observer who trusted only the no-signalling principle and not the veridicality
of quantum mechanics. Thus CHSH1, CHSH2 and CHSH3 are interesting exam-
ples of protocols that use quantum mechanics to achieve cryptographic advantages
over classical protocols but also do not depend for their security on the correctness
of quantum mechanics.



Chapter 9

Knowledge-Concealing Evidencing
of Knowledge of a Quantum State

Bob has a black box that emits a single pure state qudit which is, from his perspec-

tive, uniformly distributed. Alice wishes to give Bob evidence that she has knowl-

edge about the emitted state while giving him little or no information about what

the state is. We prove two no-go theorems demonstrating that such zero-knowledge

evidencing of knowledge is impossible in quantum relativistic protocols, extend-

ing a previous result of Horodecki et al. We then study a weaker version of the

task which we refer to as ‘Knowledge-Concealing Evidencing of Knowledge of a

Quantum State,’ and present a new relativistic quantum protocol for this task that

significantly outperforms all existing protocols.

Based on a paper co-authored with Adrian Kent [18].

9.1 Introduction

Since relativistic quantum cryptography is still a very new field, it seems likely
that there may be many valuable applications of relativistic quantum cryptography
that are yet to be discovered. In this chapter we explore a new type of application,
taking inspiration from the zero-knowledge proving task introduced in ref [203].
Although Horodecki et al. proved that zero-knowledge proving of knowledge of
a quantum state is impossible in a purely quantum context, they did not consider
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relativistic contexts, leaving open the possibility that relativistic methods might
allow us to bypass the no-go theorems. In this chapter we address this possibility
by studying KCEKQS tasks.

We first prove a stronger no-go theorem showing that no protocol that provides
non-trivial evidence of Alice’s knowledge about a pure quantum state of finite
dimension can prevent Bob from acquiring some additional knowledge about the
state, even in the setting of relativistic quantum cryptography. We also prove a
bound on the strength of evidence Alice can provide. This settles the issue of
whether it is possible to circumvent the no-go theorem of Horodecki et al. [203]
by moving to the relativistic setting.

However, this still leaves the possibility that there may exist relativistic pro-
tocols that, while not achieving perfect zero-knowledge-proving, are still a sig-
nificant improvement on all existing purely quantum protocols - and indeed this
turns out to be the case. After presenting our no-go theorems, we will discuss
some simple protocols based on protocols previously considered by Horodecki et
al. [203], and show that they are relatively weak in knowledge-concealment, or
in evidencing knowledge, or both. We then propose a new relativistic quantum
protocol and show that for quantum states of large dimension it is secure against
restricted attacks by Alice and general attacks by Bob, in a sense we make precise
below.

9.2 No-go theorems

Horodecki et al. [203] showed that no non-relativistic KCEKQS classical or quan-
tum A-to-B protocol for an unknown qubit has εC = 0, εS < 1, and is zero-
knowledge. (Please refer back to section 6.2 for the definitions of the parameters
εS, εC and εK , which will appear throughout this chapter). We establish here a
considerably more general result, applying to relativistic KCEKQS protocols for
qudits with two-way classical and/or quantum communications and general pa-
rameter values. Our statements apply to protocols whose security is based only on
quantum theory and special relativity, i.e. within the standard scenario for uncon-
ditionally secure relativistic quantum cryptography [13]. See the supplementary
information for the proofs.
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Theorem 6. There exists no non-trivial zero-knowledge KCEKQS protocol.

We also establish a tradeoff between completeness and soundness that bounds
the amount of evidence Alice can provide. Again, this result applies to relativistic
KCEKQS protocols for qudits with two-way classical and/or quantum communi-
cations and general parameter values.

Theorem 7. For any qudit KCEKQS protocol, εS
1−εC

≥ 1
d
.

In particular, theorem 7 means that for small d, regardless of the value of εK,
εS and εC cannot both be close to 0. This makes the case of large d particularly
interesting to explore, as only for this case is there the possibility of achieving
good values for both soundness and completeness.

We observe that the bound of theorem 7 is tight. For example, it is attained by a
protocol in which Alice predicts to Bob the outcome of a projective measurement
that includes η on the system QB: this has εS = 1

d
and εC = 0. More generally,

it is attained for a protocol in which Alice is required to predict this outcome and
also predict the outcome of some independent random event where the probability
for the most likely outcome is p: such a protcol would have εS = p

d
and εC = 1−p.

As a result of this observation, we will say that a KCEKQS qudit protocol is CS-

optimal if εS = 1
d
, εC = 0.

9.3 Classical Protocols

As noted above, Horodecki et al. [203] argue that non-trivial non-relativistic zero-
knowledge protocols involving only classical communication from Alice to Bob
with εC = 0 are impossible for a qubit. Simply stated, any such protocol essen-
tially comes down to having Alice predict some measurement outcome, and any
prediction that holds with certainty for a pure qubit state η and is not certain for a
random qubit state will always allow Bob to identify η exactly, leading to a value
εK = 1.

However, Horodecki et al. considered only protocols where the evidence pro-
vided by a honest Alice is certain to be accepted, i.e. protocols having εC = 0; it
is possible to achieve some improvement on the knowledge-concealing property
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for classical protocols at the cost of accepting a non-zero value for εC. For ex-
ample, Alice could choose a projective measurement which includes a randomly
chosen projector P from those with 〈η|P |η〉 ≥ 1 − εC and specify the measure-
ment to Bob, together with her prediction for the most likely outcome. Clearly,
however, any protocol in which Alice simply sends Bob a classical prediction of
a measurement outcome has similar issues to the protocols that Horodecki et al.
analysed [203]: whenever the prediction is highly likely if QB is in state η and
not so likely if QB is in a random state, Bob can obtain a significant amount of
information about η simply by examining the prediction and calculating the set of
states for which it is highly likely. Moreover, if Bob assumes that Alice is honest,
he may choose to refrain from performing the measurement necessary to confirm
her prediction and instead carry out some other measurement, thus gaining addi-
tional information.

Horodecki et al. also considered only non-relativistic protocols; it is possi-
ble to achieve some further improvements by moving to the setting of relativis-
tic quantum cryptography, since Alice can use secure relativistic bit commit-
ments [13, 16, 17, 165] to make commitments to her predictions, conferring two
potential advantages. First, we can allow Alice to commit to more than one out-
come and subsequently reveal to Bob only the outcome corresponding to the result
that he has actually obtained, thus decreasing the amount of information that Bob
obtains simply from the fact that she has made a certain prediction. Second, Al-
ice need not reveal her prediction to Bob unless he first tells her the predicted
outcome. The intuition is that this essentially forces Bob to carry out something
close to the specified measurement if he wishes to have a reasonable chance of
getting information from Alice, which prevents him from carrying out a different
measurement that gives him a significant amount of additional information.

We now describe two classical protocols which use relativistic bit commitment
protocols for one or both of these purposes. We describe these protocols under the
assumption that Kent’s procedure [13], which we described briefly in section 2.3,
is used to perform the bit commitments, though in principle one could straightfor-
wardly alter the protocols to use other bit commitment protocols; see section 9.6
for further discussion.
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A1

B1
A2

B2d
D

Figure 9.1: Diagram showing the arrangement in space of Alice’s agents and
Bob’s agents for our the protocols CR1, CR2 and QBA.

9.3.1 CR1: Classical Relativistic KCEKQS protocol 1

Here and in the remaining protocols described in this chapter we take it that there
is some agreed frame in which the agents remain at approximately the same posi-
tion coordinates throughout the protocol; we take space and time coordinates with
respect to this frame, and write d(Ai, Bj) to denotes the spatial distance between
the stationary agents Ai and Bj in this frame. (Note that the time coordinates
given for this and later relativistic protocols are merely examples of possible tim-
ings. The key requirement is that the timings should ensure that at each step,
relativistic signalling constraints ensure that the relevant agent of Alice can have
no information about any data supplied to the other agent by Bob’s corresponding
agent at the previous commitment round).

1. Alice and Bob each have two agents, A1, A2 and B1, B2, configured so that
d = d(A1, B1) ≈ d(A2, B2) � D = d(A1, B2) ≈ d(A2, B1), as in the
relativistic bit commitment protocol of Ref. [13].

2. Alice chooses a projective measurement {Pi} such that ∃x : Tr(Pxη) ≥
1− εC. The value of x is secretly shared by both her agents.

3. At t = 0 Alice’s agent A1 tells Bob’s agent B1 the measurement {Pi}. Also
at t = 0, Alice’s agent A2 and Bob’s agent B2 initiate a relativistic bit string
commitment protocol committing A2 to the binary encoding of the index x.

4. At t = δ � D, B1 performs the measurement {Pi} on QB and reports his
result to A1.

5. At t = δ′, where δ′ > δ and δ′ � D, ifB1 reported the result Px, A1 unveils
the commitment made by A2. If B1 reported some other result or did not
report any result, A1 does not unveil the commitment.
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6. If A1 unveils a commitment that matches Px, Bob accepts, after verifying
the unveiled commitment by collecting data from his two agents. Otherwise,
he rejects.

Soundness First, note that there is no exchange of quantum information in this
protocol. For the purposes of security analysis, it can be treated as a relativistic
bit string commitment protocol, in which Alice commits to the bit string defining
x via parallel repetition of the protocol of Ref. [13]. For Alice to cheat, she must
be able to unveil the possible bit strings y with success probabilities py for which∑

y py is significantly greater than 1. Conversely, proving the protocol secure
against Alice requires showing that the relativistic bit string commitment protocol
ensures that

∑
y py ≤ 1+ ε(N, d), where N is the protocol security parameter and

ε(N, d)→ 0 as N →∞ for each finite d.

A full proof of security against Alice for this protocol thus requires analysis of
the behaviour of the bit commitment protocol of ref [13] under parallel repetition.
The security proof of [13] for a single classical relativistic bit commitment holds
for both classical and quantum attacks; the extension of this argument to bit strings
is an interesting topic in its own right, and we leave discussion of this for future
work. Thus in the present discussion we simply assume without proof that, in the
limit as the security parameters for the bit commitments become large, Alice can
effectively commit to only one outcome of the measurement (or to some convex
combination of outcomes if she makes a probabilistic commitment). Under this
assumption, if Alice has no information about the state η, her optimal strategy is
simply to commit to a randomly chosen outcome. Hence the value of εS is 1

d
, and

so εS → 0 as d → ∞, indicating that the protcol performs well with respect to
soundness.

Completeness and Knowledge-Concealing On the other hand, the protocol
does not provide a good trade-off between completeness and knowledge conceal-
ment. Assuming Alice does indeed know the state η, she produces a valid proof
with probability at least (1− εC). In this case Bob learns the value of a projection
Px with Tr(Pxη) ≥ 1− εC.
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Hence

εK ≥ (1− εC)2 . (9.1)

This is a very poor result; in particular εC ≈ 0 implies εK ≈ 1. Since εM =
2
d+1

[225], for εC ≈ 0 we have εK − εM & d−1
d+1
≥ 1

3
, and for d large we have

εK − εM ≈ 1.

One way to improve on the bound 9.1), at the price of increasing εS, is to
allow Alice to commit to more than one outcome of the projective measurement.
We now consider a protocol of this type.

9.3.2 CR2: Classical Relativistic KCEKQS protocol 2

1. Alice and Bob each have two agents, A1, A2 and B1, B2, configured so that
d = d(A1, B1) ≈ d(A2, B2) � D = d(A1, B2) ≈ d(A2, B1), as in the
relativistic bit commitment protocol of Ref. [13].

2. Alice chooses a projective measurement {Pi} for which there exists a set
S consisting of q measurement elements such that Tr((

∑
i∈S Pi)|η〉〈η|) =

1 − εC for some agreed value of εC. The indices x ∈ S are secretly shared
by both her agents.

3. At t = 0, Alice’s agent A1 tells Bob’s agent B1 the measurement {Pi}.
Also at t = 0, Alice’s agent A2 and Bob’s agent B2 initiate relativistic bit
string commitment protocols committing Alice to the binary encoding of
each index x ∈ S.

4. At t = δ � D, B1 performs the measurement {Pi} on QB and reports his
result to A1.

5. At t = δ′, where δ′ > δ and δ′ � D, if B1 reported a result Px with x ∈ S,
A1 unveils the commitment to x made by A2, but does not unveil any other
commitments. If B1 reported a result Px with x 6∈ S, or did not report any
result, A1 does not unveil any commitments.
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6. If A1 unveils a commitment that matches Px, Bob accepts, after verifying
the unveiled commitment by collecting data from his two agents. Otherwise,
he rejects.

Soundness In the supplementary information we show that, conditional on our
previously stated assumptions about the security of relativistic bit commitment
protocols, we have εS = q

d
. This is an integer multiple of the optimal value, but

for small q and large d we may still obtain εS close to zero, so we can still achieve
a good level of soundness in the limit of large d.

Completeness and Knowledge-Concealing In the supplementary information
we show that, conditional on our previously stated assumptions about the security
of relativistic bit commitment protocols, we have:

εK ≥ q(
1− εC
q

)2

Thus for near CS-optimality, with q � d
2

and εC ≈ 0, we have εK � εM, so Bob
is able to gain a large amount of information under these circumstances.1

In summary, although it is possible to achieve small improvements on the clas-
sical protocols described in ref [203] by relaxing the values of the security param-
eters and/or moving to the relativistic context, all the generalisations considered
above necessarily have either εK or εC large, and thus it seems unlikely that any
of these generalisations would be sufficiently secure for any sensitive practical
applications.

1A variation on this protocol is for Alice to randomly choose a projective measurement {Pi}
from among those for which there exists a set S consisting of q measurement elements such
that Tr((

∑
i∈S Pi)η) ≥ 1 − ε. She could, for example, use the uniform measure on the com-

plete projective decompositions satisfying this criterion. This variation has εC < ε, since Al-
ice’s average success probability, when she knows η, is greater than 1 − ε. Similarly, it has
εK > (1− ε)2q−1 > (1− εC)2q−1.
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9.4 Quantum A-to-B Protocols

Horodecki et al. [203] also consider a protocol where Alice gives Bob a copy of η;
as they note, such protocols can achieve εC = 0 and εK < 1. Indeed it is possible
to achieve εK � 1 for states of large dimension, and in this sense the quantum
protocol outperforms the classical A-to-B protocols just discussed. However, it
is also important to consider the tradeoffs between εK, εC and εS, and we will see
below that these tradeoffs are not favourable for this type of protocol. It is also
worth highlighting that this protocol gives no evidence favouring the hypothesis
that Alice has classical information about η over the hypothesis that Alice simply
possesses relevant quantum information about η - for example, Alice can ensure
p(1) = 1 even if she only has a black box that will make only a single copy of η
and has no other classical or quantum information about η.

9.4.1 QAB: Quantum A-to-B KCEKQS protocol

To make our discussion more concrete, we now extend the discussion of Ref. [203]
by considering a generalisation of the protocol suggested by Horodecki et al. in
which Alice gives Bob N copes of η and Bob tests these copies using a projection
on the symmetric subspace:

1. Alice prepares N systems {Si} in the state η and gives them to Bob.

2. Bob performs a measurement {ΠS, I− ΠS} where ΠS is the projector onto
the symmetric subspace of the joint state space of the {Si} and QB.2

3. If the result is ΠS , Bob accepts; otherwise he rejects.

Completeness If Alice knows η and follows the protocol correctly, Bob will
always accept her evidence, so this protocol achieves εC = 0.

2A motivation for this choice is that, given a system in the state ψ⊗n and another system in
the state φ⊗m, for some integers m,n, the measurement {ΠS , I − ΠS} (i) always gives outcome
1 if ψ = φ (ii) maximises the probability of outcome 0 if ψ 6= φ, among measurements satisfying
(i) [232, 233].
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Soundness In the supplementary information, we show that εS = 1
N+1

+ N
d(N+1)

.

Thus forN = 1 we have εS = 1
2
+ 1

2d
, which is a very poor result for soundness

- even if Alice has no information whatsoever about the state she has at least
probability 1

2
of producing evidence which is accepted by Bob.

However, for N large, εS → 1
d
, so the protocol tends to CS-optimality in this

limit.

Knowledge-Concealing We also show in the supplementary information that
εK = N+2

N+d+1
, which tends to 1 for large N . Thus εK > 1

dεS
and εK − εM >

d−1
d+1

N
N+2

1
dεS

for all d,N , which are relatively poor tradeoffs. In particular, if the
relevant parameters are chosen to ensure near CS-optimality, with εS ≈ 1

d
, then

Bob’s knowledge gain is necessarily significant, with εK − εM ≈ d−1
d+1

. Note that
Bob can both follow this protocol honestly in order to gain evidence about Alice’s
knowledge of the quantum state, and then also afterwards attempt to estimate η
from the N + 1 states in his possession since the states of these copies of η are
not changed in the course of a protocol in which both parties are honest. Thus, if
Alice honestly follows the protocol, Bob can obtain evidence of her knowledge of
η and still attain the value of εK = N+2

N+1+d
.

In summary, QAB forces us to choose between a high value of εK and a high
value of εS , and thus once again, it seems unlikely that QAB would be sufficiently
secure for any sensitive practical applications.

9.5 Quantum B-to-A Protocols

Ref [203] considered only classical and quantum A-to-B protocols, but here we
describe a new type of protocol which uses quantum communication from Bob to
Alice, as well as two-way classical communication. The basic idea is that Bob
prepares a set of N systems in random states, then puts the original system QB in
amongst these other systems and gives the whole collection to Alice, who is re-
quired to guess which system isQB. If Alice does know the state η, her best guess-
ing strategy is to perform a measurement projecting on η, but this measurement is
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likely to return a positive answer on a proportion 1
d

of the systems, and so Alice
will not usually be able to identify QB uniquely. Thus to ensure that honest Alice
has a reasonable chance of having her evidence accepted, she must be allowed
to make approximately N+1

d
guesses. However, if she reveals all these guesses

to Bob he may gain a significant amount of information from them, and this is
where the protocol becomes relativistic - we require Alice to perform relativistic
bit commitments to the indices associated with her guesses and subsequently to
unveil only the guess which is confirmed by Bob to be correct.

9.5.1 QBA: Quantum B-to-A KCEKQS protocol

As in the section on classical protocols, we will present an implementation of the
protocol using Kent’s bit commitment protocol [13]; as before, in principle one
could straightforwardly alter the protocols to use other bit commitment protocols.

1. Alice and Bob each have two agents, A1, A2 and B1, B2, configured so that
d = d(A1, B1) ≈ d(A2, B2) � D = d(A1, B2) ≈ d(A2, B1), as in the
relativistic bit commitment protocol of ref [13] (see fig 9.1).

2. Bob gives QB to B1, who prepares N additional quantum systems {Si} in
states chosen uniformly at random.

3. B1 randomly permutes the systems {Si} and the system QB, assigns them
all indices from 1 to N + 1, and then gives all N + 1 systems, labelled by
their indices, to A1.

4. A1 carries out the projective measurement {η , I− η} on each of the N + 1

systems that B1 gave her. Write C ′ for the list of indices for which she
obtains outcome η; let |C ′| = q′. If q′ ≤ q, she forms a list C = C ′ ∪ D,
where D is a list of (q − q′) copies of the dummy index 0.3 If q′ > q, she
picks a random size q sublist C of C ′.

5. A1 randomly permutes C. At t = 0, B1 and A1 initiate q relativistic bit
string commitments [13] committing A1 to each of the indices in the per-

3The use of the dummy index prevents cheating strategies in which Bob uses the number of
Alice’s commitments, made at the next step, to extract additional information about the state.
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muted list. Each bit string commitment is set up so that Alice can commit
to any index in {1, 2, . . . N + 1}. This commitment is sustained by B2 and
A2 at time t = δ, where 0 < δ � D. These commitments involve a further
security parameter N ′.

6. At t = δ′, where 0 < δ′ � D (and for definiteness we may take δ′ > δ) B1

tells A1 the index x ∈ {1, . . . , N + 1} that he assigned to QB.

7. If x ∈ C, A1 unveils her commitment to that index (which she initiated and
A2 sustained). Otherwise she announces failure (or aborts, if the protocol
includes an abort option) and Bob rejects.4

8. If Alice’s unveiled commitment is indeed x, Bob accepts, once he is able
to verify the commitment by comparing data from his agents. Otherwise he
rejects.

Knowledge-Concealing In the supplementary information we show that εK ≤
4
d+1

, so εK → 0 and εK−εM → 0 for large d. Thus for large-dimensional quantum
states Bob’s knowledge gain in QBA is close to zero.

Completeness and Soundness In the supplementary information we show that
if it is assumed that the relativistic bit commitments employed remain secure un-
der parallel composition, so Alice is restricted to strategies in which she commits
to q classical values chosen from {0, . . . , N+1} and unveils one of these commit-
ted values, then for an appropriate choice of the parameter q, QBA asymptotically
tends to CS-optimality in the limit where the security parameter N is large. We
conjecture that this remains true without the assumption, but a full security analy-
sis requires a complete analysis of general quantum operations Alice could carry
out to produce unveiling data, which we leave for future work.

In summary, when applied to quantum states of large dimension QBA per-
forms well in terms of knowledge-concealment, and under our assumptions about

4In the ideal error-free case, if Alice knows η precisely and both parties honestly perform the
protocol, failure is possible if and only if q′ > q.
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the composability of bit commitments it is also close to CS-optimality in this
limit. Thus insofar as these assumptions are valid, it seems that QBA performs
significantly better than existing classical and Quantum Bob-to-Alice protocols
and therefore may be secure enough to be used in practical applications.

Abort option QBA could be altered to achieve εC = 0 by allowing Alice to
abort the protocol whenever she obtains a positive outcome more than q times
at step 5.5 Under these conditions, an honest Alice with perfect knowledge will
abort whenever the binomial random variable XN > q, and thus for q = N+1

d

and large N , this implies an abort probability of roughly 1
2
. Taking q = N

d
+ εN ,

with ε > 0, we see from equation (A.4) that the abort probability can be bounded
by exp(−2ε2N). This gives a protocol with εC = 0, εS = 1

d
+ ε and with abort

probability that tends to zero for large N .
These parameters may represent a reasonable tradeoff in some circumstances.

However, introducing an abort option does not eliminate the possibility of unjus-
tified mistrust. Without an abort option, it is possible that Alice and Bob may
both honestly follow the protocol, and that Alice may know η precisely and thus
correctly identify QB as a candidate, but that she may be unable to persuade Bob
of this because she had more than q candidates and her random choice of a size q
subset did not include the index of QB. Introducing an abort option removes the
possibility of honest Alice being falsely suspected of cheating by honest Bob for

this specific reason. However, an honest Bob may now unfairly suspect an honest
Alice of cheating if she honestly aborts, since a dishonest Alice might abort be-
cause she had no information about η, carried out no measurements, made random
or invalid commitments, and thus effectively used the protocol to steal Bob’s copy
of η; Bob has no way to tell whether or not the protocol has been honestly aborted.

Indeed, no protocol with nonzero probability of either failure or abort can

5One could also include an abort option for the case where Alice does not obtain a positive
outcome for any one of these measurements. However, there is a significant distinction between
these cases. If Alice obtains no positive outcome, then in the error-free model she knows for
certain that Bob is trying to cheat, whereas in the case where she obtains more than q positive
outcomes, it is possible that Bob was honest and a statistically unlikely outcome was obtained.
Thus in order to distinguish between an accusation of cheating and an instance of protocol failure
for which no one is to be blamed, it might be preferable to have two types of abort in situations
where this possibility is relevant.
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guarantee that an honest Bob accepts the evidence provided by an honest Alice.
This is because KCEKQS is a one-shot procedure, i.e. Bob has only one copy of
η, so if he gives that copy to Alice and the protocol fails or is aborted, he has no
further opportunity to learn anything about η or about Alice’s knowledge of it. Of
course, the parties might be able to repeat the protocol using a new state, but even
if this next protocol succeeds, Alice will have proved only that she knows the new
state, which gives Bob no direct evidence about whether she knew the previous
state. Thus in most scenarios, it seems to us that the abort option version of the
protocol offers no clear advantage.

9.6 Further Security Issues

Here we discuss several potential security issues and possible weaknesses for
KCEKQS protocols that are not covered by our earlier security definitions.

Bit String Commitment We have reinforced throughout this chapter that our
security proofs for CR1, CR2 and QBA depend on the assumption that the rel-
ativistic bit commitment protocols employed are secure under parallel repetition
and hence can be used to perform secure bit string commitment. However, the se-
curity of Kent’s procedure [13] under parallel repetition has not yet been proven.
If in fact it turns out that this particular bit commitment protocol is not secure
under parallel repetition, in principle one might replace it with some other rela-
tivistic bit commitment procedure that is secure under parallel repetition, but it is
important to keep in mind that not every bit commitment geometry is suitable for
use in CR1, CR2 and QBA. For example, the protocols we described in chapters
7 and 8 cannot straightforwardly be employed in this context because there would
be nothing to stop Bob from giving the agents A0 and A1 two different indices
and thus getting them to reveal two different pieces of information, so he would
potentially obtain twice as much much information as we have assumed in our
security arguments.

Entanglement We have thus far made the assumption that the state η is pure,
and therefore we have not considered the possibility that Alice might have access
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to one or more systems that are entangled with QB. However, another natural
scenario in which one might wish to employ a KCEKQS protocol is where QB is
maximally entangled with a system QA in Alice’s possession and Alice knows the
joint state of (QA, QB). Let us refer to this scenario as Sc1.

In this scenario, Alice can always proceed by performing a projective mea-
surement on QA before the start of the protocol, so the system QB is subsequently
in a pure state η that is known exactly to Alice. This recreates our original sce-
nario, which we henceforth refer to as Sc0. It follows that if Alice can succeed
in some KCEKQS protocol with probability (1− εC) in the original scenario Sc0,
she can also succeed with probability at least (1−εC) in scenario Sc1. Conversely,
while there are clearly protocols that give Bob evidence favouring Sc1 over Sc0,
no KCEKQS protocol can give Bob evidence favouring Sc0 over Sc1. That is, the
evidence provided by any KCEKQS protocol will be equally compatible with the
hypothesis that QB was always in a pure state that Alice happened to have clas-
sical knowledge about, and the hypothesis that QB was originally in a maximally
entangled state with some system in Alice’s possession and Alice had classical
knowledge about the whole maximally entangled state.

What precisely does Alice give evidence of? We have defined security for
KCEKQS in terms of two extremes: the value of εS gives the probability that
Alice’s proof is accepted if she knows nothing at all about the state, and the value
of 1− εC gives the probability that Alice’s proof is accepted if she knows the state
exactly. But of course there are intermediate possibilities. For example, Alice
could have some classical knowledge about the quantum state without knowing it
exactly, or she could have quantum information correlated with the state, such as
one or more copies of it, or she could have beliefs about the state encoded in a
probability distribution.

In each case, if Alice’s information or beliefs allow her to produce a guess
η′ at the classical description of η such that Tr(ηη′) ≈ 1, she can produce what
we have called ‘evidence of knowledge,’ and in all of the KCEKQS protocols
described above, Bob will accept this ‘evidence of knowledge’ with probability
close to 1 − εC, even though Alice does not actually have perfect knowledge of
η. Indeed, there may be a high probability that Bob accepts Alice’s evidence
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even when she actually has false beliefs about its classical value - for example,
if she believes QB is in the state η′ and it is actually in the state η 6= η′, where
Tr(ηη′) ≈ 1. As this illustrates, the notion of knowledge of a quantum state
needs careful analysis. One might be inclined to frame a definition so that if Alice
believes QB is in the pure state η′, and it is actually in the state η 6= η′, then
she has no knowledge about the state, no matter how close Tr(ηη′) is to 1. But
this would mean accepting that someone who has no knowledge about a state can
nonetheless appear to give strong evidence of knowledge of it! Alternatively, one
might frame a definition so that, if Alice has probabilistic beliefs about the state η
encapsulated in the density matrix ρ, then Tr(ρη) is a measure of her knowledge.
If so, one has to accept that false (not merely uncertain) beliefs are consistent
with a high degree of knowledge, which is in tension with the popular view that
only true beliefs can count as knowledge [234]. Either way the consequences are
somewhat counterintuitive, and this is perhaps best regarded a sign that the type

of knowledge one has when one knows a quantum state is not quite the same as
the types of classical knowledge that we are more familiar with.

We will not here attempt to provide a general definition of knowledge of a
quantum state, and instead will simply observe that our security definitions do
establish that the protocols give evidence of knowledge of η in an interesting, if
restricted, sense: namely, they strengthen the evidence for the hypothesis that Al-
ice knows the precise classical value of η compared to the hypothesis that she
has no classical or quantum information correlated with η. One might frame ad-
ditional security definitions that allow more to be established. For example, one
could require strong non-triviality: if Alice does not have and is not able to obtain
a precise classical description of η, then the probability that her proof is accepted
is strictly less than (1− εC). This requirement holds for QBA, but not for QAB, in
which Alice can ensure acceptance probability (1− εC) even if she only has some
way of producing precisely N copies of η (and no more), and no other classical
or quantum information correlated with η.

Composability and Accumulation of Information Classically, zero-
knowledge proofs are often used as sub-protocols in the construction of more
complex protocols, such as electronic voting schemes and digital signature
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schemes. One might hope that our knowledge-concealing protocols could be
used as building blocks for quantum protocols of this type. However, it is
known that relativistic bit commitment protocols are not secure under general
compositions [235], and since our knowledge-concealing protocols depend on
the use of bit commitment, they are presumably also insecure under general
compositions. Furthermore, since the amount of information obtained by Bob in a
KCEKQS protocol will never be exactly zero for any finite-dimensional quantum
state, one would have to consider carefully whether Bob’s information gains
could accumulate in such a way as to undermine the overall security. This does
not mean that all compositions using such protocols are necessarily insecure, but
it does mean that the security of such compositions would have to be assessed on
a case-by-case basis, and possible attacks on the compositions would have to be
addressed separately from attacks on single-run protocols.

Alternative Measures of Bob’s information gain We have chosen εK as an
appropriate measure of Bob’s knowledge gain for a single shot protocol because
it quantifies Bob’s ability to predict the outcome of measurements on a system
in the state η and/or to prepare a state that successfully simulates the state η.
These operationally defined forms of knowledge about a state are relevant in most
cryptographic contexts, and indeed are the only relevant factors in many scenarios.

However, it is important to reinforce that density matrices do not completely
characterise an agent’s knowledge of how a system was prepared, which means
that our chosen knowledge-concealing criterion does not capture all the informa-
tion Bob might learn in the course of any conceivable protocol. As a hypothetical
illustration, imagine that in a KCEKQS protocol for the state of a qubit, Bob
somehow learns in the course of the protocol that the original state was definitely
either the state |+〉 or the state |−〉. Clearly there is a sense in which Bob has
gained significant information in the course of this protocol - he has narrowed
the set of possible states down from infinity to two! However, the density ma-
trix ρ describing his new state of knowledge and the density matrix describing
his knowledge before the protocol are both the maximally mixed state, so our
knowledge-concealment criterion would suggest that he gains no information in
the course of such a protocol.
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This is a somewhat contrived example, but it does make the point that there
is no unique measure of information about a quantum state that characterises ev-
ery property that is relevant in every possible scenario, and therefore we cannot
guarantee that our knowledge-concealing protocols will always hide from Bob
the particular type of information that is considered valuable in a given context of
application. Even assuming that Bob’s aim is to produce a guess η′ at η that opti-
mizes some cost function, and assuming also that the cost function depends only
and monotonically on Tr(ηη′), there are still infinitely many cost functions that
may be considered. As a simple example, Bob might be given a fixed reward if
and only if Tr(ηη′) > 1−ε for some small ε > 0. In this case, a sensible parameter
might be ε′K, defined as the probability of this condition holding after the protocol
if Bob follows an optimal strategy, and a sensible comparison would be to ε′M, the
maximum probability that the condition holds if Bob does not participate in the
protocol at all and instead simply carries out a strategy that involves operations
only on the unknown state.

We would therefore recommend that before deciding to employ the protocol
QBA (or any other KCEKQS protocol) in some context, one should identify ex-
actly what type of information it is important to hide in this particular context and
establish whether that information is well-captured by the parameter εK. Even if
this is not the case, the protocol QBA may nonetheless be an appropriate choice
- our informal investigations suggest that it still conceals a significant amount of
‘knowledge’ even if knowledge is measured using some other reasonable mea-
sures of information content, such as the Kullback-Leibler divergence between
two appropriately chosen probability distributions - but additional security analy-
sis will be required to make certain of this.

What does Alice learn? We have considered in detail the amount of informa-
tion that Bob gains about the state η in the course of our protocols, but we have not
thus far considered how much Alice could potentially learn about η if she does not
in fact know η. In some applications it might not matter if Alice gains information
about η, but if we are using a KCEKQS protocol precisely because knowledge of
the state η has value in some context (such as quantum money [236] or quantum
voting [199]), then it may be important to limit the amount of information that
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might potentially be gained by a dishonest Alice.
In CR1 and CR2, assuming that Bob performs the protocol correctly and hon-

estly, Alice gains some information about the state, since Bob must tell Alice the
result of a measurement that he has performed on the systemQB. But clearly since
Alice obtains information about the state only via Bob’s classical communication,
she learns no more than Bob does in the course of such protocols, if she begins
with no knowledge about the state.6

The protocol QAB performs best out of all the protocols we have considered
with regard to limiting Alice’s knowledge gain: Bob need not tell Alice whether
or not his measurement obtained a positive result, so Alice learns nothing what-
soever from the protocol. On the other hand, the protocol QBA is significantly
vulnerable to this potential issue. If Bob performs QBA honestly he learns noth-
ing about η from the protocol, whereas a dishonest Alice can store all the quantum
states sent to her and make commitments to random indices, or fail to make valid
commitments at all, then perform a measurement on QB after Bob has told her the
index of QB. Effectively, she can steal η from Bob and obtain as much informa-
tion about it as he could have obtained if he had not participated in the protocol.
Clearly this strategy has a low probability of successfully persuading Bob that Al-
ice has honestly followed the protocol, particularly for states of large dimension,
and hence this behaviour is likely to be detected if Alice tries it repeatedly over
some number of protocols, but nonetheless, on a single run of the protocol Alice
is able to dishonestly gain some information about η, whereas an honest Bob sac-
rifices his copy of η and gains no information at all. For large d, the information a
dishonest Alice can gain is small, but in contexts where even limited information
about η is highly valuable, this might be an undesirable weakness.

A related issue is that both Alice and Bob may want to limit the information
that could be gained by an eavesdropper who intercepts their classical or quantum
communications during the protocol. In principle, eavesdropping can be com-
pletely prevented by using secure classical and quantum channels, but we may
sometimes need to use KCEKQS protocols in scenarios where secure channels
are not available. Moreover, although secure classical channels can be ensured

6Alice may however learn more than Bob does if she begins with some information about the
state.
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by using one time pads [237], secure quantum channels require distributing and
storing perfect entangled states, so at present quantum eavesdropping remains a
practical concern.

None of the protocols we have studied are completely immune to eavesdrop-
pers. In CR1 and CR2, an eavesdropper who can listen in on the classical commu-
nication channels will learn all the same information as Alice and Bob themselves.
In QAB, an eavesdropper who can intercept the copies of η sent from Alice to Bob
can gain information about η by state estimation. In QBA an eavesdropper who
can intercept both the quantum and classical information sent by Bob can gain the
same amount of information as Alice could potentially gain, although an eaves-
dropper who can intercept only the quantum information learns significantly less
and an eavesdropper who can intercept only the classical information learns noth-
ing at all.

What if Bob has additional information? We have calculated bounds on the
information that Bob gains during each protocol assuming he starts with strictly
zero knowledge about the state of QB and only ever has a single copy of the state
of QB.

In other possible scenarios, Bob might also have some limited classical infor-
mation about η, or have additional correlated quantum information (for example
further copies of η), or both. Our bounds do not necessarily apply in such scenar-
ios. For example, suppose that Bob hasMq copies of η, for some largeM , and that
he and Alice perform CR2. Bob can apply the projective measurement specified
by Alice on every copy in his possession. If Alice is honest, and εC � (Mq)−1.
Bob is then likely to obtain positive outcomes for r elements of the measurement
basis, where r ≤ q, which allows him to identify a subspace V of dimension r
such that Tr(PV η) ≈ 1.

9.7 Summary

We have proven two no-go theorems demonstrating that even in the relativistic
setting there is no perfect KCEKQS protocol for quantum states of finite dimen-
sion, and quantifying the inevitable tradeoff between soundness and complete-
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ness. We have also described a new protocol involving quantum Bob-to-Alice
communications and relativistic signalling constraints, which, subject to certain
assumptions about the composability of bit commitment protocols, represents a
significant improvement on existing protocols. Although QBA is not zero knowl-
edge for finite d, we showed that it reveals little extra information to Bob for large
d. We also showed that based on our composability assumptions, the protocol is
asymptotically CS-optimal, i.e. offers essentially optimal security against Alice;
we conjecture that this will turn out to be true even without the assumptions, once
a suitable analysis of bit commitment under parallel repetition is available. Thus
we anticipate that QBA may be a valuable quantum cryptographic primitive in
contexts where marginal revelations of information to Bob are acceptable.

Some intriguing possibilities for future work are also suggested by our results.
First, we note also that according to the standard definition set out in section 6.2,
the protocol QBA is a perfect zero-knowlege protocol, because if both Alice and
Bob are honest and a valid proof is produced, then the transcript simply consists
of Bob telling Alice the value of an index and Alice unveiling a commitment to
that index, and the probability distribution px then simply reduces to a probability
distribution over Bob’s choice of index, exactly the same as the distribution py.
However, we reinforce that this does not provide any guarantee that the protocol
will not reveal information to Bob, because, as we have shown, Bob may gain in-
formation by various dishonest strategies, such as telling Alice the wrong index;
furthermore, even an honest Bob may gain information in the case where Alice
fails to produce a correct proof due to obtaining more than q positive measurement
results and being unlucky in her random choice of commitments. Although it is
known that the classical context, any protocol with the statistical zero-knowledge
property against honest verifiers can be transformed into one with the statisti-
cal zero-knowledge property against dishonest verifiers [238]; the result does not
immediately translate to our context, where relativistic constraints are used and
quantum as well as classical information may be exchanged; nonetheless it seems
natural to ask if some quantum and/or relativistic generalization is possible, and
if such a thing could be found this might suggest ways to strengthen our proposed
protocol. Second, Sahai and Vadan have shown that a certain problem, known
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as statistical difference, is complete7 for the class of all problems which possess
statistical zero-knowledge proofs (SZP), and their work on the related circuit po-
larization problem has been extended by Holenstein and Renner [239]. One could
define a generalization of the class SZP to cover quantum problems and quantum
and/or relativistic proofs, and if it were possible to find a complete problem for
this more general class, it would be interesting to see how closely this problem
were related to statistical difference and circuit polarization.

We also pause to observe that our results have some relevance from a theoret-
ical perspective in the context of the long-standing and contentious debate about
whether or not the quantum state is an element of reality. KCEKQS is of interest
in this regard because in philosophy, realism about theoretical entities is usually
said to include a commitment to the idea that statements about theoretical entities
constitute knowledge about the world above and beyond descriptions of observ-
ables [240, 241], and one way of giving content to this sort of claim would be via
the medium of zero-knowledge proofs. For example, in one famous toy example
of zero-knowledge proving [242] we have a cave with a secret passageway whose
location is known to Alice, and Alice has been set the task of proving to Bob that
she knows where the passageway is without revealing its location to him. In this
scenario, Alice does indeed know a description of the way out of the cave, and
clearly knowing a sufficiently detailed description of the way out of the cave is
equivalent to knowing the way out of the cave simpliciter. But nonetheless Al-
ice’s knowledge is not just about the description - it is knowledge about the actual

physical cave, and hence by demonstrating her ability to pass through the pas-
sage, she can provide evidence of her knowledge which Bob can verify even if
he does not know the description himself. Conversely, if what Alice knew were
only a description which did not pertain to any actual physical cave, then giving
evidence of her knowledge would essentially come down to stating all or part of
the description, and this evidence would be verifiable only by someone else who
knew the same description, making it impossible to perform effective knowledge-
concealing evidencing of knowledge.

In the case of the quantum state, Gleason’s theorem [243] tells us that know-

7A problem p is said to be ‘complete’ for some complexity class if it belongs to the class and
every problem in the class can be algorithmically transformed to it.



9.7. SUMMARY 147

ing a sufficiently detailed description of the experimental statistics predicted by
some quantum state is equivalent to knowing the quantum state simpliciter, and
therefore it is reasonable to ask whether knowledge of a quantum state is really
just knowledge about the associated description of observables, or whether it con-
stitutes knowledge about some actual physical entity over and above this descrip-
tion. One approach to answering this question would be to observe from our
no-go theorems that zero-knowledge proving of knowledge of a quantum state is
impossible, and even knowledge-concealing evidencing of knowledge cannot be
done very effectively for quantum states of small dimension. That is, for quantum
states of small dimension there is not much that Alice can do to provide evidence
of her knowledge of the quantum state that is verifiable by someone who does not
know the corresponding description of observables, and this suggests that Alice’s
knowledge of the quantum state is in some important way disanalogous to Alice’s
knowledge of the actual physical cave in the earlier case. Hence these no-go the-
orems might be taken to mitigate against the view that knowledge about quantum
states constitutes knowledge about the world above and beyond descriptions of
observables, at least for states of small dimension.

A range of other facts about quantum theory may be adduced in support of
this point; for example, the counterintuitive consequences we encountered in at-
tempting to find a sensible way to define Alice’s knowledge of the quantum state
η might similarly be taken to suggest that knowledge of quantum states is qual-
itatively different from familiar types of knowledge about physical things in the
world. More generally, we saw in section 1.2.5 that quantum contexutuality is
usually interpreted as indicating that the results of quantum measurements do not
give us knowledge about pre-existing properties of the world, and thus, insofar
as the quantum state of a system may be regarded as a codification of everything
that can be inferred about the results of future measurements on that system, one
might be tempted to conclude that knowledge of the quantum state does not rep-
resent knowledge about occurrent properties of the world. Likewise, the fact that
the quantum conditional entropy can be negative may also be interpreted as a sign
that the knowledge encoded in the quantum state is not knowledge about under-
lying occurrent properties, because if it were, then we would have to accept that
it is possible to know less about the properties of a part than about the properties
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of a whole, which in classical logic represents a contradiction. Taken together,
these observations might be regarded as an argument against realism about quan-
tum states of small dimension, at least in the specific epistemic sense in which
that term is sometimes used in the philosophy of science. Of course, the argument
is much too informal to support any grand ontological conclusions, but it might at
least help to explain why so many people have had the intuition that the quantum
state may not be real.

On the other hand, the quantumB-to-A protocol that we set out in this chapter
demonstrates that it does become possible to produce something close to a zero-
knowledge proof of knowledge of a quantum state in the limit as the dimension
of the quantum state concerned becomes very large. Our proposed epistemic cri-
terion for reality, then, would suggest that it becomes more natural to be a realist
about quantum states as their dimension becomes large. This might help explain
why in classical physics it was not really controversial to suppose that systems
have underlying ontological states that are responsible for the observed measure-
ment statistics: classical systems are continuous and thus infinite-dimensional,
and in the infinite limit it is indeed possible to provide evidence of knowledge of
a (quantum) state that can be verified by someone who does not know a descrip-
tion of the state, thus meeting our epistemic criterion for reality. Such an effect
might well foster the illusion that there exists an underlying state which is an en-
tity in and of itself rather than merely a codification of predictions about future
behaviour, and thus some of our classical intuitions about fundamental ontology
could be thought of as a consequence of the infinite-dimensionality of classical
systems.







Chapter 10

Concluding Remarks

The first two parts of this thesis have clear practical implications for quantum
computing and relativistic quantum cryptography.

As we pointed out in chapter 4, many known paradigms for quantum com-
puting allow us to recast a computation as a summoning task where the computer
must produce stored quantum states at various spacetime points that depend on the
results of previous rounds of computation. For example, in a measurement-based
quantum computation we take an entangled multiqubit state and apply a sequence
of measurements in different bases, where the basis choices may depend on the re-
sults of measurements at earlier times; since the gates for different measurements
may be in different spatial locations, we can regard the result of the earlier mea-
surement as a ‘call’ for some part of the state to be moved to the spatial location
of a certain gate, which can be regarded as a ‘response point.’ Thus it is valuable
to have an explicit formulation of the necessary and sufficient conditions char-
acterising the set of feasible summoning tasks, and particularly helpful to have
access to a generic prescription for a protocol that will succeed with certainty for
any task belonging to this set. Previous work by Hayden and May fulfilled these
desiderata for the special case in which it is guaranteed that exactly one call will be
made, but since the answers to computations are not generally known in advance,
it may be difficult to provide such a guarantee in realistic computing scenarios,
and therefore the generalisation we provide in the first part of this thesis is likely
to be of use as the field of distributed quantum computing develops. Likewise,
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many quantum computations require the distribution not only of individual pure
states but of entangled states, and thus our generalization of summoning tasks to
the case of entangled pairs is also likely to be of use to the field.

In the second part of the thesis we set out new relativistic bit commitment
protocols that have some advantages over existing protocols, making it possible
to perform secure bit commitment either without using randomness as a resource
or without relying on assumptions about the properties of preparation and mea-
surement devices. Since bit commitment has a large variety of applications, it is
helpful to have alternate possibilities that may be preferable to the existing pro-
tocols in certain contexts of applications. This is particularly relevant in view of
the fact that no bit commitment protocol is guaranteed to be secure under all pos-
sible compositions [235] - due to the security advantages of our new protocols,
it is likely that each of them may be secure under certain desirable compositions
where older protocols are not secure. Finally, we also developed a relativistic
quantum protocol for knowledge-concealing evidencing of knowledge of a quan-
tum state, a task which we anticipate could play a similar role in future quantum
cryptographic protocols as zero-knowledge proving plays in classical cryptogra-
phy, thus potentially leading the way to new applications for relativistic quantum
cryptography.

In addition to these practical applications, the results of Part I and II offer an
interesting theoretical perspective on the long-standing argument about the reality
of the quantum state. The current convention in quantum foundations is to reduce
this argument to a choice between ‘ψ-ontic’ and ‘ψ-epistemic’ views, where a
model is defined formally as ψ-ontic if and only if it always associates distinct
quantum states with non-overlapping probability distributions over ontic states of
the world; so for example much discussion has been generated by the recent PBR
theorem [208] which shows that no theory in which the quantum state is not real
in the ψ-ontic sense can reproduce all the predictions of quantum theory. And yet
one might worry that the formal definition of ψ-ontic does not capture the full intu-
itive content of the statement that the quantum state is ‘real.’ As an example of the
possible connotations of this terminology, consider the distinction made in meta-
physics between ‘concrete’ and ‘abstract’ objects, which is commonly cashed out
by saying that concrete objects are those that can in principle be assigned a spa-



tiotemporal location and/or are capable of persisting through time [244]. We saw
in the first section of this thesis that Hayden and May’s approach to characterizing
the spatiotemporal history of a quantum state seems questionable in view of our
results on multiple-call summoning tasks, and we conjectured that it may well be
the case that no such approach holds up to careful analysis, suggesting that quan-
tum states perhaps do not fall on the ‘concrete’ side of this particular distinction.
The difficulty of saying anything meaningful concerning the spatiotemporal lo-
cation of quantum states in between preparations and measurements suggests that
the quantum state is, at best, real only in a qualified sense, and not in the same way
as paradigmatic examples of concrete objects like rocks, trees and human beings.

Similarly, consider the usage of the term ‘realism’ in philosophy of science,
where realism about a theoretical entity is often defined as entailing a commitment
to the claim that statements about this entity constitute knowledge about the world
above and beyond descriptions of observables [240, 241]. This suggests an epis-
temic criterion for the reality of the quantum state: the state should be regarded
as ‘real’ in this sense only if it is possible to provide evidence of knowledge of a
quantum state which can be verified even by someone who does not know the cor-
responding description of experimental statistics. The no-go theorems of chapter
9 suggest that quantum states - or at least, quantum states of small dimension - do
not satisfy this particular criterion of reality. Furthermore, the fact that the no-go
theorems apply specifically to systems with finite Hilbert spaces might go some
way towards explaining why it seems natural to be a realist about classical states
yet it is much more controversial to be a realist about the quantum state, since
classical systems have continuous (infinite-dimensional) state spaces and hence
are not covered by these no-go theorems.

We do not of course claim to have proven anything about the reality of the
quantum state, and nor would we attempt to do so - the word ‘real’ is ambiguous
and highly context-dependent and probably not well-suited to be the subject of
a mathematical argument. Our purpose here is simply to provide an opportunity
to reflect on what exactly one might mean by the claim that the quantum state
is real and to understand why the PBR theorem might not completely settle the
issue. Indeed, we would suggest that a more nuanced understanding of the notion
of reality might help overcome the long-standing deadlock between the ψ-ontic



and ψ-epistemic views: we have seen that the quantum state may be ‘real’ in the
ψ-ontic sense, but nonetheless not ‘real’ according to other common uses of that
term, it may turn out that the ψ-ontic and ψ-epistemic pictures, more broadly con-
strued, are not genuinely in disagreement, and there might well be interpretative
approaches according to which one can reasonably say that the quantum state is
both ontic and epistemic.

We also take note of a number of interesting directions for future research.
We have explored several generalisations of Kent’s original summoning task, but
many possibilities remain. Another useful generalisation would be to consider
relaxing the requirement that a protocol for a distribution task must always suc-
ceed, which would allow us to establish necessary and sufficient conditions for the
existence of protocols that ensure the unknown state is returned with probability
above some threshold value, and to study how the sets of feasible tasks induced
by different values of the threshold are related to one another. In addition, there
is scope for much more to be said about entanglement distribution: ideally one
would like, as in the case of the summoning tasks, to be able to specify a full set
of necessary and sufficient conditions for a task to be feasible for entanglement
distribution and entanglement summoning respectively, together with an explicit
prescription for a protocol that in each instance guarantees a successful response
whenever there exists any protocol that guarantees a successful response.

With regard to bit commitment, there are a number of questions to be ad-
dressed regarding the composability of relativistic protocols. Since we can never
guarantee that a relativistic bit commitment protocol will be secure under all pos-
sible compositions [235], it is particularly important to establish conditions under
which the bit commitment protocols set out here and elsewhere [165,173,245,246]
can be composed securely. For example, one important type of composition in-
volves using sets of simultaneous bit commitments to commit to bit strings, as
required by some of the protocols in chapter 9. We should also address the fact
that relativistic bit commitment schemes are usually very time-sensitive; in partic-
ular, the commitment and unveiling typically take place at a spacelike or lightlike
separation, with the duration of the protocol upper bounded by the time taken
for light to travel from the commitment point to the unveiling point. Since there
are practical constraints on the distances by which agents can be separated in real



applications, and we frequently have need of protocols with a non-negligible dura-
tion, there is a strong motivation for the development of protocols whose lifetime
can be extended by employing a sequence of communications to maintain security
indefinitely. Ref [172] sets out a method of extending a particular classical proto-
col in this way, but this method is not suitable for extending the bit commitments
described in ref [165] since they employ a different geometrical arrangement of
agents in spacetime, and hence a priority for future work is to develop new ex-
tension procedures for protocols of this type. We have in fact begun developing
two such protocols: one requires Alice to initiate new commitments at the un-
veiling point(s) committing her to the data she would have handed over had she
unveiled, while the other uses Rudich linkings [172,247] to allow Alice to make a
series of commitments over time and prove to Bob that they are all commitments
to the same bit. The former employs a number of commitments per round that
increases exponentially with the number of rounds, which makes it impractical
for most real-world applications, but the latter requires only a constant number of
commitments per round, making it potentially feasible for real applications.

Our results on knowledge-concealing evidencing of knowledge also point to
some interesting areas for future investigation. First, our security proofs were
based in part on some assumptions about the composition of certain bit commit-
ment protocols, and thus it would be useful to reexamine these proofs once more
results have been established concerning the composability of such protocols.
Second, although we have shown that under certain assumptions our new pro-
tocol can be regarded as ‘optimal’ in an asymptotic sense, we have not attempted
to show optimality for any finite case, so a logical next step would be to either
prove stronger optimality results or to develop a better protocol. Finally, with a
practical protocol for something akin to zero-knowledge proving of knowledge of
a quantum state in hand, it would be interesting to examine some important classi-
cal cryptographic protocols that depend on zero-knowledge proofs (for example,
see refs [199,200,248,249]) to see if it is possible to find quantum generalisations
that might have some useful advantages over the classical versions.





Appendix A

Supplementary Information for
Chapter 9

A.1 Protocols with an abort option

Before proving our main results, we extend our definitions to allow for the possi-
bility that Alice may abort the protocol.

In a KCEKQS protocol with abort option, after each round of receiving data
each of Alice’s agents generates one of two possible outcomes, 0 and 1, from the
classical and quantum information in her possession. If she gets outcome 0, she
announces to Bob’s neighbouring agents, within a pre-agreed time interval, that
the protocol is aborted. Bob’s agent communicates this to Bob’s other agents.
and Alice’s agent also announces the abort to all of Alice’s other agents. Any
agent who receives an abort message stops participating in the protocol from that
point. If there is no abort, the protocol terminates after a fixed finite number of
communications between Alice’s and Bob’s agents, as in the original definition.
The allowed timings of abort announcements and of Bob’s final announcement are
fixed so that, in the event of a valid abort announcement, no outcome to the process
is calculated by Bob. The possible outcomes are thus disjoint events 1, 0, abort

and we denote the probabilities of two outcomes by p(1), p(0) and p(abort). We
define non-triviality for protocols with an abort option just as before. 1

1In fact, a weaker definition of non-triviality suffices for our no-go theorem below. Let
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A.2 No-Go Theorems

A.2.1 Zero-knowledge

Theorem 8. There exists no non-trivial KCEKQS protocol which is zero-

knowledge.

Proof. Consider a non-trivial KCEKQS protocol P applied to a system QB with
Hilbert space HB. In any such protocol Bob may replace the system QB by an-
other system prepared in any state of his choice. Suppose that he does so, but
that the protocol is otherwise honestly performed by both parties (where Alice
believes, correctly, that the state of QB is η). The protocol then defines a quantum
measurement operation P η on HB. Now if Bob inputs a randomly chosen pure
state φ ∈ HB, non-triviality and continuity imply that there is a neighbourhood
N of φ with nonzero measure δ (with respect to the uniform measure), such that

P (η ∈ N | outcome 1 ) > δ .

Nontriviality and continuity also imply that εC < 1 and that P ( outcome 1 ) > 0.
Hence, in any non-trivial KCEKQS protocol, with nonzero probability, Bob gains
some information about η from this strategy. Since he retains QB, he can also
carry out any measurement he wishes on QB, and combining information from
the two processes gives him on average strictly more information about η than is
available from the measurement alone. Hence any non-trivial KCEKQS protocol
must have εK > εM and therefore cannot be zero-knowledge.

p(x|ψ; η) be the probability distribution for the three outcomes x ∈ {0, 1, abort} when the state
of QB is ψ, Bob performs the protocol correctly, and Alice performs the version of the protocol
that would be correct if she knew that the state of QB were η. Then it is sufficient that p(x|ψ; η)
depends non-trivially on ψ for fixed η. However we use the stronger definition of non-triviality
here as its relevance is more intuitively clear.



A.2.2 Completeness vs soundness

Theorem 9. In a KCEKQS protocol for a pure quantum state in a Hilbert space

of dimension d, the completeness and soundness parameters obey

εS
1− εC

≥ 1

d
.

Proof. A protocol P for KCEKQS may require either party to carry out mea-
surements, to make random choices from a classical probability distribution, to
introduce quantum states, and/or to send classical data. For any such protocol,
we can define a related fully quantum protocol QP in which all data are intro-
duced as quantum ancillae at the start and kept at the quantum level until the
outcomes are obtained. Thus, to define QP from P , measurements are replaced
by unitary measurement interactions (without extracting measurement data), clas-
sical random choices are replaced by interactions with entangled ‘quantum dice’
(without extracting data about the dice outcome) and classical communications
are replaced by quantum communications of states in a pre-agreed orthonormal
basis (for instance the computational basis). We take the protocol QP to proceed
thus until the final stage. At this point, all the information in Alice’s possession is
sent to one of Alice’s agents, who carries out a measurement giving her the out-
come abort or not abort. She communicates this outcome to all of Alice’s and
Bob’s agents, within an agreed time window, so that Bob’s agents all know the
outcome after a prespecified coordinate time. If no abort is communicated to any
of Bob’s agents within the prescribed time, they send all the information in their
possession to one of Bob’s agents, who carries out a single measurement giving
him the outcome 1 or 0.

We take the Hilbert spaces under Alice’s and Bob’s control initially to be HA

and HB respectively, and the Hilbert spaces under Alice’s and Bob’s control at
the end of the protocol to be HAf

and HBf
. The initial and final Hilbert spaces

for each party are not necessarily identical, since the protocol may require states
to be sent from one party to another. By introducing ancillae as necessary, we
may take the final measurements by Alice and Bob to be projective measurements
(PAf

, IAf
− PAf

) and (PBf
, IBf
− PBf

).



If both parties are honest, the probabilities of all outcomes are the same in QP
as in P . If Bob is honest, then it cannot be disadvantageous to Alice to replace P
by QP : all strategies available to her in the former can be replicated in the latter,
and the latter also generally offers her further strategies. In particular, the strategy
we define below for Alice has the same success probabilities in QP and P . We
may therefore without loss of generality assume a fully quantum protocol.

Let SAB be the initial state of all the ancillae introduced by Alice and Bob
in QP , and let Uη be the unitary operation defined by the protocol up to the final
outcome measurements when Alice honestly follows the protocol and believes the
state is η. Here Uη includes any state transfers between the parties, as well as local
unitaries applied by each party. Thus Uη maps HA⊗HB to HAf

⊗HBf
.2 We will

write ηB for Bob’s unknown state when we wish to emphasise that it is initially
under Bob’s control.

Thus we have:∫
Tr(((IAf

− PAf
)⊗ PBf

)Uη(ηB ⊗ SAB)(Uη)†)dµ(η) = 1− εC

where dµ( ) denotes the uniform measure over quantum states, and the integral is
performed over the entire Hilbert space of QB.

Now suppose Alice does not in fact know η. Then she may always adopt the
strategy of choosing a random state φ from the Hilbert space ofQB and proceeding
with the protocol as if she knows that QB is in the state φ. Since aborting cannot
increase p(1), an optimum strategy to maximise p(1) is never to abort, i.e. to take
PAf

= 0. Assuming that Bob always performs his part of the protocol honestly,
the expected value of p(1) is then∫ ∫

Tr((IAf
⊗ PBf

)Uφ(ηB ⊗ SAB)(Uφ)†)dµ(η)dµ(φ) ≤ εS .

Moving the integral inside the trace, and noting that
∫
ψdµ(ψ) = 1

d
IB, where

2We assume the protocol does not require any states to be discarded, since neither party can
trust that the other will in fact discard states as required. Thus HA ⊗HB and HAf

⊗HBf
are

isomorphic, although the factors may be different.



IB is the d-dimensional identity matrix on QB, we obtain

1

d

∫
Tr((IAf

⊗ PBf
)Uφ(IB ⊗ SAB)(Uφ)†)dµ(φ) ≤ εS.

The left hand side is bounded below by

1

d

∫
Tr((IAf

⊗ PBf
)Uφ(φB ⊗ SAB)(Uφ)†)dµ(φ) ,

which is bounded below by

1

d

∫
Tr(((IAf

− PAf
)⊗ PBf

)Uφ(φB ⊗ SAB)(Uφ)†)dµ(φ) =
1

d
(1− εC) .

Hence εS
1−εC

≥ 1
d
.

A.3 Security Proofs for CR2

Soundness As in the proofs for CR1, we assume that the bit commitment pro-
tocol remains secure under parallel repetition. Hence we limit our discussion to
strategies where Alice commits honestly to a single set of q out of d possible
measurement outcomes in the bit commitment protocol.

If Alice has no information about the state η, then she has no better strategy
than to choose q random orthogonal one-dimensional projections. Hence εS = q

d
,

i.e. q = εSd.

Knowledge-Concealing and Completeness The relativistic bit commitment
protocol [13] is perfectly secure against Bob both for a single bit commitment and
when composed to define a bit string commitment: in either case, Bob obtains no
information about Alice’s commitments unless and until she unveils them. Sup-
pose then that Alice knows η and randomly chooses a projective measurement
{Pi} for which there exists a set S consisting of q measurement elements such
that Tr((

∑
i∈S Pi)η) = 1 − εC. If Bob follows the protocol and carries out this

measurement, he obtains outcome Pi with probability pi = Tr(Piη). If Alice’s



unveiled commitment confirms that i ∈ S, Bob’s maximum expected squared
fidelity guess is η = Pi, which has squared fidelity pi. Hence

εK ≥
∑
i∈S

(pi)
2 ≥ q(

1− εC
q

)2

A.4 Security Proofs for QAB

Throughout this section, we use the notation w(a, b) =
(
a+b−1
a

)
.

Soundness If Alice does not in fact know η, the probability that Bob’s measure-
ment obtains a positive result is maximized if she chooses a single state φ and
prepares all N systems {Si} in the state φ.

We use the fact that Tr(ΠS(|φ〉〈φ|⊗N ⊗ I⊗M)ΠS) = w(M+N,d)
w(N,d)

[250]. Thus
when Alice employs the optimum strategy, the probability that Bob ’s measure-
ment obtains a positive outcome is given by:

εS =

∫
Tr(Π(|φ〉〈φ|⊗N⊗ψ)Π)dµ(ψ) = Tr(Π(|φ〉〈φ|⊗N⊗ I

d
)Π) =

w(N + 1, d)

w(N, d)d

=
1

N + 1
+

N

d(N + 1)

(A.1)

In particular, for N = 1, we have

εS =
1

2
+

1

2d

and εS > 1
2

for any d.

Knowledge-Concealing If Alice follows the protocol honestly, Bob has avail-
able N + 1 copies of the state η, so the average squared fidelity between the
true state η and his best possible guess from measuring N + 1 states is N+2

N+1+d



[225]. Thus εK = N+2
N+1+d

. From equation (A.1), we obtain εK > 1
dεS

and
εK − εM > d−1

d+1
N
N+2

1
dεS

. In particular, near CS-optimality (εS ≈ 1
d
) requires N

large, which implies near-zero concealment (εK ≈ 1) and significant knowledge
gain (εK − εM ≈ d−1

d+1
). For large d, this also implies near-complete knowledge

gain (εK − εM ≈ 1).

A.5 Security Proofs for QBA

Soundness Alice’s most general strategy starts by pre-sharing some quantum
state between A1 and A2. A1 then receives (N + 1) qudits from B1. She can then
carry out any quantum operation on the quantum systems in her control, where
the choice of operation may depend on the classical data sent by B1, to generate
responses to B1 that purport to initiate the bit commitment protocols. A2 can
similarly carry out any quantum operation on the quantum systems in her control,
where the choice of operation may depend on the classical data sent by B2, to
generate responses to B2 that purport to sustain the protocols. A1 can then carry
out further quantum operation on the quantum systems under her control, where
the choice of operations may depend on the index x sent by B1, to generate data
that purport to unveil x as one of her committed strings.

A full security analysis against Alice thus requires a discussion of security for
a protocol composed of two rounds of relativistic bit commitment sub-protocols
together with the remaining steps of the protocol above. We leave this discus-
sion for a future more general analysis of protocols within which relativistic bit
commitments are suitably composable. For the present discussion, we will make
the restrictive assumption that Alice honestly follows each relativistic bit com-
mitment protocol [13] for the first two rounds and uses no quantum information
in these relativistic bit commitment protocols. We now show that, under this as-
sumption, if the protocol involves an unknown d-dimensional state, and we take
(N + 1) = Md for integer M , and q = N+1

d
= M , then εS = 1

d
.

Proof. Alice can achieve a success probability of q
N+1

by simply committing to q
random distinct indices, and hence εS ≥ q

N+1
. We now show that also εS ≤ q

N+1
,

and hence εS = q
N+1

.



Suppose that A1 and A2 begin the KCEKQS protocol with no information
about η, and that Bob honestly follows the protocol. From Alice’s perspective,
she simply receives (N + 1) random pure qudits, since η is a random qudit and
the remaining qudits are independently randomly chosen by Bob. Thus until B1

gives A1 classical information about the index assigned to QB, A1 and A2’s state
of knowledge is exactly symmetrical with respect to all of the N + 1 qudits sent
by B1. A1 is required to initiate commitments, and A2 to sustain them, before
they receive the index assigned to QB, and therefore their commitment strategy
on these rounds cannot depend on that index.

Thus we may without loss of generality calculate Alice’s success probability
by considering some fixed commitment strategy and averaging over all N + 1

possible values for the index of QB. For simplicity, we will analyse a related
protocol T in which Alice always makes q commitments and subsequently unveils
all q commitments. We will say that Alice is successful in this task if and only
if at least she unveils at least one valid commitment to the correct index for QB

(whether or not other unveiled commitments turn out to be valid commitments to
any index). Alice’s success probability εS in the KCEKQS protocol is no greater
than her success probability in T , since in either case Alice succeeds if and only
if she can unveil at least one commitment to the correct index.

If the probability distribution over the values of Alice’s unveiled commitments
in task T depends only on her initial commitment strategy and not on the classical
information she subsequently obtains from Bob, then the values of her q unveiled
commitments must be uncorrelated with the index of QB. Therefore the proba-
bility that one of these q unveiled commitments was originally a commitment to
the correct index for QB can be no greater than q

N+1
, with this bound saturated

whenever Alice uses a strategy which always produces q valid commitments to
different bit values in {1, 2, ..., N + 1}. Thus Alice’s success probability can be
greater than q

N+1
only if the probability distribution over the values of her unveiled

commitments fails to be independent of the classical information that she receives
from Bob.

If so, under our assumptions about Alice’s restricted strategy, Alice must have
some freedom to choose whether to unveil 0 or 1 for at least one bit i out of
the ≈ q log(N + 1) bits to which she commits. More precisely, for at least two



different indices q, r in {1, 2, . . . , N + 1}, if pi(0|q) is the probability that Alice
unveils a 0 for bit value i when Bob tells her the index of QB is q, and pi(1|r)
is similarly defined, then pi(0|q) + pi(1|r) > 1. But this contradicts the security
of the relativistic bit commitment protocol [13], under our assumptions about Al-
ice’s restricted strategy. Hence, given those assumptions, Alice cannot succeed in
protocol T with probability greater than q

N+1
and thus we have εS ≤ q

N+1
.

Completeness We now show that εC → 0 as N →∞.

Proof. If Alice does know the state η, she will get a positive outcome on QB. The
probability that her commitment fails to be accepted is thus given by:

εC =
N∑
x=q

P (XN = x)
x+ 1− q
x+ 1

, (A.2)

where p(XN = x) is the probability that x out of Alice’s N measurements on the
N systems Si obtain the result η.

If Bob is honest and chooses the states of the systems Si at random, the result
η is obtained on each run with probability 1

d
. Hence XN is binomially distributed:

P (XN = x) =

(
N

x

)
1

dx
(1− 1

d
)N−x . (A.3)

The distribution XN has mean N
d

. Hoeffding’s inequality implies that

P (XN ≥
N

d
+ εN) ≤ exp(−2ε2N) . (A.4)

Taking q = N+1
d

, it follows from equation (A.2) that

εC ≤ εdpmode + exp(−2ε2N) (A.5)

for any ε > 0, where pmode is the maximum over x of the binomial distribution



P (XN = x). We can obtain an adequate bound simply by using pmode ≤ 1.3

Taking, for example, ε = 1
2
N−

1
2 (logN)

1
2 , we see that εC → 0 as N →∞.

Knowledge-Concealing Bob begins with one copy of η. If dishonest, he may
combine this with any ancillae he wishes, carry out any quantum operations he
wishes, and produce a (perhaps highly entangled) state including (N + 1) qudits
that he sends to Alice, together with a system that he retains. He may then carry
out any measurement he wishes to produce an index x. Alice responds, effectively,
with either a 1 (if she unveils a commitment to x) or a 0 (if she fails to unveil
a commitment to x). Bob may then carry out any measurement he wishes on
his retained system to produce his maximum possible expected squared fidelity
estimate of η. This measurement choice may depend on Alice’s response.

Effectively, Bob’s task is to optimize his state estimation in this scenario. His
overall strategy S is fixed up to Alice’s response, but then may involve different
state estimation strategies depending on the one bit of information supplied by
Alice. For any given overall strategy S, the overall expected squared fidelity of
his estimate is

pS(0)fS(0) + pS(1)fS(1) , (A.6)

where pS(b) is the probability of outcome b given strategy S and fS(b) is the
expected squared fidelity obtained from S conditioned on outcome b.

Suppose that Alice does not respond at all. Bob may simply follow the fixed
strategy Sb given by following S and assuming outcome b; this produces an ex-
pected squared fidelity of at least pS(b)fS(b). Since Sb is a possible strategy for
the standard task of state estimation given one copy of an unknown qudit (and no
further information), we have that

pS(b)fS(b) ≤ fmax =
2

d+ 1
(A.7)

3A tighter bound for N � d follows from the normal approximation to the binomial distribu-
tion, which gives pmode ≈ 1√

2π
1√

N 1
d (1−

1
d )

.



where the right hand side is the maximum expected square fidelity obtainable from
any state estimation strategy on an unknown qudit [225]. Hence Bob’s overall
expected squared fidelity is given by:

pS(0)fS(0) + pS(1)fS(1) ≤ 4

d+ 1
. (A.8)

That is, εK ≤ 4
d+1

.
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[86] Rényi, A. On measures of entropy and information. In Proceedings

of the Fourth Berkeley Symposium on Mathematical Statistics and Prob-

ability, Volume 1: Contributions to the Theory of Statistics, 547–561
(University of California Press, Berkeley, Calif., 1961). URL http:

//projecteuclid.org/euclid.bsmsp/1200512181.

[87] Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S. & Tomamichel, M. On
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