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Abstract 

It is well-established that brain structures and cognitive functions change across the lifespan. A longstanding 

hypothesis called age differentiation additionally posits that the relations between cognitive functions also 

change with age. To date however, evidence for age-related differentiation is mixed, and no study has 

examined differentiation of the relationship between brain and cognition. Here we use multi-group 

Structural Equation Modeling and SEM Trees to study differences within and between brain and cognition 

across the adult lifespan (18-88 years) in a large (N>646, closely matched across sexes), population-derived 

sample of healthy human adults from the Cambridge Centre for Ageing and Neuroscience (www.cam-

can.org). After factor analyses of grey-matter volume (from T1- and T2-weighted MRI) and white-matter 

organisation (fractional anisotropy from Diffusion-weighted MRI), we found evidence for differentiation 

of grey and white matter, such that the covariance between brain factors decreased with age. However, we 

found no evidence for age differentiation between fluid intelligence, language and memory, suggesting a 

relatively stable covariance pattern between cognitive factors. Finally, we observed a specific pattern of age 

differentiation between brain and cognitive factors, such that a white matter factor, which loaded most 

strongly on the hippocampal cingulum, became less correlated with memory performance in later life. These 

patterns are compatible with reorganization of cognitive functions in the face of neural decline, and/or 

with the emergence of specific subpopulations in old age.  
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Significance statement  

The theory of age differentiation posits age-related changes in the relationships between cognitive 

domains, either weakening (differentiation) or strengthening (de-differentiation), but evidence for 

this hypothesis is mixed. Using age-varying covariance models in a large cross-sectional adult 

lifespan sample, we found age-related reductions in the covariance among both brain measures 

(neural differentiation), but no covariance change between cognitive factors of fluid intelligence, 

language and memory. We also observed evidence of uncoupling (differentiation) between a white 

matter factor and cognitive factors in older age, most strongly for memory. Together, our findings 

support age-related differentiation as a complex, multifaceted pattern that differs for brain and 

cognition, and discuss several mechanisms that might explain the changing relationship between 

brain and cognition. 

 

1. Introduction 

To understand healthy ageing, we must understand the relationship between brain changes and 

cognitive changes. Although much is known about changes in individual measures such as brain 

volume or memory performance, less is known about age-related changes in the interrelations 

between neural and cognitive measurements. The age differentiation hypothesis describes changes in 

the organization of cognitive abilities, where differentiation is defined as a low covariance 

relationship among abilities or factors (Spearman, 1927; Deary & Pagliari, 1990; Hülür, Wilhelm, 

& Robitzsch, 2011, Blum & Holling, 2017).  As people age, there is considerable evidence that 

they display a loss of differentiation, where cognitive abilities become more correlated, known as 

de-differentiation (Garrett, 1946; Baltes & Lindenberger, 1997; Ghisletta & Lindenberger, 2003; de 

Frias et al., 2007). However, evidence for this age differentiation-dedifferentiation hypothesis is 

mixed: Some studies observe a pattern of increase in differentiation followed by de-differentiation 

(Li et al., 2004), a meta-analysis observed a weak but significant differentiation effect with age 

(Blum & Holling, 2017), whereas others observe no change in differentiation (Deary et al., 1996; 
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Juan-Espinosa et al., 2002; Zelinski, & Lewis, 2003; Tucker-Drob, 2009; Molenaar et al., 2017). 

These differences may partly reflect differences in analytical methods, cohorts and sample sizes 

(Molenaar et al., 2010).  

Even less is known about changes in brain organisation as captured by structural covariance, 

meaning the extent to which regional brain structures covary across individuals (Mechelli et al., 

2005; Alexander-Bloch, Giedd, & Bullmore, 2013; for brain function, see Park et al., 2004). 

Previous studies have demonstrated that measures of structural covariance show similarities with 

structural connectivity and resting-state functional connectivity (Damoiseaux & Greicius, 2009; 

Seeley et al., 2009; Honey et al., 2009, Alexander-Bloch, Giedd, & Bullmore, 2013; but see Di et 

al., 2017; Tsang et al., 2017) as well as with developmental trajectories (Zielinski, et al., 2010; 

Alexander-Bloch et al., 2013). Despite this interest, few studies have used principled methods to 

investigate whether age-related (de)differentiation occurs for neural measures such as grey matter 

volume and white matter microstructure. One notable exception is the work by Cox et al. (2016), 

who found that a single factor for white matter became more prominent with increasing age, 

suggesting age de-differentiation. A final open question is whether age (de)differentiation occurs 

not just within neural or cognitive domains, but also between brain and cognition, such that 

psychological factors become more or less strongly associated with brain structure across the 

lifespan.  

Understanding the process of age differentiation is crucial for theories of cognitive 

development and ageing. Older adults may display changes in cognitive strategies: For instance, 

older individuals may rely more on perceptual salience rather than attentional focus, likely due to 

poorer internal cues (Lindenberger & Mayr, 2014). Within the neural domain, changes in 

covariance may reflect a range of important biological processes, including adaptive reorganization 

(e.g. Cabeza et al., 2002; Greenwood, 2007; Park & Reuter-Lorenz, 2009), regional (Gianaros et 

al., 2006) or global (Cox et al., 2016) vulnerability to disease states, accumulating structural 
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consequences of lifespan functional connectivity (Seeley et al., 2009), and/or emergence of 

subgroups that differ in the extent to which they display these patterns. 

If age-related changes in cognitive strategy help counter neural decline, then such strategies 

may eventually induce a more diffuse covariance patterns. For instance, theories of functional 

plasticity (Greenwood, 2007) and cognitive reserve (Whalley et al., 2004) suggest that adaptive 

reorganisation in old age leads to decreased covariance between brain structure and cognitive 

performance. Conversely, theories such as brain maintenance, where preserved cognitive 

functioning is directly related to maintained brain capacity (e.g. Nyberg et al., 2012), do not predict 

age-related changes in brain-cognition covariance.  

 Here we examine age differentiation in a large, healthy, population-derived sample (18-88 

years; Cam-CAN, Shafto et al., 2014), using multigroup structural equation modeling (SEM) and 

SEM-trees. To the best of our knowledge, this is the first study to simultaneously examine age 

(de)differentiation of grey matter, white matter and cognitive factors.  

 

2. Methods 

2.1 Participants 

As part of Phase 2 of the Cambridge Centre for Ageing and Neuroscience (Cam-CAN), data on a 

wide range of lifestyle, cognitive and neural tests was collected from a healthy, population-based 

human adult sample, described in more detail in (Shafto et al., 2014). Exclusion criteria include 

low Mini Mental State Exam (MMSE) (24 or lower), poor hearing (failing to hear 35dB at 1000 

Hz in either ear), poor vision (below 20/50 on Snellen test), poor English knowledge (non-native 

or non-bilingual English speakers), self-reported substance abuse, an indication by the participants’ 

Primary Care Physician that participation would not be appropriate,  and serious health conditions 

that affect participation (e.g. self-reported major psychiatric conditions, current 

chemo/radiotherapy, or a history of stroke). We also excluded people with MRI contraindications 

including disallowed implants, pacemakers, recent surgery or any previous brain surgery, current 
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pregnancy, facial- or very recent tattoos, or a history of multiple seizures or fits) as well as comfort-

related contraindications (e.g. claustrophobia or self-reported inability to lie still for an hour). A 

total of 707 people was recruited for the cognitive assessment (359 females and 348 males) 

including approximately 100 individuals from each decile (age range 18-88, M=54.63, SD=18.62); 

usable grey matter was collected from 651 people and white matter from 646 people; sample sizes 

that are sufficient for moderately complex structural equation models (Wolf et al., 2013). Ethical 

approval for the study was obtained from the Cambridgeshire 2 (now East of England-Cambridge 

Central) Research Ethics Committee. Participants gave full informed consent. The raw data to 

reproduce all analyses can be acquired through the Cam-CAN data portal (https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/index.php). 

 

2.2 Grey Matter (GM) 

      

Figure 1. Nine grey and ten white matter tracts as defined by Montreal Neurological Institute (Mazziotta et al., 
2001) and Johns Hopkins University white-matter tractography atlas (Hua et al., 2008). 
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     To examine grey matter structure, we estimated grey matter volume (GMV) based on the 

combined segmentation and normalization of 1mm3, T1- and T2-weighted MR images. For more 

detail on the preprocessing pipeline, see Taylor et al. (2017). We here use GMV for nine ROIs as 

defined by the Montreal Neurological Institute (Mazziotta et al., 2001). This atlas captures a set of 

canonical grey matter structures and has a similar number of ROI’s (nine versus ten) as our white 

matter measure (see below), allowing us to compare evidence for (de)differentiation across grey 

and white matter using models of comparable complexity. The nine ROIs in the MNI atlas are 

Caudate, Cerebellum, Frontal Lobe, Insula, Occipital Lobe, Parietal Lobe, Putamen, Temporal 

Lobe and Thalamus (Figure 1). 

 

2.3 White Matter (WM) 

   To investigate covariance in white matter structure, we estimated Fractional Anisotropy (FA) 

values in a set of white-matter ROIs. FA is a measure of the diffusivity of water molecules that is 

thought to reflect fiber density, axonal diameter and myelination. It is also sensitive to age-related 

changes in cerebral myelin (Kochunov et al., 2012), although there is discussion on the challenges 

and limitations of FA (Jones & Cercignani, 2010; Jones, Knösche, & Turner, 2013; Arshad, Stanley, 

& Raz, 2016; Wandell, 2016). We computed the mean FA for ten ROIs as defined by Johns 

Hopkins University white-matter tractography atlas (Figure 1; Hua et al., 2008): Anterior Thalamic 

Radiations (ATR), Cerebrospinal Tract (CST), Dorsal Cingulate Gyrus (CING), Ventral Cingulate 

Gyrus (CINGHipp), Forceps Major (FMaj), Forceps Minor (FMin), Inferior Fronto-Occipital 

Fasciculus (IFOF), Inferior Longitudinal Fasciculus (ILF), Superior Longitudinal Fasciculus (SLF) 

and the Uncinate Fasciculus (UNC). For further details on the white matter pipeline, see Kievit et 

al. (2016). 
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2.4 Cognitive tasks 

   Five cognitive tasks were used to assess cognitive processing across three broad cognitive 

domains: language, memory and fluid intelligence. Language was measured using two tasks: 1) the 

Spot-the-Word test (Baddeley, Emslie, & Nimmo-Smith, 1993), in which word-nonword pairs (e.g. 

‘daffodil-gombie’) are presented and the participant has to decide which is the real word, and 2) a 

proverb comprehension test, in which participants were asked to provide the meaning of three 

common proverbs in English (e.g. “Still waters run deep”) yielding a score between 0 and 6. Our 

measure of fluid intelligence was the standard form of the Cattell Culture Fair, Scale 2 Form A 

(Cattell, 1971). This pen-and-paper test contains four subsets with different types of abstract 

reasoning tasks, namely matrices, series completion, classification and conditions. Finally, the third 

domain memory was assessed using measures of immediate and delayed (after 30-minutes) story 

recall, as well as recognition, from the logical memory sub-test of the Wechsler Memory Scale 

Third UK edition (Wechsler, 1997). 

 

2.5 SEM Analyses 

   To improve convergence, prior to the SEM analyses, the neural and cognitive measures were 

scaled to a standard normal distribution. We used full information maximum likelihood estimation 

(FIML) and Robust Maximum Likelihood estimator with a Yuan-Bentler scaled test statistic (MLR) 

to account for violations of multivariate normality. To ensure possible outliers did not affect the 

results, we fit the models with both full data as well as data treating univariate outliers (z-scores 

greater than 4 or -4) as missing. Doing so did not affect any model comparison meaningfully, so 

we report the results for the full dataset.  We used SEM to test for evidence for neural and cognitive 

age (de)differentiation in the following three steps: 1) establish an appropriate measurement model, 

2) examine adult lifespan patterns of the factor scores, and 3) formally test for age 

(de)differentiation using Multigroup confirmatory factor analysis (MGCFA) and SEM trees (see 

below for more detail).  
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   All models were fit using the package Lavaan (Rosseel, 2012) in the statistical software R (R Core 

Team, 2016). We assessed overall model fit using the χ2 test, RMSEA and its associated confidence 

interval, CFI and SRMR (Schermelleh-Engel, Moosbrugger, & Müller, 2003). We considered good 

fits as follows: RMSEA < 0.05 (0.05-0.08 is acceptable), CFI > 0.97 (0.95-0.97 is acceptable) and 

SRMR < 0.05 (0.05-0.10 is acceptable). For the MGCFA, we compared models directly with the 

likelihood ratio test, the AIC and Akaike Weights (Wagenmakers & Farrell, 2004) and the sample 

size adjusted BIC (saBIC, with associated Schwarz weights). For all age comparisons, we defined 

three discrete, equally sized subgroups: Young, Middle and Old (see Table 1). For each lifespan 

multigroup comparison, we compared a model where factor covariance was equality-constrained 

across the three age groups to a model where they were freely estimated. In the constrained model, 

all parameters were constrained between the groups, except for the means of the factors (to allow 

for age-related declines). By comparing these nested models, we could determine whether there is 

evidence for changing factor covariance structure across the lifespan. 

 

 

 

 Age group Sample size (N) Mean age (M) Standard deviation age (SD) 

Grey Matter Young 217 32.82 6.92 

 Middle 217 54.56 6.25 

 Old 217 75.56 5.91 

White Matter Young 215 32.87 6.89 

 Middle 216 54.69 6.32 

 Old 215 75.66 5.85 

Cognition Young 235 33.10 7.19 

 Middle 236 54.86 6.37 

 Old 236 75.84 5.87 

Table 1 Demographics of age groups (young, middle and old) for neural and cognitive measures 
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In cases where the likelihood ratio test yielded evidence for age differentiation, we 

visualised the differences by using a technique inspired by Local Structural Equation Models 

(LSEMs; Hildebrandt, Wilhelm, & Robitzsch, 2009; see also Hu ̈lür et al., 2011). This technique 

allows us to visualize age gradients in model parameters of the covariance structure in a more 

continuous matter, rather than creating age groups. To do so, we estimated the covariance between 

factors using a series of age-weighted SEMs for the CFA models with subsets of the sample (N = 

260 for WM; N=300 for GM, due to estimation variability) in one-year steps from 18 to 88 years. 

Next, a kernel function was used to weigh and smooth the observations according to the age 

gradients (Hildebrandt et al., 2009). The following bandwidth (bw) of the kernel function was used 

to smooth the age-weighted samples: 

 

                            𝑏𝑤 = 2	×	𝑁()* +)×	𝑆𝐷/01                                                                  (1)       

 

    Visualizing factor covariance allowed for the identification of lifespan patterns including 

differentiation and de-differentiation. If the data are in line with age differentiation, we expect to 

find that the nested multigroup model with the freely estimated covariance structure is preferred, 

in such a way that the older subgroup has lower covariance between factors. Evidence for age de-

differentiation would suggest a preference for the freely estimated model, but with higher 

covariance between the factors in the older subgroup. We first examine differentiation within each 

domain (grey matter, white matter and cognition), and finally examine brain-cognition covariance 

differences. Finally, we used Structural Equation Model Trees (SEM Trees), which combine the 

strength of Structural Equation models (SEM) and decision trees (Brandmaier et al., 2013, 2016). 

SEM trees partition a dataset repeatedly into subsets based on some covariate(s) of interest to 

examine whether a likelihood ratio test suggests sufficient evidence of significantly different 

parameter estimates in each possible subgroup. This method allows us to find covariates and 



	 10	

covariate interactions that predict differences in model parameters (in observed and latent space) 

in a hierarchical fashion. The addition of SEM Trees to the multigroup analyses enables us to 

analyse age in a continuous nature and trace potential age differences in optimal splits. In this 

study, SEM Trees were used to investigate whether the covariance structure in the same neural 

and cognitive factors model as used in the multigroup SEM models changed with age. According 

to the (de)differentiation hypothesis, SEM Trees would split the dataset into subsets with different 

covariance structures according to the continuous covariate age. 

    All SEM Trees were analyzed with the package ‘SEM Trees’ (Brandmaier et al., 2013) in R using 

on the OpenMx package for SEM. We imposed the same models as with the multigroup SEM to 

compare the results in favor of or against the differentiation hypothesis. All paths were 

constrained, except for the covariance between the factors and the factor means to allow age-

related decline, but since the factor means change alongside the covariance, the source of the 

potential split is rather ambiguous. Notably, this technique allows for the specification of focal 

parameters, such that only differences in model fit due to these key parameters are used to partition 

the data into subsets. Here, we only base possible splits on the factor covariance, as these reflect 

the age differentiation hypothesis. The criterion for best split is based on a Bonferroni-corrected 

likelihood ratio test of differences between the groups resulting from a given split (Brandmaier et 

al., 2013). To ensure a sufficient number of participants given model complexity, we only allowed 

splits where the minimal sample per subgroup would be at least 200 participants.  
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3. Results  

3.1 Grey and white matter covariance 

 

    In order to specify a measurement model amenable to multigroup Confirmatory Factor 

Analysis, we first examined a plausible candidate model using an Exploratory Factor Analysis 

(EFA). For grey matter, we established a three-factor solution was preferred. This three-factor 

model showed adequate fit in the following CFA analysis: χ2 (19) = 82.384, p < .001, RMSEA = 

Figure 2. The three-factor model for grey-matter (top left) underlies nine ROIs: Caudate (Cdt), Insula (Ins), Temporal 
(Tmp), Cerebellum (Crb), Putamen (Ptm), Frontal (Frn), Thalamus (Thl), Occipital (Occ), Parietal (Prt). The three-factor 
model for white-matter (bottom left) with ten ROIs: Forceps Major (FMaj), Cingulate Gyrus (CING), Inferior Fronto-
Occipital Fasciculus (IFOF), Inferior Longitudinal Fasciculus (ILF), Anterior Thalamic Radiations (ATR), Forceps Minor 
(FMin), Uncinate Fasciculus (UNC), Superior Longitudinal Fasciculus (SLF), Corticospinal Tract (CST), Hippocampal 
Cingulum (CINGH). The darker colours in the lateral brain views represent the regions with the highest factor loadings. 
Path coefficients are fully standardized. The correlation matrices are shown for grey matter (top right) and white matter 
(bottom right), along with age.  
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.072 [.057 .087], CFI = .990, SRMR = .016. For white matter, a three-factor model showed 

marginally acceptable fit: χ2 (26) = 133.897, p < .001, RMSEA = .080 [.068 .093], CFI = .966, 

SRMR = .025. The measurement models are shown in Figure 2, along with their correlation 

matrices. As the precise factors will depend to some extent on the atlas used we will not label the 

factors, but examine the covariance patterns in more detail. The first grey matter factor (teal) is 

characterized by strong loadings especially on the insula. The second grey matter factor (blue), is 

characterized by a relatively broad set of medium sized factor loadings, with an especially strong 

factor loading for temporal and thalamic grey matter volume. The third grey matter factor (pink) 

is characterized most strongly by parieto-frontal covariance. Although a single factor model fits 

poorly for grey matter, the correlations between grey matter factors are relatively strong, especially 

in comparison to the white matter factors, which are more globally differentiated. The white matter 

measurement model also yields three factors. The first white matter factor (red) is characterized 

by strong loadings on more posterior ILF and forceps major tracts, and a negative factor loading 

on the cingulum. The second white matter factor (yellow) is characterized most strongly by the 

cingulum, but has a broad set of positive factor loadings across the majority of tracts. Finally, the 

third factor (green) loads most strongly on the ventral cingulum. The effects of age on the factor 

scores are shown in Figure 3, revealing different effect sizes, as well as different functional forms 

(linear and non-linear)  
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    First, we tested for age (de)differentiation using a multigroup Confirmatory Factor Analysis 

(MGCFA), where the population is divided into three age groups with equal sample sizes: young, 

middle & old (Table 1). This group-level comparison tests for age-related differences in specific 

parameters, while constraining the rest of the model (Δdf=6, as either three or nine factor 

covariances were estimated). Although constraints will generally lead to poorer model fit overall, 

we were interested in the specific comparison between the two nested models that represent age 

(de)differentiation versus no differentiation. Fitting these two models, we found that for the grey 

matter factors, a model where factor covariances were estimated freely across age groups showed 

Figure 3. Age-related decline in grey matter (upper three plots) and white matter (lower plots) factor scores, 
according to the age groups (Young, Middle & Old) with best functional form shown (linear or non-linear). 
William’s test for dependent correlations showed that the effects of age were significantly different across the 
grey matter ROIs, tcor1_2 (651) = -9.46, p < .001; tcor1_3 (651) = -2.14, p = .033; tcor2_3 (651) = 12.79, p < .001, 
and across white matter ROIs, tcor1_2 (646) = -12.07, p < .001, tcor1_3 (646) = -12.07, p < .001, tcor2_3 (646) = -
8.28, p < .001. 
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better fit: ∆χ2 (6) = 19.591, p = .003 (Table 2). Akaike weights showed that the freely-estimated 

model (with age-varying factor covariance) was 696 times more likely to be the better model given 

the data (Wagenmakers & Farrell, 2004). Using the same procedure for white matter, we found 

that the model with the freely estimated covariance also showed better fit: ∆χ2 (6) = 25.430, p = 

.001, Akaike weights= 6297 in favor of the freely-estimated model.  

      

     Next, we visualized the changing covariance within grey and white matter to assess evidence 

for age differentiation, de-differentiation, or some other pattern. The upper three plots in Figure 

4 illustrate the difference in standardized covariance between each pair (GM1-GM2, GM1-GM3 

and GM2-GM3) of grey matter factors. The strongest pattern is that factor GM1 displays 

considerable age differentiation: GM1 becomes more dissimilar to the two other grey matter 

factors with increasing age.  For the white matter factors, the dominant pattern in the lower three 

plots of Figure 4 is the differentiation between factors WM1 and WM3, while the standardized 

covariance between factors WM1 and WM2, and between factors WM2 and WM3, remains 

relatively stable. 

 

      

 Model df AIC wi(AIC) saBIC wi(saBIC) χ2 ∆χ2 ∆df  p 

Grey 

Matter   

Freely 

estimated 

115  8834.1 .999 8905 .998 579.79    

 Constrained 121 8847.2 .001 8911 .002 604.88 19.59 6 .003 

White 

Matter   

Freely 

estimated 

144 14229 .999 14295 .996 769.83    

 Constrained 150 14246 .001 14305 .004 799.32 25.43 6 .001 

Table 2. Model fit indices within white and grey matter, where the model with freely estimated covariance structure 
was preferred for both. 
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      Finally, we validated the same question using the more exploratory technique of SEM trees 

with age as continuous covariate. For grey matter, the best split of the sample was given at the age 

of 50.5 years (χ2 = 76.02, df=3), separating the participants into a young (N=285) and old (N=366) 

subgroup (left plot, figure 5). In line with the MGCFA, this analysis shows that the covariance 

between the grey matter factors decreases in old age. For white matter, we also find a single optimal 

split at a much older age of 66.5 years (χ2 = 36.07, df=3), separating participants in a younger 

(N=442) and older age group (N=204). The factor covariance between the white matter factors 

decreased in old age similar to grey matter (right plot, figure 5). Together, these three analytic 

strategies converge on the same conclusion: We observe age differentiation, or decreased 

covariance, among neural factors starting after middle age.   

 

        

 

Figure 4. Differences in standardized covariance between the grey matter factors (top) and white matter factors 
(bottom) with age. 95% confidence intervals are displayed as the shaded area around the mean.  
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    A recent paper by Cox et al. (2016) employed a different analytic strategy than ours: Instead of 

focusing on factor covariance, they imposed a single factor model and examined factor loadings 

as they changed across the lifespan. To examine the robustness of our findings to such alternative 

approaches, we likewise imposed a single factor model across all brain regions, and tested whether 

factor loadings, rather than covariance, differ across three age groups (Young, Middle & Old). For 

grey matter, even though the one factor model did not fit well (χ2 (27) = 320.516, p < .001, 

RMSEA = .129 [.117 .141], CFI = .955, SRMR = .026), and a likelihood ratio test showed that it 

was a worse description of the data than the three-factor model (∆χ2 (8) = 227.66, p <.001), the 

model with freely-estimated factor loadings is again the better than the constrained model (∆χ2 

(16) = 109.27, p <.001, Akaike weights= 6.13 * 1022), supporting differences in grey matter factor 

loadings across the adult lifespan. A visual inspection of the smoothed LOSEM shows that all 

factor loadings decline with age, again in line with age differentiation (Figure 6). Together, this 

represents strong evidence for age differentiation for grey matter factors; a pattern that does not 

depend on the precise analytical method. 

Figure 5.  SEM Tree analysis with optimal splits for grey matter (left) at the age of 50.5 and for white matter (right) 
at the age of 66.5 years old. The standardized factor covariance (σ2) and factor means (µ) are depicted per subgroup, 
including the size of the group 
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       For the white matter, we again found that the one factor model for white matter did not fit 

well (χ2 (35) = 418.652, p < .001, RMSEA = .130 [.120 .140], CFI = .879, SRMR = .062), with 

the three-factor model showing better fit (∆χ2 (9) = 259.23, p <.001; Table 2). Nonetheless, within 

the single factor conceptualization, we again observe that the freely-estimated factor loadings were 

preferred over the constrained version (Akaike weights = 7.90 * 1028). The LOSEM plot in Figure 

6 shows a complex pattern, with several factor loadings increasing (e.g. Forceps Minor and 

Superior Longitudinal Fasciculus), while others remain stable (e.g. Inferior Fronto-Occipital 

Fasciculus, Anterior Thalamic Radiations) or decline (e.g. Hippocampal Cingulum). The subset of 

increasing factor loadings is partly in line with Cox et al. (2016), who suggested age de-

differentiation of white matter tracts as the role of the general factor increases with age. However, 

the poor fit of the one-factor model, and the fact that factor loadings in our sample show both 

evidence for age differentiation as well as de-differentiation, suggest a cautious interpretation is 

warranted, with further, ideally longitudinal, investigation being crucial to understand the complex 

age-related differences in white matter covariance. 

      Finally, we implemented MGCFA on the combination of white and grey matter, with the same 

measurement models imposed, to see if the covariance between white and grey matter factors 

Figure 6. Standardized factor loadings in one factor model of grey matter (left) and white matter (right) across the 
lifespan 
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changes across the lifespan. We did not find evidence for age-related difference in the covariance 

between WM and GM: The more parsimonious constrained model of the covariance structure was 

more likely (∆χ2 (18) = 24.10, p = 0.152). These tests establish that the covariance within neural 

factors for both grey and white matter is different across the three age groups, but the covariance 

between the two neural measures does not differ across age groups. 

 

3.2 Cognitive factors  

    

Figure 7. (A) Confirmatory factor model for cognitive processing based on Proverb Comprehension (Provs), two 
spot-the-word tasks (Stw1 and Stw2), four Catell subtests (Catell 1-4) relating fluid intelligence (Fluid g), immediate 
and delayed recall (Recall_i, Recall_d) and delayed recognition (Recog). All paths are fully standardized. (B) Age-
related difference according to the age groups of the three cognitive factors: Language, Fluid intelligence and 
Memory, with best functional form shown (linear or nonlinear). William’s test for dependent correlations showed 
that the effects of age were significantly different between language and fluid g: t(707) = 24.21, p < .001; between  
fluid g and memory t (707) = -11.07, p < .001; and between language and memory: : t(707) = 12.9, p < .001. (C) 
correlation matrices between all cognitive tasks and age.  
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      We next examined age-related differences in covariance across cognitive factors. We defined 

three latent factors for the measurement model (see Figure 7A), based on a priori defined cognitive 

domains: (1) language, modelled by two Spot-the-Words tasks as a first-order factor and single 

proverb comprehension task, (2) fluid intelligence, fit to the four scores on Cattell subtests and (3) 

memory, fit to immediate recall, delayed recall and delayed recognition scores. The three-cognitive-

factor model, shown in Figure 7A, fit the data well: χ2 (31) = 59.030, p = .002, RMSEA = .036 

[.022 .049], CFI = .988, SRMR = .030.  The three-factor model fit considerably better than a one-

factor solution (∆χ2 (4) = 336.43, p < 0.001; Akaike weights: 3.31 * 10273). Figure 7B shows the 

lifespan differences in the three cognitive factor scores.  

     We looked for evidence for age differentiation among the cognitive factors across the three age 

groups with MGCFA, and found that the constrained covariance model was more likely: ∆χ2 (6) 

= 4.984, p = 0.546, in line with an absence of either age-related cognitive differentiation or 

dedifferentiation. When we examined the same question using SEM Trees, we did not observe a 

significant split in covariance structure with age. The lack of evidence for (de)differentiation in 

both methods suggests a relative static covariance structure of cognitive abilities across the 

lifespan, contrary to studies of e.g. De Frias et al. (2007), but in line with Deary et al. (1996), Juan-

Espinosa et al. (2002) and Tucker-Drob (2009).  

 

3.3 Neurocognitive age differentiation 

   Finally, having examined brain and cognitive differentiation separately, we investigated their 

interaction to explore differences in brain-cognition covariance across the lifespan. To do so, we 

imposed the same measurement models as used above, first for grey matter and cognition, then 

for white matter and cognition. Our goal was to see if there is evidence for neurocognitive age 

(de)differentiation, indicated by differing covariance between brain structure and cognitive 

function across the lifespan.   
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    With MGCFA we did not find evidence for neurocognitive age (de) differentiation in the 

covariance of grey matter with cognition: The more parsimonious constrained model of the 

covariance structure was preferred (∆χ2 (18) = 21.53, p = 0.253), suggesting a relative stable 

relationship between the grey matter and cognitive factors across the lifespan.  Similarly, the SEM 

trees did not show a significant split in the factor covariance with age.  

For white matter however, the multigroup analysis suggested that the freely estimated covariance 

structure was preferred: ∆χ2 (18) = 37.27, p = .005, showing age-related differences in the 

relationship between white matter and cognitive factors. In the SEM tree analysis, we found an 

optimal split at the age of 56.5 years (χ2 = 60.15, df=9). Notably, all factor covariance in old age 

(N=335) decreased in comparison to the young age subgroup (N=372; Figure 8A). 

 

    To examine the source and trend of this neurocognitive age (de)differentiation, we plotted 

smoothed LOSEM age-weighted measurement models of the nine covariances between the three 

cognitive and three white matter factors (Figure 8B). Visual inspection suggested that this age-

related difference in the relationship between cognition and white matter was driven most strongly 

by a specific pathway, namely the covariance between WM3 and memory. This visual inspection 

Figure 8. A) The optimal age split based on the factor covariance between white matter and the cognitive factors 
language (lang), fluid intelligence (fluidg) & memory (mem) using SEM Trees. B) Differences in the inter correlations 
between the cognitive and white matter factors across the lifespan according to LOSEM. The bottom right shows 
the one pathway that displays evidence for neurocognitive age differentiation.  
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was confirmed by a post-hoc test, where a model with a freely-estimated covariance between WM3 

and memory was strongly preferred over the constrained model: ∆χ2 (2) = 27.34, p = <.001. The 

covariance between this white matter factor and memory performance declined steadily, especially 

in old age, suggesting a form of neurocognitive age differentiation. Further post-hoc comparisons 

for the other factors were not significant. It is noteworthy that the third white-matter factor was 

the (only) factor characterized by the ventral cingulum (CINGHipp), the part of the cingulum that 

is directly interconnected with the hippocampal formation (Hua et al. 2008, Fig. 2). This suggests 

a decoupling of memory performance from the white matter networks associated with the 

hippocampus; an intriguing pattern that we return to below. 

 

 4. Discussion 

   In this study, we examined the notion of age (de)differentiation within and between cognitive 

and neural factors across the adult lifespan. We found evidence for age differentiation within both 

GM and WM, such that the covariance between (a subset of) GM factors and the covariance 

between (a subset of) WM factors is lower in older adults. In contrast, the cognitive factors 

displayed a stable covariance structure, providing no evidence for (de)differentiation. Finally, we 

observed a specific pattern of age differentiation between WM and cognition, driven almost 

exclusively by a decoupling between a WM factor highly loading on the hippocampal cingulum, 

and the cognitive factor associated with memory.  

    For GM, exploratory factor analysis revealed that a three-factor model was preferred. The main 

effect of age was to reduce the covariance between the first factor (which loaded most on caudate 

and insula) and the other two factors. This neural differentiation was also observed when imposing 

a single-factor model, with factor loadings decreasing across the lifespan. Note that the precise 

number and nature of factors is likely to depend on the dimensionality of the data. Here we chose 

a mask characterized by a small number of ROIs (nine in total), in order to keep the GM model 

comparable in dimensionality to the white-matter tracts and cognitive variables. Moreover, a 
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limited number of ROIs was necessary to achieve tractable SEM complexity given the sample size 

and subgroup analyses. Nonetheless, our ROIs had sufficient resolution to suggest that distinct 

networks of those regions differentiate in unique ways, resulting in structural networks that 

become more dissimilar across individuals in old age.  

     For WM, a three-factor model of the ten major WM tracts was also preferred. With this model, 

we again found evidence for differentiation, with the most noticeable effect being age-related 

reductions in the covariance between the first factor (which loaded most highly on the inferior 

fronto-occipital fasciculus and inferior longitudinal fasciculus) and the third factor (which loaded 

most highly on the ventral cingulum and projection fibers of corticospinal tract).  The results from 

fitting an alternative single-factor model (e.g. Cox et al., 2016) were less clear, with both deceases 

and increases in various factor loadings with age, with the increases suggesting some de-

differentiation. A promising future avenue to better understand this complex pattern of white 

matter covariance differences is to examine longitudinal changes in white matter covariance, 

although at present there are few such datasets available. 

   Several mechanisms might contribute to our findings of differentiation within GM and within 

WM. First, the differentiation may reflect declines in structural connectivity during healthy ageing 

(Spreng & Turner, 2013). For example, reductions in grey matter covariance may follow reductions 

in white matter covariance (e.g. myelination) that cause less efficient communication and co-

activation between brain regions, over time leading to decreased structural similarity. This is 

consistent with the present lack of evidence for differentiation between GM and WM. Another 

possibility is that the differentiation reflects distinct subpopulations of people that diverge across 

the lifespan. For instance, if subsets of the older population suffer from medical conditions that 

differentially affect specific brain regions (e.g. higher blood pressure, Gianaros et al., 2006), this 

will also lead to a more complex covariance pattern for the older population. Note that it is also 

possible that systemic age-related effects lead to age-related increases in covariance, or dominance 

of a single factor (Cox et al., 2016), which may be disguised by the causes of differentiation 
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described above. Future studies should combine longitudinal imaging approaches with repeated 

health data to test the plausibility of these explanations in explaining the patterns observed here.  

    In line with most previous findings (e.g. Deary et al., 1996; Juan-Espinosa, 2002; Tucker-Drob, 

2009), we did not observe evidence for cognitive age differentiation or dedifferentiation, instead 

finding a stable covariance structure across the lifespan. More importantly, we examined, for the 

first time, age differentiation between neural and cognitive factors. Specifically, we observed 

decreased covariance between a WM factor associated with hippocampal connectivity and a factor 

associated with memory. This decreased dependency of memory performance on WM integrity 

may relate to recent analyses of functional connectivity in healthy ageing. For instance, Salami, 

Pudas and Nyberg (2014) observed greater connectivity within a hippocampal network during rest 

in older relative to younger people, but decreased connectivity between the hippocampal network 

and other cortical networks during mnemonic tasks. Notably, this pattern of ‘aberrant 

hippocampal decoupling’ (p. 17654) was stronger in individuals with lower white matter integrity 

near the hippocampus, and was associated with poorer memory performance. Westlye et al. (2011) 

also found aberrant hippocampal functional connectivity associated with poorer performance, and 

suggested that failures of task-related hippocampal decoupling may elevate the risk of cognitive 

decline by increasing the metabolic burden on the hippocampus. In a longitudinal structural 

investigation, Gorbach et al. (2017) observed a robust brain-cognition change-change association 

between episodic memory decline and hippocampal atrophy in older adults (60-85 years), in line 

with brain maintenance. Future work integrating longitudinal investigations of the between-

individual measurement models across time points in concert with within-subject change-change 

modelling will be able to reconcile these findings.  

      An alternative explanation of the decreased covariance between WM and memory observed 

here is the notion of cognitive reserve (Stern 2002, 2009; Whalley et al., 2004), which posits that 

the degree of brain pathology in certain individuals does not directly correspond to the 

manifestation of cognitive impairment. Certain lifespan exposures (e.g. high levels of education) 
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are considered protective against cognitive decline. This implies that in older age, as the 

compensatory mechanisms of cognitive reserve become more prominent, memory performance 

should depend less on the brain structure, leading to the type of neurocognitive differentiation (i.e. 

decreased covariance) observed here. However, the precise consequences of cognitive reserve on 

covariance patterns likely depend on the idiosyncrasies of the sample under investigation. 

Moreover, it is unclear why we observe a mostly specific pattern of age-related differentiation 

(between WM and memory), rather than a more general neurocognitive differentiation.  

    A limitation of our study is that the sample is cross-sectional. The consequence is that, although 

we can examine age differentiation between individuals, we cannot generalize our findings to intra-

individual changes over the lifespan (Salthouse, 2011). Acquiring longitudinal imaging and 

cognitive data would allow more detailed investigation of age-related changes in covariance among 

cognitive and neural factors. Moreover, the recruitment procedure in the Cam-CAN study 

included two age-correlated selection criteria that may bias the covariance population parameters: 

the exclusion of participants by general practitioners, and our exclusion of individuals with poor 

hearing and poor vision for reasons of procedural uniformity. Both hearing and vision are known 

to correlate with cognition, especially in old age (Baltes & Lindenberger, 1997), so that these 

procedures induce a positive selection bias of disproportionately healthy individuals in old age. 

Although age-correlated selection bias will inevitably be present in studies, the degree of bias can 

be reduced through alternative recruitment procedures such as general registry (e.g. de Frias et al., 

2007) and/or using more liberal inclusion criteria such as in the Berlin Aging Study (Baltes & 

Lindenberger, 1997), where subgroups were blind or deaf or diagnosed with mild dementia. 

Furthermore, we focus on a relatively limited range of cognitive and neural variables, in order to 

enable SEMs with a tractable set of parameters. Possible solutions may be found in, for instance, 

regularized SEM (Jacobucci, Grimm, & McArdle, 2016) that allows measurement and structural 

models to be based on a larger set of neural and cognitive indicators. Alternatively, larger samples, 

possibly depending on integration across cohorts, would allow fitting of higher dimensional 
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measurement models (with possibly an overall better fit) and simultaneously explore 

generalizability. A second limitation of our study concerns potential differences in data quality 

across the lifespan. For instance, if older adults move more, and the effects of this motion of the 

imaging data cannot be fully accommodated (Geerligs et al., 2017), this may induce a decrease in 

covariance simply due to less reliable measurement. However, age-related decreases in data quality 

would seem unlikely to fully explain our findings, given that the pattern of age differentiation was 

limited to some, but not all, neural factors: increased measurement error in older adults would be 

expected to produce more uniform decreases in covariance between all pairs of factors.  

    Our findings show how multigroup Confirmatory Factor Analysis and SEM Trees can be 

powerful techniques for investigating theories of neurocognitive ageing, such as age differentiation, 

allowing researchers to investigate mechanisms of healthy and pathological ageing in a flexible yet 

principled manner. Taken together, these techniques revealed a complex pattern of age-related 

differentiation in grey and white matter, but not in cognition, together with a specific 

differentiation in the relationship between white-matter tracts and memory. Future work on the 

long term, developmental patterns of covariance across the lifespan may help further elucidate the 

mechanisms underlying these observations. 
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