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1 Introduction

Extremal black holes (BHs) are an important special class of BHs with degenerate, zero

temperature horizons. They play a prominent role in String Theory as they are often super-

symmetric and do not evaporate. As distinguished members of the BH family with broad

theoretical applications, understanding their classical stability properties seems important.

Are extremal BHs classically stable?

While proving the nonlinear stability of the Kerr BH remains as a major goal of math-

ematical relativity, some significant steps towards this goal have already been made. The

current state-of-the-art are the recent proofs of linear stability of Schwarzschild under grav-

itational perturbations [1] and linear stability of a massless scalar on Kerr [2]. Importantly,

these proofs are restricted to non-extremal BHs. The reason is that the so-called horizon

redshift effect is essential in those analyses. This is the phenomenon that outgoing radia-

tion propagating along the future event horizon suffers a redshift and therefore decays. The

characteristic decay time is proportional to the BH’s surface gravity. At extremality the

surface gravity vanishes so there is no horizon redshift effect and the stability proofs fail.

The search for a new approach to study the stability of extremal BHs led Aretakis,

in a series of works [3–6], to prove that massless scalar perturbations of extreme Reissner-

Nordström (RN) and axisymmetric massless scalar perturbations of extreme Kerr BHs

display both stable and unstable properties. He showed that the scalar field and its deriva-

tives decay outside the event horizon. However, on the event horizon, the absence of a

horizon redshift effect means that outgoing radiation propagating along the event horizon

does not decay. Mathematically, this means that a transverse derivative of the scalar field
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does not decay along the horizon and higher transverse derivatives grow with time. For

spherically symmetric massless scalar perturbations of extreme RN, derivatives blow up at

least as fast as

∂k
rψ

∣

∣

∣

horizon
∼ vk−1 , (1.1)

where ψ is the field under study, and (v, r) are ingoing Eddington-Finkelstein coordinates.

An important element of Aretakis’ work is the identification of an infinite set of conserved

quantities, along the event horizon, one for each spherical harmonic. These are called the

Aretakis constants.

Aretakis’ result has been generalized in various ways. Ref. [7] explained why this

massless scalar instability afflicts any extreme black hole, and showed that there is a similar

instability for linearized gravitational perturbations of extreme Kerr. Ref. [8] showed that

there is a similar instability for coupled gravitational and electromagnetic perturbations of

extreme RN, and also for massive scalar perturbations of extreme RN.

The blowup (1.1) is ‘mild’ in the sense that it is polynomial rather than exponential. In

a frequency domain analysis it therefore appears as a branch point located precisely on the

real-frequency axis, rather than as a pole. This was studied recently for extremal Kerr [9],

and its near-extreme counterpart [10]. It should be noted that these frequency domain

analyses cannot describe situations in which there is outgoing radiation initially present

at the event horizon. This implies that the results are restricted to cases with vanishing

Aretakis constants. With vanishing Aretakis constants there is still an instability but it

requires one more derivative to see it [6], which is precisely what was found in ref. [9].

Ref. [9] also considered non-axisymmetric massless scalar perturbations of extreme

Kerr and found that they exhibit even worse behaviour than the axisymmetric pertur-

bations considered by Aretakis. Specifically, it was argued that, for non-axisymmetric

perturbations, the first transverse derivative of the scalar can grow as v1/2 along the hori-

zon (where v is a Killing time coordinate). In [11] an extension to charged perturbations

of extreme RN was discussed; these were shown to resemble non-axisymmetric modes in

extreme Kerr.

The above discussion concerns linear perturbations of extreme BHs. It is natural to ask

what happens when one considers nonlinearity and backreaction. Aretakis considered the

case of a scalar field with a particular kind of self-interaction and found that the nonlinearity

made the instability worse, leading to a blow up in finite time along the event horizon [12].

A different kind of nonlinearity was considered in ref. [13], for which it was found that the

nonlinearity did not lead to any qualitative difference from the linear equation. However,

for both of these examples, the nonlinearity was not of a kind that would arise in physical

applications. The backreaction problem was investigated numerically in ref. [14]. It was

found that, for a generic (massless scalar field) perturbation, an extreme RN black hole will

eventually settle down to a non-extreme RN solution. However, during the evolution, there

is a long period when derivatives exhibit the behaviour (1.1), confirming that the instability

persists when backreaction is included. Furthermore, by fine-tuning the perturbation it can

be arranged that the late-time metric approaches extreme RN, in which case the nonlinear

solution exhibits the behaviour (1.1) indefinitely.
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We now turn to the physical relevance of the Aretakis instability. If fields decay outside

the event horizon then why does it matter that higher transverse derivatives blow up on

the horizon? One reason is that we expect the classical equations of motion to be corrected

by higher derivative terms, as is the case in string theory. If higher derivatives become

large on the horizon then it seems likely that the higher derivative terms in the equation of

motion will become large [14]. In other words, the Aretakis behaviour suggests a possible

breakdown of effective field theory at late time on the event horizon of an (arbitrarily large)

extreme black hole.1

The aim of this paper is to investigate whether or not higher derivative corrections to

the equations of motion become important during the Aretakis instability or the even worse

non-axisymmetric extremal Kerr instability of ref. [9]. We will consider a nonlinear theory

consisting of Einstein-Maxwell theory coupled to a massless scalar, and then add higher

derivative corrections which are restricted only by the requirement of general covariance

and a shift symmetry for the scalar field.

In section 2 we consider the extremal RN solution. We start with a brief review of the

Aretakis instability. We then consider the AdS2×S2 near horizon geometry of an extremal

RN black hole, taking into account the higher derivative corrections to the background

geometry. We expand on a previous discussion [8] of how the Aretakis instability can be

seen in the near-horizon geometry. We then show that, for a large black hole, linear higher

derivative corrections lead only to small corrections to Aretakis’ results. In particular, the

leading (spherically symmetric) instability of the near-horizon geometry is unaffected by

these corrections. Ultimately the reason for this is that the higher derivative terms must

exhibit general covariance, which implies that they take a very simple form when linearized

around a highly symmetric background such as AdS2 × S2.

It is not obvious that this will remain true when we consider the much less symmetric

geometry of the full black hole solution. So next we consider the size of (possibly nonlinear)

higher derivative terms in all of the equations of motion during the Aretakis instability in

the full extreme RN geometry. We argue that such terms remain small compared to the

nonlinear 2-derivative terms. Hence there is no indication of any breakdown of effective

field theory for extreme RN. Ultimately this result can again be traced back to general

covariance restricting the possible form of the higher derivative terms.

In section 3 we discuss the case of extremal Kerr. Again we start by investigating

the scalar field instability in the near-horizon geometry. In particular, we give a simple

derivation of results analogous to those of ref. [9] for the scalar field instability in the

near-horizon extreme Kerr (NHEK) geometry. We explain how these results are robust

against higher derivative corrections of the NHEK geometry. Furthermore, our method can

incorporate outgoing radiation at the event horizon in the initial data, unlike the approach

of ref. [9]. Nevertheless, our results are in agreement with those of ref. [9], indicating that

this initial outgoing radiation does not make the dominant (non-axisymmetric) instability

any worse. We then consider linear higher derivative corrections to the equation of motion

1A possible late-time breakdown of effective field theory at an event horizon, due to a “string spreading”

effect, has been investigated in ref. [15]. Since this effect is present for non-extremal black holes, it does

not appear to be related to the effects discussed in the present paper.
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for the scalar field and argue that these just give small corrections to the results, again

without making the instability any worse. So, at the level of the near-horizon geometry,

there is no sign of any breakdown of effective field theory.

Finally we consider the scalar field instability in the full extreme Kerr geometry. Here

the effect of nonlinearities is not yet understood, even in the 2-derivative theory. So we

simply assume, in analogy with the nonlinear extreme RN results, that the geometry re-

mains close to extreme Kerr even when 2-derivative nonlinearities are included. With this

assumption we estimate the size of higher derivative corrections to the equations of motion.

We find that these remain small compared to the 2-derivative terms. So again there is no

obvious sign of any breakdown of effective field theory. Once again the reason can be traced

to general covariance restricting the form of possible higher derivative terms.

2 Extremal Reissner-Nordström

2.1 Einstein-Maxwell-scalar theory

Consider an Einstein-Maxwell-scalar theory where the scalar field is massless and minimally

coupled. This theory is described by the action.2

S2 =
1

16π

∫

d4x
√−g [R− FµνFµν −∇µΦ∇µΦ] , (2.1)

where F = dA with A a 1-form potential. We now consider higher derivative corrections

to this two derivative action. We write the action as

S =
∞
∑

k=2

Sk (2.2)

where S2 is as above and

Sk =
αk−2

16π

∫

d4x
√−gLk (2.3)

where α has dimensions of length and Lk is a scalar function of the metric, Maxwell field

strength and scalar field, involving k derivatives of the scalar field, metric or electromagnetic

potential. We will assume that the scalar field is coupled only through its derivatives so

the theory possesses a shift symmetry Φ → Φ + const. Furthermore, we assume that Lk

does not involve any terms which are linear in (derivatives of) Φ, which implies that setting

Φ = const is a consistent truncation of the theory.

Since it is not possible to construct a scalar Lagrangian with 3 derivatives, we have

S3 = 0 and the first higher derivative term in the action is S4.

2.2 Aretakis instability in 2-derivative theory

First we review the Aretakis instability in the 2-derivative theory. Setting Φ = constant,

the two-derivative theory admits the extreme RN black hole as a solution. We write the

metric as

ds2 = −δ2dv2 + 2dvdr + r2dΩ2 δ = 1− Q

r
(2.4)

2We work in units G = c = 1.
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and the Maxwell field is

F = QdΩ (2.5)

where dΩ is the volume element on a unit radius S2. We have assumed that the black hole

is magnetically charged with charge Q.3

In this background, Aretakis considered linear perturbations in the scalar field. Let ψ

be a linear perturbation of Φ. The equation of motion for ψ in the 2-derivative theory is

2ψ = 0. (2.6)

We can decompose ψ in spherical harmonics:

ψ =
∑

ψℓm(v, r)Yℓm(Ω) , (2.7)

Because of the spherical symmetry we can ignore the dependence on m and just write ψℓ.

The wave equation becomes

2r∂v∂r(rψℓ) + ∂r((rδ)
2∂rψℓ)− ℓ(ℓ+ 1)ψℓ = 0 . (2.8)

Consider first ℓ = 0. Evaluating (2.8) at the horizon δ = 0 shows that the quantity

H0 ≡ Q−1 ∂r(rψ0)|horizon (2.9)

is conserved along the horizon (independent of v), and in particular does not decay, for

generic initial data, at late times. H0 is called an Aretakis constant. Since ψ0|horizon itself

does decay at late times on the horizon [3], this shows that the first derivative ∂rψ0|horizon
does not decay — instead, it tends to H0. Higher derivatives of ψ0 behave even ‘worse’ on

the horizon: at late times they grow indefinitely, as can be seen by acting on equation (2.8)

with ∂r and restricting to the horizon giving

Q∂v∂
2
r (rψ0)|horizon = −H0 . (2.10)

Integrating with respect to v then gives

∂2
r (rψ0)|horizon ∼ −H0

Q
v (2.11)

as v → ∞. It follows that

∂2
rψ0

∣

∣

horizon
∼ −H0

Q2
v (2.12)

This can be extended by induction to an arbitrary number of radial derivatives. Acting

with ∂k−1
r on (2.8), restricting to the horizon and integrating along it, shows that

∂k
r ψ0|horizon ∼ H0Q

2−2kvk−1 (2.13)

as v → ∞, where here and below we ignore dimensionless constants on the r.h.s. . Hence

higher derivatives of ψ0 grow polynomially with v at late time on the event horizon. This

is the Aretakis instability.

3We choose magnetically rather than electrically charged BHs for simplicity, as (2.5) remains exact under

higher derivative corrections. We do not expect any significant differences in the electric case.
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Similar behaviour occurs for ℓ > 0. Acting on (2.8) with ∂ℓ
r and restricting to the

horizon shows that there is a conserved quantity

Hℓ ≡
1

Q2
∂ℓ
r [r∂r(rψℓ)] (2.14)

As in the ℓ = 0 case, an inductive procedure yields, for k ≥ ℓ+ 1

∂k
r ψℓ|horizon ∼ HℓQ

2(ℓ+1−k)vk−1−ℓ (2.15)

at late time along the event horizon. Notice that ℓ+2 derivatives are required to construct

a quantity that grows along the horizon, hence the Aretakis instability is strongest for the

ℓ = 0 mode.

We will also need to know the behaviour of quantities which decay along the horizon.

Numerical results in ref. [8] strongly suggest that ψ0 ∼ v−1−ℓ at least for ℓ = 0, 1. This

is confirmed by rigorous results of ref. [16], which prove that (2.15) holds for any k ≥ 0

when the Aretakis constant Hℓ is non-zero. It is also proved that v-derivatives behave in

the way one would expect by naively differentiating w.r.t. v:

∂j
v∂

k
r ψℓ|horizon ∼ vk−j−ℓ−1−ǫ(j,k,ℓ) (2.16)

where

ǫ(j, k, ℓ) =

{

0 if k ≤ ℓ or k ≥ j + ℓ+ 1

1 if ℓ+ 1 ≤ k ≤ j + ℓ
(2.17)

We have dropped all coefficients on the r.h.s. of (2.16). These coefficients are all propor-

tional to Hℓ multiplied by appropriate powers of Q.

Although the following will not be used in our analysis, it is interesting to note that

the above late-time behaviour is reproduced by an expression of the form

r ψℓ = v−1−ℓf (ℓ)(vδ) , (2.18)

where f (ℓ) is a smooth function with f (ℓ)(0) 6= 0. This Ansatz can be substituted into (2.8).

Taking the late time v → ∞ limit, keeping z ≡ vδ fixed, (2.8) then reduces to an ordinary

differential equation for f . Solving it gives the 0th order wavefunction (Q = 1):

rψℓ = v−1−ℓ

[

c1ℓ
(2 + z)ℓ+1

+ c2ℓ z
ℓ+1

2F1[1, 2ℓ+ 2; ℓ+ 2;−z/2]

]

, (2.19)

where ci are constants. For ℓ = 0, it reduces to

rψ0 =
c20
v

+
H0

v(2 + vδ)
, (2.20)

This gives the late time behaviour in a neighbourhood of the event horizon. The late

time behaviour involves two constants H0 and c20. The interpretation of the latter is as a

Newman-Penrose constant [17]. Just as the Aretakis constants are associated to outgoing

radiation propagating along the future event horizon, the NP constants are associated to

ingoing radiation propagating along future null infinity. In other words, they correspond
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to late time ingoing radiation. The first term in the above equation arises from this

late time ingoing radiation whereas the second term, which gives rise to the Aretakis

instability, is associated to outgoing radiation at the event horizon. In equation (2.16) we

assumed vanishing NP constants but this result can be generalized to allow non-zero NP

constants [16]. Henceforth we will assume vanishing NP constants, as is the case for scalar

field solutions arising from initial data whose support does not extend to spatial infinity.

2.3 Higher derivative corrections in near horizon geometry

Setting Φ = constant, the two-derivative theory admits the extremal RN black hole as a

solution. We assume that this solution can be corrected so that it remains an extremal

black hole solution of the theory to all orders in α. We will assume that the corrected black

hole is magnetically charged with charge Q defined by (2.5). Of course this satisfies dF = 0.

Since the corrected black hole is static and spherically symmetric, its near horizon

geometry will be AdS2×S2 [18] where the AdS2 and S2 have radii L1 and L2 respectively.

We can write Li = QL̃i(α/Q) i = 1, 2 where L̃i is dimensionless. For small α/Q the higher

derivative corrections will be negligible and the AdS2 and S2 will both have radius Q. The

higher derivative corrections start at O(α2) hence we have

L̃1(0) = 1 +O(α2/Q2) L̃2(0) = 1 +O(α2/Q2) (2.21)

We write the AdS2 × S2 metric in ingoing Eddington-Finkelstein coordinates as

ds22 = L2
1

(

−r2dv2 + 2dvdr
)

+ L2
2dΩ

2 (2.22)

ref. [8] showed that a massless scalar in this geometry exhibits the Aretakis instability

at the future Poincaré horizon r = 0. At first this seems rather surprising given that a

scalar field in AdS2 × S2 exhibits no instability in global coordinates. This was discussed

in ref. [8], we will expand a little on this discussion here.

For a well-posed problem we need to impose boundary conditions at infinity in AdS2.

Following ref. [8], we assume that boundary conditions have been chosen such that, in a

neighbourhood of r = 0, v → ∞ (where the Poincaré horizon intersects infinity), these

conditions correspond to “normalizable” boundary conditions for the scalar field.

The Aretakis instability does not involve the growth of some scalar quantity, but is

instead associated to the growth of the components of a tensor, specifically the second

derivative of ψ. But how does one know that this growth is associated to some physical

effect rather than to bad behaviour of the basis in which the components are calculated?

The point is that the asymptotically flat black hole solution has a canonically defined

Killing vector field V which generates time translations. One can choose a basis to be time-

independent, i.e., Lie transported w.r.t. V . If a component of some tensor exhibits growth

in such a basis then one can be sure that this is a physical effect rather than an artifact

of the choice of basis. An example of such a basis is a coordinate basis where V is one of

the basis vectors. This is the case in Eddington-Finkelstein coordinates where V = ∂/∂v.

This is why one can be sure that the Aretakis instability is not a coordinate effect.

Now in AdS2 × S2 there is a difference because there are different choices that can

be made for the generator of time translations. If one chooses a basis invariant under

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
0
6
2

global time translations then one would not see any instability in higher derivatives of ψ.

However, we are interested in AdS2 × S2 because it arises as the near-horizon geometry

of an asymptotically flat black hole. In the near-horizon limit, one obtains not global

AdS2 but AdS2 in Poincaré coordinates, and the generator of time translations reduces to

V = ∂/∂v, the generator of time translations in the Poincaré patch. Hence if one views

AdS2 × S2 as describing the near-horizon geometry of a black hole then one should use V

as the generator of time translations, and choose a basis that is Lie transported w.r.t. V .

In such a basis the Aretakis instability is present, so the near-horizon geometry captures

the behaviour present in the full black hole solution.

Since the Aretakis instability can be seen in the near-horizon geometry, we will start by

investigating the effect of higher derivative corrections on this instability in the AdS2 ×S2

background (2.22). We will take into account two sources of higher-derivative corrections:

first we are using the exact, higher-derivative corrected, background (2.22). Second, we

will include the effect of linear higher derivative corrections to the scalar field equation of

motion. The reason for restricting to linear higher derivative corrections is that if we allow

nonlinearity then we have to incorporate the effects of the backreaction of the scalar field on

the geometry. However, even in the 2-derivative theory, it is known that this backreaction

destroys the AdS2 asymptotics [19]. To incorporate this backreaction we have to consider

the full black hole solution, as we will do in the next section.

Since the action does not contain terms linear in Φ, the higher derivative corrections to

the Einstein equation and the Maxwell equation also do not contain terms linear in Φ, and

the corrections to the scalar equation of motion do not contain any Φ-independent terms.

Furthermore, our assumption of a shift symmetry implies that the equations involve only

derivatives of Φ. This structure implies that when we linearize around an exact background

solution with Φ = const, the linear perturbation to Φ decouples from the linear metric and

Maxwell field perturbations.

To discuss linear higher-derivative corrections to the scalar field equation of motion we

will work at the level of the action. We expand the action to quadratic order in ψ = δΦ.

We then substitute in the expansion in spherical harmonics (2.7), and perform the integral

over S2. Modes corresponding to different harmonics will decouple from each other, giving

an effective action for the field ψℓm in AdS2 of the form4

Sℓm =

∫

d2x
√−g2

∞
∑

n=0

cℓnψ̄ℓm2nψℓm (2.23)

where g2 is the AdS2 metric (with radius L1), 2 is the d’Alembertian of this metric, and

cℓn are (real) constants depending on α and Q. The form of this effective action is dictated

by the AdS2 symmetry of the background. Recall our assumption that the scalar field is

derivatively coupled. Derivatives can act on either the S2 or AdS2 directions. But the

spherically symmetric ℓ = 0 mode is constant on S2 hence it cannot appear without AdS2
derivatives in the above action. It follows that c00 = 0.

4Since the spherical harmonics are complex, it is convenient to allow our scalar field ψ and the fields

ψℓm to be complex.
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Terms in the action with n ≥ 2 must arise from higher derivative terms in the original

action and hence must appear with appropriate powers of α. We can write

cℓn = α2n−2c̃ℓn(α/Q) n ≥ 2 (2.24)

where c̃ℓn is a dimensionless function of α/Q. For n = 0, 1 we can separate out the terms

present in the 2-derivative theory from those arising from the higher derivative corrections

(to both the background and the equation of motion):5

cℓ0 = −ℓ(ℓ+ 1)

Q2
+

α2

Q4
c̃ℓ0(α/Q) (2.25)

cℓ1 = 1 +
α2

Q2
c̃ℓ1(α/Q) (2.26)

Again c̃ℓn is a dimensionless functions of α/Q and c̃00 = 0.

A standard result in effective field theory is that the lowest order (i.e. two derivative)

equation of motion can be used to simplify the higher derivative terms in the action. This is

achieved via a field redefinition [20]. To see how this works here, perform a field redefinition

(here we suppress the ℓ,m indices throughout)

ψ = ψ̂ +
∞
∑

n=2

α2n−2dn2n−1ψ̂ (2.27)

where the dimensionless coefficients dn(α/Q) are to be determined. We substitute this

into the action and let En be the coefficient of
¯̂
ψ2nψ̂. We demand that En = 0 for

n ≥ 2. This gives a set of equations that can be solved order by order in α/Q to determine

the coefficients dn. To lowest order, E2 = 0 fixes d2 = −c̃2/2 + O(α2/Q2). Using this,

E3 = 0 fixes the O(1) part of d3. Plugging the latter back into E2 = 0 then determines

the O(α2/Q2) part of d2. One then uses E4 = 0 to determine d4 to O(1), plug this back

into E3 = 0 to determine d3 to O(α2/Q2) and then E2 = 0 determines d2 to O(α4/Q4).

Repeating this process to all orders gives

S =

∫

d2x
√−g

(

c0
¯̂
ψψ̂ + c′1

¯̂
ψ2ψ̂

)

(2.28)

where c′1 = c1+2(α/Q)2c0d2 = 1+O(α2/Q2). Hence, reinstating ℓ,m indices, the equation

of motion of ψ̂ℓm is
(

2 −m2
ℓ

)

ψ̂ℓm = 0 (2.29)

where

m2
ℓ = −cℓ0

c′ℓ1
=

ℓ(ℓ+ 1)

Q2
+O(α2/Q4) (2.30)

so we can write

m2
ℓL

2
1 = ℓ(ℓ+ 1)Mℓ(α

2/Q2) (2.31)

5We are not bothering to keep track of the overall normalization of the action, i.e., it may differ by a

multiplicative constant from that defined in (2.3).
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for some function Mℓ with Mℓ(0) = 1. Hence, to all orders in α, ψ̂ℓm behaves as a massive

scalar field in AdS2 with mass mℓ. Since ψℓm is linearly related to ψ̂ℓm, the same will be

true for ψℓm. We see that the only effect of the higher derivative corrections is to correct

the mass of this scalar field. Of course, all we have done here is to perform a Kaluza-Klein

reduction of the scalar field ψ on S2.

Note that the higher derivative corrections do not generate a mass for ψ00. The

masslessness of ψ00 is protected by the assumed shift symmetry, which implies c00 = 0 and

hence m2
0 = 0 to all orders. So higher derivative corrections do not change the equation of

motion for the ℓ = 0 mode.

Now we can discuss the effect of the higher derivative corrections on the Aretekis

instability in AdS2 × S2. In the absence of such corrections, this instability is strongest

in the ℓ = 0 sector, with ∂2
rψ00 growing linearly with v along the horizon at r = 0. For

higher partial waves more derivatives are required to see the instability: ∂ℓ+2
r ψℓm grows

linearly with v. From the results just obtained, we see that higher derivative corrections

have no effect on the ℓ = 0 sector and so ∂2
rψ00 will still grow linearly with v. However,

these corrections do affect higher ℓ modes through the change in the mass just discussed.

To understand the effect of this change in the mass, we can use results of ref. [8], which

determined the behaviour of massive scalar fields in AdS2 along the Poincaré horizon at

late time.6 The result is that, for a scalar of mass m, at late time along the horizon r = 0

∂k
rψ ∝ vk−∆ (2.32)

where ∆ is the conformal dimension

∆ =
1

2
+

√

m2L2
1 +

1

4
(2.33)

with L1 the AdS2 radius. So for a massive scalar, ∂k
rψ decays along the horizon if k < ∆

and grows if k > ∆. Applying this in our case, writingMℓ = 1+δMℓ with δMℓ = O(α2/Q2)

we have

∆ = ℓ+ 1 +
ℓ(ℓ+ 1)

2ℓ+ 1
δMℓ + . . . (2.34)

If δMℓ > 0 then the higher derivative corrections have led to increased stability in the

sense that the decay is slightly faster for k < ℓ + 1 and the blow up is slightly slower for

k > ℓ + 1. On the other hand, if δMℓ < 0 then the higher derivatives lead to reduced

stability in the sense that not only do we have faster growth for k > ℓ + 1, we also have

power law growth for k = ℓ+1. In particular, if δM1 < 0 then the second derivative of the

ℓ = 1 mode exhibits power law growth along the horizon. However, the exponent in this

power law will be proportional to −δM1 and therefore small compared to the linear growth

exhibited by the second derivative of the ℓ = 0 mode. So even though higher derivative

corrections may strengthen the instability in the higher ℓ modes, for small α/Q, they do

not strengthen them enough that they compete with the dominant ℓ = 0 mode, which is

unaffected by these corrections.

6To obtain these results it is necessary to assume, as above, that the scalar field obeys “normalizable”

boundary conditions in a neighbourhood of where the Poincaré horizon intersects infinity.
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Of course, the question of whether δMℓ is positive or negative is the same as the

question of how higher derivative corrections affect the masses of Kaluza-Klein harmonics

when we reduce on S2. In particular, in a theory with sufficient supersymmetry one might

expect that δMℓ ≥ 0 for all modes.

In summary, we have shown that higher derivative corrections to the geometry and

linear higher derivative corrections to the scalar field equation of motion do not lead to

a qualitative change in the behaviour of linear scalar field perturbations at the Poincaré

horizon of AdS2×S2. The dominant ℓ = 0 Aretakis instability is protected by the assumed

shift symmetry of the scalar field. Higher derivative corrections can lead to small changes

in the exponents of the power-law behaviour exhibited by higher ℓ modes but, for small

α/Q, these corrections are small and so the ℓ = 0 instability remains dominant. There is

no sign of any breakdown of effective field theory.

Why do the higher derivative corrections to the equation of motion not become large?

The reason can be traced to the fact that these corrections appear only via 2nψ in (2.23).

This structure is a consequence of general covariance, i.e., the fact that the higher deriva-

tive terms do not depend on anything except the background geometry. The high degree of

symmetry of the background geometry then greatly restricts the form of the higher deriva-

tive terms in the action. Note in particular that general covariance forbids the appearance

in the action of higher derivative terms evaluated in some geometrically preferred basis,

such as the basis (Lie transported w.r.t. V ) that is used to exhibit the instability.

2.4 Full black hole solution

We have just seen that the higher derivative corrections do not cause a problem during the

Aretakis instability in the near-horizon geometry. However, as we have just argued, this

may be a consequence of the high degree of symmetry of the near-horizon geometry. It is

not obvious that this result will still hold if we consider the less symmetric extremal RN

geometry. Furthermore, the above analysis did not incorporate nonlinear corrections to the

equations of motion (except via correcting the background geometry). In this section we

will address both of these deficiencies by considering higher derivative corrections during

the Aretakis instability in the full extreme RN geometry.

We will assume that the extremal RN solution can be corrected to give a static, spher-

ically symmetric, solution to all orders in α, with Φ = const. For a large black hole, i.e.,

one with α/Q ≪ 1, the effect of corrections to this background solution should be small

so we will neglect them in this section. We will focus on the effect of the higher derivative

corrections to the equations of motion during the Aretakis instability. For effective theory

to remain valid, these terms should remain small, giving perturbative corrections to the 2-

derivative theory. If the higher derivative terms become larger than the 2-derivative terms

then effective field theory breaks down. So in this section we will investigate whether or

not this is the case. We will consider all of the equations of motion, not just the scalar

field equation of motion.

First we note that coupled gravitational and electromagnetic perturbations of the

extreme RN black hole exhibit an Aretakis instability [7] but this is weaker than the

massless scalar field instability in the sense that it requires more derivatives to see it. So
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we will continue to focus on the Aretakis instability driven by a massless scalar field. This

instability is strongest in the spherically symmetric ℓ = 0 sector. So if higher derivatives

are going to cause trouble it seems very likely that this will occur in the ℓ = 0 sector.

Therefore we can simplify by restricting to spherical symmetry.

We recall the effect of nonlinearities in the 2-derivative theory. As discussed in the

Introduction, the nonlinear evolution of the spherically symmetric instability in the 2-

derivative theory was studied in ref. [14], where it was shown that the initial perturbation

can be fine-tuned so that the metric “settles down” to extreme RN on and outside the

event horizon, with the scalar field on the horizon exhibiting the Aretakis instability. In

other words, the “most unstable” behaviour exhibited by the nonlinear 2-derivative theory

is to give a spacetime which, at late time, looks like a linear scalar field on a fixed extreme

RN background.

Motivated by these results, our strategy in this section will be to consider a spherically

symmetric scalar field evolving in a fixed extreme RN background. We will perform a

consistency check on the smallness of the higher derivative corrections to the equations of

motion. To do this we will take the known results for the late time behaviour of the scalar

field along the horizon in the 2-derivative theory, and use this to estimate the size of higher

derivative corrections to the equation of motion. In particular, we can compare the size of

the higher derivative terms to (possibly nonlinear) terms present in the 2-derivative theory.

In order for effective field theory to remain valid, the higher derivative terms must remain

small compared to the 2-derivative terms.

The extremal Reissner-Nordstrom solution is a type D solution, i.e., the Weyl tensor

has two pairs of coincident principal null directions, which are also principal null direc-

tions of the Maxwell field. It is convenient to employ the Geroch-Held-Penrose (GHP)

formalism [21], which is well suited to situations in which one has a pair of preferred null

directions. This formalism is based on a null tetrad and enables all calculations to be re-

duced to the manipulation of scalar quantities. In the metric (2.4) we choose a null tetrad

{l, n,m, m̄} based on the principal null directions:

la = (1, δ2/2, 0, 0) ,

na = (0,−1, 0, 0) ,

ma =
1√
2r

(

0, 0, 1,
i

sin θ

)

, (2.35)

In the GHP formalism, there is a freedom to change the basis (2.35) so that the two null

directions are preserved. One possibility is to rescale the null vectors (referred to as a boost)

l → λl ; n → λ−1n , (2.36)

where λ is a real function. The other is to rotate the spatial basis vectors (referred to as

a spin)

m → eiθm ; m̄ → e−iθm̄ . (2.37)
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where θ is a real function. Any tensor can be decomposed in the basis (2.35), the different

components then become functions of definite boost/spin weight. A function η with boost

weight b and spin weight s, under a combination of (2.36) and (2.37), transforms as

η → λbeiθsη . (2.38)

The GHP formalism is designed to maintain convariance under boosts and spins. A privi-

leged role is played by objects which transform covariantly, i.e., objects with definite boost

and spin weight. Not all connection components transform covariantly. Those that do take

the following values in the extreme RN background:

κ = κ′ = σ = σ′ = τ = τ ′ = 0

ρ = −δ2/(2r) ρ′ = 1/r (2.39)

The GHP scalars ρ, ρ′ have boost weights 1,−1 respectively, and both have zero spin.

Since the background spacetime is type D, the only non-zero components of the Weyl

tensor and Maxwell field are those with vanishing boost and spin weights

Ψ2 ≡ Cµνρσl
µmνnρm̄σ = −Qδ

r3
,

φ1 ≡
1

2
Fµν (l

µnν + m̄µmν) = −i
Q

2r2
. (2.40)

The non-vanishing Ricci tensor components have boost weight zero and are determined

by φ1.

The GHP formalism introduces derivative operators with definite spin/boost weights.

In the extreme RN background, they are given by

þ η = (lµ∇µ − 2b ǫ) η =

(

∂v +
δ2

2
∂r − b

Qδ

r2

)

η ,

þ′η = (nµ∇µ − 2b γ) η = −∂r η ,

k η = (mµ∇µ − 2s β) η =
1√
2r

(

∂θ − s cot θ +
i

sin θ
∂φ

)

η ,

k′ η = (m̄µ∇µ + 2s β) η =
1√
2r

(

∂θ + s cot θ − i

sin θ
∂φ

)

η , (2.41)

where η is a GHP scalar with boost weight b and spin s, and ǫ, γ and β are Newman-

Penrose spin coefficients. The operators þ, þ′ have zero spin and carry boost weight 1,

−1 respectively, and the operators k, k′ have zero boost weight and carry spin 1, −1

respectively.

Finally we will need to use commutators of these derivative operators. Acting on a

quantity of boost weight b and spin s, in the extreme RN background these are given by

[

þ, þ′
]

= −2b
(

Ψ2 + 2|φ1|2
)

,

[þ, k] = ρ k ,
[

k, k′
]

= −2s
(

−ρρ′ −Ψ2 + 2|φ1|2
)

. (2.42)
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Now we return to considering the higher-derivative corrected equations of motion in the

extreme RN spacetime with a dynamical spherically symmetric scalar field. Consider a

boost-weight B component of one of the equations of motion. We will determine the v-

dependence of higher derivative corrections to this component on the horizon at late time.

In the GHP formalism, all quantities are written as scalars so any higher-derivative term

can be written in the form XZ where X is constructed entirely from the background GHP

scalars and their derivatives, and Z is constructed entirely from the scalar field and its

derivatives. We can write Z = Z1 . . . ZN where each Zi consists of GHP derivatives acting

on Φ. Spherical symmetry implies that none of these derivatives can be k or k′. To see this,

note that any Zi can be written as D̃1 . . . D̃pkD1 . . . DqΦ, or the corresponding expression

with k replaced by k′, where D̃i ∈ {þ, þ′, k, k′} and Di ∈ {þ, þ′}, for some p, q ≥ 0. But

D1 . . . DqΦ has spin 0, so, using spherical symmetry, it is annihilated by k and k′. Hence

any Zi involving k or k′ must vanish.

Next, using the commutator [þ, þ′], we can order þ and þ′ derivatives in Zi so that

þ derivatives appears to the left of þ′ derivatives. So there is no loss of generality in

assuming that each Zi has the form þjþ′kΦ. Recall that we assumed that Φ is derivatively

coupled but one might wonder whether commutators could generate terms without GHP

derivatives. However this is not possible: [þ, þ′] acting on derivatives of Φ gives a result

involving derivatives of Φ whereas [þ, þ′] acting on Φ gives zero (because Φ has zero boost

weight). Hence commutators cannot give rise to terms involving Φ without derivatives so

we must have j + k ≥ 1.

Now on the horizon we have δ = 0 so we can replace þ with ∂v in þjþ′kΦ and convert-

ing (2.16) to GHP notation gives

þjþ′kΦ|horizon ∼ vk−1−j−ǫ = v−b−1−ǫ (2.43)

where b = j − k is the boost weight of this term and ǫ ∈ {0, 1} with ǫ = 0 if k = 0 or

k ≥ j + 1 and ǫ = 1 otherwise. Taking a product of N such terms gives

Z|horizon =
[(

þj1þ
′k1Φ

)

. . .
(

þjNþ
′kNΦ

)]

|horizon ∼ v−(b1+ǫ1)−...−(bN+ǫN )−N = vBX−B−N−E

(2.44)

where E =
∑

ǫi and we have used the fact that XZ has boost weight B, so we have
∑

bi = B −BX where BX is the boost weight of X.

Now, since X is constructed from background quantities, it is independent of v hence

we have

XZ|horizon ∼ vBX−B−N−E (2.45)

We will now show that if BX > 0 then X vanishes on the horizon. The scalar X can be

written as X = X1 . . . XM , where each Xi consists of GHP derivatives acting on some GHP

scalar ω associated to the background spacetime, i.e., ω ∈ {ρ, ρ′,Ψ2, φ1, φ
∗
1}. Note that all

of these quantities have zero spin and are spherically symmetric. This means that we can

argue as above to show that k or k′ derivatives cannot appear in Xi. Using commutators,

we can assume that Xi has the form þjþ′kω. Furthermore, since we can replace þ by ∂v on

the horizon, and the GHP scalars are all v-invariant, the expression þjþ′kω vanishes when
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evaluated on the horizon unless j = 0. So any Xi that is non-vanishing on the horizon must

be of the form þ′kω. This has boost weight bω − k where bω is the boost weight of ω. Note

that the possible ω all have non-positive boost weight, with the exception of ω = ρ. So if ω

is anything except ρ then Xi, if non-vanishing on the horizon, must have non-positive boost

weight. If ω is ρ then bω = 1 but, since ρ vanishes on the horizon, we need k ≥ 1 to construct

a non-vanishing expression. Hence Xi also has non-positive boost weight in this case.

Therefore we have proved that all Xi that are non-vanishing on the horizon must have non-

positive boost weight. This proves that if X is non-vanishing on the horizon then BX ≤ 0.

Let’s apply this to the Einstein equation, which has components with |B| ≤ 2. (Note

that spherical symmetry implies that the B = ±1 components are trivial.) In the 2-

derivative theory, the r.h.s. of the Einstein equation involves the energy-momentum tensor

of the scalar field. We’ll denote this 2-derivative energy momentum tensor as TΦ
µν . Equa-

tion (2.16) implies that a boost weight B component of TΦ
µν scales as v−B−2 at late time

along the horizon. Hence in order for a higher-derivative term (2.45) to become large

compared to the 2-derivative term in a component of boost weight B we would need

BX −B−N −E > −B− 2, i.e., BX > N +E− 2. But we’ve just seen that non-vanishing

X on the horizon requires BX ≤ 0 so we’d need N < 2−E for our higher derivative term

to dominate. However, we’ve assumed that all terms in the action are at least quadratic

in the scalar field, which implies that all terms in the Einstein equation have N ≥ 2 (or

N = 0 but the latter don’t depend on the scalar field and hence don’t depend on v). Hence

it is not possible for higher derivatives to become large compared to the 2-derivative terms

in the Einstein equation. The “worst” that can happen is that the higher derivative terms

exhibit the same scaling with v as the 2-derivative terms. This happens when N = 2,

E = 0 and BX = 0. Such terms scale in the same way as the 2-derivative terms but they

will be suppressed by powers of the small quantity α/Q.

The same argument can be applied to the scalar field equation of motion, which has

B = 0. A typical 2-derivative term in this equation of motion is þþ′Φ ∼ v−2. So for a

higher derivative term to dominate we would need BX −N −E > −2 i.e., BX > N +E−2

so again we’d need N < 2 − E for consistency with BX ≤ 0. Our assumption that the

scalar field appears at least quadratically in the action implies that N ≥ 1 in the scalar

field equation of motion. There is now a non-trivial solution to these inequalities given by

N = 1, E = 0 and BX = 0. However, such terms are excluded by our assumption of a shift

symmetry. To see this, note that with N = 1, Z is linear in the scalar field, i.e., of the form

þjþ′kΦ and with B = BX = 0 this term must have boost weight j − k = 0 so j = k. Now

E = 0 implies ǫ = 0 which is only possible if j = k = 0, i.e., there are no derivatives acting

on Φ. However we explained above that such a term is forbidden by our assumption that

the scalar field has a shift symmetry. So in fact the “worst” terms are ones for which the

higher derivative terms exhibit the same v−2 scaling as the two-derivative terms but are

suppressed by powers of α/Q. Such terms can have either N = 1 or N = 2. With N = 1

these terms have Z of the form þΦ or þjþ′jΦ with j ≥ 1. With N = 2 these terms have Z

of the form (þj1Φ)(þj2þ′j1+j2Φ) with j1 ≥ 1, j2 ≥ 0.

For the Maxwell equation, it is not possible to compare the v-dependence of the higher

derivative and 2-derivative terms because, in spherical symmetry, the Maxwell field does
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not exhibit any dynamics in the 2-derivative theory, even including nonlinearity. (This is

because the scalar field is uncharged.) We can regard the higher derivative corrections as a

source term for the Maxwell equation, i.e., as an electromagnetic current. From the above

results, a boost weight B component of the current behaves as vBX−B−N−E at late time on

the horizon. Since BX ≤ 0 and N ≥ 2 (for the same reason as for the Einstein equation),

the most dangerous terms are those with BX = 0 and N = 2, E = 0, which scale as v−B−2.

Since components of the Maxwell equation have |B| ≤ 1 we see that these terms decay at

late time along the horizon.

These calculations demonstrate that there is no obvious failure of effective field theory

on the horizon at late time. Although certain higher derivatives of the scalar field become

large on the event horizon at late time, this does not imply that higher derivative corrections

to the equation of motion become large compared to the 2-derivative terms. This is because,

in the equations of motion, the “bad” derivatives are always multiplied by “good” terms

which are decaying, or by terms X which vanish on the horizon. The reason for this

can be traced back to general covariance. This implies that the quantities X appearing

in the higher derivative terms are constructed only from GHP scalars associated to the

background solution. In particular X depends only on the background fields and not on

any additional structure such as a preferred basis. So, just as we found for the near-horizon

geometry, it is general covariance which prevents a breakdown of effective field theory.

3 Extremal Kerr

In this section we will discuss the scalar field instability at the horizon of an extremal

Kerr black hole, first discussed by Aretakis in the axisymmetric case and extended to the

non-axisymmetric case in ref. [9]. Our goal is to understand whether higher derivative

corrections could become important during this instability. As for extremal RN, we will

start by analyzing this in the near-horizon geometry before turning to the full black hole

solution.

3.1 Near-horizon analysis

As explained above, the near-horizon AdS2 × S2 geometry of an extremal RN black hole

provides a simplified setting in which to study the Aretakis instability [8]. Here we will

consider the near-horizon extremal Kerr (NHEK) geometry [22] as a simplified setting

to study the Aretakis instability of extremal Kerr. In fact our main motivation here

is to go beyond the (axisymmetric) Aretakis instability and consider non-axisymmetric

perturbations of extremal Kerr, as discussed in ref. [9].

In the axisymmetric case, the results of ref. [9] do not see the dominant Aretakis

instability, behaving as in (1.1). This is because the approach of ref. [9] cannot incorporate

the presence, in the initial data, of outgoing radiation at the event horizon, so all the

Aretakis constants are zero. Under such circumstances there is still an instability but it

requires an extra derivative to see it [6], and this “subleading” instability was reproduced

in ref. [9]. For non-axisymmetric perturbations, ref. [9] found an instability stronger than

that discovered by Aretakis, with the first derivative of the scalar field generically growing
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along the horizon. However, since the approach of ref. [9] cannot model outgoing radiation

initially present at the event horizon one might wonder whether the inclusion of such

radiation would make the non-axisymmetric instability even worse. This is something that

we can investigate using the methods of this section.

We will assume that the extremal Kerr solution with M ≫ α can be corrected to

all orders in α to give an extremal black hole solution of the theory (2.2) and that this

corrected solution has vanishing Maxwell field and constant scalar field. The general results

of ref. [18] imply that the near-horizon geometry of this black hole has SL(2,R) × U(1)

symmetry and the metric can be written as an S2 fibred over AdS2:

ds2 = Λ2
1(α, θ)

[

−R2dT 2 +
dR2

R2

]

+ Λ2
2(α, θ)dθ

2 + Λ2
3(α, θ)(dϕ+ kRdT )2 , (3.1)

where k(α) is a constant and Λi are smooth functions on the sphere parameterized by

(θ, ϕ). For the uncorrected theory α = 0 we recover the NHEK geometry, for which [22]

k(0) = 1 Λ2
1(0, θ) = Λ2

2(0, θ) = M2(1 + cos2 θ) , Λ2
3(0, θ) = 2M2 sin θ . (3.2)

The coordinates {T,R, ϕ} are then the near horizon descendants of the time, radial and

axial coordinates of extreme Kerr in Boyer-Lindquist form. For nonzero α, we will refer

to (3.1) as the α-NHEK geometry.

The coordinates {T,R, θ, ϕ} cover a patch of α-NHEK which is analogous to the

Poincaré patch in AdS2. We can covert to global coordinates (described in appendix A)

to obtain what we will call the global α-NHEK geometry. The AdS2 part of this geometry

is depicted by the infinite vertical strip in figure 1. One of the SL(2,R) generators of the

isometry group can be taken to be the translations in global time τ (see appendix A), that

is — shifts up and down the ‘global α-NHEK’ strip in figure 1. We will make use below

of a translation with ∆τ = π/2 which in Poincaré corresponds to the transformation (see

also [24, 25])

T = − r2t

r2t2 − 1
,

R =
r2t2 − 1

r
,

ϕ = χ+ k log
rt+ 1

rt− 1
. (3.3)

(3.3) is an isometry: the metric in the new coordinates is precisely of the same form as (3.1),

replacing {T,R, ϕ} → {t, r, χ}.
We will start by considering the wave equation in the above geometry, i.e. we neglect

higher derivative corrections to the scalar equation of motion in this section. Supposing

initial data for ψ is specified on some surface in the near-horizon region, for example

T − 1/R = const. < 0 as seen in figure 1, we would like to study the resulting solution.

Ref. [23] studied perturbations of near-horizon geometries of the α-NHEK type, and

in particular it was shown that they are separable and the wave equation reduces to the
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T = 0

v → ∞

r
=
0

r
=
0

R
=
0

R
=
0

R
=

∞

Figure 1. Penrose diagram illustrating the coordinate transformation (3.3). The coordinates

{T,R, ϕ} cover the upper triangular patch. The coordinates {t, r, χ} cover the lower triangular

patch. The point T = 0, R = ∞ or r = 0, v ≡ t− 1/r → ∞, on which we focus, is indicated by the

dotted circle. The dashed line is an example for a possible initial data surface.

equation of a massive charged scalar in AdS2 with a homogeneous electric field. To see

this, use the ansatz

ψ = X(T,R)Y (ϕ, θ) , (3.4)

and Fourier decompose along the φ direction as

Y (ϕ, θ) = eimϕS(θ) . (3.5)

Define the effective AdS2 metric and gauge field

ds2 = −R2dT 2 +
dR2

R2
, A = −RdT . (3.6)

and the corresponding gauge-covariant derivative

D := ∇̃ − iqA , (3.7)

where ∇̃ is the covariant derivative on AdS2 and q = −mk is the effective electric charge.

Then the equation governing X(T,R) is
(

D2 − λ− q2
)

X(T,R) = 0 , (3.8)
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where λ is the eigenvalue of the angular equation

OY := ∇̂a

(

Λ2
1∇̂aY

)

+ q2Λ2
1Y = −λY , (3.9)

where ∇̂ is the covariant derivative on the transverse S2 with metric defined by setting

dT = dR = 0 in (3.1). The operator O can be shown to be self-adjoint w.r.t. an appropriate

inner product so its eigenvalues are real and the eigenfunctions form a complete set on

S2 [23]. Hence there is no loss of generality in decomposing ψ as in (3.4). In general, these

eigenfunctions can be labelled by a pair of integers (ℓ,m) with |m| ≤ ℓ just as for standard

spherical harmonics.

Equation (3.8) describes a scalar field with charge q and squared mass µ2 = λ+ q2 in

AdS2 with an electric field. The electric field is homogeneous because the corresponding

Maxwell 2-form is proportional to the AdS2 volume form. If one separates variables, i.e.,

assumes e−iωT time dependence then solutions of the radial equation have two possible

behaviours as R → ∞, given by [22, 26, 27] ψ ∼ R−1/2±(h−1/2) where

h =
1

2
+

√

1

4
+ λ . (3.10)

As R → ∞, a general superposition of such modes will behave as

X(T,R) = f+(T )R
h−1

[

1 +O(R−1)
]

+ f−(T )R
−h

[

1 +O(R−1)
]

, (3.11)

for some functions f±(T ). For well-defined dynamics we need to impose boundary condi-

tions at R = ∞. If h is real then a natural choice is to impose “normalizable” boundary

conditions, i.e., f+ ≡ 0. In NHEK this is the case for axisymmetric modes, i.e., m = 0, for

which λ = ℓ(ℓ + 1) and hence h = ℓ + 1 [22]. However, if λ < −1/4 then h is complex.

For NHEK this occurs for non-axisymmetric modes with |m| ∼ ℓ. In this case it is not

clear what boundary conditions should be imposed (see refs. [22, 26, 27] for discussions of

this issue). We will assume that for complex h one can obtain well-posed dynamics with a

boundary condition that fixes some linear relation between f+ and f−.

Notice that the axisymmetric modes will have real h in α-NHEK. This is because the

associated eigenvalues λ are non-negative in NHEK so small higher derivative corrections

to the background geometry cannot push λ below −1/4 in α-NHEK. Hence the higher

derivative corrections to the background geometry will lead to small real shifts in h. This

will not happen for the ℓ = 0 mode, i.e., the constant mode on S2, which continues to have

λ = 0 and h = 1 in α-NHEK. For the non-axisymmetric modes, it is possible that a NHEK

mode with λ slightly larger than −1/4 (hence real h) might correspond to an α-NHEK

mode with λ slightly less than −1/4 (hence complex h).

The idea now is that we can determine the late time behaviour of the scalar field along

the Poincaré horizon in α-NHEK simply from a coordinate transformation. We consider

the Poincaré horizon r = 0 in the coordinates (t, r, θ, χ). We shift to ingoing Eddington-

Finkelstein coordinates (v, r, θ, χ′) where

v = t− 1

r
χ′ = χ− k log r (3.12)
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so that the metric is now regular at the Poincaré horizon:

ds2 = Λ2
1(α, θ)

[

−r2dv2 + 2dvdr
]

+ Λ2
2(α, θ)dθ

2 + Λ2
3(α, θ)(dχ

′ + krdv)2 , (3.13)

Late time along the Poincaré horizon corresponds to r = 0, v → ∞. From figure 1, this

can be seen to correspond to the limit R → ∞, T → 0 in the original coordinates. So we

can determine the late-time behaviour of the scalar field by transforming (3.11) to the new

coordinates. Doing this, including the angular dependence eimϕS(θ), gives

ψ ≈
{

f+(0) [v(rv + 2)]h−1 + f−(0) [v(rv + 2)]−h
}

eimχ′

(

rv + 2

v

)imk

S(θ) (3.14)

Here we have transformed to the new coordinates and taken the limit v → ∞ with rv fixed.

In figure 1, rv represents the angle of approach to the center of the dotted circle as the

limit v → ∞ is taken. On the horizon we have rv = 0 but it is convenient to allow for

non-zero rv because it enables us to see explicitly the r-dependence of ψ at late time near

the horizon.

For the modes with real h, which includes the axisymmetric modes, we impose nor-

malizable boundary conditions f+(0) = 0. From the above expression we have

|ψ|horizon ∼ v−h (3.15)

and

|∂j
v∂

k
rD

lψ|horizon ∼ vk−j−h (3.16)

where D denotes angular derivatives.7 Note that when h is real we have h ≥ 1/2.

For modes with complex h, which are non-axisymmetric, we have h = 1/2 + iζ where

ζ is real. We then have

|ψ|horizon ∼ v−1/2 (3.17)

and

|∂j
v∂

k
rD

lψ|horizon ∼ vk−j−1/2 (3.18)

This is precisely the late time behaviour discovered for the full extremal Kerr solution

in ref. [9]. As mentioned above, the approach of ref. [9] cannot incorporate the effects

of outgoing radiation initially present at the event horizon (or non-vanishing Aretakis

constants in the axisymmetric case) so one might wonder whether the presence of such

radiation could change the results, perhaps leading to even slower decay. Our analysis

allows for outgoing radiation initially present at the event horizon and our results agree

with those of ref. [9] when h is complex. This suggests that inclusion of the initial outgoing

radiation does not lead to slower decay. Of course it would be desirable to confirm this using

an analysis in the full black hole spacetime rather than just the near-horizon geometry.

The analysis of this section could also be generalised to fields of higher spin, where one

would need to supplement the transformation (3.3) with a tetrad rotation (cf. [28]).

7If h is an integer, as for axisymmetric modes in the NHEK geometry, one has to include ǫ in the

exponent as in (2.16), (2.17) (replacing ℓ + 1 by h). But in α-NHEK we do not expect h to be exactly

integer except for the ℓ = m = 0 mode, which has h = 1.
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3.2 Linear higher-derivative corrections in near-horizon geometry

So far we have studied a massless scalar in the α-NHEK geometry, i.e., we have incorporated

higher derivative corrections to the background geometry but not to the scalar equation

of motion. In this section we will investigate the effects of the linear higher derivative

corrections to the massless scalar equation of motion. We cannot consider nonlinear cor-

rections to the equations of motion because it is known that 2-derivative nonlinearities (i.e.

backreaction) tend to destroy the NHEK asymptotics [26, 27].

We will proceed as we did for AdS2 × S2 in section 2.3, i.e, expanding the action to

quadratic order in ψ, substituting in the expansion of ψ in terms of spheroidal harmonics

on S2:

ψ =
∑

λ,m

XλmYλm (3.19)

and then integrating over S2 to obtain an action governing the charged fields Xλm in AdS2
with a homogeneous electric field as in (3.6). The axisymmetry of the background implies

that modes corresponding to harmonics with different values of m will decouple from each

other in the action. However, the θ-dependence of the background will lead to coupling

of the modes with different values of λ (but the same m) in the dimensional reduction

of the higher derivative terms. Because of the SL(2,R) symmetry of the background, the

resulting action for the fields of charge q = −km will have the form (integrating by parts

so derivatives act on X and not X̄)

Sm =

∫

d2x
√−g2

∑

λ,λ′,n

cmλλ′nX̄λm(D2)nXλ′m (3.20)

where g2 is the AdS2 metric in (3.6) and (since the action is real)

cmλλ′n = c̄mλ′λn (3.21)

Our assumption that ψ is derivatively coupled implies that X00 cannot appear without

derivatives in the above action. This is because Y00 is constant and hence eliminated by

angular derivatives, so X00 must be acted on by AdS2 derivatives. Therefore we must have

c0λ00 = 0 and hence c00λ′0 = 0.

It is convenient to define a vector Xm with components Xλm and Hermitian matrices

Cmn with components cmλλ′n. The action can then be written

Sm =

∫

d2x
√−g2

∑

n

X†
mCmn(D2)nXm (3.22)

Since Cmn is the coefficient of a term with 2n derivatives we must have8

Cmn =
( α

M

)2n−2
C̃mn(α/M) n ≥ 2 (3.23)

8Note that the background AdS2 metric in (3.6) has unit radius so our coordinates are dimensionless,

hence the extra powers of M compared to section 2.3.
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for some dimensionless Hermitian C̃mn. For n = 1, 0 we can use the known equation of

motion in the 2-derivative theory and the fact that the higher derivative corrections start

at O(α2) to deduce

Cm1 = I+
α2

M2
C̃m1(α/M) (3.24)

and that

Cm0 = Jm +
α2

M2
C̃m0(α/M) (3.25)

where Jm has components

jmλλ′ = −
[

λ+ (mk)2
]

δλλ′ (3.26)

In the above we are ignoring a possible overall factor in the action.

We now repeat the strategy of section 2.3 using a field redefinition to eliminate the

higher derivative terms in Sm. Henceforth we suppress the m index and write

X = X̂+
∞
∑

n=2

( α

M

)2n−2
Dn(D2)n−1X̂ (3.27)

where Dn are dimensionless matrices depending on α/M . Substituting this into the

action gives

S =

∫

d2x
√−g2

∑

n

X̂†En(D2)nX̂ (3.28)

where X̂ is a vector with components X̂λ and En are Hermitian matrices. The first few of

these are

E0 = C0 E1 = C1 +
α2

M2

(

C0D2 +D
†
2C0

)

(3.29)

E2 =
α2

M2

(

C1D2 +D
†
2C1 + C̃2

)

+
α4

M4

(

C0D3 +D
†
3C0 +D

†
2C0D2

)

. (3.30)

We now want to choose the unknown matrices Dn so that En vanishes for n ≥ 2. This

can be done order by order in α/M . We start with E2 = 0 which, using (3.24), gives

D2 = −C̃2/2 + O(α2/M2). Then E3 = 0 gives D3 = −(1/2)C̃3 + (3/8)C̃2
2 + O(α2/M2).

Plugging this back into E2 = 0 then determines the O(α2/M2) part of D2. Repeating this

process order by order we achieve En = 0 for all n ≥ 2. The action has become

S =

∫

d2x
√−g2

(

X̂†C0X̂+ X̂†E1D2X̂
)

. (3.31)

E1 is Hermitian so we can diagonalize it with a unitary matrix U:

E1 = UKU† (3.32)

where K is real and diagonal. Furthermore we have E1=I+O(α2/M2) so K=I+O(α2/M2)

and we can choose U = I+O(α2/M2). Since K is positive definite we can write K = L†L

for a positive definite real diagonal matrix L = I +O(α2/M2). We now bring the kinetic

term to canonical form with a final field redefinition:

X̂′ = LU†X̂ (3.33)
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so

S =

∫

d2x
√−g2

(

−X̂′†MX̂′ + X̂′†D2X̂′
)

(3.34)

where we have defined the Hermitian “mass matrix”

M = −(L−1)†U†C0UL−1 = −J+O(α2/M2) (3.35)

M can be diagonalized by a unitary transformation

M = U′M′U′† (3.36)

where M′ = −J + O(α2/M2) is real and diagonal, and U′ = I + O(α2/M2). Defining

X̂′′ = U′†X̂′ we finally have decoupled equations of motion:

D2X̂ ′′
λm − [λ+ (km)2 +O(α2/M2)]X̂ ′′

λm = 0 (3.37)

where we have reinstated the m indices.

We have now included the effects of higher derivative terms both via the correction

to the background geometry, and via the correction to the linearized equation of mo-

tion for the scalar field. Both effects can be incorporated simply by a perturbative shift

λ → λ+O(α2/M2) in the value of λ that appears in the effective AdS2 equation of motion.

This translates into a perturbative shift of the conformal weights (3.10) which determine

the decay rates at late time along the Poincaré horizon.

Recall that the slowest decaying modes are non-axisymmetric with complex h, i.e.,

λ < −1/4. For these modes, a small perturbative shift in λ will still result in complex h

and hence the decay results (3.17) and (3.18) will still hold. So we conclude that higher

derivative corrections to the background and linear higher derivative corrections to the scalar

equation of motion do not change the rate of decay of the slowest decaying NHEK modes.

For modes with real h, the shift in λ will result in a small correction to the decay

rates (3.15), (3.16), similar to what happens to the ℓ > 0 modes in AdS2×S2, as described

in section 2.3. However (after field redefinitions) the λ = 0, m = 0 mode does not suf-

fer a correction, as a consequence of the shift symmetry of the scalar field. To see this,

note that X̂00 does not appear in the “mass” term in (3.31) because of c00λ′0 = c0λ00 = 0.

Hence varying (3.31) w.r.t. X̂00 gives an equation of motion (E1)0λD2X̂0λ = 0. So

(E1)0λX̂0λ = X̂00 +O(α2/M2) satisfies a decoupled equation of motion with λ = 0.

In summary, our near-horizon analysis, taking into account all higher derivative correc-

tions to the background, and linear higher derivative corrections to the equation of motion,

indicates that higher derivative corrections do not make the scalar field instability of ref. [9]

any worse. So the near-horizon analysis does not indicate any breakdown of effective field

theory at late time at the horizon. As for AdS2 × S2, the reason for this is that general

covariance combined with the SL(2,R) symmetry greatly restricts the possible form of the

higher derivative terms in the action (3.20).

3.3 Higher derivative corrections in full black hole geometry

We have shown that higher derivative corrections do not cause a problem during the scalar

field instability in the NHEK geometry. However, this may be a consequence of the high
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symmetry of this near-horizon geometry. It is not obvious that this result will still hold if

we consider the less symmetric extremal Kerr geometry. Furthermore, the above analysis

did not incorporate nonlinear corrections to the equations of motion (except via correct-

ing the background geometry). In this section we will address both of these deficiencies

by considering higher derivative corrections during the scalar field instability in the full

extremal Kerr geometry.

We will perform calculations analogous to the calculations we performed for extremal

Reissner-Nordstrom in section 2.4. We will assume that the extreme Kerr solution can

be corrected, to all orders in α, to give a stationary, axisymmetric, neutral BH solution.

Assuming that the BH is large, α ≪ M , will allow us to neglect the corrections to the

background in this section’s analysis. We will then take the known behaviour of a massless

scalar field on the horizon of an extremal Kerr black hole and use it to compare the size of

higher derivative corrections to the equation of motion to the size of two-derivative terms.9

There is an immediate problem with this investigation. In the two derivative Einstein-

scalar theory, there has been no study of backreaction of the scalar field instability of

extremal Kerr. So if the effects of two derivative nonlinearities are not understood, how

are we to understand higher derivative terms? In this section we will simply assume,

in analogy with the extremal RN case, that the “worst” behavior in the nonlinear two-

derivative theory is that the spacetime settles down to extremal Kerr on and outside the

event horizon, with the scalar field behaving just like a linear field in the extreme Kerr

spacetime. With this assumption, we will determine the behaviour of higher derivative

terms in the equations of motion.

We start with the Kerr metric written in ingoing Kerr coordinates (v, r, θ, χ̃):

ds2 = −
(

1− 2Mr

|ξ|2
)

dv2 + 2dvdr − 2M sin2 θdrdχ̃

− 4M2r sin2 θ

|ξ|2 dvdχ̃+
Σ

|ξ|2 sin
2 θdχ̃2 + |ξ|2dθ2 .

ξ = r + iM cos θ δ = 1−M/r Σ = (r2 +M2)2 −M2r2δ2 sin2 θ (3.38)

The event horizon is at r = M i.e. δ = 0. We now convert to co-rotating coordinates

(v, r, θ, χ) defined by

χ̃ = χ+ v/2M . (3.39)

In these coordinates, ∂/∂v is tangent to the horizon generators. The Kerr solution is

type D and we choose a null tetrad based on the two repeated principal null directions. In

coordinates (v, r, θ, χ), the basis is

la =
(

2(r2 +M2), r2δ2, 0, δ(M + r2/M)
)

,

na = − 1

2|ξ|2 (0, 1, 0, 0) ,

ma =
1√
2ξ

(

iM sin θ, 0, 1,
i(1 + cos2 θ)

2 sin θ

)

, (3.40)

9Note that linearized gravitational perturbations of extremal Kerr exhibit an Aretakis instability [7].

But this is weaker than the massless scalar instability in the sense that it requires more derivatives to see

it. So we will assume that the instability is driven by a massless scalar.
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The GHP connection scalars are:

κ = κ′ = σ = σ′ = 0

τ =
iM sin θ√

2|ξ|2
τ ′ =

iM sin θ√
2ξ̄2

ρ =
r2δ2

ξ̄
ρ′ = − 1

2ξ̄2ξ
. (3.41)

The type D property means that the only non-vanishing GHP curvature scalar is

Ψ2 = −M

ξ3
. (3.42)

The GHP derivative operators are given by

þ η =
[

2(r2 +M2)∂v + r2δ2∂r + δ(M + r2/M)∂χ + 2brδ
]

η , (3.43)

þ′η =

[

− 1

2|ξ|2∂r +
1

|ξ|4 (br + isM cos θ)

]

η ,

k η =

[

1√
2ξ

(

iM sin θ∂v + ∂θ +
i(1 + cos2 θ)

2 sin θ
∂χ

)

+ s
cot θ

2ξ
− (b− s)

iM sin θ√
2ξ2

]

η ,

k′ η =

[

1√
2ξ̄

(

−iM sin θ∂v + ∂θ −
i(1 + cos2 θ)

2 sin θ
∂χ

)

− s
cot θ√
2ξ̄

+ (b+ s)
iM sin θ√

2ξ̄2

]

η ,

Commutators of these derivatives acting on a quantity of boost weight b and spin s are

given by
[

þ, þ′
]

= (τ̄ − τ ′)k +
(

τ − τ̄ ′
)

k′ − (b+ s)
(

−ττ ′ +Ψ2

)

− (b− s)
(

−τ̄ τ̄ ′ + Ψ̄2

)

,

[þ, k] = ρ̄ k − τ̄ þ − (b− s)ρ̄ τ̄ ′ ,
[

k, k′
]

=
(

ρ̄′ − ρ′
)

þ + (ρ− ρ̄) þ′ + (b+ s)
(

ρρ′ +Ψ2

)

− (b− s)
(

ρ̄ ρ̄′ + Ψ̄2

)

. (3.44)

Consider a component of the equations of motion which has boost weight B. As in

section 2.4 we note that any higher derivative term has the form XZ where X is con-

structed from background GHP quantities and Z is constructed from the scalar field and

its derivatives. We write Z = Z1 . . . ZN where each Zi consists of GHP derivatives acting

on Φ. Using GHP commutators we can arrange these derivative so that Zi has the form

þjþ′kklk′mΦ. The assumed shift symmetry implies that, before using commutators, Φ al-

ways appears with derivatives acting on it. From the explicit form of the commutators, we

see that a commutator acting on derivatives of Φ gives terms involving derivatives of Φ and

a commutator acting on Φ also gives derivatives of Φ (because Φ has b = s = 0). Hence

commutators cannot generate terms involving Φ without derivatives so j + k + l +m ≥ 1.

We assume that Φ is composed of all possible harmonics in extreme Kerr, so the late

time behaviour is dominated by the non-axisymmetric modes with m ∼ ℓ, i.e. the modes

with complex h, for which, on the horizon at late time [9]

|∂j
v∂

k
rD

lΦ|horizon ∼ vk−j−1/2 (3.45)

where D denotes angular derivatives. Since þ ∼ ∂v on the horizon, this implies that

þjþ′kklk′mΦ ∼ vk−j−1/2 = v−b−1/2 where b = j − k is the boost weight of this term. From

this we have

Z|horizon ∼ v−b1−...−bN−N/2 = vBX−B−N/2 (3.46)
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where BX is the boost weight of X. Since X is constructed from background quantities,

it is independent of v so we also have

XZ|horizon ∼ vBX−B−N/2 (3.47)

We will now show that if BX > 0 then X vanishes on the horizon. We write X = X1 . . . XM

where each Xi consists of GHP derivatives acting on some GHP scalar ω associated to the

background spacetime, i.e., ω ∈ {τ, τ ′, ρ, ρ′,Ψ2} (or complex conjugates of these). Using

commutators we can assume thatXi has the form þjþ′kklk′mω. Since þ ∼ ∂v on the horizon,

and all GHP scalars are v-invariant, it follows that this expression vanishes on the horizon

unless j = 0. So any Xi that is non-vanishing on the horizon must have the form þ′kklk′mω,

which has boost weight bω − k where bω is the boost weight of ω. Note that bω ≤ 0 unless

ω = ρ. So if ω 6= ρ then Xi, if non-vanishing on the horizon, must have non-positive

boost weight. If ω = ρ then bω = 1 but, since ρ vanishes on the horizon, we need k ≥ 1

to construct a non-vanishing expression. So in this case, Xi also has non-positive boost

weight if non-vanishing on the horizon. It follows that BX ≤ 0 if X is non-vanishing on

the horizon.

Now let’s apply this to the Einstein equation, which has components with |B| ≤ 2. In

the 2-derivative theory, the energy momentum tensor of Φ has components which scale as

v−B−1 at late time along the horizon. So in order for the higher derivative term (3.47) to

become large compared to this 2-derivative term we would need BX −B−N/2 > −B− 1,

i.e., 2BX > N − 2. But non-vanishing X require BX ≤ 0 so this is possible only if N < 2,

which contradicts our assumption that the scalar field appears at least quadratically in

the action and hence quadratically in the Einstein equation. So it is not possible for the

higher-derivative terms to become large compared to the 2-derivative terms. The worst

that can happen is for the higher derivative terms to exhibit the same v-dependence as

the 2-derivative terms, suppressed by powers of the small quantity α/M . This happens if

N = 2 and BX = 0.

For the scalar field equation of motion we have B = 0 and typical 2-derivative terms

are þþ′Φ ∼ kk′Φ ∼ v−1/2. So for a higher derivative term to become large compared to

this we would need BX −N/2 > −1/2, i.e., 2BX > N − 1. But BX ≤ 0 and in the scalar

field equation of motion we have N ≥ 1 so this is not possible. The worst that can happen

is when N = 1 and BX = 0, i.e., linear, boost weight zero, higher derivative corrections

with Z of the form þjþ′jklk′mΦ. These exhibit the same late time v-dependence as the

2-derivative terms but they are suppressed by powers of α/M .

In summary, our conclusions are the same as for extremal RN. Even though the non-

axisymmetric scalar field instability of extremal Kerr is worse than the axisymmetric Are-

takis instability, we have found that, at the horizon, higher derivative corrections remain

small compared to 2-derivative terms. Once again the underlying reason for this can be

traced to general covariance, which greatly restricts the form of the higher derivative terms.

Specifically, it implies that the quantity X in the above argument is constructed from GHP

scalars associated to the background geometry. This gave us the restriction BX ≤ 0 which

eliminates dangerous higher derivative terms in the above argument.
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We should emphasize that the analysis of this section started from the assumption that,

when we include backreaction in the 2-derivative theory, the “worst” than can happen is

that the spacetime “settles down” to extremal Kerr, with the scalar field evolving at late

time as a test field in the extremal Kerr background. If this assumption is incorrect then our

analysis would no longer apply. So clearly the most important issue here is to understand

this backreaction in the 2-derivative theory.
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A Global α-NHEK

As in the AdS2 case, (3.1) admits an analytic extension via transformation to ‘global α-

NHEK’ coordinates:

R =
√

1 + y2 cos τ + y ,

T =

√

1 + y2 sin τ

R
,

ϕ = χ̃+ k log

∣

∣

∣

∣

∣

cos τ + y sin τ

1 +
√

1 + y2 sin τ

∣

∣

∣

∣

∣

. (A.1)

In these coordinates, the metric becomes

ds2 = Λ2
1

[

−(1 + y2)dτ2 +
dy2

1 + y2

]

+ Λ2
2 dθ

2 + Λ2
3(dϕ+ kydτ)2 . (A.2)
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