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Abstract

To avoid motion artefacts when merging multiple exposures into a high dynamic range image, a number of

HDR deghosting algorithms have been proposed. However, these algorithms do not work equally well on all

types of scenes, and some may even introduce additional artefacts. As the number of proposed deghosting

methods is increasing rapidly, there is an immediate need to evaluate them and compare their results. Even

though subjective methods of evaluation provide reliable means of testing, they are often cumbersome and

need to be repeated for each new proposed method or even its slight modification. Because of that, there

is a need for objective quality metrics that will provide automatic means of evaluation of HDR deghosting

algorithms. In this work, we explore several computational approaches of quantitative evaluation of multi-

exposure HDR deghosting algorithms and demonstrate their results on five state-of-the-art algorithms. In

order to perform a comprehensive evaluation, a new dataset consisting of 36 scenes has been created, where

each scene provides a different challenge for a deghosting algorithm. The quality of HDR images produced

by deghosting method is measured in a subjective experiment and then evaluated using objective metrics.

As this paper is an extension of our conference paper, we add one more objective quality metric, UDQM,

as an additional metric in the evaluation. Furthermore, analysis of objective and subjective experiments

is performed and explained more extensively in this work. By testing correlation between objective metric

and subjective scores, the results show that from the tested metrics, that HDR-VDP-2 is the most reliable

metric for evaluating HDR deghosting algorithms. The results also show that for most of the tested scenes,

Sen et al.’s deghosting method outperforms other evaluated deghosting methods. The observations based

on the obtained results can be used as a vital guide in the development of new HDR deghosting algorithms,

which would be robust to a variety of scenes and could produce high quality results.
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1. Introduction

To capture the high dynamic range present in

most real world scenes, several methods have been

proposed: CCD sensors [1, 2], HDR CMOS sen-

Preprint submitted to Computers & Graphics January 29, 2017



sors, specialized hardware [3, 4, 5], HDR cameras

such as SpheronVR GmbH and Panoscan MK-3,

and more recently, methods that reconstruct HDR

image from a single shot with spatially-varying

pixel exposures using commercial cameras [6, 7].

However, the most popular and affordable method

in generating HDR images is multi-exposure tech-

nique [8, 9, 10], where a sequence of differently ex-

posed low dynamic range (LDR) images is merged

to produce an HDR image. By capturing the same

scene with a sequence of differently exposed images,

each image may have different pixels that are over-,

or underexposed as well as the pixels that are prop-

erly exposed. High dynamic range image can be

generated by combining different exposures to only

use well exposed pixels from each image. The fol-

lowing HDR formula computes an HDR image, Hij

, from a sequence of LDR images as the weighted

average of pixels across N exposures:

Hij =

∑N
k=1

f−1(zk
ij)w(zk

ij)

∆tk
∑N

k=1 w(zkij)
, (1)

where zkij is the pixel value at location (i, j) in expo-

sure k, w(zij)
k is the weight corresponding to that

pixel, ∆tk is the exposure time for image k. f−1

represents the inverted camera response function.5

Since camera response function is often unknown,

it must be first estimated by one of the established

techniques [9, 10, 8]. Pixels in the resultant HDR

image contain values that are approximately pro-

portional to the luminance of the original scene.10

Under- and over-exposed pixels can be excluded

from the final image by appropriately selecting the

weights w(zij)
k [10, 8]. Weighting functions may

also be used to reduce ghosting and lower the noise

in the generated HDR image [11].15

Multi-exposure techniques [8, 9, 10] for gen-

erating HDR images work well for static scenes

taken on a tripod. However, most everyday pho-

tographs contain moving objects and are captured

by a hand-held camera. To merge such photographs20

into HDR images, a number of multi-exposure

HDR deghosting algorithms have been proposed

[12, 13, 14, 15, 11, 16]. The main goal of these

algorithms is to produce a good quality HDR im-

age without motion artefacts, which are usually de-25

scribed as ’ghosting’. As those algorithms often

fail to remove all ghosting artefacts and can intro-

duce new distortions, this brings the need to eval-

uate and compare their results. Subjective qual-

ity assessments provide a reliable means of image30

quality evaluation. However, they are often costly

and demanding to perform. Objective quality as-

sessment methods provide computational and auto-

mated means of measuring performance of different

algorithms.35

In [17], Tursun et al. perform a comprehensive

survey and classification of approximately 50 HDR

deghosting algorithms. They also performed a sub-

jective study to evaluate various state-of-the-art

deghosting algorithms. The authors identified the40

need to evaluate HDR deghosting algorithms by us-

ing objective quality metrics as an important part

of future work. In their most recent work [18],

they proposed a reduced reference objective qual-

ity metric to evaluate HDR deghosting algorithms.45

Hanhart et al. [19] performed an extensive bench-

marking of objective quality metrics for HDR im-

age quality assessment. Objective metrics were

benchmarked on a dataset of compressed HDR im-
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ages [20]. Their findings showed that HDR visual50

detection predictor (HDR-VDP-2) [21] and HDR

video quality metric (HDR-VQM) [22] are most re-

liable predictors of perceived quality. Karaduzovic

et al. [23] performed subjective evaluation of HDR

deghosting algorithms and proposed a methodol-55

ogy for subjective evaluation. In another paper,

Karaduzovic et al. [24] analyze deghosting HDR al-

gorithms based on expert evaluation. Tursun et

al. [25], performed another subjective evaluation of

deghosting algorithms for HDR images. They ob-60

served that the evaluated deghosting algorithms re-

move ghost artefacts, but at the same time, they

also introduce noise and texture smoothing arte-

facts.

We further the work of setting the evaluation en-65

vironment for assessing artefacts that may result in

multi-exposure HDR deghosting algorithms. The

work contains both subjective and objective assess-

ment of HDR deghosting methods. It includes the

first evaluation of objective quality metrics for as-70

sessment of multi-exposure HDR image deghosting

methods, which is the main difference with previous

similar works. In particular, 6 objective metrics are

evaluated to test whether they are suitable for pre-

diction of artefacts generated by HDR deghosting75

methods. In the assessment, the study also con-

tains the most recent objective quality metric, uni-

fied deghosting quality metric (UDQM), proposed

by Tursun et al. [18]. The metric is especially de-

signed for evaluation of HDR deghosting methods.80

In [18] the success of UDQM is validated by per-

forming correlation with subjective results. How-

ever, the comparison of UDQM results with other

objective quality metrics has been done by present-

ing the outputs of only two other objective metrics,85

i.e. Liu et al.’s [26] and dynamic range indepen-

dent metric (DRIM) [27]. DRIM produces as result

three distortion maps without any quality value,

which are thus difficult to interpret. Furthermore,

in this study, a benchmark dataset of 36 scenes that90

contains raw and jpg ground truth and test multi-

exposures has been created. To our knowledge,

no other dataset contains a pair of ground truth

and test multi-exposure sequence for evaluation of

HDR image deghosting methods. The availability95

of ground truth sequences makes the dataset avail-

able to be used with full-reference metrics as well.

This benchmark dataset further enriches our multi-

exposure dataset described in [24], which deals with

41 real life scenes featuring live objects, but lacks100

raw and ground truth exposures, as well as the

datasets created by [17] and [18] which contain 10

and 16 scenes respectively without the ground truth

multi-exposure sequence.

This paper is an extended version of our confer-105

ence paper [28] and it includes the following contri-

butions:

• Creation of a dataset of 36 carefully selected

test and reference images. The dataset can

be used as a benchmark dataset to evaluate110

and compare deghosting algorithms using both

subjective and objective means of assessment.

For objective assessment, full-reference metrics

can also be used as the dataset contains both

test and reference multi-exposure sequences115

which are often timely to obtain.

• An in-depth evaluation of several metrics for

evaluating multi-exposure HDR deghosting al-
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gorithms (Sen et al. [14], Silk and Lang [16],

Hu et al. [15], Photomatix Pro (version 4.2.6)120

and Photoshop CS5 Extended (version 12.0).

We assess the performance of following ob-

jective metrics: perceptually uniform peak

signal-to-noise ratio (PU2PSNR) [29], percep-

tually uniform structural similarity index met-125

ric (PU2SSIM) [29], Weber root mean square

error (Weber RMSE), HDR-VDP-2 (version

2.2.1) [21], unified deghosting quality metric

(UDQM) [18], and Liu et al.’s (LR) objective

equality metric [26] for motion deblurring.130

• Measurement of the success of objective qual-

ity metrics by performing subjective evaluation

of five algorithms to test whether they can be

used to predict deghosting artefacts. The most

reliable metric is then selected by comput-135

ing expected values of Spearman and Pearson

correlation coefficients between the two scores

computed by bootstrapping.

In particular, the extensions and changes as com-

pared to the conference paper [28] paper are the140

following:

• Addition of one more objective quality metric

(i.e. UDQM [18]) to the assessment.

• Addition of summary of noted comments about

HDR image deghosting algorithms from ob-145

servers during the subjective experiments (Ta-

ble 3).

• In addition to analyzing subjective experiment

results by scaling the pairwise comparison data

in Just-Noticable-Difference (JND) units, the150

results of the subjective experiments were also

used to compute statistical significance of the

differences between the algorithms by perform-

ing multiple comparison test (Figures 3 and 4).

• Spearman and Pearson correlation scores155

where computed for each scene category by

grouping JND values across image sets, and

computing correlation with each objective

quality metric results, which were also grouped

across image sets for each scene category. For160

completeness, we also computed the correla-

tion scores for each scene.

• Computing expected values for Spearman and

Pearson correlation coefficients obtained by

bootstrapping JND scores, instead of averages.165

We also include the graph with confidence in-

tervals for Spearman and Pearson scores also

computed by bootstrapping.

• This work also includes additional figures that

visualize the artefacts generated by the evalu-170

ated HDR image deghosting methods and give

further insights into the results.

2. HDR Deghosting Algorithms

As already mentioned, merging multiple expo-

sures using Equation 1. will produce motion arte-175

facts, because the equation is based on the as-

sumption that pixels in all exposures are perfectly

aligned. As a result a large number of algorithms

with different approach to the deghosting problem

have been proposed in literature. In [17], Tursun et180

al. provide a detailed taxonomy of deghosting al-

gorithms. HDR deghosting algorithms can be clas-

sified into the following categories: 1) Global align-
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ment algorithms which address artefacts that re-

sult from global camera motion. Such algorithms in185

general assume that the scene is static. 2) Moving

object algorithms that address artefacts that result

from moving objects in the scene. Such algorithms

usually assume that the camera is static. In case the

dynamic scene was captured by a hand-held cam-190

era, such algorithms usually perform global regis-

tration, often by applying one of the existing global

alignment methods. The main difference between

different moving object algorithms is detection of

motion regions and an approach taken to remove195

ghosting. Following approaches handle moving ob-

jects in the scene:

• Rejection of ghost regions algorithms: Such al-

gorithms replace detected motion pixels either

with pixels from only one exposure [30, 31], or200

from multiple exposures [32, 33]. The main

drawback of these methods is that if the ob-

ject in motion contains HDR content, then the

dynamic range of the moving object is reduced.

• Reconstruction of motion pixels algorithms:205

such algorithms align detected objects in mo-

tion by searching for the best corresponding

pixels in other exposures. Two approaches in

finding these correspondences are optical-flow

based approach [34, 35], and a patch-based ap-210

proach [14, 15]. In general, these algorithms

are computationally expensive, due to the in-

tensive pixel or patch-based operations.

• Completely removing moving objects from the

scene algorithms: these algorithms distinguish215

moving objects from the static background.

The easiest approach is simply to discard mo-

tion pixels in HDR merging phase.

In this work we evaluate state-of-the-art algo-

rithms that belong to the moving object algorithms,220

in particular, the methods that fall into the first

two categories of such algorithms (i.e. rejection

of ghost regions algorithms and reconstruction of

motion pixels algorithms). This section provides a

brief overview of evaluated HDR deghosting meth-225

ods. Please refer to the state-of-the-art report [17]

for a comprehensive review of approximately 50

HDR deghosting algorithms. In their study, the

authors also perform a subjective evaluation of var-

ious state-of-the-art algorithms: Grosch [36], Khan230

et al. [37], Sen et al. [14], Silk and Lang [16], Hu

et al. [15]. Since the algorithm by Grosch [36] did

not perform well in their evaluation, we did not

include it in our study. Because Khan et al. algo-

rithm removes moving objects, the results could not235

be compared with the reference image (containing

those objects in motion) and therefore the method

could not be assessed with our existing dataset.

The remaining three algorithms Sen et al. [14], Silk

et al. [16], Hu et al. [15], are included in our eval-240

uation. Furthermore, we also add to our evalua-

tion two widely used HDR deghosting algorithms

integrated into commercial software packages: Pho-

tomatix Pro (version 4.2.6) and Photoshop CS5 Ex-

tended (version 12.0). An HDR image generated by245

merging a sequence of RAW images using Robert-

son et al. method [38] without deghosting is also

included in the evaluation as a control condition.

Sen et al.’s [14] algorithm is a patch based

method that deals with dynamic scenes with vary-250
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ing complexity. The main goal of the algorithm is

to generate a good quality HDR image from multi-

exposure sequence of LDR images that are aligned

to the reference image, Lref . The method mini-

mizes an energy function composed of two terms.255

The first term uses the most well exposed pixels

from the reference image. The second term con-

straints the ill exposed pixels from the reference

image to match other exposures by applying a mod-

ified bidirectional similarity energy function (EM-260

BDS), which is based on BDS proposed by Simakov

et al. [39]. The two terms are balanced by apply-

ing per pixel weighting. The weights of ill exposed

pixels in the reference image are decreased, whereas

the weights of the pixels in the second term are in-265

creased. The method optimizes energy function by

introducing auxiliary LDR images. The algorithm

simultaneously solves for HDR image and auxil-

iary images using an iterative approach. The it-

erative approach performs joint optimization of im-270

age alignment and HDR merge process until all the

auxiliary exposures are correctly aligned to the ref-

erence exposure and a deghosted HDR image is pro-

duced. With this approach, generated HDR image

uses information from all exposures and is aligned275

to the reference exposure. This approach requires

linearized LDR images.

Another patch based algorithm proposed by Hu

et al. [15], generates a sequence of registered images

from a stack of misaligned images of dynamic scenes280

captured with a hand-held camera. The method

uses an iterative approach to register a sequence of

input exposures to a reference image Lref . Initially,

the algorithm automatically selects a reference im-

age to be the image with most well-exposed pix-285

els. Then, for each input LDR source image S, the

algorithm generates a new latent image L, which

looks like the reference image Lref , but is exposed

like S. Each latent image is then updated by ap-

plying the PatchMatch algorithm by finding corre-290

sponding patches between the latent image L and

input image S. For well exposed pixels latent im-

ages are similar to Lref . For over and under ex-

posed patches, PatchMatch algorithm is modified

to find a patch in the input images. During the295

HDR reconstruction, the algorithm propagates the

intensity and gradient information in order to pre-

serve as much detail as possible.

Silk et al.’s [16] method handles dynamic regions

by performing change detection on exposure nor-300

malized images. In order to improve change detec-

tion results, the method performs super pixel seg-

mentation. ’Pairwise down weighting’ is applied,

where inter-frame change masks are refined to lower

the contribution of motion regions to the HDR305

weighted average on a per frame basis. The method

also provides a solution to handle ’fluid’ motion,

(i.e. non-rigid motion such as foliage blowing in the

wind). It is used to handle motion displacements

when motion occurs throughout a large portion of310

input images. ’Fluid’ motion is performed by se-

lecting pixels from the best exposure from input

images to replace the fluid motion areas.

Granados et al. [11] developed an HDR deghost-

ing method that deals with HDR deghosting by315

modeling noise distribution of color values mea-

sured by the camera. The algorithm initially per-

forms registration of possible misalignments due

to the camera motion using global homography

computed with RANSAC [40] from SURF [41] key320
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points matches. Then, an estimation of the readout

noise and camera gain is achieved, and an HDR im-

age is constructed by a weighted average from the

consistent subset of LDR images. The authors de-

fine a pair of pixels in multi-exposed sequence of325

images to be consistent, if their corresponding col-

ors correspond to the same irradiance and thus refer

to the same static object. This is done by analyz-

ing noise distribution of color values. Next, Markov

Random Field prior is used to reconstruct irradi-330

ance of estimated static objects. The resultant al-

gorithm is robust to high image noise, and does not

require the selection of a reference image nor back-

ground estimation. However, since the dynamic

content is handled by selecting pixels from a sin-335

gle LDR image, the dynamic range of moving HDR

content cannot be enhanced using the proposed

method. The method requires a multi-exposure se-

quence of raw images. Because the method was

patent pending and hence the source code was not340

available at the time of conducting this work, we

did not include it in our analysis.

The details of algorithms integrated in Photo-

shop and Photomatix software packages are pro-

prietary.345

3. Objective Quality Assessment of HDR

Images

In image processing and computer graphics, per-

formance of algorithms often needs to be evaluated

and compared with state-of-the-art results. Qual-350

ity assessment methods are usually used for such

purposes. Subjective quality assessments provide a

reliable means of image quality evaluation. How-

ever, they are often costly and demanding to per-

form. Objective quality assessment methods pro-355

vide computational means of measuring the perfor-

mance of different algorithms. Besides evaluation,

quality metrics may also provide further insight into

the evaluated algorithm.

In this paper, we assess the performance of sev-360

eral objective quality metrics to test whether they

can be used to predict the quality of HDR deghost-

ing algorithms: PU2PSNR, PU2SSIM [29], HDR-

VDP2 [21], Weber RMSE, UDQM [18] and LR [26]

metrics. The first four metrics are full-reference365

metrics, UDQM is a reduced reference metric and

LR metric is a no-reference metric designed for eval-

uating motion deblurring. Since most common de-

blurring artefacts identified by Liu et al. [26] are

very similar to the artefacts that may be gener-370

ated by HDR deghosting methods [24] we also in-

cluded this metric in our assessment. Additionally,

we also tested the performance of LR metric as a

full-reference metric (using a deghosted and a refer-

ence images as inputs to the metric, rather than the375

ghosted and deghosted images which are inputs into

Liu’s no-reference metric.). Only the performance

of Liu et al.’s no-reference metric has been consid-

ered in [18] for evaluating multi-exposure HDR im-

ages generated by HDR deghosting methods, how-380

ever the performance of remaining metrics for eval-

uation of HDR deghosting algorithms has not been

studied yet.

PU2PSNR and PU2SSIM are extensions of two

popular quality metrics PNSR and SSIM [42]. The
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PSNR is computed as:

PSNR(x, y) = 20 log10

peak
√

MSE(x, y)
[dB],

where MSE(x, y) =
1

N

N
∑

i=1

(xi − yi)
2

(2)

where x and y correspond to the pixel values in

the reference, and reconstructed image respectively.385

peak refers to the maximum luminance value, and

MSE refers to the mean square error between two

input images. Lower the MSE, higher the PSNR,

and thus better the quality of the reconstructed im-

age.390

SSIM is another widely used quality metric:

SSIM(x, y) = l(µx, µx)αc(σx, σx)βs(σx, σx)γ , (3)

where x and y correspond to the pixel values in ref-

erence and reconstructed image respectively. µ and

σ are mean and standard deviation of input images.

SSIM index is then computed by a weighted combi-

nation of luminance comparison function l, contrast395

comparison function c, and structure comparison

function. The above formula for SSIM index is de-

signed for LDR images and must be adapted to be

applicable to HDR images.

The above formulas for PSNR and SSIM are de-400

signed for LDR images and must be adapted to be

applicable to HDR images. In [29], Aydın et al.

proposed an extension to these two quality met-

rics, which enables comparing HDR images at all

luminance levels visible to the human eye without405

affecting their results for typical CRT display lu-

minance levels. The proposed extension applies a

perceptually uniform (PU) encoding transfer func-

tion that transforms luminance values in the range

from 10−5 to 108cd/m2 into approximately percep-410

tually uniform code values. The obtained code val-

ues are used in the quality metric instead of gamma

corrected RGB or luma values. This extension ap-

plied to the PSNR and SSIM metrics make them

suitable for evaluation of HDR images. Therefore,415

before using the well established PSNR and SSIM

metrics, in this work, PU encoding transfer function

is applied to each deghosted HDR image, and the

obtained approximately perceptually uniform code

values are then applied to PSNR and SSIM metrics.420

HDR-VDP-2 [21] metric is based on a visual

model that can predict visibility and quality dif-

ference between a reference and test image pairs.

The metric works with the full range of luminance

values that are present in real-world scenes (i.e.425

HDR images). For visibility differences, the met-

ric produces difference and probability maps be-

tween test and reference images. Difference map

provides the information how well will the observer

notice the difference between two images, (red color430

indicates high probability, green color low prob-

ability). Probability map produces the probabil-

ity of detection map, which shows where and how

likely a difference between two images will be no-

ticed by an observer. Difference map shows the435

contrast-normalized per-pixel difference weighted

by the probability of detection. For quality dif-

ferences, the metric produces a mean-opinion score

(’Q’ score) which computes the quality degradation

of a test image with respect to the reference image.440

Recently, Tursun et al. [18] proposed an objec-

tive quality metric, UDQM, specially designed for

evaluating HDR deghosting algorithms. The metric

is a reduced reference metric whose inputs are a se-

quence of multi-exposures, acquisition settings (ex-445
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posure time, ISO and f-number), and a deghosted

image. Based on the most common artefacts gener-

ated by HDR deghosting methods, the metric uses

several objective quality metrics which are specially

designed and tuned to evaluate such artefacts. An450

overall quality score is computed as a weighted sum

of proposed individual metrics.

Liu et al. [26] developed a no-reference metric,

LR, designed for evaluating motion deblurring. The

metric is based on a set of 8 optimally selected fea-455

tures designed to measure the most common de-

blurring artefacts (ringing, noise and residual blur).

The proposed metric is than trained to obtain the

optimal weights for each selected feature.

4. Dataset460

Since algorithm performance may be scene de-

pendent, we created a dataset particularly de-

signed to provide a comprehensive set of challeng-

ing scenes for evaluating deghosting algorithms. In

[24], Karaduzovic et al. identified the most common465

artefacts that could be introduced by a deghosting

process: motion artefacts, loss of dynamic range

(i.e. amount of details visible), noise and color arte-

facts. The identified artefacts and the Middlebury

dataset proposed by Baker et al. [43] were used as470

a guideline for creating the dataset, which resulted

in carefully categorized scene types. The dataset

contains 36 scenes organized into 4 different image

sets. Each image set refers to a specific lighting con-

dition under which 9 categorized scenes, each with475

different type of motion, have been captured in a

controlled environment. Scene type categorization

are listed in Table 1. For each scene, both test and

reference multi-exposure sequence were captured.

Test exposure sequence refers to the sequence of480

multi-exposures that contain either objects or cam-

era motion. Reference exposure sequence refers to

the sequence of multi-exposures where all pixels are

perfectly aligned (i.e. ground truth sequence). For

exposure sequences with objects in motion, the po-485

sition in the middle of the motion was selected for

the reference exposure sequence. The availability

of a pair of ground truth and test multi-exposure

sequences is a unique feature of the dataset because

it makes the dataset suitable to be used with well-490

established full-reference metrics suitable for HDR

images (e.g. PU2PSNR, PU2SSIM, HDR-VDP-

2). However, because multi-exposure sequences

need to be captured in a controlled environment,

the dataset does not contain very complex non-495

controllable motion such as people and pets. Fig-

ure 1 shows 4 representative scenes used in the ex-

periments.

In order to evaluate multi-exposure HDR

deghosting methods, other than having different500

motion types captured under various lighting con-

ditions, the captured dataset should also contain

scenes with wide dynamic range. Furthermore,

multi-exposure stack should also have saturated

pixels because such pixels make the correspondence,505

and hence the deghosting process, more difficult.

Dynamic range of our captured HDR ground

truth images ranges from 2.42 − 3.89 orders of

magnitude (see Table 2). It is measured as

the logarithm of the ratio between the brightest510

and the darkest luminance present in the scene:

log10(Y peak/Y noise). In order to account for a

reliable noise level in an HDR image, we applied
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a Gaussian smoothing filter to the HDR image,

and then computed the maximum (i.e. Y peak) and515

minimum (Y noise) luminance stored in the ground

truth HDR image for each scene. We also com-

puted the number of saturated pixels (i.e. per-

centage of pixels where at least one of the RGB

channels has pixel value greater than 0.996) in the520

multi-exposure stack for each scene (see Table 1)

Complete dataset containing both RAW and JPG

images is available for the research community [44].

4.1. Acquisition

Scenes marked with * in Table 1 indicate dy-525

namic scenes captured on a tripod where objects

were moved between LDR image capture to sim-

ulate motion. Each image set consists of five ex-

posures with one f-stop exposure time difference.

The first three sets were captured in a dark room530

where for set 1, the only source of illumination was

coming from a Halogen 300 Watt spot light, po-

sitioned at 45 degrees to the table containing ob-

jects in motion and two 60 Watt light bulbs-white

positioned at 45 degrees on the other side of the535

table; for set 2, the light source was coming from

a 2 × 300 Watt Halogen spot photographic light

positioned at 45 degrees to the table containing ob-

jects in motion on both sides; for set 3, the light

source was coming from a table lamp with 60 Watt540

light bulb; set 4 was captured in a room where

the camera was pointing towards a large window.

Figure 1 shows 4 representative scenes used in the

experiments. RAW images with linear response

curves were captured to minimize the internal cam-545

era image processing by Canon EOS DSLR 1000D

camera. In order to avoid camera motion, cam-

era was remotely controlled by gPhoto2 (version

2.5.5. http://gphoto.sourceforge.net) and mounted

on a tripod. The only scenes where camera was550

not mounted on a tripod were handheld and multi-

view scenes. Since most deghosting algorithms are

computationally expensive, and often fail to pro-

cess higher resolution images the resolution of all

images was rescaled to 1953×1301. This resolution555

is half the resolution of 16-bit tiff images obtained

from captured RAW images. To get the best al-

gorithm performance, we used linear 16-bit images

as inputs to the algorithms. Whenever possible, we

tried to use the fine-tuning options suggested by560

the authors. For subjective experiments, generated

HDR images were tonemapped by applying a cus-

tomized tone mapping operator (TMO) [23] based

on the fast bilateral filter [45]. The main goal of

this TMO is to reproduce details exactly as they565

were captured in HDR images and compress low-

frequence content to fit within a dynamic range of

the display.

5. Subjective Experimental Setup

20 participants with computer graphics back-570

ground, aged between 22 and 41, performed the

pairwise comparison experiment. All participants

reported normal or corrected to normal vision.

Each participant was presented with randomized

all possible comparison pairs of the same scene575

processed with a different deghosting algorithm.

Psychtoolbox-3 (http://psychtoolbox.org) was used

to design the experimental stimuli and program the

experiment. For 6 evaluated algorithms (5 deghost-

ing and 1 without deghosting) and 36 scenes, the to-580
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Figure 1: Four example scenes used in the experiments, one scene from each image set.

Table 1: Different types of scenes contained within each image set. Scenes marked with * indicate dynamic scenes captured on

a tripod where objects were moved between LDR image capture to simulate motion. Columns 3, 4, 5 and 6 show the percentage

of saturated pixels in multi-exposure stack for each scene.

Scene name Scene description image

set1

image

set2

image

set3

image

set4

*complex motion Highly dynamic scene with small/large motion dis-

placement of small/large objects, non-rigid motion,

occlusion, and several independently moving objects.

0 - 2 0 - 40 0 - 13 0 - 35

handheld Static scene captured with a handheld camera 0 - 4 0 - 34 0 - 12 0 - 23

*lolm Large object displacement with large motion. 0 - 2 0 - 42 0 - 7 0 - 24

*losm Large object displacement with small motion. 0 - 3 0 - 42 0 - 9 0 - 31

multiview Multi-view sequence of a static scene. 0 0 - 37 0 - 12 0 - 6

*nrm Motion of non-rigid and high texture objects. 0 - 1 0 - 44 0 - 9 0 - 24

*occlusion Scene containing occlusion. 0 0 - 41 0 - 7 1 - 30

*solm Small object displacement with large motion. 0 - 5 0 - 45 0 - 9 1 - 33

*sosm Small object displacement with small motion. 0 - 5 0 - 44 0 - 9 1 - 35

Table 2: Dynamic range of the captured HDR ground truth image in orders of magnitude, measured as the logarithm of the

ratio between the brightest and the darkest luminance present in the scene: log10(Y peak/Y noise).

image set 1 complex handheld lolm losm multiview nrm occlusion solm sosm

dynamic range (log10) 3.056 3.20 2.84 2.82 2.96 3.18 2.89 2.78 2.79

image set 2 complex handheld lolm losm multiview nrm occlusion solm sosm

dynamic range (log10) 2.43 2.42 2.56 2.52 2.49 2.46 2.89 2.54 2.42

image set 3 complex handheld lolm losm multiview nrm occlusion solm sosm

dynamic range (log10) 3.56 3.65 3.71 3.70 3.65 3.72 3.77 3.68 3.70

image set 4 complex handheld lolm losm multiview nrm occlusion solm sosm

dynamic range (log10) 2.72 2.85 2.84 2.89 3.26 2.95 2.90 2.70 2.72

tal number of comparison pairs was 36×
(

6
2

)

= 540.

The experiment was divided into 4 sessions, where

each session contained 9 scenes from each image

set (i.e. 135 comparison pairs) that were pre-

sented randomly for each participant. Each ob-585

server participated in all 4 sessions, where each ses-

sion lasted maximum 30 minutes. Screen position

of the images within each pair was also randomized
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Table 3: Summary of noted comments from observers during subjective evaluation.

Algorithm Motion Dynamic range

recovery

Noise Color

No-degh. Severe ghosting and

blur artefacts.

No visible artefacts. Noise in low lu-

minance regions in

some scenes.

Visible color arte-

facts in regions with

very large motion

displacement.

Hu et al. Good in deghosting. Possible dynamic

range reduction in

very high intensity

regions of the scene.

Noise visible in low

luminance regions in

some scenes.

Visible color arte-

facts in high inten-

sity regions.

Photomatix Ghost and blur

artefacts in regions

with large motion

displacement.

Reduced dynamic

range in some

scenes.

Noise in low lu-

minance regions in

some scenes.

No visible artefacts.

Photoshop Generally good in

deghosting.

Reduced dynamic

range in some

scenes.

Noise in low lu-

minance regions in

some scenes.

Visible color arte-

facts in high inten-

sity regions in some

scenes.

Sen et al. Good in deghosting.

Contains ghost arte-

facts in scenes that

contain very large

over saturated re-

gion.

No visible artefacts. Noise visible in low

luminance regions.

No visible artefacts.

Silk et al. Visible blur. Pro-

duces large ’washed

out’ patches where

there was motion.

Severe loss of dy-

namic range, espe-

cially in regions that

contain motion.

No visible artefacts. Dark images, loss of

color.

(left/right). Each image pair was displayed side by

side on two 21′′ 1600×900 HP 2011x LCD monitors.590

Monitors were rotated 20◦ around the vertical axis

(to be perpendicular to the viewing direction) and

at an eye level of the participants, with a view-

ing distance of 70 cm. All experiments were per-

formed in a dark room where the only light source595

was coming from a corridor light, which was con-

stant throughout the experiments. Based on the

most common artefacts that could be introduced

by a deghosting process [24], the participants were

asked to choose the preferred image based on the600

following criteria: firstly, select an image that has

the least amount of motion artefacts. If it is not

possible to make a difference between an image pair

based on motion artefacts, (i.e. there was no vis-

ible difference in motion artefacts between image605

pair), select the image that has lower amount of

any of the following three artefacts: loss of details

in under-/over-exposed regions, an image with least

amount of color artefacts, or an image with least

amount of noise, if any. If there was no visible610

difference between images, participants still had to

make a choice between the images. An observer was

asked to note down some general comments about

the presented images. Table 3 provides a summary
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of noted comments. No time limit was imposed dur-615

ing a selection of the preferred image. Before the

start of the experiment, a short briefing on possi-

ble multi-exposure HDR deghosting artefacts was

presented to the participants. A pilot study was

performed to evaluate the time required for partic-620

ipants to perform an experiment session, and the

overall clarity of the experiment.

6. Objective Evaluation

Six objective metrics were tested whether they

can predict deghosting artefacts. The input into625

full-reference objective metrics was two HDR im-

ages, a reference and a test image. Because each

evaluated method produces slightly different HDR

pixel values (in terms of both contrast and absolute

values), test and reference HDR images were gen-630

erated individually by each method. To minimize

possible small pixel misalignments, each reference

image was aligned to the test image by homographic

transformation found from SURF key-point match-

ing (pfsalign command from pfstools [46]) which im-635

plements an HDR alignment algorithm introduced

by Tomaszewska et al. [47]. The input into reduced

reference UDQM [18] metric is a stack of multi-

exposures, acquisition settings (exposure time, ISO

and f-number) and a deghosted image. Handheld640

images were also aligned by [47].

7. Results

7.1. Subjective experiment results

The results of the subjective experiments were

analyzed by estimating which portion of the pop-645

ulation would select one algorithm over another.

To do this, pairwise comparison data was scaled

in Just-Noticable-Difference (JND) units (Figure 2)

under Thurstone Case V assumptions, where the

difference in 1 JND unit corresponds to 75% of ob-650

servers selecting one algorithm over another. To

scale the pairwise comparison data in JND units,

we applied Bayesian method of Silverstein and Far-

rel [48]. Briefly, the method scales the collected

data by solving for maximum likelihood estima-655

tor explaining the experiment under the Thurstone

Case V assumptions. Applied Bayesian method

is robust to unanimous answers, which are com-

mon when a large number of methods are com-

pared. For better visualization, JND value for ’non-660

deghosted’ method is set to the baseline 1. In this

manner, JND values greater than one indicate that

the deghosting method generates an HDR image

which reduces artefacts, and values less than one

indicate that the deghosting method introduces dif-665

ferent types of artefacts during the deghosting pro-

cess. The error bars in Figure 2 denote 95% con-

fidence intervals computed by bootstrapping JND

values.

The results show that Sen et al.’s method outper-670

forms other algorithms for almost all motion types

in image sets 1, 2, and 3 (see Figure 2, 3, 4, 5, 6,

7, 8). In general, the method is good in deghosting

all tested motion types, the only challenge for this

algorithm are the scenes where the reference image675

is over saturated (e.g. scenes in image set 4), and

the method produces visible artefacts (Figure 10).

The algorithm by Hu et al. is the second best

performing algorithm in image sets 1 and 2. In im-

age set 3, this algorithm produces color artefacts in680

over-saturated regions. These artefacts are mostly
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visible in area close to the lamp’s light bulb in most

of the scenes in image set 3 (Figure 9). Similarly

to Sen et al.’s method, Hu et al.’s method is gener-

ally good in deghosting for all motion types (includ-685

ing complex motion and non-rigid motion, Figure

5). Like Sen et al.’s method method, Hu et al.’s

method also generates visible artefacts in regions

where the reference image is over-saturated (scenes

from image set 4, Figure 10).690

In general, it was found that Photoshop outper-

forms Photomatix in almost all scenes. It has also

been observed that the dynamic range of moving

content is often reduced in images produced by

Photoshop and Photomatix. Furthermore, for some695

scenes, Photoshop produces color artefacts in high

intensity regions. Figure 9 shows such artefacts.

Both methods struggle with non-rigid motion gen-

erating motion artefacts (Figure 5 ).

Subjective results show that for most scenes,700

Silk et al.’s algorithm has the lowest score from

the evaluated algorithms (not considering the non-

deghosted image). It has also been observed that

Silk et al. algorithm produces images of reduced

dynamic range and the black level is elevated (see705

Figure 5, 6, 7, 8).

The results of the subjective experiments were

also used to compute statistical significance of the

differences, between the algorithms by performing

multiple comparison test. Figures 3 and 4 show710

ranking and rating of the evaluated methods using

such analysis. Evaluated algorithms are ordered ac-

cording to their ranking, with the most preferred al-

gorithm on the right. The X-axis represents rating

of each algorithm, expressed in JND units, where715

higher number of votes corresponds to higher qual-

ity. The algorithms connected by the continuous

blue lines are statistically different at the signifi-

cance level α = 0.05. The red dashed lines in-

dicate no statistical difference between the meth-720

ods or that the difference cannot be measured with

the collected data. These figures show that Sen et

al.’s method was significantly better than Hu et al.’s

method in 24 out of 36 scenes. The results also show

that Photoshop’s method was significantly better725

than Photomatix’ method in 22 out of 36 scenes.

7.2. Objective metric results

To measure the success of objective quality met-

rics, the metric prediction error was determined by

Spearman (ρ) and Pearson (r) correlation coeffi-730

cients computed between subjective experiment re-

sults scaled in JND units and objective quality met-

rics’ values.

To compute Spearman and Pearson correlation

scores, for each scene category (see Table 1), we735

grouped a set of JND values (i.e. from 6 evaluated

algorithms), across all four image sets and com-

puted the correlation with each objective quality

metric result, which were also grouped across image

sets for each scene category. Thus, for each scene740

category, two vectors of size 1 × 24 (6 algorithms

×4 image sets) were used to compute Spearman

and Pearson correlation coefficients.

Since the relation between subjective JND values

and objective metric prediction can be non-linear, a745

logistic function was fitted to map from the metric

scores to JND values. This is a standard procedure

when using Pearson correlation to evaluate metric

performance [49].

The limitation of JND scaling is that the JND750
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Figure 2: The results of the subjective experiment for all 4 image sets scaled in JND units (higher the values, the better) under

Thurstone Case V assumptions, where the difference in 1 JND unit corresponds to 75% of observers selecting one algorithm

over another. Absolute values are arbitrary and only the relative differences are relevant. The error bars denote 95% confidence

intervals computed by bootstrapping.

values give only relative measure of quality across

compared conditions, by themselves they cannot

provide absolute measure of quality. As a conse-

quence of that, the JND values measured for one

scene are not comparable to JND values measured755

for another scene. Because of that, we were able to

compute metric correlation values only separately

for each scene in our prior conference paper [28].

To be able to compute a single correlation score

across all scenes, in this work we adjust the JND

values for each scene to so that they are comparable

across all scenes. To do this, we introduce an offset

ok when fitting the logistic function:

f(x) =
a0

1 + e−a1∗(x−a2)
+ ok (4)

where x are objective metric outputs, a0, a1, and

a2 are the logistic function parameters that deter-760

mine its shape. ok is a score offset value for scene

k. When fitting a logistic function, an individual

ok value was found for each scene in our dataset,

except the first scene, which served as a point of

reference. The fitting was repeated for each objec-765

tive metric.

An example of logistic function fitting is dis-

played in Figure 11. Values highlighted bold in

Table 4 represents statistically significant Spear-
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Figure 3: Ranking and rating of the evaluated algorithms for image set 1 and image set 2. Algorithms are ordered according

to their ranking, with the most preferred algorithm on the right. The X-axis represents rating of each algorithm, expressed in

JND units, where higher number of votes corresponds to higher quality. Blue continuous lines indicate statistical significance

at α = 0.05, and red dashed lines indicate lack of the statistical difference.

16



Figure 4: Ranking and rating of the evaluated algorithms for image set 3 and image set 4. Notation is the same as in Figure 3
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Figure 5: Outputs of images generated by HDR deghosting algorithms (image set 3, non-rigid motion scene). Moving objects

in the scene are white roses and small violet plant in the vase (i.e. non-rigid objects). (a) Silk et al.’s method generates motion

artefacts in non-rigid regions of the scene. In addition, this method produces color artefacts, reconstructing an unnatural

looking image resulting in worst ranked method in subjective experiment (Fig 2). Both (c) Photoshop and (d) Photomatix

produce motion artefacts in non-rigid region of the scene (marked regions in (c) and (d)). (e) Hu et al. and (f) Sen et al.

perform well in deghosting non-rigid objects. However, Sen et al. outperforms Hu et al., due to the color artefacts generated

by Hu et al.’s method (marked region in (e)).

Figure 11: An example of logistic function fitting for

PU2PSNR metric.

man and Pearson correlation scores at α = 0.05770

using a t-test distributed as Student’s distribution

with 18 degrees of freedom. For each objective met-

ric, expected value for all 36 scenes was computed

by bootstrapping JND values. Bootstrapping (i.e.

random sampling with replacement of collected sub-775

jective data) was done to create multiple random-

ized samples of the same size so that confidence

intervals and expected values could be computed.

500 bootstrap samples were generated and the data

was scaled in JND units for each bootstrap sample.780

Figure 13 shows Spearman and Pearson correla-

tion scores where error bars denote 95% confidence

intervals also computed by bootstrapping.

For completeness, we also computed per scene

Spearman and Pearson correlation coefficients be-785
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Figure 6: Tone mapped outputs of images generated by HDR deghosting algorithms, (image set 1, complex scene). Marked

regions in images (a), (b), (c) and (d) show artefacts generated by No deghosting, Silk et al., Photomatix and Photoshop

methods respectively. Images generated by Hu et al. and Sen et al. methods do not produce any visible ghosting artefacts and

are therefore not shown in this figure.

tween subjective results and objective scores for

each image set (Tables 5 - 8). For Pearson cor-

relation, fitting of the logistic function of the form

in Equation 4 was again used, but without the off-

set vector ok, because per scene rather than across790

scenes correlation was used. Table 9 shows the ag-

gregate results for each scene category, where values

are averaged across image sets using the computed

per scene correlations displayed in Tables 5 - 8.

The results shown in all correlation tables (i.e.795

Tables 4 - 9) show that HDR-VDP-2 metric has the

highest correlation scores for almost all scenes. One

of the emerging patterns for full reference metrics is

that in general, all metrics except the HDR-VDP-

2, show weak correlation for the small-object-small-800

motion (sosm) scene. Even HDR-VDP-2 metric has

the lowest correlation score for this scene in image

set 1 (Table 5) and image set 2 (Table 6), when

compared to HDR-VDP-2 scores of other scenes.

In particular for complex motion scenes, as well as805

for scenes with large displacements of large objects,

the correlation results of full reference metrics are

higher than for small motion displacements and mo-

tion of small objects. This suggest that human eye

may not be as sensitive to these small pixel changes810

as computational metrics.

Figure 12 shows the graph for HDR-VDP-2 ’Q’

results (higher the values, the better). These re-
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Figure 7: Outputs of images generated by HDR deghosting algorithms with 5 exposures, (image set 2, large object large motion

scene). Marked regions in images (b), (c) and (d) indicate artefacts produced by No deghosting, Silk et al. and Photomatix

methods respectively. Images generated by Photoshop, Hu et al.’s and Sen et al.’s methods do not produce any ghosting

artefacts and are therefore not shown in this figure.

sults can be used to compare the performance

of other existing and future deghosting methods815

against those already tested, by simply applying

that method to benchmark dataset images by com-

puting the ’Q’ value HDR-VDP-2 metric.

Low correlation scores for Liu et al.’s metric im-

ply that this metric is not suitable for evaluating820

HDR deghosting methods.

8. Discussions and Conclusions

This paper is an extended version of our con-

ference paper [28], where subjective and objective

assessment of five state-of-the-art HDR deghosting825

algorithms has been performed. The extensions in-

clude addition of one more objective quality metric

(i.e. UDQM metric) in the evaluation; summary

of comments for evaluated HDR deghosting algo-

rithms obtained during the subjective experiments;830

statistical significance plots for JND units; compu-

tation of Spearman and Pearson correlation coef-

ficients for each scene category by grouping both

subjective and objective scores across image sets,

as well as per scene correlations; expected values835

and confidence intervals of Spearman and Pearson

correlation coefficients computed by bootstrapping

JND scores. The paper also includes a more de-

tailed insight of subjective experiment results that

includes several additional figures which visualize840

artefacts generated by evaluated HDR deghosting

algorithms.

We created a comprehensive dataset that can be

used to evaluate multi-exposure HDR deghosting

algorithms. Because algorithm performance may845

be scene dependent, we created a benchmark HDR

dataset that consists of 36 scenes, each posing a dif-

ferent challenge to a deghosting algorithm. Other
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Figure 8: Outputs of images generated by HDR deghosting algorithms with 5 exposures, (image set 3, complex scene). All of

the methods struggle with reconstructing the high-intensity region of the scene, with Sen et al.’s method producing the best

results. Marked regions indicate various artefacts: in (b) No deghosting method produces ghosting and color artefacts, in (c)

Silk et al. produces ghost, reduced dynamic range and color artefacts, in (d) Photomatix and (e) Photoshop generate images

with reduced dynamic range (around the light bulb) and ghost artefacts (below the table), and in (f) Hu et al. and (g) Sen et

al. methods produce an image with reduced dynamic range.

than the larger number of scenes, the main differ-

ence between the benchmark HDR dataset provided850

by Tursun et al. [17] and our dataset is that our

dataset also contains multi-exposure sequence of

reference (ground truth) images without any ghost-

ing. This feature of the captured dataset makes

it also suitable to be used with the full-reference855

quality metric, such as HDR-VPD-2, PU2PSNR,

and PU2SSIM. Captured dataset is made publicly

available and can therefore be used for future eval-

uations of existing and future HDR deghosting al-

gorithms. Then, subjective experiments were per-860

formed based on the most common HDR deghosting

algorithms’ artefacts. Besides analyzing the subjec-

tive results, from the graph obtained by scaling the

results of the subjective experiment in JND units,

we also computed statistical significance of the dif-865

ferences between algorithms.

From the results based on the performed evalua-

tion we make the following observations which pro-

vide strengths and weaknesses of evaluated meth-

ods:870
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(a) No deghosting (b) Photoshop

(c) Silk et al. (d) Hu et al.

Figure 9: Visible color artefacts generated in over-saturated region of the scene (image set 3, handheld scene), generated by

(a) No deghosting, (b) Photoshop, (c) Silk et al.’s and (d) Hu et al.’s methods.

Figure 10: Outputs of images generated by (b) Hu et al.’s and (c) Sen et al.’s methods produce visible artefacts (image set 4,

small object large motion scene). Marked region in image (b) shows reduced dynamic range produced by Hu et al.’s method

in over-saturated region of the scene, and in image (c) ghost artefact produced by Sen et al.’s method.
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Figure 12: The results of the HDR-VDP-2 metrics for all 4 image sets (higher the values, better the result).

Table 4: Spearman’s (ρ) and Pearson’s (r) correlation coefficients for all image sets for relation between objective metric

predictions and subjective evaluation scores. Correlation scores are computed for each scene category by grouping values

across all four image sets. Bolded values represent statistically significant correlation scores at α = 0.05. Expected values are

computed by bootstrapping.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 0.86 0.76 0.82 0.79 0.95 0.90 0.88 0.87 0.39 0.32 0.28 0.24 0.30 0.29

handheld 0.88 0.75 0.90 0.90 0.92 0.87 0.88 0.87 0.17 0.08 0.14 0.04 -0.02 0.07

lolm 0.88 0.69 0.70 0.50 0.87 0.81 0.83 0.68 0.16 0.28 0.05 -0.02 0.09 0.01

losm 0.63 0.52 0.59 0.50 0.73 0.67 0.54 0.48 0.51 0.66 0.02 -0.01 0.01 -0.06

multiview 0.79 0.78 0.81 0.70 0.91 0.84 0.74 0.69 0.35 0.34 -0.23 -0.21 0.31 0.28

nrm 0.64 0.65 0.69 0.56 0.90 0.84 0.51 0.60 0.42 0.59 -0.12 -0.02 -0.11 -0.07

occlusion 0.74 0.68 0.68 0.44 0.94 0.81 0.69 0.57 0.30 0.37 0.05 -0.03 -0.14 -0.08

solm 0.57 0.58 0.44 0.36 0.85 0.76 0.45 0.37 0.44 0.52 -0.02 -0.05 -0.03 -0.06

sosm 0.40 0.42 0.48 0.39 0.71 0.67 0.21 0.34 0.45 0.68 -0.06 0.00 0.04 0.00

Expected value 0.71 0.62 0.66 0.56 0.85 0.77 0.62 0.59 0.35 0.40 0.07 0.03 0.09 0.08
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Figure 13: Spearman and Pearson correlation scores for all image sets. Correlation scores are computed for each scene category

by grouping values across all four image sets. The error bars denote 95% confidence intervals computed by bootstrapping.

Table 5: Per scene Spearman’s (ρ) and Pearson’s (r) correlation coefficients for relation between objective metric predictions

and subjective evaluation scores for image set 1. Bolded values represent statistically significant correlation scores at α = 0.05.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 0.83 0.90 0.94 0.87 1.00 0.97 0.83 0.89 0.60 0.30 0.37 0.44 -0.14 0.25

handheld 0.77 0.92 1.00 0.96 1.00 0.98 0.77 0.97 0.60 0.16 0.26 0.08 -0.14 0.26

lolm 1.00 0.96 0.83 0.91 1.00 1.00 1.00 0.95 0.94 0.38 0.26 0.33 0.20 -0.14

losm 0.89 0.59 0.61 0.35 0.54 0.97 0.84 0.59 0.37 0.96 -0.54 -0.07 -0.43 -0.39

multiview 0.94 0.96 0.71 0.84 1.00 0.96 0.94 0.92 0.49 0.28 0.09 0.06 0.49 -0.02

nrm 0.43 0.49 0.54 0.68 0.89 0.97 0.26 0.12 0.89 0.68 0.14 0.37 -0.83 -0.73

occlusion 0.66 0.34 0.60 0.82 0.94 0.98 0.66 0.65 0.66 0.73 0.49 0.34 -0.03 0.40

solm 0.66 0.44 0.66 0.28 1.00 1.00 0.60 0.19 -0.03 0.45 0.37 0.48 0.31 -0.11

sosm 0.37 -0.05 0.35 0.08 0.49 0.33 0.37 0.04 0.71 0.98 0.77 0.98 0.37 -0.52

Average 0.73 0.62 0.69 0.64 0.87 0.91 0.70 0.59 0.58 0.55 0.24 0.33 -0.02 -0.11

Std. dev. 0.22 0.35 0.20 0.32 0.21 0.22 0.25 0.38 0.29 0.30 0.36 0.31 0.42 0.38
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Table 6: Per scene Spearman’s (ρ) and Pearson’s (r) correlation coefficients for relation between objective metric predictions

and subjective evaluation scores for image set 2. Bolded values represent statistically significant correlation scores at α = 0.05.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 0.94 0.91 0.77 0.76 1.00 0.98 0.94 0.94 0.26 0.42 0.09 0.14 0.14 0.30

handheld 0.60 0.84 0.94 0.98 0.71 1.00 0.60 0.98 0.60 0.35 0.37 0.35 -0.54 - 0.15

lolm 1.00 0.98 0.94 0.93 0.94 0.98 0.94 0.97 -0.03 0.43 -0.26 -0.03 0.03 -0.27

losm 0.43 -0.06 0.54 0.30 0.49 0.41 0.70 0.03 0.77 0.99 0.31 0.98 -0.03 -0.28

multiview 0.94 0.97 0.94 0.91 0.94 0.82 0.83 0.78 0.49 0.51 -0.03 -0.09 0.66 0.12

nrm 0.60 0.57 0.89 0.85 0.89 0.98 0.60 0.51 0.37 0.76 0.37 0.64 0.14 0.06

occlusion 0.77 0.88 0.89 0.85 0.94 0.94 0.83 0.71 0.09 0.54 -0.20 -0.38 -0.77 -0.61

solm 0.09 0.39 0.09 0.35 0.77 0.88 0.09 0.18 0.31 0.74 0.20 -0.27 -0.14 0.05

sosm 0.09 -0.30 0.03 0.01 -0.09 0.32 0.00 0.27 0.49 0.98 0.37 0.33 0.03 -0.72

Average 0.61 0.58 0.67 0.66 0.73 0.81 0.61 0.60 0.37 0.63 0.14 0.19 -0.05 -0.17

Std. dev. 0.35 0.47 0.37 0.35 0.35 0.26 0.35 0.37 0.25 0.24 0.25 0.44 0.41 0.34

Table 7: Spearman’s (ρ) and Pearson’s (r) correlation coefficients for relation between objective metric predictions and sub-

jective evaluation scores for image set 3. Bolded values represent statistically significant correlation scores at α = 0.05.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 1.00 0.96 0.66 0.78 0.94 0.94 1.00 0.95 0.26 0.34 -0.31 -0.34 -0.09 0.23

handheld 0.77 0.94 0.89 0.95 0.94 0.96 0.83 0.84 0.26 0.71 0.20 0.19 0.54 -0.08

lolm 0.83 0.98 0.54 0.53 0.89 0.94 0.83 0.92 0.14 0.53 -0.43 -0.54 -0.14 0.56

losm 0.77 0.38 0.54 0.52 0.77 0.77 0.66 0.75 0.77 0.79 -0.09 0.44 0.09 0.76

multiview 0.71 0.93 0.89 0.87 1.00 0.94 0.71 0.82 0.31 0.24 -0.31 -0.22 0.49 0.75

nrm 0.94 0.90 0.43 0.69 0.83 0.89 0.89 0.98 0.71 0.72 -1.00 -0.81 -0.43 -0.66

occlusion 0.77 0.91 0.26 0.47 0.77 0.90 0.83 0.89 0.66 0.71 0.09 0.47 -0.77 -0.71

solm 0.83 0.44 0.26 0.35 0.89 0.93 0.66 0.82 0.89 0.80 -0.89 -0.90 -0.26 -0.74

sosm 0.37 0.51 0.26 0.22 1.00 0.92 0.37 0.10 1.00 0.75 -0.94 -0.81 -0.26 0.09

Average 0.78 0.77 0.52 0.60 0.89 0.91 0.75 0.79 0.56 0.62 -0.41 -0.28 -0.09 0.02

Std. dev. 0.18 0.25 0.25 0.24 0.09 0.05 0.18 0.27 0.32 0.21 0.45 0.54 0.42 0.61

1. Sen et al.: The results show that Sen et

al.’s method outperforms other algorithms for

most scenes. In the benchmark dataset there

are scenes for which this algorithm is outper-

formed by other methods. Such scenes can be875

found in image set 4 (i.e. lolm, nrm, occlusion,

solm, sosm). By analysis, in all of these scenes,

ghost artefacts are generated in regions where

the reference image is over-saturated (Figure

10), regardless of the motion type. In fact,880

visible artefacts are produced when the refer-

ence image is over-saturated even if there is no

motion in that region of the scene. In such

scenes, even the shortest exposure contains a

25



Table 8: Spearman’s (ρ) and Pearson’s (r) correlation coefficients for relation between objective metric predictions and sub-

jective evaluation scores for image set 4. Bolded values represent statistically significant correlation scores at α = 0.05.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 0.77 0.93 0.94 0.92 0.94 0.98 0.83 0.92 0.60 0.28 0.14 -0.04 0.03 -0.30

handheld 1.00 0.99 0.94 0.97 0.94 0.98 1.00 0.98 -0.14 0.15 0.37 0.32 0.26 -0.06

lolm 0.71 0.63 0.89 0.86 0.94 0.97 0.54 0.50 -0.49 0.12 0.37 0.01 -0.49 -0.71

losm 0.49 0.26 0.54 0.74 0.89 0.77 0.26 0.38 -0.03 0.30 0.26 -0.63 0.43 0.46

multiview 0.66 0.73 0.71 0.72 0.94 0.90 0.60 0.59 0.83 0.75 -0.54 -0.63 -0.09 0.36

nrm 0.14 0.51 0.29 0.55 0.43 0.92 0.14 0.41 0.43 0.44 0.37 0.33 0.31 -0.39

occlusion 0.77 0.92 0.77 0.89 0.89 1.00 0.89 0.91 0.31 0.36 -0.49 0.11 -0.26 0.05

solm 0.37 -0.25 0.20 0.59 0.60 0.57 0.37 0.61 -0.09 -0.22 0.43 0.56 0.26 0.06

sosm 0.14 0.77 0.32 0.75 0.94 0.98 0.14 0.75 -0.03 0.22 0.14 0.77 0.26 0.77

Avg. 0.56 0.61 0.62 0.78 0.83 0.90 0.53 0.67 0.16 0.27 0.12 0.09 0.08 0.03

Std. dev. 0.30 0.40 0.29 0.15 0.19 0.14 0.32 0.23 0.41 0.26 0.37 0.48 0.30 0.46

Table 9: Spearman’s (ρ) and Pearson’s (r) correlation coefficients for relation between objective metric predictions and subjec-

tive evaluation scores. Values averaged across image sets from the computed per scene correlation scores displayed in Tables 5

- 8. Bolded values represent statistically significant correlation scores at α = 0.05.

PU2PSNR PU2SSIM HDRVDP2Q WeberRMSE UDQM LR LR with ref.

ρ r ρ r ρ r ρ r ρ r ρ r ρ r

complex 0.89 0.92 0.83 0.83 0.97 0.97 0.90 0.93 0.43 0.33 0.07 0.05 -0.01 0.12

handheld 0.79 0.92 0.94 0.97 0.90 0.98 0.80 0.94 0.33 0.34 0.30 0.23 0.03 -0.01

lolm 0.89 0.89 0.80 0.81 0.94 0.97 0.83 0.84 0.14 0.36 -0.01 -0.06 -0.10 -0.14

losm 0.64 0.29 0.56 0.48 0.67 0.73 0.61 0.43 0.47 0.76 -0.01 0.18 0.01 0.14

multiview 0.81 0.90 0.81 0.83 0.97 0.90 0.77 0.78 0.53 0.45 -0.20 -0.22 0.39 0.30

nrm 0.53 0.62 0.54 0.69 0.76 0.94 0.47 0.51 0.60 0.65 -0.03 0.13 -0.20 -0.43

occlusion 0.74 0.76 0.63 0.76 0.89 0.95 0.80 0.79 0.43 0.58 -0.03 0.13 -0.46 -0.22

solm 0.49 0.26 0.30 0.39 0.81 0.84 0.43 0.45 0.27 0.44 0.03 -0.03 0.04 -0.19

sosm 0.24 0.23 0.24 0.27 0.59 0.64 0.22 0.29 0.54 0.73 0.09 0.32 0.10 -0.10

Avg. 0.67 0.64 0.63 0.67 0.83 0.88 0.65 0.66 0.42 0.52 0.02 0.08 -0.02 -0.06

Std. dev. 0.21 0.30 0.24 0.24 0.14 0.12 0.23 0.24 0.15 0.17 0.13 0.16 0.23 0.22

very large over-saturated region. The reason885

for visible artefacts is that during patch-match,

the method fails to find the corresponding pix-

els between the reference image and other im-

ages in over-saturated regions of the reference

image.890

2. Hu et al.: Hu et al.’s method is the second

best performing method for most of the tested

scenes. For similar reasons as mentioned previ-

ously for Sen et al.’s method, this method also

produces artefacts in the regions where the ref-895

erence image is over-saturated. However, the
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artefacts produced are more severe than those

produced by Sen et al. Furthermore, Hu et al.’s

method also generates color artefacts in over-

saturated regions of the reference, producing a900

very unnatural looking image.

3. Photoshop: It was found that Photoshop

outperforms Photomatix for almost all scenes.

For complex scenes, where there is plenty of

motion and motion occurs in large region of905

the scene, Photoshop produces ghost artefacts.

However, when the motion does not occupy

large region of the scene (regardless of the mo-

tion type), the method does not produce ghost

artefacts. It was also observed that the dy-910

namic range of the moving content is usually

reduced.

4. Photomatix: It was observed that Pho-

tomatix produces ghost artefacts for complex

scenes, in particular for scenes with large ob-915

ject displacement (both for small and large ob-

jects.). Similar to the Photoshop method, Pho-

tomatix does not recover the dynamic range of

the moving content. Observed loss of dynamic

range of moving content in images produced920

by Photoshop and Photomatix suggests that

these methods may use subset of exposures to

handle ghosting.

5. Silk et al.: Silk et al. was found to have the

lowest score from the evaluated algorithms (not925

considering the non-deghosted image). Even

when this algorithm performed well in deghost-

ing, the low score can be mainly contributed

due to the ’washed out’ faded trail generated

by the algorithm usually in the region where930

there was object movement.

As reported in [11], Granados et al.’s method per-

forms better than Sen et al.’s method for cluttered

scenes with large object displacements. Because

Granados et al.’s method is based on modelling935

noise distribution of color values measured by the

camera, it is also expected to perform very well in

terms of noise reduction. Therefore, we would ex-

pect the method to produce images that contain less

noise than Sen et al.’s method (which has been ob-940

served to contain noise in low-luminance regions in

some scenes). Granados et al.’s method might also

produce potentially better results for image set 4

scenes (especially those with large object displace-

ments) where Sen et al.’s method generated visible945

artefacts. Because we did not have a chance to eval-

uate Granados et al.’s method, it should be part of

future evaluations of deghosting algorithms.

After subjective evaluation, a set of 6 suitable ob-

jective metrics were evaluated to test whether they950

can be used to assess HDR deghosting algorithms.

To measure the success of objective quality metric

results, Spearman and Pearson correlation coeffi-

cients between subjective and objective scores were

computed by bootstrapping.955

We found that existing full-reference image qual-

ity metric correlate well with subjective assessment

of deghosting artefacts. The best performing met-

ric, HDR-VDP-2, resulted in Pearson and Spear-

man correlation values between 0.67 and 0.95. Sim-960

pler metrics, such as PU2PSNR and PU2SSIM re-

sulted in the correlation values between 0.39 and

0.90. The good performance of HDR-VDP-2 for
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Figure 14: Outputs of images generated by (a) Silk et al.’s and (b) No deghosting (c) Photomatix (d) Photoshop (e) Sen et

al.’s and (d) Hu et al.’s algorithms (image set 2, occlusion scene) ordered from worst to best performing method according to

the subjective evaluation scores (2). UDQM metrics ranks ’No deghosting’ method as best performing followed by Hu et al.’s,

Photoshop, Photomatix, Sen et al.’s and Silk et al.’s methods. This contradicts the perceived subjective image quality.

our dataset can be attributed to the human vi-

sual system model around which the metric is built.965

The main limitation of the full-reference metrics is

that they require reference ground truth images,

which are typically not available for multi-exposure

sequences. The non-reference metric, UDQM, is

free from this limitation and it can be used in970

cases where full-reference metrics are not applica-

ble, such as Khan et al.’s method, which removes

moving objects. However, we found that UDQM

correlates poorly with our subjective data. Figure

14 demonstrates an example where the results of975

UDQM have low correlation with perceived subjec-

tive image quality. One reason for low correlation

of UDQM metric could be due to over-training and

limited cross-validation used to validate this metric.
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