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ABSTRACT: Recently, large scale genome-wide association study (GWAS) meta-analyses have boosted the number of known
signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one-at-a-time. This
complicates the ability of fine-mapping to identify a small set of SNPs for further functional follow-up. We describe a new and
scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re-analysis of published marginal summary
stactistics under joint multi-SNP models. The correlation is accounted for according to estimates from a reference dataset, and
models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian
penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and
present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance
to various alternatives designed for single region settings. In multi-region settings, where the only multivariate alternative
involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results
from MAGIC (meta-analysis of glucose and insulin related traits consortium) – a GWAS meta-analysis of more than 15,000
people. We re-analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral
stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5,
suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority
to the reported index.
Genet Epidemiol 40:188–201, 2016. © 2016 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies (GWASs) have proved
a hugely important tool in identifying novel regions of
the genome underlying human disease and disease traits
[Hindorff et al., 2009; Manolio, 2010; Visscher et al., 2012].
Recent large-scale GWAS meta-analyses have increased the
number of unambiguous associations for some traits into the
tens and even hundreds of regions [Lango Allen et al., 2010;
Morris et al., 2012; Teslovich et al., 2010]. To power these
discoveries, consortiums typically pull together numerous
studies to amass a large number of individuals. For example,
MAGIC (meta-analysis of glucose and insulin related traits
consortium) investigators identified three new loci associated
with glucose levels 2 hr after an oral glucose challenge from
a meta-analysis with nine genome-wide association studies
and a total of over 15,000 individuals [Saxena et al., 2010].
More recently, more than 120,000 individuals from over 50
studies were used to identify 15 new breast cancer suscep-
tibility loci [Michailidou et al., 2015]. The limited coverage
of genome-wide genotyping arrays makes it highly unlikely
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that the variants identified via GWAS are the true underly-
ing causal variant for a given disease or trait. Current best
practices now rely on imputing millions of common Single
Nucleotide Polymorphisms (SNPs) across the genome to aid
discovery. Once a region is identified, imputed data or se-
quenced data may be used to perform fine-mapping studies
to more thoroughly evaluate a region and attempt to identify
the putative causal SNP or set of SNPs.

The availability of numerous, highly correlated variants
presents several analytical challenges. In a typical GWAS,
SNPs are only analysed one at a time. Often for large-scale
consortium meta-analyses, this is all that is practically pos-
sible – each study performs a single SNP analysis utilising
individual-level data and summary association data are then
shared with the consortium. This is a far from optimal statis-
tical treatment of these valuable and expensive datasets. The
main drawback, particularly relevant for subsequent fine-
mapping studies, is that single SNP analyses offer little insight
into the number and location of causal variants at a given lo-
cus. In the presence of even moderate linkage disequilibrium
(LD), many SNPs may produce significant associations. Mul-
tivariate joint models, which allow SNPs to be tested adjusted
for other SNPs, can be used to identify which SNP or set
of SNPs best represent the underlying signal. Indeed, there
are several examples where joint analyses have led to the
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identification of secondary associations at a locus [Lango
Allen et al., 2010; Ripke et al., 2011; Servin and Stephens,
2007; Sklar et al., 2011].

Ideally, we would re-analyse published marginal GWAS re-
sults under a joint model. Unfortunately, when summary
data only are available, the standard multivariate regres-
sion frameworks cannot readily be applied, because complete
individual-level data are required to evaluate the likelihood.
For continuous and binary outcomes, respectively, Verzilli
et al. [2008] and Newcombe et al. [2009] provide a Bayesian
framework for formal multivariate analysis of summary data,
including variable selection, using adapted likelihoods within
which the unobserved association structure is imputed from
a reference panel. However, these are relatively complex algo-
rithms, implemented using full Markov Chain Monte Carlo
(MCMC) sampling schemes of all parameters, and are only
designed for the analysis of a modest number of SNPs. Hor-
mozdiari et al. [2014], and building upon their work Chen
et al. [2015], recently proposed approximate frameworks
called CAVIAR and CAVIARBF, respectively, for multivari-
ate re-analysis of summary associations. Both frameworks
use a Bayesian conjugate normal likelihood formulation with
a plug-in estimate for the residual error. The resulting an-
alytical posterior allows efficient evaluation of the posterior
support for all possible models up to a particular size. Benner
et al. [2015] proposed a further extension named FINEMAP,
which offers a stochastic search for when the number of pos-
sible models is prohibitively large. FINEMAP demonstrated
equal but faster performance when the number of causal
SNPs falls within the range evaluated by CAVIARBF, and im-
proved performance when the true number of causal SNPs is
higher. All these algorithms demonstrate the value of a sparse
regression approach with summary data, however, they are
designed for fine-mapping applications and are not currently
implemented for application to multiple regions at once. An-
other approximate approach, Probabilistic Identification of
Causal SNPs (PICS), was recently proposed by Farh et al.
[2014]. The algorithm takes the P-value of the most highly
associated (index) SNP in a region, and approximates ad-
justed statistics for other SNPs according to a simple linear
function of their pairwise correlation in the 1,000 genomes
reference data. Although asymptotically the trend between
strength of association and LD might hold, in practice and
in finite samples performance is unlikely to match formal
multivariate modeling.

Based on the same likelihood first described by Verzilli
et al. [2008], Yang et al. [2012] describe a frequentist inferen-
tial procedure for inferring adjusted SNP associations from
marginal test statistics. Their procedure is designed to scale
to a large number of SNPs, however, variable selection is per-
formed through a simple stepwise procedure. Even when full
individual-level data are available, performing variable selec-
tion across large numbers of correlated predictors remains a
very challenging problem. Traditional stepwise selection pro-
cedures are well known to be both conservative and unstable,
often getting stuck at local maxima in the model space and
leading to potentially spurious selections [Hocking, 1976;

Miller, 2002; Tibshirani, 1996]. Consequently, Yang et al.’s
[2012] framework restricts the estimation of multivariate
models to SNPs with a maximum correlation of 0.9, leaving
open the question of developing a scalable method based on
summary statistics that can deal with the stronger LD struc-
tures necessary for fine-mapping. Ideally we might use more
sophisticated approaches including penalised regression, an
area in active development under a frequentist [Tibshirani,
1996; Tibshirani et al., 2005; Zou, 2006; Zou and Hastie,
2005], and Bayesian framework [Bottolo et al., 2011, 2013;
Bottolo and Richardson, 2010] for performing variable se-
lection among numerous and highly correlated predictors.
These approaches have proven successful in a number of ge-
nomic examples [Bottolo et al., 2011, 2013; Peng et al., 2010;
Vignal et al., 2011; Wu et al., 2009].

In this work, we present JAM (joint analysis of marginal
associations), a novel and scalable algorithm for multivariate
analysis of summary associations. Models and SNPs that best
explain the joint pattern of marginal effects over all SNPs in
a region are highlighted via a Bayesian regression framework
that integrates priors on the SNP effects and model space.
This offers robust and efficient variable selection allowing
application in the presence of strong LD to support fine-
mapping work. SNP effects are conditioned on one another
by accounting for correlation as estimated from a reference
panel, in the spirit of Verzilli et al. [2008], Yang et al. [2012],
CAVIARBF, FINEMAP, and other approaches. We have de-
rived a novel conjugate form of the multivariate likelihood by
invoking a Cholesky transformation to a set of independent
Gaussian distributions, leading to an extremely efficient algo-
rithm in which all parameters are integrated out, including
the residual. This contrasts with other frameworks such as
CAVIARBF and FINEMAP in which the residual is fixed. In
combination with a haplotype block decomposition, com-
putational time increases only linearly with the number of
covariates. JAM proceeds by enumerating all models includ-
ing up to three causal SNPs per region, but we have also
implemented a more general version using Reversible Jump
MCMC for when the number of causal SNPs may be larger
or is unknown.

In a series of realistic simulation studies with real-life
strong patterns of LD, we start by demonstrating equiva-
lent performance of JAM to related approaches CAVIARBF
and FINEMAP in a single region setting. We then explore
performance of JAM applied to multiple regions involv-
ing up to 10,000 SNPs. JAM consistently demonstrated in-
creases in the number of true signals among top ranked
associations compared to Yang et al.’s [2012] COJO step-
wise selection procedure which, to our knowledge, is the
only other multivariate software designed for application
to summary statistics from multiple regions. Analysis of
10,000 SNPs in JAM took less than 3 hr using Reversible
Jump MCMC. We also present a real data application of
the published marginal results from MAGIC, in which
we re-analysed several genomic regions associated with 2
h fasting glucose. Inference from our multivariate JAM
framework considerably reduces the number of SNPs to
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consider following up, and for one gene, ADCY5, joint mod-
elling of the complete pattern of marginal effects suggests
another SNP should be followed up with equal priority to
the reported GWAS index.

Methods

Multivariate Normal Model for Summary Data

We start by deriving the likelihood of the reported marginal
SNP associations as a function of the unobserved effects con-
ditioned on one another, as described by Verzilli et al. [2008].
Define y as an N-length vector of phenotype values. Under
the standard linear regression model when full individual
data is available, the relationship between y and the P SNPs
may be modelled as:

y ∼ N(X β, σ2I N ), (1)

where X is the N × P design matrix containing each in-
dividual’s genotype. Note that as in Yang et al. [2012], for
efficiency, we mean centre the outcome, y , and covariates, so
as to avoid fitting an intercept term. Under, for example, an
additive model, elements of X corresponding to marker m are
thus mean-centred to –2p m, 1 – 2p m, or 2 – 2p m, where p m

is the minor allele frequency (MAF). β = (β1, . . . , βP ) is the
P -length vector of multivariate SNP effects, that is, adjusted
for one another. I N is the N × N identity matrix and σ2 is the
residual variance (assumed the same for every individual).

GWASs, typically only report and/or share summary as-
sociations from univariate one-at-a-time tests. Suppose that
for each marker m, we only have access to its univariate effect
estimate, β̂m and MAF, p̂ m. If we define a P -length vector z
as z = X

′
y , then all P entries of z can be estimated from these

summary association data. First, assuming Hardy Weinberg
Equilibrium and an additive genetic model, we construct es-
timates of the genotype counts nmg for g = 0, 1, 2, and trait
mean within each genotype group ȳmg for each marker m, as
described in the supplementary Methods. The mth entry of
z, corresponding to SNP m, is then given by:

zm =
∑

i

yi × x
′
m,i = ȳm1nm1 + 2ȳm2nm2, (2)

where x
′
m,i is the design matrix entry corresponding to indi-

vidual i’s genotype for SNP m. Note that this approximate
method of obtaining z from effect estimates was used in the
simulation and case studies below, and does not appear to
have a meaningful impact on performance. Therefore, the
mth element of z may be thought of as the total trait bur-
den across all risk alleles of SNP m, which are present in the
study population. Using Equation (1) we can derive the dis-
tribution of z using standard linear algebra (according to the
transformation X

′
):

z ∼ MVNP (X
′
X β, σ2X

′
X ) (3)

Thus, the multivariate normal likelihood of the summary
data, z, can be expressed in terms of the multivariate adjusted
SNP effects β. Because the genotype matrix X is unobserved,

we propose constructing a plug-in estimate for X ′X in (3)
from a reference panel, such as the Welcome Trust Case Con-
trol Consortium (WTCCC) [2007] or the 1,000 genomes
project [The 1000 Genomes Project Consortium, 2010], in
the spirit of Verzilli et al. [2008] and Yang et al. [2012] – see
the Supplementary Methods for details.

Cholesky Decomposition Transformation

JAM incorporates several novel developments for comput-
ing the likelihood described above. The first of these is the
use of a Cholesky decomposition to transform the data to a
vector of independent statistics. Because X ′X is inherently
Hermitian (equal to its own transpose), if it is also positive
definite then we can perform a Cholesky decomposition:

X ′X = L ′L ,

where L is an upper triangular P × P matrix with positive
diagonal elements, and hence invertible. Transforming z by
the Cholesky transpose inverse L ′–1 we obtain a distribution
of independent observations:

L ′–1z ∼ MVNP (L ′–1X ′X β, σ2L ′–1X ′X L –1)

∼ MVNP (L ′–1L ′L β, σ2L ′–1L ′L L –1) (4)

∼ MVNP (L β, σ2I P ).

Working with a vector of independent Gaussian statistics
substantially simplifies the computational requirements for
JAM. Henceforth, for convenience, we denote the Cholesky
decomposition transformed (independent) marginal statis-
tics as zL = L ′–1z.

Bayesian Model Selection Formulation

Yang et al. [2012] use the multivariate normal likelihood
defined in (3) to infer adjusted SNP p-values according to the
corresponding maximum likelihood estimates and standard
errors. Model selection then proceeds by adding/removing
SNPs and re-estimating p-values according to a stepwise
procedure. To avoid stepwise selection issues, JAM invokes
a Bayesian variable selection procedure. Rather than fixing
which SNPs to include, we wish to treat the model, which we
denote using a P -length vector of indicators for each SNP, γ,
as unknown. Denote βγ as the sub-vector of non-zero effects
extracted from β. Conditional on model γ the likelihood (4)
becomes:

p (zL |γ,βγ, σ
2) = MVNP (L γβγ, σ

2I P ), (5)

where L ′
γ is the sub-matrix of L ′, containing only the columns

corresponding to co-variates included in γ. Note in (5) that
regardless of which SNPs are selected in γ, the complete vector
of summary statistics, zL , is always modelled. This represents
an important difference with Yang et al.’s [2012] framework
in which data are only modelled for SNPs included in the
current model; we borrow information across the complete
set of marginal effects at all times.
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The second major development incorporated in JAM is
to formally define the conjugate posterior for the marginal
statistics. Because we have transformed the summary data to
a vector of independent statistics, observing that (5) is of the
same form as a traditional linear model, the conjugate nor-
mal structure of (βγ, σ

2) therefore follows a normal-inverse-
gamma distribution:

p (βγ |σ2, γ) = MVNP (mγ, σ
2�γ) (6)

p (σ2|γ) = P (σ2) = InvG a(aσ, bσ). (7)

In all analyses below, we chose aσ = bσ = 0.01, a relatively
uninformative setup. With some additional conditional inde-
pendence assumptions, the joint posterior may be expressed
as:

p (βγ, σ
2, γ|zL ) ∝ p (zL |βγ, σ

2, γ)p (βγ |σ2, γ)p (σ2|γ)p (γ).

Exploiting the conjugate prior setup (6) and (7), Brown
et al. [1998] show how β and σ may be integrated out leading
to a closed form expression for the marginal posterior of γ:

p (γ|zL ) ∝
∫

p (βγ, σ
2, γ|zL )dβγdσ2

=

∫
p (zL |βγ, σ

2, γ)p (βγ |σ2, γ)p (σ2|γ)dβγdσ2(8)

∝ |L ′
γL γ + �

–1
γ |–1/2|�γ |–1/2(2bσ + S(γ))–(2aσ+P –1)/2,

where S(γ) = C – M ′K –1
γ M with C = (zL )′(zL ) + m′

γ�
–1
γ mγ

M = L ′
γ(zL ) + �–1

γ mγ , and K γ = L ′
γL γ + �–1

γ [Bottolo and
Richardson, 2010; Brown et al., 1998].

We adopt a so-called g-prior formulation for the SNP ef-
fects βγ , and set mγ = 0 and �γ = τ(L ′

γL γ)–1 in (6). Because
(L ′L )–1 = (X ′X )–1, SNP effects are therefore ascribed cor-
relation structure and ranges of supported effects inversely
proportional to their corresponding co-variances and vari-
ances, respectively, in the observed genotype matrix X . τ is
an unknown parameter that controls the magnitude of this
proportional relationship (and consequently the shrinkage).
There is a substantial literature discussing the benefits of a
g-prior formulation and choices for τ [Cui and George, 2008;
Fernández et al., 2001; Liang et al., 2008]. Because our main
goal is algorithmic efficiency, we choose to treat τ as a con-
stant and follow suggestions to select a value equal to the
maximum of P 2 and N [Fernández et al., 2001; George and
McCulloch, 1997]. An attractive property of the g-prior is the
resulting simplified marginal likelihood (8) which becomes:

p (zL |γ) ∝ |L ′
γL γ + L ′

γL γ/τ|–1/2|τ(L ′
γL γ)–1|–1/2

(2bσ + S(γ))–(2aσ+P –1)/2 = |(τ + 1)I p γ
|–1/2

(2bσ + S(γ))–(2aσ+P –1)/2 = (τ + 1)–p γ/2(2bσ + S(γ))–(2aσ+P –1)/2,

where

S(γ) = (zL )′(zL ) –
τ

1 + τ
(zL )′L γ(L ′

γL γ)–1L ′
γzL .

Finally, the JAM model is completed by specifying the prior
distribution over models, p (γ). Following Scott and Berger
[2010], we adopt a beta-binomial setup whereby an unknown

hyper-parameter, ω, is introduced as the proportion of ‘true’
effects. This is assigned a beta hyper-prior:

ω ∼ Beta(aω, bω).

Conditional on ω, a binomial prior is assumed over the model
size, assuming all models of the same dimension are equally
likely. Therefore:

p (γ) =

∫
P (γ|ω)P (ω) =

B(γ
′
IP + aω, P – γ

′
IP + bω)

B(aω, bω)
, (9)

where B is the Beta function. For most analyses below, we
used a beta-binomial prior of aω = 1, bω = 9, which cor-
responds to a weakly informative prior on the proportion
of truly casual SNPs centred on 10%, and resulted in per-
formance as expected under the null (see supplementary
Fig S1). Combining (8) and (9), we can express the marginal
posterior of models, γ, as:

p (γ|zL ) ∝ p (γ)p (zL |γ). (10)

Block Independence Decomposition

For invertibility of the X ′X plug-in estimate, we require a
full rank X genotype matrix from the reference panel. When
working with a large number of SNPs, it is convenient to
split the covariates into B blocks, X b, between which we
can assume independence – e.g. if the blocks correspond to
LD blocks – and within each of which X b

′X b is invertible.
Decomposing the likelihood (8) into a product, the posterior
for γ in Equation (10) becomes:

p (γ|zL ) ∝ p (γ)
B∏

b=1

p (L –1
b zb|γb),

where zb and γb are the summary statistic and model sub-
vectors, respectively, corresponding to SNPs in block b, and
L b is derived from the Cholesky decomposition correspond-
ing to X b.

We suggest partitioning large genomic regions of inter-
est into approximately independent blocks via the haplotype
block recognition algorithm first proposed by Gabriel et al.
[2002]. Implementations exist in the widely used software
Haploview [Barrett et al., 2005], and Plink [Purcell et al.,
2007]. Researchers may also wish to consider the recent and
substantially more efficient MIG++ implementation [Taliun
et al., 2014]. Some experimentation will be required with
the Haplotype block recognition parameters to ensure that
each block of the resulting partition corresponds to a full rank
genotype matrix in the reference data. Inherently no block can
be larger than the reference sample size. In our fine-mapping
case study, after LD pruning for a maximum correlation of
95%, all LD blocks of interest were less than 100 SNPs long,
and full rank genotype matrices were readily available from
our reference sample of size 2,674. As larger reference samples
such as the UK10K are fast becoming available, our method
will be applicable to denser correlation structures and larger
blocks. This will, however, inherently require the inversion of
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increasingly large X’X matrices. Recently the spectral decom-
position has been leveraged in high dimensional genomics
linear mixed models to reduce the computational cost of in-
verting large correlation matrices from cubic to linear com-
plexity [Canela-xandri et al., 2015; Kang et al., 2008; Speed
and Balding, 2014]. In the future, we plan to implement the
same decomposition into JAM, readying the algorithm for
scalability to larger LD blocks.

Posterior Model Inference

To measure the importance of a particular model γ ∈ �,

we seek to estimate the posterior probability:

p (γ|zL ) = C–1p (γ)p (zL |γ), (11)

where C is the normalising constant, equal to the posterior
mass over all possible models:

C =
∑
γ∈�

p (γ)p (γ|zL ).

For a particular model, γ, using the expressions provided
in (8) and (9), the posterior and prior support under JAM
may be calculated. If we only consider models that include
up to, say, three SNPs, then if the number of total SNPs P
is modest, it is computationally fast to evaluate (8) and (9)
for all 1 + P +

(P
2

)
+

(P
3

)
possible models. For example, if

P = 100, this corresponds to 166,850 calculations, which our
algorithm achieves in seconds. Thus, we obtain an estimate
of C:

Ĉ =
∑
γ∈�∗

p (γ)p (γ|zL ),

where �∗ ⊆ � denotes the truncated model space obtained
by excluding models of dimension higher than 3. Approxi-
mate posterior probabilities (APPs) for all models in �∗ may
then be obtained substituting Ĉ into (11). This procedure can
be efficiently extended to large numbers of SNPs if the block
independence decomposition described in Section Bayesian
Model Selection Formulation is invoked, and independent
but calibrated beta-binomial priors are placed on the dimen-
sion within each block (see the supplementary Methods for
details). Analysis of 10,000 SNPs decomposed into the real-
istic LD blocks described in the simulation study took less
than 3 min (see supplementary Fig. S2).

If models including four or more SNPs within each
gene/block may be assumed extremely unlikely, i.e. the vast
majority of posterior mass over � is contained in �∗, this
approximate inferential approach should provide reasonable
posterior inference under JAM without the need for Markov
Chain Monte Carlo sampling. This assumption seems rea-
sonable, and posterior inference via enumeration in similarly
truncated spaces has proven effective under various frame-
works designed for genetic association analysis [Hormozdiari
et al., 2014; Kichaev et al., 2014; Servin and Stephens, 2007].

Our software allows the maximum model size to be in-
creased, which would be advisable for sensitivity analyses in
a limited number of regions of particular interest, or when
prior biology points to the existence of more signals. As a

generic extension, we also provide details for and have im-
plemented a simple add/delete/swap Reversible Jump algo-
rithm for MCMC sampling of models (see the supplementary
Methods), which can deal with greater model uncertainty and
does not restrict the model space to a small fixed number of
causal SNPs in advance. When using the stochastic Reversible
Jump model search, convergence should be checked and as-
sessed using the built in variable selection autocorrelation
plots (see, e.g. supplementary Fig. S7), increasing the num-
ber of iterations as necessary, and comparing results across
different MCMC seeds.

Posterior Inference of Adjusted SNP effects

Having selected a model, or if researchers are interested in
a particular SNP or set of SNPs a priori, we provide a method
for making posterior inference on the corresponding multi-
variate adjusted effects under JAM. Conditioning on a model
γ, i.e. the selection of SNPs of interest, due to the conju-
gate Normal-inverse-Gamma structure of our framework, it
is possible to define the joint normal-inverse-Gamma poste-
rior distribution of βγ and σ2 as:

p (σ2|zL , γ) = InvG a

(
aσ +

P

2
, bσ +

s2

2
+

β̂γL ′
γL γ β̂γ

2(τ + 1)

)
,

(12)

p (βγ |zL , σ2, γ) = MVN

(
τβ̂γ

1 + τ
,
τσ2(L ′

γL γ)–1

1 + τ

)
, (13)

where β̂γ = (L ′
γL γ)–1L ′

γzL and s2 = (zL – L γ β̂γ)′(zL –

L γ β̂γ). Posterior samples of (βγ, σ
2) are hence straight for-

ward to generate using a Gibbs sampler to first draw σ2 from
the inverse-Gamma distribution defined in (12), then draw
βγ after plugging the σ2 draw into the multivariate Normal
distribution defined in (13). This is implemented in our R
package.

Results

Our Results section is split into a simulation study followed
by a case study in which JAM was used to re-analyse results
for several candidate genes associated with 2-hr glucose levels
after oral stimulation published by the MAGIC consortium.
All simulations were designed to have the same number of
individuals and genetic correlation structures observed in the
MAGIC case study.

Simulation Study

Comparison of JAM With Other Fine-Mapping Strategies in
a Single Region

We compare the performance of JAM to the fine-mapping
frameworks CAVIARBF and FINEMAP, which also facilitate
multivariate sparse Bayesian model selection using summary
statistics, as well as Yang et al.’s stepwise selection framework
(COJO within the GCTA software package). Conceptually,
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CAVIARBF and FINEMAP are very similar to JAM, the main
difference being that they fix the residual error at an assumed
value rather than treat it as unknown. Using the WTCCC
genotype matrix for the TCF7L2 region (41 SNPs, n = 2, 674,
Affymetrix 500K), we bootstrapped rows to obtain a genotype
matrix for n = 15, 356 individuals. Multivariate modelling
will offer benefits when the genetic architecture is more
complex than a single SNP effect within a region. Therefore,
we simulated outcome data under a multi-SNP linear regres-
sion model with one main effect at the reported index (and
of the same size), a secondary effect at a weakly correlated
SNP, and a tertiary effect at an inverse correlated SNP. The
residual error was set to 0.97, the standard deviation in 2-hr
glucose reported by MAGIC. The correlation structure over
the region is shown in supplementary Figure S5.

CAVIARBF, FINEMAP and JAM’s model enumeration
procedure were all setup to consider causal configurations
including up to three SNPs. FINEMAP was passed the
marginal z-scores and run with default values. CAVIARBF
was passed the marginal effects and the actual residual
variance used in the simulations, whereas JAM used a
weakly informative inverse-Gamma (0.01, 0.01) prior on the
residual variance, as explained in the methods. COJO was
set to use a Bonferroni significance threshold for the number
of SNPs (p = 0.0012). All methods were provided with the
marginal one-at-a-time SNP effects, and the same ‘reference
dataset’ consisting of n = 2, 674 independently bootstrapped
rows (i.e. the number of WTCCC controls). We do not
compare against CAVIAR, because CAVIARBF has already
been shown to be equally accurate but more efficient [Chen
et al., 2015]. We have not included PICS in the simulation
study because the authors do not share a scriptable algo-
rithm. Use of PICS is restricted to manual submission of
single summary statistics into a webpage, with no choice of
reference dataset other than the integrated 1,000 genomes.

Figure 1 shows the proportion of true signals included
among top-ranked SNPs (positive predictive value (PPV), left
y-axis), as well as the power/sensitivity (right y-axis), over a
range of rank thresholds, and averaged over 200 simulation
replicates. The sparse Bayesian regression approaches (JAM,
CAVIARBF and FINEMAP) all performed very similarly, of-
fering near perfect discrimination of the three signal SNPs.
They all outperformed COJO’s stepwise search. As a proof
of principle and for the sake of comparison, we ran JAM’s
stochastic search, which does not require an assumption on
the maximum number of causal SNPs and resulted in very
similar performance to inference via exhaustive evaluation
of models with three SNPs or less. The stochastic search was
run for two million iterations, and convergence was assessed
using different MCMC seeds and by inspecting variable se-
lection trace plots for a random subset of simulations (e.g.
see supplementary Fig. S7).

Comparison of JAM With Stepwise Selection Across
Multiple Regions

Next, we explored performance of JAM in an analysis of
multiple regions simultaneously. We considered two sce-

narios. The first is analogous to our case study below and
considers the same four candidate regions. Data were sim-
ulated for n = 15, 356 individuals as above, but now ac-
cording to a genotype matrix across all four regions from
our case study (132 SNPs total). Multi-SNP signals were
simulated in each region, as described above, and ranged
in size between half and double the largest effect re-
ported by MAGIC (0.13). Supplementary Figure S5 displays
heatmaps of the four regions, and where the simulated sig-
nals were placed. This simulation scenario, with four loci
all of which have effects, corresponds to settings when a
limited number of candidate regions would be the focus
of a multivariate re-analysis of GWAS results, such as in
fine-mapping of multiple GWAS regions. To demonstrate
the scalability of our approach, we also explored a ‘nee-
dle in the haystack’ scenario by duplicating these regions
many times up to 10,000 SNPs, but simulating outcomes
under the same model, with effects only placed in four re-
gions. Two hundred replicate datasets were simulated for each
scenario.

We again compare results against Yang et al.’s [2012] mul-
tivariate COJO stepwise search. The summary statistic fine-
mapping frameworks (FINEMAP, CAVIARBF and CAVIAR)
are not currently implemented for application to multiple
regions simultaneously, so are not included in the compar-
isons below. Given the similarities with these frameworks,
and performance in the single region setting, we henceforth
consider JAM to represent this general class of approach -
sparse Bayesian multivariate regression of summary statis-
tics. We also compared against univariate approximate Bayes
Factors, proposed by Wakefield [2009], and their correspond-
ing Approximate Posterior Probabilities (APPs) described by
Maller et al. [2012]. These improve upon the naive ranking
of marginal p-values by incorporating prior information on
the range of effect sizes, and that each individual SNP is very
unlikely to have an effect. Note that comparatively to JAM
and COJO, the APPs do not provide multivariate inference;
they are not LD adjusted and are inferred under an assump-
tion of no more than one effect per region. We calculated
APPs according to a N(0, 0.2) prior on each SNP, which cor-
responds to 95% weight on a range of values up to 50% larger
than the maximum simulated effect magnitude, and with a
sparsity inducing prior probability of 10 × 10–4 on each SNP,
as is typically used. For the purpose of benchmarking, we
also present results from an ‘optimal’ treatment of each sim-
ulated dataset, in which it was analysed under an analogous
Bayesian linear model selection framework for complete in-
dividual patient data (IPD), using identical priors to those
in JAM. Because merging all consortium data for full multi-
variate analysis of IPD is usually unrealistic due to logistics
and/or data sharing arrangements, we also present results
from a subset analysis – analogous to one of the contributing
cohorts choosing to perform multivariate adjusted analysis
of their own data in isolation. Sub-cohorts of size n = 1, 706,
the average MAGIC sub-cohort size, were randomly sam-
pled each replicate. For JAM and the Bayesian IPD penalised
regression analyses, regions were analysed under the block
independence assumption detailed in the methods.
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Figure 1. Comparison of ranking performance by JAM against other fine-mapping strategies for 15,356 individuals (the total size of the MAGIC
consortium). Ranking performance is measured in terms of PPV, the proportion of true signal SNPs in the selection (solid lines, left y-axis) and
power/sensitivity, the proportion of all simulated signals included (dashed lines, right y-axis). For each method, the average PPV and sensitivity
estimates consist of points for each SNP rank, which we have joined with lines to ease the visual comparison. Data were simulated for a single
region of 41 SNPs, three of which were given effects as described in the main text. For LD estimation, JAM, FINEMAP, CAVIARBF and GCTA (COJO)
were provided with an independently simulated reference dataset of 2,674, the size of the WTCCC control sample. Estimates are averaged over 200
simulation replicates. A vertical grey line highlights the rank equal to the number of true signals, where PPV and sensitivity by definition intersect.
Performance of JAM’s enumeration (red), JAM’s stochastic search (orange) and FINEMAP (green) were indistinguishable and hence these lines
are superimposed on top of one another. Performance of CAVIARBF (blue) was marginally weaker than JAM and FINEMAP for top-ranked SNPs,
but indistinguishable at lower ranks.

Figure 2 shows average SNP statistics from the various
strategies under the 10,000 SNP simulation scenario. The
univariate APPs improved upon the marginal P values to
clean up much of the noise due to LD among the top associa-
tions, owing to the incorporation of sparsity inducing priors.
However, due to the lack of multivariate adjustment and the
assumption of a single effect per region, secondary effects
were usually underestimated, or missed completely. Through
formal multivariate modelling, JAM and COJO were able to
identify additional effects within the causal regions. JAM,
however, demonstrated considerably better discrimination,
resulting in performance close to the ‘optimal’ complete IPD
multivariate analysis if the original data, rather than sum-
maries, were available. The subset IPD multivariate analysis
clearly suffers from a lack of power.

Figure 3 shows the proportion of true signals included
among top-ranked SNPs (PPV, left y-axis), as well as the
power/sensitivity (right y-axis), over a range of rank thresh-
olds for the multi-region simulation scenarios. In both the

four region scenario, and the harder 10,000 SNP scenario,
JAM offered gains in PPV and sensitivity over the marginal
p-values, single SNP APPs and the COJO multivariate step-
wise selections. Therefore, top SNPs identified by JAM were
more likely to contain either true signal SNPs (or in practice
the best tag among the SNPs genotyped). The sub-cohort
multivariate IPD analyses, which analyse just 1/9 of the data,
performed poorly again, and generally worse than the single
SNP statistics.

Despite the much larger model space, JAM’s stochastic
search continued to offer similar performance to inference via
enumeration of configurations in each block up to dimension
three. The stochastic search took longer to run (41 vs. 4 sec
for two million iterations in the four region scenario; 3 hr vs.
5 min for 20 million iterations in the 10,000 SNP scenario),
but it avoids making an assumption on the maximum num-
ber of causal SNPs. Therefore, despite the longer run times,
we recommend the stochastic search as the default option
for inference. Convergence was again assessed using different
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Figure 2. Comparison of signal to noise discrimination by JAM against various strategies when 12 effects were simulated among 10,000 SNPs
for 15,356 individuals (the total size of the MAGIC consortium). Results are only displayed for the first 500 simulated SNPs, which included all 40
simulated effects. For LD estimation, JAM was provided with an independently simulated reference dataset of 2,674, the size of the WTCCC control
sample. All summary statistics are averaged over 200 simulation replicates. The 12 true effects are highlighted in red. IPD: individual patient data;
ABF: Wakefield’s approximate Bayes factor.

random seeds and through inspection of variable selection
trace plots (e.g. see supplementary Fig. S8).

Detection of Multi-SNP Models

In addition to improving discrimination of signal to noise,
it is of interest whether JAM can extract the underlying num-
ber of effects within a region from summary data. Focusing
on the simulated gene with average effect magnitudes, we
compared Bayes factors for ≥ 1, 2 and 3 signals between data
simulated under single SNP and multi-SNP models. When
one effect was simulated, JAM picked it up decisively and, en-

couragingly, suggested no evidence for more than one effect.
When secondary and tertiary effects were simulated, JAM de-
cisively provided evidence for the existence of three signals
(Table 1).

All findings described in this section were equivalent across
a range of alternative prior setups for the Bayesian models, in-
cluding use of g-priors vs. independence priors on the effects,
different inverse-gamma choices and other (larger) choices
for the beta-binomial parameter bω. To explore how much
performance we might lose through use of external correla-
tion data and re-construction of z from effect estimates, we
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Figure 3. Comparison of ranking performance by JAM against various other strategies across two simulation scenarios for 15,356 individuals
(the total size of the MAGIC consortium). Ranking performance is measured in terms of PPV, the proportion of true signal SNPs in the selection
(solid lines, left y-axis) and power/sensitivity, the proportion of all simulated signals included (dashed lines, right y-axis). For each method, the
average PPV and sensitivity estimates consist of points for each SNP rank, which we have joined with lines to ease the visual comparison.
Panel (A) corresponds to a fine-mapping scenario, including 132 SNPs across four regions, and panel (B) corresponds to a higher dimensional
setting in which 40 effects were simulated among 10,000 SNPs. For LD estimation, JAM and GCTA (COJO) were provided with an independently
simulated reference dataset of 2,674, the size of the WTCCC control sample. Estimates are averaged over 200 simulation replicates. A vertical grey
line highlights the rank equal to the number of true signals, where PPV and sensitivity by definition intersect. IPD: individual patient data; ABF:
Wakefield’s approximate Bayes factor. Performance of JAM’s enumeration (red), JAM’s stochastic search (orange) were nearly identical in both
scenarios, and so these lines appear superimposed. In the four region scenario, JAM’s performance was very similar to the full IPD data analysis
(dark green), and caught up at lower ranks at which point this line also appears superimposed.

Table 1. Comparison of Bayes factors for multi-SNP models when
one and three signals were simulated

Simulation model ≥1 SNP ≥2 SNPs ≥3 SNPs

Single SNP model 9.7e8 0.70 1.38
Multi-SNP model 4.8e7 1.9e4 2.1e4

Notes Large Bayes factors for more than and equal to two and three SNPs provide
strong evidence for multi-SNP models, whereas Bayes factors less than three are
generally considered non-statistically significant [Raftery, 1995]. Bayes factors are
averages over 200 replicates.

repeated the JAM analyses for both scenarios, providing the
true correlation structure used in the simulation model, and
the actual group means z. Encouragingly, performance was
very similar (supplementary Fig. S4), suggesting the approx-
imations used in JAM are robust.

Case Study

The MAGIC consortium have published results from
a large-scale GWAS meta-analysis for glycemic and
metabolic traits, involving more than 15,000 non-diabetic
individuals across nine cohorts. As is typical for consortium
GWAS, only marginal SNP effects have been reported. As a
case study, we re-analyse MAGIC results corresponding to
several loci highlighted for association with 2-hr glucose lev-

els after oral stimulation (a measure of glucose tolerance)
by Saxena et al. [2010] – see their paper for full details
of the original study. JAM requires an external individual-
level genotype matrix to re-construct the correlation struc-
ture underlying marginal association results. In this case,
we used genotype information from the UK WTCCC 2, 674
controls (genotyped on the Affymetrix 500K chip). These
data are available from the consortium on request [WTCCC,
2007]. Because the MAGIC cohorts are also of European de-
scent (see http://www.magicinvestigators.org/cohorts/), we
expect the UK WTCCC sample to provide reasonable LD
estimates.

JAM is limited to analysing SNPs available in the exter-
nal reference data. Hence, our primary focus was on two of
the top MAGIC loci for which the reported index was di-
rectly genotyped and available in the WTCCC (TCF7L2 and
ADCY5). However, we extended our case study to consider
GCKR and VPS13C, two other top MAGIC loci for which the
reported index was not directly genotyped in the WTCCC,
but for which a strong tag was available (rs780094 with D’
0.96, and rs1436958 with D’ 0.98, respectively). These tags
were strong enough to capture most of the original signal,
i.e. marginal p-values reported by MAGIC were of a similar
magnitude to the index. We applied JAM to the LD block
surrounding the reported signal within each of these loci
(see heatmaps in Supplementary Fig. S5). To avoid acute
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Figure 4. Application of JAM to marginal results reported by MAGIC for two of the top loci associated with 2-hr fasting glucose. Two-hour
glucose levels after oral stimulation are a measure of glucose tolerance. Panels (A) and (B) display marginal one-at-a-time p-values, (C) and (D)
display multivariate adjusted posterior probabilities as inferred by JAM. The MAGIC index SNPs are indicated in red. For ADCY, an additional SNP
was highlighted by JAM – this is indicated in blue.

co-linearity issues, we pruned SNPs to a maximum pairwise
correlation of r2 = 0.95 using PLINK [Purcell et al., 2007].
Furthermore, we pruned SNPs with MAF lower than 5%. For
some SNPs the allele coding in MAGIC relative to WTCCC
was ambiguous – in these cases, we inferred the correct cod-
ing according to the pattern of effects at correlated SNPs for
which coding was certain.

Before running JAM, we analysed these regions using Yang
et al’s COJO algorithm, with the same WTCCC control geno-
types as reference data. We found that the integrated stepwise
procedure got stuck at the top marginal association for each
gene. Likewise, PICS returned the index for each region as
the single estimated causal SNP. Therefore, top hits from
COJO and PICS were identical to those from the marginal
p-values.

Next, we analysed the four regions simultaneously with
JAM, using the same prior settings as described in the meth-
ods. We ran the stochastic model search for two million
iterations (41 sec) which resulted in equivalent posterior
probabilities across different MCMC chains, and compared

to those inferred via enumeration of all models within
each region of up to five SNPs, indicating convergence. The
variable selection trace plot also displayed good mixing (see
supplementary Fig. S9). For comparison, we also calculated
the univariate APPs – see Figures 4 and 5. Through mul-
tivariate LD adjustment, JAM was able to rule out many
marginal associations for each of these four loci. The APPs
simply placed most weight on the top marginal SNP in each
region and so produced identical top hits to the marginal
p-values, which is as to be expected as this is also a
univariate method. For TCF7L2, JAM also confidently
placed nearly all the posterior weight on a single SNP, re-
affirming the reported MAGIC index. For ADCY5, how-
ever, JAM gave equal posterior weights to the reported in-
dex (rs2877716) and another SNP, rs17361324. Given the
correlation structure in the WTCCC data, JAM finds both
SNPs equal candidates to explain the pattern of marginal
effects over the locus (rs17361324 and rs2877716 are cor-
related at D ′ = 96%). If two SNPs are correlated at a
high enough degree, conditional modelling will be unable
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Figure 5. Application of JAM to marginal results reported by MAGIC for two of the top loci associated with 2-hr fasting glucose, for which the
MAGIC index SNP is represented by a tag. For GCKR, our tag SNP had D’ 0.96 with the MAGIC index, and for VPS13C, our tag was in LD at D’
0.98. Both tags were the top SNPs. Panels (A) and (B) display marginal one-at-a-time p-values, (C) and (D) display multivariate adjusted posterior
probabilities as inferred by JAM. For both genes JAM found no evidence for more than a single effect, although there was uncertainty around the
location.

to delineate their effects, and splitting the posterior
evidence correctly reflects that either SNP might best
represent the signal. The spread of JAM’s posterior weight
over rs17361324 and rs2877716 was robust to a range of sen-
sitivity analyses, including bootstrapping the WTCCC geno-
type rows to perturb the correlation estimates (see supple-
mentary Fig. S6). Therefore, our LD-aware multivariate re-
analysis suggests rs17361324 should also be considered for
follow up with equal priority to the reported index. Inter-
estingly, rs17361324 is more biologically plausible than the
original index, as it is one of only three SNPs in the local region
annotated with any known or predicted regulatory informa-
tion. Specifically, this SNP is classified as ‘likely to affect bind-
ing’, and includes transcription factor binding and DNAase
hypersensitivity.

For GCKR and VPS13C, where the reported MAGIC index
SNPs were missing, JAM ascribed most posterior weight to
our two tag SNPs, suggesting none of the other SNPs anal-
ysed here better capture the underlying signal. Finally, for

Table 2. Bayes factors in favour of multi-SNP models among the
MAGIC genes

Gene ≥1 SNP ≥2 SNPs

TCF7L2 133,739 < 1
ADCY5 29 < 1
GCKR 35 < 1
VPS13C 161 < 1

None of these genes demonstrated evidence for more than a single effect.

all four regions, we estimated Bayes Factors for two or more
underlying signals. For all genes there was no evidence for
more than a single signal (Table 2). The top SNPs selected
in each region, and their effect estimates are provided in
Table 3. Findings were equivalent using different prior se-
tups, and bootstrapping to perturb the WTCCC correlation
estimates.
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Table 3. Top SNPs selected by JAM in an application to four top loci reported by MAGIC for association with two hour fasting glucose

MAGIC JAM

SNP Gene EA NEA MAF Effect P-value Effect 95% CrI Post-prob Bayes factor

rs12243326 TCF7L2 T C 0.24 –0.13 1.2 × 10–9 –0.13 (–0.17, –0.09) 0.99 1,207
rs2877716 ADCY5 T C 0.25 –0.10 6.3 × 10–6 –0.10 (–0.16, –0.04) 0.32 4.78
rs17361324 ADCY5 T C 0.26 –0.10 1.6 × 10–5 –0.10 (–0.16, –0.04) 0.32 4.81
rs780094 GCKR T C 0.39 0.09 1.4 × 10–6 0.09 (0.04, 0.14) 0.42 7.37
rs1436958 VPS13C T G 0.42 0.09 6.2 × 10–7 0.09 (0.05, 0.14) 0.26 3.45

Notes Two-hour glucose levels after oral stimulation are a measure of glucose tolerance. These SNPs have been selected from a joint multivariate analysis of marginal results
across each region. Marginal effects and p-values as reported by MAGIC are also included for each SNP; there was no evidence for a multi-SNP model in any region. Note that
for GCKR and VPS13C, the MAGIC index was represented by a tag with D’ 0.96 and 0.98, respectively. EA, effect allele; NEA, non-effect allele.

Discussion

We present a novel and scalable model selection frame-
work to infer evidence for multivariate SNP associations from
marginal effect estimates, accounting for correlation struc-
ture from a reference panel. The SNP or subset of SNPs which
best explains the pattern of marginal effects across all SNPs
in a region is highlighted via an integrated sparse Bayesian
regression framework with variable selection. JAM proceeds
by enumerating all models including up to three causal SNPs
per region, but we have also implemented a more general
version using Reversible Jump MCMC for when the num-
ber of causal SNPs may be larger or is unknown. In a series
of realistic simulation studies, involving multi-SNP effects
and including an application to 10,000 SNPs, signal and tag
SNPs were identified with greater specificity than an alter-
native multivariate stepwise selection procedure COJO. Fur-
thermore, we demonstrate equivalent performance of JAM to
other sparse regression summary statistics methods (namely
CAVIARBF and FINEMAP) in a single region setting where
all can be applied. We also present a real data application
to published results from MAGIC – a GWAS meta-analysis
of more than 15,000 people, in which we re-analyse sev-
eral genomic regions associated with 2-hr fasting glucose.
Although JAM did not find evidence for multi-SNP mod-
els, our case study highlights a subtler advantage of multi-
variate modelling; correctly reflecting model uncertainty in
the presence of strong LD. For ADCY5 this led to another
SNP being highlighted for follow-up with equal priority to
the reported index and which is, in fact, more biologically
plausible.

We build upon work by Verzilli et al. [2008], in which the
multivariate likelihood of marginal statistics was formally
derived as part of a sophisticated Bayesian meta-analysis
model. First, we invoke a Cholesky decomposition to trans-
form the marginal associations into a vector of independently
distributed statistics, thereby simplifying the likelihood ex-
pression. Second, we propose use of a conjugate g-prior on
the SNP effects, such that all parameters can be analytically
integrated out. Consequently, the computational cost is dra-
matically reduced. The primary difference between JAM and
other summary statistics sparse Bayesian regression methods,
such as CAVIARBF and FINEMAP, is that JAM has been im-
plemented for application to multiple regions, and that JAM
incorporates a full MCMC model search algorithm. There

are, however, some conceptual advantages too. JAM’s for-
mulation integrates over uncertainty in the residual error,
as would be done in a traditional regression analysis, rather
than fix it at an assumed value. Furthermore, we use a g-prior
on the distribution of effects, which has been shown to help
when covariates are highly correlated [Bottolo and Richard-
son, 2010]. Despite these conceptual differences CAVIARBF
and FINEMAP demonstrated equivalent performance when
compared to JAM in a single region setting. If CAVIARBF
and FINEMAP were extended for application to multiple re-
gions in the same way, the resulting performance may be very
similar to JAM’s.

JAM relies on the assumption that the reference genotype
data are taken from the same population, such that LD esti-
mates are unbiased. A simulation experiment showed no dif-
ference in results using an independent sample from the same
underlying population, suggesting the size of our WTCCC
reference sample, n=2,674, is sufficiently large to produce
accurate correlation estimates. This is consistent with a sim-
ulation study reported by Yang et al. [2012], recommending
a minimum reference sample size of 2,000. A limitation of
JAM is that for every LD block analysed, a full rank reference
genotype matrix is required. Therefore, each LD block cannot
be larger than the reference sample size, and are further lim-
ited in practice by the level of LD. Naturally we recommend
using the largest comparable reference data to minimise er-
ror in the LD estimates and allow analysis of all important
LD blocks in their entirety. For our case study, the WTCCC
sample was sufficient when pruning at r2 = 0.95, providing
us with full rank genotype matrices for each candidate region
analysed. With the impending availability of the UK10K, a
publicly available resource of 10,000 people genotyped at
high density, these issues should no longer effect analyses of
individuals of European descent and will permit application
of JAM to larger LD blocks with correlations stronger than
r2 = 0.95, allowing finer mapping than presented in our case
study.

An alternative and complementary line of research for re-
prioritising marginal associations involves integrative analy-
sis with the increasing wealth of functional genomic annota-
tion information available from consortia such as ENCODE
[Flicek et al., 2014]. A simple illustration clearly demon-
strates the appeal of such approaches. Consider two variants
in perfect LD, but only one of which causally effects a trait
of interest. Both variants receive identical marginal measures

Genetic Epidemiology, Vol. 40, No. 3, 188–201, 2016 199



of association, however, post hoc consideration of functional
annotation – e.g. if the true variant impacts the trait through a
non-synonymous change in the corresponding protein – may
clearly point to which has the true effect. Notable methods
include that of Quintana and Conti [2013] for multivariate
modelling of IPD and of Pickrell [2014] and Kichaev et al.
[2014] for summary data, in which a hierarchical Bayesian
model to learn the relative importance of different annota-
tion features. Such approaches show promise in aiding vari-
ant prioritisation when (reliable) annotation information is
available for causal SNPs. It would be natural going forward
to borrow from these ideas and extend JAM, by specifying
SNP-specific beta-binomial prior parameters, weighted to
reflect annotation information.

A notable limitation is that JAM is not currently designed
for the analysis of marginal odds ratios, i.e. summary ef-
fect estimates from a case-control study. This is due to the
derivation in terms of a Gaussian linear regression model
for continuous data. Pirinen et al. [2013] have explored, in
the genetic setting, a method for inferring approximate odds
ratios under a linear regression model in which the residual
error term is fixed to a function of the case/control sampling
fraction. They found the approximation works well in the
typical GWAS context of small effect sizes [Pirinen et al.,
2013]. Application of JAM with summary odds ratios may
be possible under this transformation, as has been demon-
strated in related fixed residual frameworks [Benner et al.,
2015; Chen et al., 2015]. We leave exploration of this adap-
tion, and whether inference can be improved by using JAM’s
fully Bayesian framework to target the approximate resid-
ual function with an informative prior, rather than a fixed
value, to future work. In previous work, Newcombe et al.
[2009] derived the true likelihood of summary odds ratios
in terms of their multivariate adjusted effects and haplotype
information from a reference sample, under an assumption
of additive effects. The approach was implemented within a
Bayesian variable selection framework, but was not designed
to scale beyond the analysis of tens of SNPs. In future work, we
also plan to explore an extension of JAM based on this same
haplotype formulation, which would allow formal inference
of multivariate odds ratios from case-control summary data.

JAM’s Reversible Jump stochastic search algorithm, which
avoids an assumption on the maximum number of causal
SNPs, demonstrated equal performance to inference obtained
by exhaustively evaluating all possible configurations of up
to three causal SNPs in each region but took longer to run
(3 hr for 10,000 SNPs). We plan to build on the current sim-
ple add/delete/swap algorithm to implement a more sophis-
ticated model sampling scheme, e.g. using ideas from pop-
ulation MCMC in which parallel chains are run at different
‘temperatures’, swapping information to overcome local op-
tima in the model space [Bottolo and Richardson, 2010]. This
should lead to an improved algorithm that reliably covers the
model space in less iterations, thereby improving speed. For a
more detailed exploration of when the benefits of a stochastic
search outweigh exhaustive enumeration, we refer readers to
Benner et al.’s [2015] article describing the FINEMAP algo-

rithm. We reserve a more detailed exploration of this trade-off
in the context of multiple regions and JAM to further work.

To facilitate ease of use, we have incorporated the JAM
algorithm into our existing fully documented R package for
Bayesian model selection, which is freely available to down-
load (along with a vignette specifically for JAM) via github
https://github.com/pjnewcombe/R2BGLiMS.
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