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A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional
quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2þ 1 dimensions, of the
massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized
Einstein field equations in 3þ 1 dimensions, and in this context a uniform distribution of spin-2 particles
implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic
oscillator potential for the individual particles.

DOI: 10.1103/PhysRevLett.120.141601

Einstein’s theory of general relativity ceases to be a
theory of gravity when considered in a 3D spacetime (i.e.,
2þ 1 dimensions): there is no analog of the Newtonian
force, nor gravitational waves. We call it a 3D gravity
theory mainly because it shares with 4D general relativity
the property of being a diffeomorphism invariant theory for
a dynamical metric on spacetime, which makes it a useful
“toy model” for considering how theories of this type might
be compatible with quantum mechanics.
A simple modification of 3D general relativity known as

new massive gravity (NMG) yields a parity-preserving 3D
gravity theory that does admit gravitational waves, gravi-
tational in the sense that the corresponding particle exci-
tation of the quantum theory has spin 2, although these
spin-2 gravitons are massive rather than massless [1].
Linearization about a Minkowski vacuum yields a free
field theory that is equivalent to the 3D version of the
massive spin-2 field theory proposed long ago by Fierz and
Pauli [2]. There are various bimetric 3D gravity theories
that have the same linearized limit [3,4], and NMG may
itself be viewed as the simplest example, with an auxiliary
tensor field as the second metric [5].
Although NMG has no real-world applications as a

theory of gravity, it has potential applications in the world
of condensed matter systems in 2þ 1 dimensions.
Naturally, these are typically nonrelativistic, so this moti-
vates consideration of the nonrelativistic limit of NMG.

Nonrelativistic limits are notoriously more complicated
than one would naively imagine, so it makes sense to first
investigate the nonrelativistic limit of the 3D Fierz-Pauli
(FP) theory. One might expect to find a Schrödinger
equation for a nonrelativistic particle of spin 2.
As it happens, fractional quantum Hall states have a

Girvin-MacDonald-Platzman (GMP) gapped spin-2 mode
[6], and a particular Schrödinger equation has been proposed
as an equation governing its dynamics [7,8]. Following
suggestions of a geometrical interpretation of GMP states
[9], this spin-2 planar Schrödinger equation was shown to
emerge upon linearization of a particular nonrelativistic
bimetric theory [10,11].We should stress that these are space
metrics rather than spacetime metrics, but an obvious
question is whether this bimetric theory is the nonrelativistic
limit of some relativistic bimetric theory, perhaps NMG.
We do not answer this question, but we show that the
Schrödinger equation proposed to describe the GMP mode
is indeed a nonrelativistic limit of the 3D FP theory.
The standard way in which spin is incorporated into the

(time-dependent) Schrödinger equation is via a multiplet of
complex wave functions transforming in a representation of
the rotation group. This implies an SO(2) doublet for two
space dimensions, and this is indeed what one finds from the
standard nonrelativistic limit of the 3D FP theory for a
complex tensor field, but the spin-2 Schrödinger equation
proposed to describe the GMP mode has a single complex
wave function. What we need, although only for 2þ 1
dimensions, is a nonrelativistic limit for a real FP tensor field.
There is a problem with the nonrelativistic limit of real-

field theories that propagate massive modes. This can be
understood by considering the Klein-Gordon (KG) equa-
tion for a scalar fieldΦ of massm. Including all factors of c
and ℏ, this is
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Φ̈ −∇2Φþ

�
mc
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�
2

Φ ¼ 0: ð1Þ

The c → ∞ limit can be taken directly provided that the
reduced Compton wavelength λ ¼ ℏ=ðmcÞ is held fixed,
but this yields a Yukawa equation (Laplace, if 1=λ ¼ 0),
which is nondynamical. However, if Φ is complex, we
can set

Φ ¼ e−
i
ℏðmc2−E0ÞtΨ; ð2Þ

where E0 is constant and Ψ is a new complex scalar field.
The KG equation becomes

−
1

2mc2

�
iℏ

d
dt

− E0

�
2

Ψ − iℏ _Ψ −
ℏ2

2m
∇2Ψþ E0Ψ ¼ 0;

ð3Þ
and the c → ∞ limit yields the Schrödinger equation

iℏ _Ψ ¼ HΨ; H ¼ −
ℏ2

2m
∇2 þ E0: ð4Þ

Clearly, this procedure is not applicable for a real
scalar field, and there is a group theoretical reason for
this difficulty. The Bargmann symmetry group of the
Schrödinger equation has one more generator than the
Lorentz symmetry group of the KG equation, a central
charge proportional to the mass m. This implies that the
wave function provides only a projective representation of
the Galilei group, so it must be complex, and hence the
initial KG field must also be complex. The KG equation
then has an additional U(1) phase invariance, so there is no
longer a mismatch in the dimension of the relativistic and
nonrelativistic symmetry groups.
A new nonrelativistic limit.—The same difficulty applies

to real tensor fields, such as the symmetric traceless tensor
field fμν of the spin-2 FP equations, traceless in the sense
that ημνfμν ¼ 0, where ημν is the inverse of the background
Minkowski metric tensor. The FP equations comprise
second-order dynamical equations and first-order subsid-
iary conditions:

½□ − ðmcÞ2�fμν ¼ 0; ημν∂μfνρ ¼ 0; ð5Þ

where □≡ ημν∂μ∂ν. Here we set ℏ ¼ 1, in which case mc
has dimensions of inverse length. Although the standard
path to a nonrelativistic limit of these equations requires fμν
to be complex, another nonrelativistic limit is possible for a
Minkowski background of 2þ 1 dimensions. In this 3D
case, we have μ, ν ¼ 0, 1, 2, the Minkowski metric matrix
is diagð−c2; 1; 1Þ, and fμν has five independent compo-
nents parametrizing a scalar, vector, and traceless sym-
metric tensor of the SO(2) rotation group. The scalar is the
real variable

f00 ≡ c2ðf11 þ f22Þ; ð6Þ

while the vector and traceless symmetric tensor are,
respectively, the complex variables

f½1� ¼ f01 þ if02; f½2� ¼ 1

2
ðf11 − f22Þ þ if12: ð7Þ

In terms of these variables, the subsidiary conditions are

_f00 ¼ c2ℜ½∂̄f½1��; _f½1� ¼ c2∂̄f½2� þ 1

2
∂f00: ð8Þ

As both f½1� and f½2� are complex, we may set

f½n� ¼ e−iðmc2−E0ÞtΨ½n�; n ¼ 1; 2; ð9Þ

for new complex variables Ψ½n�. The dynamical equations
for f½n� are then solved to leading order as c → ∞ if Ψ½n�
and _Ψ½n� remain finite in this limit. Given this, the
subsidiary conditions imply that

f00 ¼ −m−1ℑð∂̄f½1�Þ þOð1=c2Þ;
f½1� ¼ im−1∂̄f½2� þOð1=c2Þ: ð10Þ

Only f½2� is independent, and its dynamical equation is

1

c2
f̈½2� þ ½ðmcÞ2 −∇2�f½2� ¼ 0: ð11Þ

In terms of Ψ½2�, this equation takes the form (3) and its
c → ∞ limit is

i _Ψ½2� ¼ HΨ½2�; H ¼ −
1

2m
∇2 þ E0: ð12Þ

This Schrödinger equation is invariant under a symmetry
group with one more generator than the Lorentz invariance
group from which we started because the orbital angular
momentum and the spin angular momentum are separately
conserved in the c → ∞ limit, with a spin rotation
becoming a phase rotation by double the angle. In fact,
this Schrödinger equation is identical to the Schrödinger
equation for the spin-2 GMP mode of fractional quantum
Hall states, as deduced in [11] from a nonrelativistic
bimetric theory.
Parity and time reversal.—As mentioned earlier, the FP

equations for a complex tensor field allow a standard
nonrelativistic limit. This leads to a parity-preserving pair
of Schrödinger equations

i _Ψ½�2� ¼ HΨ½�2�; Ψ½�2� ¼ φ11 � iφ12; ð13Þ

where φ11 and φ12 are the independent complex compo-
nents of a complex symmetric traceless two-space
tensor φij. The wave functions Ψ½�2� are spin-2 helicity
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eigenstates; by helicity, we mean the spin angular momen-
tum, while spin is its absolute value. The point of this
discussion is that parity reverses the sign of helicity and
hence exchanges Ψ½2� with Ψ½−2�. This can be seen from
the following equivalence

φij ¼ �iϵikφkj ⇔ Ψ½∓ 2� ¼ 0: ð14Þ

If we choose to impose this constraint with the upper sign,
then we are left with the single Schrödinger equation of
(12). Furthermore, the condition Ψ½−2� ¼ 0 identifies a
spin rotation of angle θ with a shift of the phase of Ψ½2� by
angle 2θ, exactly as required.
As the real-field FP equations (5) are parity invariant, it

follows that our new nonrelativistic limit of these equations
must break parity. To see why, we observe that parity for the
FP equations takes f½2� → f̄½2�, but one can see from (9)
that the corresponding transformation ofΨ½2� is not defined
in the c → ∞ limit. In contrast, time reversal, which takes
t → −t and f½2� → f̄½2� (since its action is antilinear) is
defined in the c → ∞ limit, so (12) must be, and is, time-
reversal invariant.
The fact that (12) breaks parity suggests that a better

starting point for this Letter might have been the parity
violating equations of topologically massive gravity (TMG)
[12], which has the square-root FP equations [13] as its
linearized limit.Moreover, the self-duality condition (14) (for
one choice of the sign) emerges naturally from the non-
relativistic limit of the complexified square-root FP equa-
tions, as detailed for the spin-1 case in [14]. However, it is not
clear how the required complexification is to be implemented
for the nonlinear TMG theory. This is not a problem forNMG
because complexification is not required.
Generalized null reduction.—We now turn to a different

derivation of the Schrödinger equation (12). It is well
known that null reduction of a Lorentz invariant theory in a
5D Minkowski spacetime yields a Galilean invariant theory
in 1þ 3 dimensions [15–17]. We seek some variant
procedure that will take the linearized 4D Einstein field
equations to the Schrödinger equation (12). A similar issue
was addressed in [18] at the level of particle mechanics: the
Hamilton-Jacobi equation for a nonrelativistic particle in d
space dimensions was provided with an Eisenhart lift to
dþ 1 dimensions. Here we propose a quantum version in
which the planar Schrödinger equation (12) is lifted to the
linearized 4D Einstein equations; in reverse, this becomes a
generalized null reduction inspired by Scherk-Schwarz
dimensional reduction [19]. In principle, the idea applies
in any dimension, but it is only for a planar Schrödinger
equation that one can lift to the real-field linearized Einstein
equations.
Linearization of the 4D vacuum Einstein equations about

a Minkowski vacuum with coordinates fxm;m ¼ 0; 1; 2; 3g
and Minkowski metric ηmn, yields the following equations
for the metric perturbation tensor

□hmn − 2∂ðmhnÞ þ ∂m∂nh ¼ 0; ð15Þ

where hm ≡ ηpq∂phqm and h≡ ηmnhmn. We shall choose
light-cone coordinates for which xm ¼ fxþ; x−; xig, where
i ¼ 1, 2 and x� ¼ ðx3 � x0Þ= ffiffiffi

2
p

, and units for which
c ¼ 1, but we no longer set ℏ ¼ 1.
The standard null reduction is achieved by requiring

∂−hmn ¼ 0. Instead, we proceed on the assumption that ∂−
is invertible, in which case we may impose the light-cone
gauge condition hm− ¼ 0, for which

h ¼ hii; hþ ¼ ∂−hþþ þ ∂ihiþ;

h− ¼ 0; hi ¼ ∂−hiþ þ ∂jhij: ð16Þ

The equation for hm− reduces to ∂−ðhm − ∂mhÞ ¼ 0, which
implies that hm ¼ 0 and h ¼ 0; these equations imply that

∂−hþþ ¼ −∂ihiþ; ∂−hiþ ¼ −∂jhij; ð17Þ

and also that the linearized Einstein equations reduce to
□hmn ¼ 0. As ∂− is assumed invertible, we may solve for
the auxiliary variables hiþ and hþþ. This leaves only the
traceless part of hij, which satisfies the 4D wave equation,
implying the propagation of transverse waves with two
independent polarizations. So far, this is standard light-
cone gauge fixing.
Next, we define

Ψ½1� ¼ h1þ þ ih2þ; Ψ½2� ¼ h11 þ ih12: ð18Þ

The auxiliary variable equations (17) are now

∂−hþþ ¼ −ℜð∂̄Ψ½1�Þ; ∂−Ψ½1� ¼ −∂̄Ψ½2�; ð19Þ

and the wave equation for the traceless transverse metric
perturbation is

2∂−∂þΨ½2� ¼ −∇2Ψ½2�: ð20Þ

We now propose to effect a new null reduction by setting

∂−Ψ½n� ¼ iðm=ℏÞΨ½n�; n ¼ 1; 2; ð21Þ

for positive mass m; the factor of ℏ is needed here on
dimensional grounds. Equations (19) now imply that

hþþ ¼ −ðℏ=mÞℑð∂̄Ψ½1�Þ þ const;

Ψ½1� ¼ iðℏ=mÞ∂̄Ψ½2�: ð22Þ

These equations are analogous to the subsidiary equations
for the 3D spin-2 FP equations in the form of (10). As in
that case, only Ψ½2� is independent, and it satisfies
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−
ℏ2

2m
∇2Ψ½2� ¼ iℏ _Ψ½2�; ð23Þ

where _Ψ≡ ∂þΨ. This is the Schrödinger equation (12),
with E0 ¼ 0 but we address this below.
One may again ask how it is that the parity invariance of

our starting point is not reflected in the end result, and in
this case, the answer is that parity is broken by the choice of
sign for the mass m appearing in (21). If we had supposed
m to be negative, then we would have had to take the
complex conjugate of (23) to arrive at a standard
Schrödinger equation for Ψ̄½2�, but it follows from the
definition of Ψ½2� in (18) that Ψ̄½2� ¼ Ψ½−2�.
We have now provided two distinct gravity interpreta-

tions of the planar Schrödinger equation that have appeared
in the context of the spin-2 GMP mode of fractional
quantum Hall states. Our interpretation of it as a non-
relativistic limit of the 3D FP equations is closest to
geometrical proposals in the condensed-matter literature,
but our derivation from the 4D linearized Einstein equa-
tions provides a more direct link to gravity. In both cases,
the enabling feature is the fact that the relevant subgroup of
the Lorentz group is U(1); this is the rotation group in 3D
and the transverse rotation group in 4D, andWigner’s “little
group” in both cases, because in 3D the spin-2 particle is
massive, whereas in 4D it is massless.
Gravity and the Schrödinger potential.—So far, we have

discussed the planar Schrödinger equation only for a free
spin-2 particle or spin-2 GMP mode in the condensed
matter context. The gravity origin of this equation becomes
useful when we consider how these particles might interact.
In this relativistic context, each particle will produce a
gravitational field that is felt by all the others, and we can
approximate the effect on any individual particle by some
collective background spacetime metric; each particle then
moves freely in this background. We may anticipate that
this mean-field type of approximation will result in some
potential for the Schrödinger Hamiltonian.
To explore this idea in the context of generalized null

reduction, we must start from some solution of the full 4D
Einstein field equations: Gmn ¼ 8πGNTmn, where Gmn is
the Einstein tensor, GN is Newton’s constant, and Tmn is
some specified source tensor (we again set c ¼ 1). Given a
four-metric that solves these equations, we linearize about
it to find the following equations for the metric perturbation
tensor

0 ¼ D2hmn − 2DðmhnÞ þDm∂nh

þ 2½RpðmhnÞp þ Rpmnqhpq�; ð24Þ

whereD is the covariant derivative with respect to the affine
connection for which Rp

mnq is the Riemann tensor and Rmn

is the Ricci tensor, and

hm ¼ gpqDphqm; h ¼ gmnhmn: ð25Þ

We choose as our background the particular Brinkmann-
wave metric

ds2 ¼ 2dxþdx− þ 2vðxþ;xÞðdxþÞ2 þ dx · dx; ð26Þ

which also played a role in the Eisenhart lift of [18] and
earlier in [20].
The function v is independent of x−, which ensures that

∂− is a null Killing vector field; in particular, constant v
yields Minkowski spacetime. The only nonzero compo-
nents of the affine connection, up to symmetry, are

Γþþ− ¼ ∂þv; Γþþi ¼ −∂iv; Γiþ− ¼ ∂iv; ð27Þ
and the only nonzero components of the curvature and
Ricci tensors, up to symmetries, are

Rþijþ ¼ ∂i∂jv; Rþþ ¼ ∇2v; ð28Þ

where ∇2 is the Laplacian on the transverse two space. The
background Einstein equations are satisfied if

∇2v ¼ 8πGNTþþ; ð29Þ
where Tþþ must be the only nonzero component of Tmn.
As before, we impose the gauge condition hm− ¼ 0. The

Ricci tensor term in (24) is then zero. The function v does
not enter into the expressions for hm and h in the light-cone
gauge, and neither does it enter into the dynamical equation
for hm−, so we still have hm ¼ h ¼ 0, and the resulting
equations (17), while the dynamical equations reduce to

D2hmn þ 2Rmpqnhpq ¼ 0: ð30Þ
We need consider only the equation for hij, which is

2∂−∂þhij − 2v∂2
−hij þ∇2hij ¼ 0: ð31Þ

Only the traceless part of hij is nonzero, and we can trade
this for Ψ½2� as before. Imposing the generalized null-
reduction condition (21), we again recover Eqs. (22)
determining the auxiliary fields in terms of Ψ½2�, while
the equation for Ψ½2� again becomes the spin-2 planar
Schrödinger equation, but now with Hamiltonian

H ¼ −
ℏ2

2m
∇2 þ Vðt;xÞ; V ¼ mv; ð32Þ

where t ¼ xþ. One solution of (29) for zero source yields
the linear potential V ¼ mg · x, which is naturally inter-
preted as the result of a constant acceleration g.
The simplest nonzero source is Tþþ ¼ ρ, for constant ρ.

In this case, the general rotationally invariant solution of
(29) for positive v is
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v ¼ 1

2
ω2jx − x0j2; ω2 ¼ 8πGNρ: ð33Þ

This yields the Hamiltonian for a planar harmonic oscillator
of angular frequency ω, which confines the particle to a
region centered on the arbitrary point with coordinates x0.
The natural interpretation is that of a constant uniform
distribution of spin-2 particles with each particle occupying
an area ℏ=ðmωÞ.
An obvious question is whether this result can also be

found from the nonrelativistic limit of some interacting
extension of the 3D spin-2 FP theory, such as NMG. In this
context, the potential has an interpretation within Newton-
Cartan geometry as the time component of the gauge-
potential one form associated with the central charge of the
Bargmann algebra [21,22]; a gauge transformation pre-
serving the form of this potential shifts v by a function of t,
which corresponds to the freedom to redefine the wave
function by a t-dependent phase factor. However, it is not
clear to us at present how this modification can be
implemented in the context of the new nonrelativistic limit
described here that avoids complexification of the FP field.
Finally, we should mention that a study by Vasiliev [23]

of relativistic conformal field theories in their “unfolded”
formulation led to a holographic-dual Schrödinger equation
in one lower dimension, and a proposed twistor transform
interpretation that was conjectured to be related to what we
have called, following [18,20], the Eisenhart lift.
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