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We study inflation in models with many interacting fields subject to randomly generated

scalar potentials. We use methods from non-equilibrium random matrix theory to construct

the potentials and an adaption of the ‘transport method’ to evolve the two-point correlators

during inflation. This construction allows, for the first time, for an explicit study of models

with up to 100 interacting fields supporting a period of ‘approximately saddle-point’ inflation.

We determine the statistical predictions for observables by generating over 30,000 models

with 2–100 fields supporting at least 60 efolds of inflation. These studies lead us to seven

lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields,

the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future

experiments may rule out this class of models, iv) The smoother the potentials, the sharper

the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons,

isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that

many of the ‘generic predictions’ of single-field inflation can be emergent features of complex

inflation models.
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1 Introduction

Inflation is the leading paradigm for explaining the origin of the observed large-scale
structure (LSS) of the universe and the anisotropies of the Cosmic Microwave Back-
ground (CMB). According to inflation, the primordial seeds of structure arose from
quantum scalar fluctuations during a period of accelerated expansion. Inflation can be
achieved with rather simple ingredients, and the observationally inferred properties of
the CMB anisotropies are in excellent agreement with the generic predictions of some
of the simplest models of inflation involving only a single scalar field.

However, there are good reasons to consider more general models involving several
fields. First, observations of distinctive signals of multifield effects during inflation can
rule out the single-field paradigm. For example, it is well known that single-field
inflation generates only highly suppressed contributions to non-Gaussianities of the
local type [1–4], but multiple-field effects can lead to enhanced levels [5–9]. Second,
there is no theoretical reason to expect only a single scalar field to be important in
the early universe. Inflation may have probed energy scales far above those accessible
by terrestrial experiments and is thereby sensitive to the degrees of freedom of the
ultraviolet completion of the Standard Model. Both particle physics models and string
theory compactifications commonly give rise to effective field theories involving many
weakly coupled fields with masses between the weak scale and the Planck scale. In such
theories, single-field inflation can only be realised if hierarchies in the mass spectrum
of the fields are induced, which may come at the cost of additional tuning.

This motivates the development of a systematic understanding of the observa-
tional predictions of multiple-field inflation. Unfortunately, the study of generic infla-
tionary models with several interacting fields have been hampered by the significant
computational difficulty associated with constructing them and deriving their predic-
tions. As a result, most work in this area has focussed on deriving the particular effects
that can arise in special multifield scenarios (see e.g. [10–12] and references therein),
typically focussing on the computationally less taxing two-field case. These works re-
veal the range of observational possibilities offered by multifield effects, but do not
provide an insight into the characteristic (or typical) signatures of inflationary models
with many interacting fields.

In this paper, we take steps to address these issues by computing the statisti-
cal predictions of models of inflation involving many (Nf � 1) interacting fields, and
we identify the parameters most relevant for determining the distributions of observ-
ables. Our approach is to sample a large class of randomly generated inflationary
models following the Random Matrix theory (RMT) method first developed in [13]
(for other applications of RMT in early universe cosmology, see for example [14–17]).
This method draws on two novel techniques to overcome the computational difficulties
associated with studying large, coupled inflationary systems. First, the randomly gen-
erated scalar potential, V (φ1, . . . , φNf ), is constructed only locally, in a patch-by-patch
manner, around the dynamically determined field trajectory, rather than globally over
the entire field space. As the inflationary evolution depends only on the properties of
the scalar potential in the immediate vicinity of the inflaton trajectory, this approach
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drastically simplifies the task of constructing the model and obtaining its observational
predictions. Second, the random scalar potential is generated by postulating that the
Hessian matrix,

Hab ≡ ∂2
φa φbV (φ1, . . . , φNf ) , (1.1)

evolves from one patch to the next along the field trajectory according to ‘Dyson Brow-
nian Motion’ (DBM) [18], a non-equilibrium extension of Random Matrix Theory.1 In
the continuum limit of closely spaced patches, this prescription gives a smooth evolu-
tion of the local Taylor coefficients of the potential up to quadratic order along the field
trajectory. Cubic and higher order interaction terms are implicitly captured through
the non-trivial evolution of the lower order Taylor coefficients. DBM has the property
that, regardless of the matrix configuration chosen in the initial patch, Hab eventually
evolves into a random and statistically isotropic matrix distributed according to the
Gaussian Orthogonal Ensemble (GOE). We will refer to potentials constructed this
way as ‘DBM potentials’.

The random DBM potentials may elucidate also other classes of multifield poten-
tials. Key to this is the principle of universality: for complicated systems with many
degrees of freedom, one may expect that large-Nf central limit behaviour will lead to
results that only depend on some qualitative properties of the potentials, while being
independent to the details of how these are constructed. By identifying the mechanism
that drives the inflationary predictions, one may also gain some insight into the pre-
dictions of other classes of potentials in which the same mechanism is present. In this
paper, we concretise these statements by showing that ‘eigenvalue repulsion’ in the
Hessian matrix determines many of the inflationary predictions. Eigenvalue repulsion
is a generic feature of systems with interacting fields, and common to broad classes of
potentials constructed by methods very different from the DBM prescription.

In this paper, we compute the two-point correlation function of the inflationary
perturbations in ‘manyfield’ inflation close to approximate saddle points of otherwise
random DBM potentials. We adopt the ‘transport method’ [19–22] to efficiently com-
pute the perturbations: by taking advantage of the simple form of the potential in
each local patch along the field trajectory, the differential equations governing the evo-
lution of the perturbations can be solved analytically, and the perturbations are easily
transported from one local patch to the next. The efficiency of this method allows us,
for the first time, to explore the observational predictions of models of inflation with
a large number of interacting fields.

We sample more than 100,000 inflationary realisations with Nf from 2 to 100 and
compute observables for over 30,000 models that support at least 60 efolds of inflation.
We find the prevalence of many active fields throughout inflation, leading to significant
superhorizon evolution of the curvature perturbation. Our results can become inde-
pendent of hyperparameters of the construction leading to universal behaviour and
sharp observable predictions. We also find a large region of hyperparameter space to
be compatible with constraints from CMB surveys. We interpret these results in the

1In contrast Refs. [14–16] draw on results from equilibrium Random Matrix Theory
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light of RMT and therefore expect this universality to be present in a wider class of
multifield potentials.

Our results provide a first view into the observational predictions of manyfield
inflation; confirm and extend results on universality in the large Nf limit; and serve as
a sharp reality check for speculations about multifield inflation based on single-field or
few-field models.

Throughout this paper, we set the reduced Planck mass MPl = 2.48×1018 GeV =
1, but we occasionally reinsert it for clarity of presentation.

2 Inflation in random potentials

In this section we discuss the challenges involved in studying inflation with many
interacting fields, and we review the construction of DBM potentials. We emphasise
the range of applicability of this class of potentials, and critically review the present
literature on the subject.

Models of inflation involve a scalar potential, V (φi), which is a function of the
fields φi for i = 1, . . . , Nf . Unless the fields φi are subject to additional symmetries,
the scalar potential in general involves interactions between all the fields. For Nf > 1,
the potential is then a complicated function of many parameters, and extracting the
observational predictions of these models can be challenging for several reasons: first,
both the homogeneous background equations of motion and the equations governing the
perturbations become non-linear coupled differential equations, which are challenging
to solve for Nf � 1. Second, multiple-field effects allow for novel phenomena that do
not exist in single-field models, such as entropic modes that may source superhorizon
evolution of the curvature perturbation ζ. To compute observables, one should then
follow the perturbations until the entropic modes have all decayed and ζ has ‘frozen’
(i.e. to the ‘adiabatic limit’), or, alternatively, all through the reheating phase after the
end of inflation. Third, in addition to the very large number of parameters appearing
in the potential, multifield inflation can exhibit strong sensitivity to initial conditions.
A good example of this difficulty is simply finding sustained inflation in a random
potential — in many classes of random potentials, inflation is an exponentially rare
event implying that, without a prescription for initial conditions, studying inflation
with large numbers of fields is numerically prohibitive.

Our approach in this paper is to search for universality that may arise in fully
interacting models in the limit where Nf is large. To do so, we randomly generate
ensembles of scalar potentials with many interacting fields and use these to study the
generation of observables during inflation. Key to overcoming the challenges associated
with multiple-field effects is the local procedure first introduced in [13], which we now
review.

2.1 Local potentials, generated from Random Matrix Theory

The DBM prescription for constructing random potentials takes as its starting point
the potential defined locally, to quadratic order in the fields φa, in a patch around a
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point p0 in field space,

V = Λ4
v

√
Nf

[
v0 + va

φa

Λh

+
1

2
vab

φa

Λh

φb

Λh

]
, (2.1)

where Λv and Λh respectively denote the (globally defined) ‘vertical’ and ‘horizontal’
scales of the potential.2 We have here followed the convention of [13] and introduced
an explicit

√
Nf prefactor in the potential. The potential in a nearby patch centred

at the point p1 which is related by the small displacement ||δφa/Λh|| � 1 from p0, is
then to leading order determined by the expansion coefficients,

v0

∣∣
p1

= v0

∣∣
p0

+ va
∣∣
p0

δφa

Λh

,

va
∣∣
p1

= va
∣∣
p0

+ vab
∣∣
p0

δφb

Λh

,

vab
∣∣
p1

= vab
∣∣
p0

+ δvab
∣∣
p0→p1

, (2.2)

where δvab is a stochastic matrix that we will soon define. By repeating this procedure
for a large set of points along the path L, the random scalar potential is glued together
in a patch-by-patch manner.3

The properties of the potentials defined in this way are determined by the defini-
tion of the stochastic matrices δvab. To specify the distribution of δvab, we postulate
that vab evolves, at large distances, into a random matrix in the ensemble of symmet-
ric Nf × Nf matrices with independent and identically distributed (i.i.d.) Gaussian
elements, i.e. the Gaussian Orthogonal Ensemble (GOE). This ensemble is invariant
under orthogonal transformations, so this choice ensures our potential is statistically
isotropic. While this particular choice is made for simplicity and generality, many of
the properties of the GOE extend to more general classes of random matrices. For ex-
ample, Wigner famously showed that, for Nf � 1, the spectral density of a symmetric
matrix with i.i.d. entries is well described by a semi-circle [24],

ρ(λ) =
1

πNfσ2

√
2Nfσ2 − λ2 . (2.3)

Here, σ denotes the standard deviation of the randomly distributed matrix elements,
which we will take to be σ =

√
2/Nf so that the width of the semi-circle is independent

of Nf , with end-points located at ±2. Moreover, the i.i.d. assumption can be further
relaxed, and Eq. (2.3) remains the limiting eigenvalue distribution for large classes
of matrix ensembles with correlations and non-identical distributions [25–29]. The

2 In this paper we restrict our attention to a flat field space with a Euclidean metric. In particular,
this implies that we do not distinguish between upper and lower tensor indices. We expect our results
to be directly applicable also to curved field spaces as long as the inflationary trajectory does not
pass too close to field-space singularities or regions of very high curvature. An interesting example
of random models of inflation in the presence of curvature is the case of the ‘α-attractors’, where the
kinetic term presents a pole (cf. Ref. [23] for a specific multifield example).

3 As we review in §2.3, the path L is not completely arbitrary.
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persistent relevance of the Wigner semi-circle is one of the most well-known examples
of large-N universality in random matrix theory.

To make vab evolve from a given initial condition into a random sample of the
GOE, we use Dyson Brownian Motion: from one patch to the next, the elements of
δvab undergo independent Brownian motions subject to a restoring, harmonic force,

〈δvab
∣∣
pi→pi+1

〉 = −vab
∣∣
pi

||δφa||
Λh

,

〈δv2
ab

∣∣
pi→pi+1

〉 = σ2 (1 + δab)
||δφa||

Λh

. (2.4)

In the continuum limit where ds = ||δφa||/Λh is infinitesimal, Eq. (2.4) leads to a
Smoluchowski-Fokker-Planck equation for the probability distribution of vab [18, 30].
This equation has the solution,

P (vab(s)) ∼ exp

[
−tr ((vab(s)− qvab(0))2)

2σ2(1− q2)

]
−−−→
s�1

exp

[
−tr(vab(s)

2)

2σ2

]
, (2.5)

where q = exp(−s), and s is the path length in units of Λh from p0 where vab = vab(0).
The stationary limiting distribution for s � 1 is the Gaussian Orthogonal Ensemble,
as desired, and the eigenvalue distribution at large Nf is given by Eq. (2.3).

According to Eq. (2.5) and the definition of s, the parameter Λh sets the scale in
field space over which the initial condition is ‘forgotten’ and the potential randomises.
However, the parametrisation (2.1) is clearly degenerate: a rescaling of either Λh or
Λv can be absorbed by a rescaling of the Taylor coefficients. More precisely, the two
scalings are given by [31],

Λv → λ1Λv : (v0, va, vab)→ (
1

λ4
1

v0,
1

λ4
1

va,
1

λ4
1

vab) , (2.6)

Λh → λ2Λh : (v0, va, vab)→ (v0, λ2va, λ
2
2vab) . (2.7)

The physical parameters, V, ∂aV = Va and ∂2
abV = Vab do not transform under these

rescalings. Equation (2.7) can be recognised as the degeneracy between the ultra-violet
cut-off scale and the Wilson coefficients common to bottom-up effective field theories.
If this degeneracy is fixed so that the typical values of (v0, ||va||, Eig(vab)) are O(1),
Λh can be interpreted as the ultraviolet cut-off scale of the theory.

In sum, DBM potentials have the global ‘hyperparameters’ (Nf ,Λh,Λv, σ), and,
in addition, parameters that are locally fixed in the first patch but stochastically de-
termined in subsequent patches: (v0, va, vab)

∣∣
p0

.

2.2 Inflation in DBM potentials

To apply the DBM construction to cosmology, we may choose the path L to be the
dynamically determined trajectory in field space. That is, given some set of initial
conditions for the potential and the field velocity at the point p0 in field space, the
field trajectory in the local patch around p0 determines a segment of L. After evolving
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the field to some p1 located a sufficiently small distance δs� 1 from p0, we update the
potential according to Eq. (2.2) and thereby generate the local potential in a new patch,
centred at p1. By solving the equations of motion in this new patch, another segment
of L is mapped out. This iterative procedure can be used to map out the potential
along the entire inflationary trajectory, while it remains undetermined far from the
field space regions probed during inflation. As DBM is stochastic, this prescription
allows us to efficiently generate large sets of inflationary models of many fields from a
given deterministic set of initial conditions.

2.2.1 Multiple field slow-roll inflation

The fact that the typical, or equilibrium, spectral density of vab is well described the
semi-circle law, with equal probability of positive and tachyonic masses, is a statement
of how unlikely inflation is in a random potential with Hessians belonging to the GOE.
A significant benefit of the DBM construction is the fact that we can chose to start
our trajectory with rare initial conditions, as will be described in §2.2.2. To study
inflation in DBM potentials, we take the initial Taylor coefficients of the potential and
the field velocity at p0 to be suitable for slow-roll inflation. The equations of motion
of Nf scalar fields φa minimally coupled to gravity are given by,

φ̈a + 3Hφ̇a + Va = 0 , (2.8)

3H2 =
1

2

Nf∑
a=1

(φ̇a)2 + V (φa) . (2.9)

Here, Va = ∂aV . Inflation occurs whenever,

ε = −Ḣ/H2 =
1

2H2
φ̇aφ̇a < 1 , (2.10)

and inflation is sustained for many efolds if also,

|η| =
1

H

∣∣∣d ln ε

dt

∣∣∣� 1 . (2.11)

In single-field slow-roll inflation these conditions are equivalent to,

εV =
1

2

V 2
φ

V 2
< 1 and |ηV| =

∣∣∣∣VφφV
∣∣∣∣� 1 . (2.12)

For the multifield case, a convenient generalisation of the ‘potential’ slow-roll param-
eters of Eq. (2.12) is,

εV ≡
1

2

VaVa
V 2

, (2.13)

ηV ≡
m2

min

V
, (2.14)
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where m2
min = Min (Eig (Vab)) and repeated indices are summed over. In slow-roll

inflation, εV = ε < 1. To see the relevance of Eq. (2.14), let us consider the tangent
vector of the gradient flow,

na = − Va√
VbVb

, (2.15)

whose rate of change satisfies,

n′a = −Vab n
b

V
+ na

nc Vcd n
d

V
. (2.16)

Here, we denote derivatives with respect to the number of efolds by ′ = d/Hdt = d/dN .
The second term of Eq. (2.16) enforces the preservation of the unit norm of na, so that
nan

′a = 0. By considering Eq. (2.16) in an eigenbasis of the Hessian matrix (so that
Vab = δabm

2
a, with no sum on a), we see that the non-vanishing components of na

evolve as,

(lnna)′ = −m
2
a

V
+

Nf∑
c=1

(nc)2m
2
c

V
, (2.17)

indicating that the gradient direction tends to align with the eigendirection of the most
tachyonic eigenvalue.

The slow-roll Klein Gordon equation can be written as,

φ′ a ≡ 1

H
φ̇a ≈ −Va

V
=
√

2εV n
a , (2.18)

and the acceleration of the field is given by,

φ′′a =
√

2εV

(
−n

bVab
V

+ 2εV n
a

)
. (2.19)

We then find that,

η =
ε′

ε
=

1

ε
φ′′ · φ′ = 2

(
−n

a Vab n
b

V
+ 2εV

)
, (2.20)

which implies that if na is aligned with the eigenvector of the smallest eigenvalue,

η = 2 (−ηV + 2εV) . (2.21)

Motivated by this we choose the initial configuration at p0 to have εV < 1 and |ηV| � 1.4

4Note however that our numerical studies include a full non-slow-roll analysis in addition to the
extensive slow-roll analysis. In both cases however, we start in a field configuration compatible with
slow-roll at p0.
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2.2.2 Approximate saddle-point inflation in DBM potentials

We now discuss how inflation can be achieved in DBM potentials, focussing in partic-
ular on the case of ‘approximate saddle-point’ inflation.

DBM potentials can be used to study various regimes of inflation. Inflation may
be supported by taking Λh � MPl so that the potentials are slowly varying over
Planckian distances. In this case, the field displacement becomes super-Planckian
during inflation, ∆φ > MPl, and moreover, a substantial fraction of the efolds of
inflation may arise close to the minimum of the potential. For Λh < MPl, inflation
can be supported in two regimes: for very large values of v0 inflation may proceed
‘off a high slope’ with typical configurations of the gradient vector and the Hessian
matrix. The total field displacement during inflation may be greater than Λh, but not
necessarily larger than MPl. However, reference [13] argued that for Nf . 100, this
type of inflation is more rare than ‘approximate saddle-point inflation’ occurring as the
field passes close to an approximate critical point of the potential. The Hessian matrix

Figure 1. Energy scales of the DBM po-
tentials.

at a typical critical point has both positive
and negative eigenvalues, so that the approx-
imate critical point is a saddle point. A small
ηV parameter can be obtained if the minimum
eigenvalue of the Hessian, m2

min, is suppressed
relative to V . In this paper, we focus solely
on this type of ‘approximate saddle point in-
flation’.5

The relevant (squared) energy scales of
the DBM models include Λ2

h < M2
Pl, which we

interpret as the UV cut-off of the theory; the
inflationary Hubble parameter, H2 = V/3;
and finally, the smallest and largest eigenval-
ues of the Hessian matrix, m2

min and m2
max. As

we will explain in §2.2.3, we take v0 = 1 at the
critical point p0 so that v0 ≈ 1 during infla-
tion. Moreover, in all models that we study
Λv � Λh. We take σ =

√
2/Nf so that the

positive endpoint of the Wigner semicircle are
located at Max(λa) ≈ 2, where λa denotes an
eigenvalue of vab.

Figure 1 schematically illustrates the
various hierarchies of scales. In all cases that
we study, the squared masses are substantially

5The techniques we develop in this case extend straightforwardly to inflation ‘off a high slope’,
while inflation with Λh � 1 would require a detailed modelling of the final approach to the minimum
of the potential.
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below the ‘UV cut-off’ of the theory, cf.

m2
max

Λ2
h

=
Λ4

v

√
Nf

Λ4
h

Max(λa) ≈ 2
Λ4

v

√
Nf

Λ4
h

� 1 . (2.22)

The dynamically relevant energy scale during inflation is the Hubble parameter,

H2 =
1

3
Λ4

v

√
Nfv0 ≈

1

3
Λ4

v

√
Nf , (2.23)

in relation to which the eigenvalues of the Hessian are given by,

m2
a

H2
=

3λa
Λ2

h

. (2.24)

The spectrum of DBM models includes both ‘heavy’ modes with m2
a > H2, and ‘light’

modes with m2
a < H2. We note however that the eigenvalues of the Hessian matrix

are not fixed during inflation, and modes can evolve from being heavy to light, and
possibly further to being massless or even tachyonic.

Sustained approximate saddle point inflation is possible if |ηV | < 1 at the critical
point, p0. Thus, the spectrum of the Hessian matrix cannot simply be determined
by the Wigner semi-circle, cf. Eq. (2.3). To set the initial configuration for vab, we
consider the spectrum of the subset of the GOE that has no eigenvalue smaller than
a given lower bound, say ξmin. Such ‘fluctuated’ spectra were computed in Ref. [32],
and Fig. 2 illustrates the fluctuated eigenvalue density for ξmin = 0. To set the initial
condition of the Hessian matrix at p0, we take the initial spectrum to be a fluctuated
configuration and use the initial ηV parameter as the hyperparameter controlling the
spectrum at p0,6

ηV 0 =
m2

min

V
=

1

Λ2
h

ξmin . (2.25)

2.2.3 Recipe for DBM inflation and our statistical ensemble

For clarity and reproducibility, we here summarise the step-by-step procedure for
studying inflation in DBM potentials.

Global hyperparameters: We recall the global parameters of the model are Nf , Λh,
Λv and σ. We refer to Nf , Λh, and σ as hyperparameters since they are the dials con-
trolling different ensembles of DBM potentials, and may moreover be regarded as the
parameters of the prior distribution of the model (see Ref. [33] for more discussion
of hyperparameters in the context of inflation). We construct ensembles of DBM po-
tentials for certain fixed choices of Nf and Λh, as we explain below. The value of
Λv does not affect the slow-roll dynamics, and is fixed individually for each model
supporting at least 60 efolds of inflation by ‘COBE normalising’ the amplitude of the

6The eigenvalues of the Hessian are drawn from the fluctuated spectrum, by taking all eigenvalues
to be equally spaced in the cumulative probability function.
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Figure 2. The Wigner semi-circle and the ‘fluctuated’ probability distribution used as initial
condition for the Hessian matrix.

scalar perturbations at the pivot scale, which we take to lie 55 efolds before the end of
inflation.

Throughout our studies, we take σ =
√

2/Nf so that the width of the spec-
trum (2.3) is independent of Nf , with end-points at ±2. This choice is motivated by
Eq. (2.24): for this choice of σ, an increase in the number of fields does not lead to a
broadening of the spectrum in units of H, but rather a direct increase in the number
of fields within the relevant mass range. This choice fixes the redundancy of Eq. (2.7).

Initial Conditions: In addition to the global parameters described above, there are
in principle 1+Nf +(N2

f +Nf )/2 parameters that characterise the quadratic expansion

of the first patch: these are (v0, va, vab)
∣∣
p0

. In practice we reduce this number to 3.

We first fix the degeneracy of Eq. (2.6) by taking v0

∣∣
p0

= 1.7 The gradient vector

va
∣∣
p0

has an orientation and a norm. As we have seen in §2.2.1 (see also Ref. [13]), va
quickly aligns with the eigendirection of the smallest eigenvalue of vab during slow-roll
inflation. We therefore choose these two vectors to be aligned from the outset. The
norm of va

∣∣
p0

is conveniently parametrised by εV 0, which we retain as a hyperparameter.

The spectrum of vab
∣∣
p0

is taken to be a ‘fluctuated’ configuration, cf. Fig. 2, with ηV 0

controlling the value of the smallest eigenvalue, cf. Eq. (2.25).
The complete list of hyperparameters that we choose to study is then (Nf ,Λh, εV 0, ηV 0).

Step-by-step procedure:

1. We first (non-randomly) fix the hyperparameters (Nf ,Λh, εV 0, ηV 0) of the ensem-
ble we wish to study. As described above, this fixes the potential in the the initial
patch around p0.

7In comparison, Ref. [13] chose v0
∣∣
p0

= 1/
√
Nf which gives a sharp reduction in the number of

efolds generated as Nf is increased (with all else constant).
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2. We then solve the equations of motion for gravity coupled to the homogeneous,
slowly-rolling multifield system for a small displacement δs� 1 to the point p1.
The displacement is chosen to be sufficiently small to map out the potential and
its derivatives with high accuracy.

3. At the new point, we update the Taylor coefficients of the potential according to
the stochastic description Eq. (2.4).

4. In the new potential, we again solve the equations of motion for the system.

5. We repeat points 3 and 4 for many patches, until εV = 1 and inflation ends.

6. If the random realisation has resulted in at least 60 efolds of inflation, we continue
to study the evolution of the perturbations in this background. If the models
yields fewer than 60 efolds, we discard it.

7. Given the homogeneous background solutions for the field and the randomly
generated potential, we compute the transport matrices of non-homogeneous
field perturbations, using the analytical expressions derived in §3. As will be
discussed in that section, we do this both in full non-slow roll and simplified slow
roll descriptions.

We repeat the above prescription a large number of times, keeping the hyperparam-
eters fixed, to generate an ensemble of DBM models corresponding to a given set of
hyperparameters. We then use these ensembles to study the statistics of the resulting
predictions.

The statistical ensemble of models: For each choice of hyperparameters that we
study, we generate & 1000 inflationary realisations with at least 60 efolds of inflation.
For the ease of analysis (and to save computational cost), we do not study a grid of the
four-dimensional hyperparameter space, but instead choose illustrative lines through
it. Specifically, we generate ensembles for:

• Nf between 2 and 100, keeping Λh = 0.4MPl, εV 0 = 10−11 and ηV 0 = −10−4,

• Λh between 0.2MPl and MPl, keeping Nf = 20, εV 0 = 10−11 and ηV 0 = −10−4,

• εV 0 in the range 10−12 to 10−9, keeping Nf = 20, Λh = 0.4MPl, and ηV 0 = −10−4,

• ηV 0 between −10−5 and −0.1, keeping Nf = 20, Λh = 0.4MPl, and εV 0 = 10−11.

In total, we generate more than 100,000 models of inflation, and study the observables
of approximately 30,000 inflationary realisations yielding at least 60 efolds of infla-
tion. Throughout our analysis, we take the pivot scale at which CMB observables are
estimated to be the scale which left the horizon 55 efolds before the end of inflation.
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2.3 Subtleties of the DBM potentials

The DBM prescription results in a large class of random potentials with many fields,
and, for the first time, makes it possible to study inflation in models with dozens or
even hundreds of interacting fields.8 But, owing to their Brownian origin, the DBM
potentials differ in some important ways from more conventional constructions of scalar
potentials, and cannot be used to address all possible questions of interest. In this
subsection, we review the subtleties of the DBM construction.

The DBM prescription leads to a scalar potential defined locally to quadratic
order along a path L in field space. The path L is not completely arbitrary in order to
avoid self-intersecting paths which do not lead to single valued potentials. For models
of inflation with Nf � 1 fields, this is not a severe restriction, as self-intersecting
trajectories are very rare in a high-dimensional field space.

Moreover, as the potential is mapped out in a stochastic fashion along the path,
it does not automatically evolve to a vacuum configuration with a small or vanishing
vacuum energy (should the path be continued past the end of inflation). Thus, a DBM
prescription that extends beyond inflation must also incorporate a vacuum generation
mechanism (see also [35]).

In general, the DBM prescription is not well-suited to address questions relating to
the global nature of random scalar potentials. For example, Morse theory inequalities
are not easily verifiable given the potential in only a small subset of the field space
[13]. Moreover, for very long paths (s � 1), the energy scale of the potential and
the Hubble parameter may exceed the putative ultraviolet cut-off of the theory, Λh,
indicating a break-down of the effective field theory interpretation of the model. This
is related to the fact that, while the Hessian matrix evolves into a stationary statistical
distribution for s� 1, the variance of the potential and its gradient grow with s [36].
For inflationary models with s . O(few), this concern is rarely of practical relevance.

A more serious concern that has caused some confusion in the literature relates
to the intrinsically Brownian nature of Dyson Brownian Motion. It is well-known
that a particle undergoing Brownian motion traces out a path that is (‘almost surely’)
continuous, but also (‘almost surely’) nowhere differentiable. This follows from the
Markovian nature of the random steps. Consequently, the evolution of vab is (‘almost
surely’) continuous along the path L, but also (‘almost surely’) not differentiable in the
continuous limit. That is, DBM potentials are twice differentiable (by construction),
but higher derivatives are not well-defined.9 Fortunately, to compute the two-point
statistics of the perturbations in models of multiple-field inflation, only the second
derivatives along the field trajectory are needed, not higher orders. Moreover, the
values of vab along the path are only relevant up to a certain numerical accuracy,
which effectively regulates the unknown higher-order terms. Hence, for the purpose of
computing the power spectrum of the field perturbations, the curvature power spec-
trum and the isocurvature, the DBM construction suffices. Computing higher-order

8Models with O(100) non-interacting fields have been studied in the context of N-flation [34]. Sym-
metries protecting interactions amongst fields make these potentials and subsequent phenomenology
much simpler than the models we wish to explore with this work.

9This should be contrasted by claims that DBM potentials are only once differentiable [37].
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correlations and non-Gaussianities however, requires significant amendments to the
construction, going beyond the Markovian definition of the stochastic evolution.

A promising alternative method to explore inflation in high-dimensional field
spaces invokes multi-dimensional Gaussian Random Fields (GRFs) as the field-dependent
scalar potential. Early work using this method include [38], in which inflation in po-
tentials with Λh > MPl and up to six fields was studied. Subsequent work includes
[39–41] (see also [42] for earlier studies of single-field inflation in random potentials).
The Hessian matrix of GRFs is simply related to the GOE, and eigenvalue repulsion
is critically important for the evolution of fluctuated eigenvalue configurations also in
GRFs.10 Hence, we expect that the lessons derived from studies of DBM potentials
should apply also to potentials modelled by Gaussian Random Fields.

3 Method: Computing Observables

In this section we describe the methods for computing inflationary observables used
in our analysis. Computing observables for a large number of fields is in general a
numerically heavy task, even if we limit our study to the power spectrum of curva-
ture, isocurvature and tensor perturbations.11 The heaviest computational cost comes
from the evaluation of the two-point correlation function of the field perturbations,
〈δφa−kδφbk〉, which involves solving O(N2

f ) coupled ordinary differential equations for
a given scale k. This task then needs to be repeated for a range of scales in order
to construct the full power spectrum of the curvature perturbations, Pζ(k). Given a
complicated inflationary potential, we have have no reason to expect Pζ(k) to have
a simple functional form and hence a large number of modes must be computed in
order to guarantee a good characterisation of Pζ(k). For these reasons, the study of
complex multifield models crucially requires a highly efficient method for computing
observables.

The section is organised as follows: in §3.1 we closely follow Ref. [19–22] and
present our most general approach to computing two-point statistics of scalar pertur-
bations in the flat gauge. In §3.2, we show that by assuming slow-roll, and by only
considering superhorizon scales, the calculation of observables can be sped up dramat-
ically. This slow-roll method is sufficiently general to capture a very broad class of
models, including the complicated models of manyfield inflation constructed with the
DBM method. As far as we are aware, this is the first example of a general method
for computing observables that is feasible for models with O(100) fields and a com-
plicated potential. In §3.3, we briefly summarise how to use the separate universe
assumption to obtain the gauge transformation required to move from the flat gauge
to the constant density gauge. In §3.4 and §3.6 we obtain compact expressions for the

10In particular, the Hessian of an Nf -dimensional, mean zero GRF with Gaussian covariance func-
tion is an element of the GOE plus a shift, proportional to minus the value of the potential times
the unit matrix. For the set of points at which the potential is zero, the spectrum of the Hessian is
precisely the GOE semi-circle law.

11We leave the study of non-gaussianities to a further work. For details on how to compute three-
point statistics of inflationary observables see Ref. [19].
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power spectrum Pζ(k) and related quantities such as the spectral index, running and
isocurvature power spectrum. In §3.7 we compare the results of the efficient slow-roll
method with the more general, slower method.

3.1 The general method

A common approach to computing the statistics of ζ is to break the calculation into
two steps: the computation of correlation functions of fluctuations evaluated on flat
surfaces, and the subsequent evaluation of the gauge transformation which relates field
perturbations to the curvature perturbation evaluated on constant density surfaces.
The first step encompasses the bulk of the computational effort as it corresponds
to evolving field perturbations through non-linear evolution until the desired time of
evaluation. The second step is a simple analytical expression which depends only on
background quantities. There are a number of methods for computing correlation
functions in the flat gauge (see Ref. [19] for a review). The approach taken here is to
compute the propagator Γαβ(N,N0), defined such that [21],

Xα(N) = Γαβ(N,N0)Xβ(N0) , (3.1)

where we have collected the fields and momenta Xα ≡ {δφa, δπa}. Here and in what
follows, greek indices run over the 2Nf fields and momenta and latin indices run over the
corresponding Nf fields or momenta. Defining the dimensionless two-point correlation
function as,

〈Xα(k1)Xβ(k2)〉 ≡ (2π)3δ(k1 + k2)
Σαβ(k)

k3
, (3.2)

it simply evolves according to two copies of the propagator,

Σαβ(N) = Γαγ(N,N0)Γβδ(N,N0)Σγδ(N0) . (3.3)

Here we drop the label k for simplicity; this expression describes how Σαβ for a single
k-mode evolves in time.

To compute the propagator, we consider the action governing small fluctuations
δφak(t) around a homogeneous background φa(t). In the flat gauge, to second order in
amplitude, this is given by [43]:

S ⊇ 1

2

∫
d3k

(2π)3
dt a3

{[
∂tδφa(k)

][
∂tδφ

a(−k)
]
−
(
k2

a2
δab+Mab

)
δφa(k)δφb(−k)

}
, (3.4)

where the effective mass matrix Mab is given by,

Mab ≡ Vab −
1

a3
∂t

(
a3 φ̇αφ̇β

H

)
. (3.5)

Using the definition δπa ≡ dδφa/dN , the equation of motion at tree-level has the form,

dXα

dN
= uαβX

β , (3.6)
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and hence the propagator may be obtained by solving,

dΓαβ

dN
= uαγΓ

γβ , (3.7)

where,

uαβ =

 0 δab

−δab
k2

a2H2
− Ma

b

H2
(ε− 3)δab

 . (3.8)

Similar equations, although even simpler, can be obtained for the two-point correlator
of tensor perturbations, cf. Ref. [22].

One might wonder if it would be computationally cheaper to solve Eq. (3.6) instead
of Eq. (3.7). Even though there are only O(Nf ) equations in (3.6), to compute the
correlation functions we need to solve O(N2

f ) equations; this was originally pointed
out by Salopek, Bond & Bardeen [44]. A single solution of Eq. (3.6) would describe
how δφα and δπα respond at late times to a specific initial condition. So to compute
the correlation functions, for which we need to know how the perturbations respond
to arbitrary initial conditions, we have to compute 2Nf equations for each of the
independent initial conditions.12

Equation (3.7), together with Eq. (3.3), determines the evolution of the corre-
lation functions in the flat gauge. To specify the initial conditions for the two-point
correlations, Σαβ(N0), we consider two prescriptions. First, sufficiently deep inside the
horizon the correlation functions are kinetic dominated and the modes are approxi-
mately massless. In this case, the Bunch-Davies initial conditions are [22],

Σαβ(N0) =


H2

0δ
ab
0

2
|kτ0|2 − H2

0δ
ab
0

2
|kτ0|2

−H
2
0δ

ab
0

2
|kτ0|2

H2
0δ

ab
∗

2
|kτ0|4

 , (3.9)

where τ = −1/aH is the conformal time and a subscript ‘0’ denotes evaluation at
the initial time N0 deep inside the horizon when |k/aH| ≈ |kτ | � 1. This initial
condition is suitable for our most general analysis, but is also computationally costly
as N0 � Nexit. The second prescription for specifying the initial conditions for (3.3),
valid in slow-roll and if the field trajectory is slowly turning at horizon crossing, takes
N0 = Nexit and treats the eigenmodes of the effective mass matrix (3.5) as independent
correlators. We will return to this initial condition in §3.2.

Equations (3.7) and (3.3) should be evolved until some final time at which the
observational predictions are determined. In multifield models of inflation, the obser-
vational predictions can in general continue to evolve well after the end of inflation,
at which point they will be affected by the reheating dyanamics. In this work we
will not model the reheating phase (as this would require a modification of the DBM
construction of the inflationary potentials), but focus on the inflationary era and take

12Reference [44] deals with this by decomposing Xα in terms of two index mode functions. This is
the approach taken in [45] and is very similar to solving Eq. (3.7).
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the final time of evaluation to be the end of inflation. We expect that the general
method for computing the perturbations presented here will be applicable also for the
post-inflationary evolution.

The set of ODEs Eq. (3.7) is well suited for numerical implementation, making
this method a highly versatile recipe for computing observables at tree level in multiple
field models.13 Nevertheless, as already mentioned, the computational cost of solving
this system of equations scales poorly with the number of fields, making the evaluation
of Pζ(k) quite expensive in certain regions of our hyperparameter space.

For our trajectories built using DBM, the matrix uαβ is obtained from the nu-
merical solution to the background equations of motion for each patch. Using the fact
that the propagator satisfies composition,

Γαβ(N3, N1) = Γαγ(N3, N2)Γγβ(N2, N1) , (3.10)

for times N3 > N2 > N1, we can solve Eq. (3.7) for each patch independently and
obtain the result for the whole evolution from N0 at the beginning of patch p0 to any
final time at point pf by computing the path ordered product,

Xα
∣∣
pf

= Γαγ(pf , pf−1) . . .Γρβ(p1, p0)Xβ
∣∣
p0

≡ Γαβ(pf , p0)Xβ
∣∣
p0
. (3.11)

Note that the initial conditions for Eq. (3.7) in each patch is always simply the identity
matrix, making this approach especially easy to implement.14

In what follows we refer to this method of computing the propagator as the full
non-slow-roll treatment. It provides a precise result, capturing all tree-level effects.15

3.2 Drastic slow-roll simplifications

The slow-roll conditions lead to drastic simplifications of the evolution of the perturba-
tions. In this subsection, we show that if the slow-roll approximation holds throughout
the last 60 or so efolds of inflation (which is typically the case in the examples we
study), and the field perturbations at horizon exit are approximately uncorrelated
(which we will check in §3.7), the propagator Γαβ can be solved for analytically in each
coordinate patch. This greatly increases our ability to study systems with many fields
explicitly, and is one of the key results of this paper.

The essential simplification stems from the local sum-separability of the inflaton
potential. Vernizzi and Wands showed in Ref. [46] that for potentials of the form
V (φ1, φ2) = V1(φ1) + V2(φ2), one can obtain expressions for observables purely in

13A very closely related method also extends in a simple way to the study of three-point statistics.
See transportmethod.com for a publicly available implementation in both mathematica and C++.

14We note that one could alternatively consider solving the integration Eq. (3.7) only once using
an interpolating function for uαβ from N0 to the final time of evaluation rather than performing the
calculation in each patch individually. We found this method required very high numerical accuracy
and was generally harder to implement in such a way that it was both efficient and robust. For all
calculations of the full non-slow-roll treatment, we therefore evaluated the propagator patch by patch.

15See Ref. [19] for a more careful discussion of what is captured at tree-level.
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terms of background quantities, thereby entirely avoiding the necessity to solve the
differential equations for the perturbations numerically. It was then shown in Ref. [47]
that the method generalises to an arbitrary number of fields.16 While the potential
studied here clearly is not of this form, it is constructed by stringing together a series
of patches which, by a suitable field redefinition, individually can be expressed as
sum-separable. This field redefinition is an orthogonal transformation of the field basis
~ϕ = OT~φ which diagonalises the Hessian, such that the potential is locally to quadratic
order is sum-separable,

V (ϕ1, . . . , ϕNf ) =

Nf∑
a

Va(ϕ
a) . (3.12)

Note that in this subsection and only this subsection, we denote one partial derivative
of the potential by V ′a(ϕ

a). In this basis, the field perturbation in each patch evolves
as,

δϕa
∣∣
pi+1

= Γab(pi+1, pi)δϕ
b|pi , (3.13)

and Eq. (3.11) is substituted by,

δ~φ
∣∣
pf

= OT
pf

Γ(pf , pf−1)Opf . . . O
T
p1

Γ(p1, p0)Op1 δ
~φ
∣∣
p0
. (3.14)

Note the usage of latin indices, as in the slow-roll limit we work purely in field-space,
rather than the full phase-space. Here we are taking p0 to correspond to the time of
horizon exit and so the path-ordered product of propagators and orthogonal transfor-
mations describes evolution on superhorizon scales. Assuming slow-roll, the propaga-
tor on superhorizon scales Γab(pi+1, pi) can be expressed purely in terms of background
quantities, providing an analytic solution to the propagation of the perturbation along
the inflationary trajectory. In this approach the work of numerically solving the cou-
pled ODEs of Eq.(3.7) is replaced with finding the orthogonal matrices Opi and the
local propagators Γ(pi+1, pi) in each patch — both entirely specified given the solution
of the classical background — and multiplying them together. We find this method
to be exceedingly numerically efficient. Furthermore, in contrast to any calculation
starting on subhorizon scales, there is no explicit k-dependence. Hence, the propa-
gators computed this way have the full information about evolution of observables at
any scale. This implies that one obtains observables for all scales exiting the horizon
during inflation at no additional cost, by simply starting the product of Eq. (3.14) at
subsequent patches.

We now compute the expression for the propagator in each patch. In the slow-roll
limit, and for large scales where k/aH � 1, the equations of motion reduce to,

dδφa

dN
= uabδφ

b , (3.15)

where the expansion tensor uab is now simply,

uab = −∂2
ab lnV . (3.16)

16The same approach can also be applied to product separable models [48] and in the case of
H-separable models one can even use the same approach without assuming slow-roll [49].
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On superhorizon scales, the field perturbations may be interpreted as Jacobi fields,
describing the independent evolution of a bundle of trajectories in field space [21].
One consequence of this is that Eq. (3.15) can be obtained by simply perturbing the
background equations of motion, it also implies that we can take the infinitesimal limit
of the perturbations to bring Eq. (3.1) to the form,

Γab(N(f), N(i)) =
∂φa(f)

∂φb(i)
, (3.17)

where a label “i” indicates evaluation at some initial flat surface and “f” denotes
evaluation on some final flat surface corresponding to times N(i) and N(f) respectively.17

To determine the N2
f components of Γab(N(f), N(i)) of Eq. (3.17), we wish to

compute the response in the final position in field space given a general infinitesimal
variation in the initial position:

dϕ(f)
a =

∂ϕ
(f)
a

∂ϕb(i)
dϕ

(i)
b . (3.19)

As we now describe, this can be done by requiring the conservation of Nf −1 ‘slow-roll
charges’, and that Γab propagates the perturbations to a final hypersurface with flat
geometry.

The number of efolds parametrises the position of the fields along the path, ϕa(N).
In slow-roll and for a sum-separable potential like Eq. (3.12), the number of efolds

between the points ϕ
(i)
a and ϕ

(f)
a is given by,

N = −
Nf∑
a=1

∫ ϕ
(f)
a

ϕ
(i)
a

Va
V ′a
dϕa , (3.20)

where a prime denotes differentiation with respect to the appropriate field. In addition,
each slow-roll path can be identified by Nf − 1 integrals of motion, which are constant
along the trajectory,

Ca = −
∫
γ

dϕ1

V ′1
+

∫
γ

dϕa
V ′a

, (3.21)

for a = 2 ... Nf . Here γ denotes a field-space path from a fiducial reference point to
any point on the slow-roll trajectory.

17References [46, 47] compute a very similar object:

∂ϕ
(c)
a

∂ϕb(i)
= −V

(c)

V (i)

√√√√ε
(c)
a

ε
(i)
b

(
ε
(c)
b

ε(c)
− δab

)
. (3.18)

However, while similar, this is not the quantity we are after because it takes the final surface ‘c’ to
be a constant density surface. The propagator (3.1) applies to fluctuations in the flat gauge and this
distinction is of course important for preserving the composition property of Γ.
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A small perturbation of the initial position results in a slightly perturbed slow-roll
trajectory, and a variation of the charges Ca,

dCa

dϕ
(i)
b

= −
(

1

V ′1

)
i

δb1 +

(
1

V ′a

)
i

δab , (3.22)

where we have taken the path γ to end at ϕ
(i)
b , δab denotes the Kronecker delta function,

and the repeated a on the right hand side is not summed over. However, the path γ
can equally well be taken to end at ϕ

(f)
b so that,

dCa

dϕ
(i)
b

=
∂Ca
∂ϕc(f)

∂ϕ
(f)
c

∂ϕb(i)
=

Nf∑
c=1

(
−
(

1

V ′1

)
f

δc1 +

(
1

V ′a

)
f

δac

)
∂ϕ

(f)
c

∂ϕb(i)
. (3.23)

This gives Nf (Nf − 1) linear equations for the N2
f unknown elements of ∂ϕ

(f)
c /∂ϕ

(i)
b ,

−
(

1

V ′1

)
i

δb1 +

(
1

V ′a

)
i

δab =

Nf∑
c=1

(
−
(

1

V ′1

)
f

δc1 +

(
1

V ′a

)
f

δac

)
∂ϕ

(f)
c

∂ϕb(i)
. (3.24)

To obtain Nf additional equations, we impose the constraint that the final hy-
persurface is flat, i.e. that the curvature perturbation vanishes. To linear order, this
means that,

ζ(Nf ,x) =
dN

dϕ
(i)
a

δϕ(i)
a (x) = 0 , (3.25)

which for general perturbations requires that,

dN

dϕ
(i)
a

=
∂N

∂ϕb(i)
+

∂N

∂ϕc(f)

∂ϕ
(f)
c

∂ϕb(i)
= 0 . (3.26)

Using the definition (3.20), this gives,(
Va
V ′a

)
i

−
(
Vb
V ′b

)
f

∂ϕ
(f)
b

∂ϕa(i)
= 0 . (3.27)

and an additional Nf equations for the unknown ∂ϕ
(f)
c /∂ϕ

(i)
b .

Equations (3.24) and (3.27) can be solved by inspection, giving,

∂ϕ
(f)
a

∂ϕb(i)
=

(V ′a)f
(V ′b )i

(
δab +

(Vb)i − (Vb)f
Vf

)
. (3.28)

Consistently, as ϕ(f) → ϕ(i), Γab → δab.
18

18As a further consistency check, we can contract this expression for Γ with the gauge transformation
which will be derived in the next section, Eq.(3.36), to obtain,

∂N

∂ϕa(i)
=

[
1

V ′
a

]
i

[
(Va)i +

(
V V ′2

a

V ′
bV

′b
− Va

)
f

]
, (3.29)

which agrees with the expressions given in Refs. [46, 47].
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Equation (3.28) is the key to striking reductions of computational cost for com-
puting the power spectrum, Pζ(k), for systems with a large number of fields. By only
involving quantities accessible from the solution of the classical background alone, it
allows us to completely circumvent the task of numerically solving the differential equa-
tions of the perturbations. Rather, equations (3.14) and (3.3) shows how to obtain the
field correlator Σab at any point during inflation by stringing together local solutions
of (3.28) along the background trajectory.

An important aspect of the expression (3.28) is that it is independent of k. How-
ever, as in virtually all inflationary models, the curvature power spectrum is not com-
pletely scale-invariant: different k-modes exit the horizon at different times during
inflation, and the field perturbations at horizon crossing, Σab(Nexit), reflect the slowly
varying Hubble parameter during inflation. More precisely, assuming that the field
trajectory is not turning significantly at the time of horizon crossing,19 the correlation
function is diagonal in the basis that diagonalises the effective mass matrix Eq. (3.5).
In terms of the independent mode functions in this basis, δϕ̃, the correlation functions
at horizon exit, Σ̃ab(Nexit), are given by [50, 51],

Σ̃ab(Nexit) =
H2

2
δab, if

M2

H2
≤ 9

4
, (3.30)

and

Σ̃ab(Nexit) = e−πν
H2

2
δab, if

M2

H2
>

9

4
, (3.31)

where ν =
√

M2

H2 − 9
4

and M are eigenvalues of the effective mass matrix Eq. (3.5).

Bringing these expressions back to the original field basis gives rise to a non-diagonal
expression for Σab(Nexit).

An additional source of k-dependence is intrinsically multifield in nature. Modes
exiting the horizon earlier during inflation will evolve with a longer string of local
propagators, cf. Eq. (3.14), thus inducing a non-trivial k-dependence inherited from
the superhorizon evolution of the curvature perturbation.

3.3 From field space to ζ

In this subsection, we relate the field perturbations in the flat gauge to the curvature
perturbation, ζ, in the uniform-density gauge. Since the relevant scales for which we
wish to perform this gauge transformation are superhorizon, a very simple way to do
so is by invoking the separate universe assumption, which gives an intuitive classical
description of the evolving fluctuations [52–58].

In the superhorizon limit, we can interpret the evolution of field perturbations
as a bundle of non-interacting inflationary trajectories in field space. In this picture
Eq. (3.1) and (3.6) describe the evolution of Jacobi fields and hence characterise the
evolution of the shape of the bundle [21]. In addition, ζ simply corresponds to the

19We know of no general, analytic expression for the correlation functions in the case of a fast-
turning trajectory. In that case, a treatment like the one described in §3.1, where the propagator is
estimated from the deep subhorizon limit, needs to be used.
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variation in the number of efolds that each trajectory takes to reach a constant density
hypersurface from an initially flat hypersurface [52–58]. Therefore, the gauge trans-
formation that relates δφa and δπa to ζ must be a measure of this δN when both
hypersurfaces are evaluated at the same cosmic time. Reference [58] presents a sys-
tematic way to compute this quantity. We will first describe how to compute the gauge
transformation that connects the perturbations Xα = {δφa, δπa} to ζ and then present
the slow-roll limit of the result.

Let ∆N be the number of efolds between a point p = {φa∗, πa∗} on the spatially
flat hypersurface at which the density is ρ(φa∗, π

a
∗) and a nearby uniform density hy-

persurface with density ρc. At first order in ρ,

∆N =
dN

dρ

∣∣∣∣
p

(ρc − ρ) + . . . . (3.32)

Expanding in terms of phase-space coordinates, we then have,

δ(∆N) ≈ − dN

dρ

∣∣∣∣
∗

( ∂ρ

∂φa

∣∣∣∣
∗
δφa∗ +

∂ρ

∂πa

∣∣∣∣
∗
δπa∗

)
+ . . . (3.33)

where ‘. . .’ denotes higher order terms in δφa or δπa. The variation δ(∆N) is precisely
ζ and we identify the gauge transformations at linear order, Na and Ña, to be defined
by,

ζ = δ(∆N) ≡ Naδφ
a + Ñaδπ

a + . . . . (3.34)

In terms of the potential and momenta they read:

Nα ≡ {Na, Ña} =

{
1

2εV
Va ,

1

2ε(3− ε)
πa

}
. (3.35)

Here, again, Va = ∂aV .
In the slow-roll limit, the perturbations are expressed purely in terms of field-space

coordinates and the gauge transformation is simply given by,

Na =
V

VbVb
Va . (3.36)

This expression gives the instantaneous gauge transformation that relates a flat hyper-
surface to a nearby uniform-density surface, and is thereby different from the commonly
used ‘δN ’ expression for the variation in the total number of efolds with respect to
fluctuations at an initial (and hence distant) flat hypersurface. These formalisms are
obviously closely related, and we now review the computation of observables in the
transport formalism.

3.4 Curvature and isocurvature power spectra

In this paper, we compute the two-point correlation functions of field perturbations
and the corresponding observables generated during inflation. Of primary interest is
the power spectrum of curvature perturbations, which is defined as,

〈ζ(k1)ζ(k2)〉 = (2π)3δ(3)(k1 + k2)
Pζ(k)

k3
. (3.37)
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In single-field inflation, Pζ(k) evolves on subhorizon scales (k > aH) but stops evolving
at around horizon crossing (k = aH), see for example Ref. [59–61]. In multifield
inflation, the curvature perturbation may evolve on superhorizon scales so that in
general, Pζ(k) = Pζ(k,N). For compactness of notation, we will often suppress the
dependence of k and let Pζ(N) denote the time-dependent power of the curvature
perturbation at a given scale. It follows from Eqs. (3.34) and (3.3) that Pζ can be
written as,

Pζ(N) = NαNβΣαβ(N) = Nα(N)Nβ(N)Γαγ(N,N0)Γβδ(N,N0)Σγδ(N0) . (3.38)

This expression applies to each mode k, so that Pζ(k,N) can be obtained by evaluating
Eq. (3.38) for each mode within the range of interest. In the slow-roll formalism of
§3.2 and with the gauge transformation (3.36), the k-dependence sits in the factor
of Σγδ(N0) (i.e. the field two-point function at the horizon crossing of each mode,
cf. Eq’s. (3.30) and (3.31)), and in the length of the string of propagators making up
Γαγ(N,N0) (cf. Eq. (3.14)).

The slow-roll gauge transformation, Eq. (3.36), relates δφa(N) to ζ(N) at any
time between horizon crossing and the end of inflation and can be written as,

Na(N) = − 1√
2εV (N)

na(N) , (3.39)

where na is the unit vector along the field trajectory. The component of the field
fluctuation parallel to the slow-roll trajectory, δφ‖ = naδφa, is then responsible for the
curvature fluctuation

ζ = Naδφ
a = − 1√

2ε
δφ‖ . (3.40)

In this way, the curvature power spectrum, as evaluated at any time during inflation,
is given by the projection,

Pζ(N) =
1

2εV
na Σab nb . (3.41)

Field perturbation δφ‖ along the trajectory is referred to as ‘adiabatic’, and per-
turbations along the Nf − 1 perpendicular directions give rise to ‘entropic’ or ‘isocur-
vature’ perturbations. Denoting a generic orthonormal frame of basis vectors in the
perpendicular directions by vaj (N) for the vector index a and with j = 1, . . . , Nf − 1,
the field perturbations are decomposed as,20

δφa ≡ δφ‖ n
a + δφj⊥ v

a
j . (3.42)

In analogy to ζ, we define the isocurvature S i as,

S i ≡ 1√
2εV

δφi⊥ . (3.43)

20The ‘kinematic basis’ in which the unit vectors are formed from time derivatives of the background
trajectory is one popular choice for vai [62].
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The isocurvature correlations (suppressing the momentum-conserving delta function)
are then given by,

P ij
iso(N) =

k3

(2π)3
〈S iSj〉 =

1

2εV
vai Σab vbj . (3.44)

We refer to the isocurvature power spectrum (without indices) as,

Piso = δijP
ij
iso =

1

2εV
vai Σab vbi . (3.45)

The curvature-isocurvature cross-power spectrum is given by,

P i
cross(N) =

k3

(2π)3
〈ζ S i〉 = − k3

(2π)3

1

2εV
〈δφ‖δφi⊥〉 = − 1

2εV
na Σab vbi . (3.46)

We define the cross-correlation (without indices) as,

Pcross ≡
√
P i

crossP
i
cross . (3.47)

3.5 Superhorizon evolution

Isocurvature can source superhorizon evolution of ζ. Using the slow-roll evolution of
the field perturbations, Eq. (3.15), it is easy to see that,

δφ′‖ = (naδφa)′ =

(
2εV − na

Vab
V
nb
)
δφ‖ − 2na

Vab
V
vbj δφ

j
⊥ . (3.48)

To compute the evolution of the entropic perturbations, (δφi⊥)′ = (vai δφ
a)′, we need to

specify how the basis vai evolves during inflation. To preserve the unit norm, vai (v
a
i )
′ = 0

for each fixed i. We furthermore take vai (v
a
j )
′ = 0 so that the entropic basis vectors do

not rotate among themselves. To preserve orthogonality with na, each entropic basis
vector satisfies, (na vai )

′ = (na)′vai + na(vai )
′ = 0, so that

(vai )
′ = −(nb)′vbi n

a = nb
Vbc
V
vci n

a . (3.49)

With this choice, the entropic fluctuations evolve as,

(δφi⊥)′ = −vaj
Vab
V

vbk δφ
k
⊥ . (3.50)

The corresponding evolution equations for the curvature, ζ, and isocurvature per-
turbations, S i, can be found by first noting that,

d

dN

(
1√
2εV

)
=

1√
2εV

(
na
Vab
V
nb − 2εV

)
, (3.51)

so that,

ζ ′ = 2

(
na
Vab
V
vbi

)
S i , (3.52)

(S i)′ = (na
Vab
V
nb − 2εV )S i − vai

Vab
V

vbk Sk . (3.53)

24



The super-horizon evolution of the curvature and isocurvature correlations during
slow-roll inflation are then governed by,

P ′ζ = 4na
Vab
V

vbi P
i
cross , (3.54)

(P ij
iso)′ = 2

(
na
Vab
V
nb − 2εV

)
P ij

iso − vai
Vab
V
vbk P

kj
iso − vaj

Vab
V
vbk P

ik
iso , (3.55)

(P i
cross)

′ =

(
na
Vab
V
nb − 2εV

)
P i

cross − vai
Vab
V

vbj P
j
cross + 2na

Vab
V

vbj P
ij
iso . (3.56)

In §9, we will find these expressions very intuitive in interpreting the numerical results
of explicit manyfield models.

3.6 The tilt and the running

It is conventional to describe Pζ(k) as a simple power law,

Pζ(k) = As

(
k

k?

)ns−1

, (3.57)

where Planck observations give a good fit for ln(1010As) = 0.563 ± 0.034 21 and ns =
0.9645±0.0049 at the pivot scale k? = 0.05Mpc−1 [63]. In many models of inflation, the
power spectra are well approximated by simple power laws, and observations lead to
direct constraints on the model parameters. The randomly generated models studied
in this paper however are not required to yield simple power law power spectra, but
we find it is still convenient to define the scalar spectral index by,

ns = 1 +
d lnPζ
d ln k

(k?) . (3.58)

We note that constraining heavily featured power spectra is more complicated than
comparing the result of Eq. (3.58) with observational constraints derived assuming
Eq. (3.57). In the numerical examples constructed in this paper, we compute (3.58) by
linearly fitting the power spectrum over a 10 efold range around the pivot scale, which
we assume left the horizon 55 efolds before the end of inflation.

Much intuition for the distribution of values of ns in models of multifield infla-
tion can be gained from analytic expression for the spectral index obtained from the
transport formalism. Following Ref. [64] we denote,

nab =
dΣab

d ln k
, (3.59)

such that the spectral index is given by,

ns − 1 =
1

Pζ
NaNbn

ab . (3.60)

21Our definition of dimensionless power spectrum differs from the one used in Ref. [63] by a factor
of 4π.
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On superhorizon scales, the equation of motion for nab is the same as the one for Σab,22

leading to,
nab(N) = ΓacΓ

b
dn

cd
∗ , (3.61)

where ncd∗ ≡ ncd(N0) is the value at horizon exit. Reference [64] showed that,

δΣab|∗ =

(
−εΣab − dΣab

dN

)
∗
δ ln k , (3.62)

from which it follows that,

nab∗ = −2
(
εΣab + uacΣ

cb
)∗
. (3.63)

For simplicity of discussion, we now take Σab
∗ = H2/2 δab and substitute Eqs. (3.61),

(3.63) into Eq. (3.60) to obtain the full expression for the spectral index:

ns − 1 = −2(ε∗ + eaebu
ab
∗ ) , (3.64)

where we have defined the unit vector,

ea =
NbΓ

b
a

‖NcΓcd‖
. (3.65)

This expression is at the heart of the discussion of §10.
The ansatz (3.57) for the primordial power spectrum can be generalised by taking

ns = ns(k). The first derivative of ns is called the running of the spectral index, αs.
In the transport formalism, the running can be expressed as [65],

αs ≡
dns

d ln k
=

1

Pζ
NaNbΓ

a
cΓ

b
dα

cd
∗ − (ns − 1)2 , (3.66)

where,

αab∗ ≡
dnab

d ln k

∣∣∣∣
∗

= [(2ε2 − ε′)δab − u′ab + 2εuab]∗H
2
∗ − 2[uacn

cb]∗ ,

and primes indicate differentiation with respect to efold time N . In terms of the unit
vector e, the running can be expressed as

αs = −2ε′ − 2eaebu
′ab + 4eaebu

a
cu

cb − 4
(
eaebu

ab
)2
. (3.67)

3.7 Testing the slow-roll analysis

As discussed above, a complete tree-level treatment of the curvature perturbation
can be achieved by computing the propagator from deep inside the horizon through
superhorizon scales. This approach allows for a broad range of dynamical behaviours,
and provides precise results at a numerical cost which, unfortunately, scales poorly with

22On subhorizon scales the transport equations for Σab and nab differ [22].
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Figure 3. Probability density function of the spectral index estimated by linear fit of the
power spectrum for Nf = 10, Λh = 0.4, and initial εV 0 = 10−11 and ηV 0 = −10−4. The
yellow line shows the result for the full treatment, whereas the blue line represents the result
of the slow-roll method.

dimensionality. Conversely, imposing the slow-roll conditions and assuming a negligible
turn-rate around the time of horizon exit, the curvature perturbation can be computed
entirely using background quantities. This corresponds to a drastic improvement in
numerical performance, but it is not clear from the outset if the random models of
DBM inflation satisfy these conditions: while the fields are typically evolving very
slowly during most of the inflationary evolution, turns in field space can occur at any
point during inflation.

To test if the slow-roll method can be used in our case, we compute perturba-
tions with both methods and compare the results. Given the stochastic nature of our
background, it is not possible to compare slow-roll and non-slow-roll trajectories for
each realisation individually. It is however possible to compare ensembles of results
for fixed values of the hyperparameters. We find that, at the level of ensembles, both
methods give comparable results.

As an example, we present in Fig. 3 the probability distribution of the spectral
index computed with both methods, for ensembles of 1000 realisations with 20 fields.
The distributions only differ by a few per cent off-set. Since our aim is to identify gen-
eral lessons from manyfield behaviour rather than a detailed quantitative description
and stringent constraints on hyperparameters, we regard these results as comparable
and in good agreement. Moreover, we have verified that manyfield effects such as the
levels of superhorizon evolution of observables are consistent between both methods.

4 Lesson I: Manyfield inflation is not single-field inflation

In this section, we focus on one of the several tens of thousands of inflationary models
studied in the subsequent sections of this paper. By considering this example in detail,
we can highlight several of the properties that are characteristic of much larger classes
of inflationary models. Moreover, by considering an in many ways typical example of
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Figure 4. The value of the potential (left) and the eigenvalues of vab as functions of the
path length, s = ∆φ/Λh.

a randomly generated manyfield model, we are able to rule out the applicability of
single-field models as faithful proxies of typical multiple-field systems.

One immediate aspect of the multifield models that we study is that they typically
contain several fields with masses of the order of the Hubble parameter. Such ‘light’
fields cannot be integrated out during inflation, and commonly contribute to multifield
effects that impact observables. In this sense, manyfield models of inflation are clearly
not identical to single-field models. However, it has been shown that particularly en-
gineered single-field models of inflation can capture some aspects of multifield models.
For example, a simple model of a single canonically normalised inflaton field subject
to the potential,

V (φ) = V0 − V1φ−
1

2
m2(φ)φ2 , (4.1)

with m2(φ) ∼
√

1− exp(−φ/Λh) (so that m2(φ) ∼ (φ/Λh)1/2 for φ � Λh) provides,
for certain choices of the parameters, a rather accurate estimate of the total number
of efolds of the more complicated DBM models [13]. Even though it only involves one
field, this model was constructed to reproduce the large-Nf evolution of the inflaton
mass and therefore should not be expected to agree with DBM models with Nf = 1.
This single-field model was further developed in Ref. [31], which in particular argued
that m2(φ) ∼ φ2/3 better captured the properties of the multifield DBM models for
sufficiently small field displacements. By assuming that the primordial power spectrum
of such a single-field model agrees with that of the multifield DBM models, Ref. [31]
went on to draw strong conclusions about the incompatibility of DBM potentials with
CMB data. We will return to and test this assumption and its consequences in detail
in §6. Other work on using random single-field models as proxies for more complicated
multifield ‘landscapes’ include [42, 66–68], and more recently [41].

Thus, while single-field models cannot capture all aspects of more complicated
multiple-field models, they have commonly been used to build intuition for the latter.
By studying one particular multifield model in detail, we here assess the importance
of multifield effects on the inflationary observables, thereby allowing us to gauge the
limitations of the single-field intuition.
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Figure 5. The field evolution (left) and the eigenvalues of vab (right) as functions of the
number of efolds. The region between horizontal black lines correspond to modes with
−H2

? ≤ m2 ≤ +H2
? .

4.1 Case study: 100-field inflation

We consider a randomly generated model of inflation with Nf = 100 fields and Λh =
0.4MPl, constructed according to the DBM prescription §2.1. The initial conditions
at the approximate inflection point were taken to be εV 0 = 10−11 and ηV 0 = −10−4,
with the spectrum of the Hessian matrix given by the ‘fluctuated’ spectrum discussed
in §2.2.2. These initial conditions were chosen so that randomly generated models
supporting at least 60 efolds of inflation are not overly rare (the mean value of the
total number of efolds is 71.5, and 49.9% of the 2,600 examples tested support at least
60 efolds of inflation). This particular example yields a total of 63.2 efolds of slow-roll
inflation with a total field space displacement of 0.28Λh = 0.11MPl. It takes 1031
patches to construct this example.

Figure 4 shows the evolution of the value of the potential and the eigenvalues
of the Hessian matrix as a function of the path length s = ∆φ/Λh along the inflaton
trajectory. Two characteristic features are worth highlighting: first, despite the random
nature of the DBM potentials, the evolution of the value of the scalar potential maps
out a very smooth approximate saddle-point. The absence of large features in the
sampled potential is not surprising: the ‘gradient flow’ field evolution of the inflaton
seeks out the locally steepest path away from the inflection point, making ‘bumps’,
‘steps’ and other large features in the sampled potential highly unlikely.

Second, many of the eigenvalues of the Hessian matrix rather quickly ‘drop’ to
negative values, thereby erasing the details of the initial, ‘fluctuated’ spectrum. Multi-
ple fields get tachyonic eigenvalues of the Hessian during inflation, and towards the end
of inflation, very nearly half of the eigenvalues are negative. Moreover, Fig. 4 illustrates
the continuity of the evolution of the Hessian eigenvalues as well as the intrinsic yet
regulated ‘raggedness’ that is characteristic of Brownian motions, cf. our discussion in
§2.3.

The field is ‘rolling’ very slowly during inflation, and most the evolution evident in
Fig. 4 occurs during the last few efolds. Fig. 5 shows the evolution of the components
of the vector φa during inflation (with respect to a fixed basis in which φ̇a(0) ∝ δa1).
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Figure 6. Left: Power spectrum of curvature perturbations as evaluated at horizon exit
(cyan) and at the end of inflation (purple). Right: Superhorizon evolution of the power of
the pivot-scale modes of curvature, isocurvature and their cross-correlation.

Clearly, the fields evolve non-trivially in the high-dimensional field space. As ε, and
hence the speed of the field, grows towards the end of inflation, much of the evolution
occurs during the last few efolds. The right panel of Fig. 5 shows the evolution of the
eigenvalues of the Hessian matrix (just as Fig. 4), here as a function of the number of
efolds. The number of ‘light’ fields with m2 < H2

? is not fixed and increases during
inflation, but, again, due to the slow initial motion of the field, most of the interesting
dynamics occur towards the end of inflation. An interesting aspect of the eigenvalue
evolution depicted in Fig. 5 is that |ηV| = |m2

min|/3H2 exceeds unity for Ne ≥ 59.9,
still inflation persists until Ne = 63.2 when εV = 1.

With multiple modes becoming tachyonic, one may worry that isocurvature per-
turbations grow and become dominant by the end of inflation. The case however, is
just the opposite. At horizon crossing of the pivot scale, the field perturbations are
given by Eqs. (3.30) and (3.31). The adiabatic mode is the linear combination of these
modes in the direction aligned with φ̇a(N?) (cf. Eq. (3.38)), and all perpendicular en-
tropic modes contribute to the isocurvature. As there are many light fields in this
model, the power in the entropic modes exceeds the power in the adiabatic mode at
horizon crossing.

Figure 6 shows the superhorizon evolution of the power in the curvature and
isocurvature perturbations at the pivot scale,together with their cross-correlation. In
a single-field model, the curvature perturbation freezes out on superhorizon scales and
Pζ(N) is constant. In multiple-field models isocurvature can source superhorizon evo-
lution of the curvature perturbation (cf. Eq. (3.54)). In slow-roll inflation, this always
leads to a net increase in the power of the adiabatic mode: Pζ(Nend)/Pζ(N?) ≥ 1. In
our case-study, the superhorizon evolution of the curvature perturbation is character-
istically substantial: Pζ(Nend)/Pζ(N?) = 20.3. This indicates that isocurvature modes,
and hence genuine multiple field effects, indeed are critical in manyfield models of in-
flation. Moreover, contrary to the näıve expectations, Fig. 6 shows how the power of
isocurvature relative to the adiabatic perturbations becomes increasingly suppressed
during inflation. We will return to and explain this phenomenon in §9.

The power spectrum of the curvature perturbations (as evaluated both at the end
of inflation and at horizon crossing) are plotted in the right panel of Fig. 6. Superhori-
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Figure 7. Example power spectra for the scales leaving the horizon between 50 and 60
efolds before the end of inflation for Nf = 2 (left) and Nf = 100 (right). Here Λh = 0.4MPl,
εV 0 = 10−11 and ηV 0 = −10−4.

zon evolution is typically most important for scales leaving the horizon long before the
end of inflation, leading to a slight steepening of the curvature power spectrum. Of
particular relevance for comparison with CMB experiments is the window of roughly
10 efolds around the pivot scale. Over these scales, the power spectrum is well fitted by
a simple power law with spectral index ns = 0.959 and running αs = −0.003, clearly
compatible with current observational bounds from Planck: ns = 0.965 ± 0.005 and
αs = −0.006± 0.007 [63]. This provides an explicit example of a non-trivial 100-field
model that is compatible with CMB observations.

Our model has sub-Planckian field displacements, and happens therefore at rather
low energy scale with H2 ∼ 10−18M2

Pl. The tensor to scalar ratio for this example is
extremely low, r = 8 × 10−12, which is a common feature across all of our ensembles.
The ‘Lyth bound’ [69], which relates the field displacement during inflation to the
tensor-to-scalar ratio in single-field models, states that,

r = 16εV < 8

(
1

Nexit

)2(
∆φ

MPl

)2

, (4.2)

if ε is constant or monotonically increasing. For our model this bound is r < 3× 10−5,
which is clearly far from being saturated. There are two reasons for this: the first
is related to the evolution of ε, which remains small for most of the trajectory, only
growing towards the end of inflation. The second reason is related to the superhorizon
evolution of ζ — as tensor modes are insensitive to isocurvature, superhorizon evolution
necessarily decreases the value of r compared to a single-field estimate.

To summarise, this analysis of a single realisation highlights the importance of
multifield effects in determining the phenomenology of our model. It also demonstrates
how complex dynamics can result in Planck compatible inflation. We now turn to the
study of ensembles of inflationary realisations and the resulting probability distribu-
tions for observables.
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Figure 8. Empirical probability distributions for ns and αs inferred from simulations of
1000 DBM models for each value of Nf . Here Λh = 0.4MPl, εV 0 = 10−11 and ηV 0 = −10−4.

5 Lesson II: The larger the number of fields, the simpler and
sharper the predictions

In this section we study the statistical distributions of the primordial power spectra
across our ensemble of inflationary models. We first note that the power spectra
generated in the DBM potentials are not always simple power laws, requiring more
than the amplitude and the spectral index to be described. Yet, we find that as the
number of fields increases, the power spectra become simpler and more predictive.

As mentioned, current observations of the CMB constrain the primordial power
spectrum over a roughly 10 efold window which, depending on the details of reheating,
left the horizon approximately 50–60 efolds before the end of inflation.23 The two plots
of Fig. 7 show the primordial power spectra in this window for 20 randomly chosen
realisations with, respectively, Nf = 2 and Nf = 100. When the number of fields is
small, the power spectra are typically highly featured and scale dependent. When the
number of fields increases, the power spectra become less featured. For sufficiently
many fields (in practice Nf & 10), the power spectra become well approximated by
the simple power law over the 10 efold window of scales observable through the CMB,
cf. Ref. [17].

A striking aspect of Fig. 7 is that the bundles of generated power spectra not only
become less featured at large Nf , but also more focussed. This decrease in the variation
of the power spectra between different random realisations is further highlighted by
Fig. 8, which shows the empirical probability distributions of ns and the running,
αs = dns/d ln k, for Nf from 2 to 100 computed from a numerical linear fit of ln [Pζ(k)]

23We do not explicitly model the reheating phase and assume for the rest of this paper, for con-
creteness, that the pivot scale left the horizon 55 efolds before the end of inflation.
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Figure 9. The same Nf = 100 examples shown on the lefthand plot of Fig. 7, but now
showing the full range of scales exiting the horizon in the last 60 efolds of inflation.

over the 10 efold range of Fig. 7. At small Nf , the spectral index and the running
are widely distributed, indicative of the complicated power spectra typical in random
few-field models. As Nf increases, the probability distributions tend to rather sharp
Gaussian distributions. We explain in §10 how this sharpening of the predictions can
be understood as direct consequence of eigenvalue repulsion at large Nf .

Even the very smooth power spectra generated in the large Nf regime may fail
to be described by a simple power-law when studied over a larger range of scales. In
Fig. 9 we show the same Nf = 100 examples as in the right hand plot of Fig. 7, except
that now we present the full range of scales exiting the horizon in the last 60 efolds
of inflation. The power spectra show a clear downward trend indicative of a small
negative running, but additional features on small scales are also common.

We note in closing that, even though in the DBM potentials sharper predictions
can be understood through eigenvalue repulsion, such manifestation of universality at
large-Nf can arise in other situations. In Ref. [33, 34] a model of N-flation [70, 71], in-
volving multiple free, non-interacting fields resulted in qualitatively similar behaviour.
Despite the fact that these two examples are radically different, both models give rise
to sharper predictions at large Nf . This suggests that there might be a more uni-
versal manifestation of the central limit theorem playing a role, and hence predictions
becoming sharper at large Nf may be a ubiquitous characteristic of manyfield inflation.

6 Lesson III: Planck compatibility is not rare, but future ex-
periments may rule out this class of models

In this section we quantitatively study the statistical distributions for the spectral
index and the running inferred from our ensemble of DBM models. We show that
a substantial fraction of the models are compatible with current observational con-
straints, but future experiments will provide stringent test and may even rule out this
entire class of models.
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Figure 10. Left: Distribution of the spectral index. Right: Distribution of the running.
The grey band indicates the current Planck 68% confidence region [63]; the red line indicates
the single-field prediction of [31]. Here Λh = 0.4MPl, εV 0 = 10−11 and ηV 0 = −10−4.

As discussed in §5, randomly generated DBM models with only a few fields give
rise to highly featured power spectra. In this case, the parametrisation of the pri-
mordial power spectrum as a simple power law is not meaningful, and comparison
with observations requires a dedicated analysis for each model, which falls beyond the
scope of this paper. We note however that observations do not tend to favour highly
scale-dependent power spectra, and we expect the vast majority of the highly featured
models to be ruled out by current observations.

The spectral index: For larger Nf , the power spectra are well-described by a
power-law power spectrum. Many of these ensembles of DBM models are compatible
with current observational constraints from the Planck experiment. Figure 10 shows
the distributions of spectral indices computed from DBM realisations with Nf ranging
from 2 to 100. The distributions of values of ns in DBM models tend to be broader
than the observational constraints, and are typically not far off-set from the central
value favoured by observations.24

Figure 10 also shows the stark contrast between the single-field model assumed to
describe DBM potentials in Ref. [31], and the actual distributions. This suggest that
the very strong conclusions of Ref. [31] should be regarded with caution.25

The running: Small deviations form a perfect power-law power spectrum are
captured by the running of the spectral index, cf. Eq. (3.66). We compute αs for each
model by making a quadratic fit of ln[Pζ(k)] over the same 10 efold window as used
above.

24It should be noted that had we not seen any realisations exhibiting Planck compatibility, this
would not necessarily imply that the model is incompatible with observation. One can imagine a
situation where the variance of the model is vastly greater than the uncertainty in cosmological
parameters given by the observed data. The question then would be if the observed data is typical in
the model’s distribution. Even if it was, it might be difficult to achieve sufficiently dense sampling to
find a realisation compatible with observation. Only if the observed data were an outlier of the model
could we regard the model as under pressure from observation.

25We note however that the results of Fig. 10 are consistent with Ref. [17], which also contained
examples of DBM models with Planck-compatible power spectra.
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Figure 11. The spectral index verses the running for 1000 models of 100-field inflation. Blue
lines show 68% and 95% confidence limits for this ensemble. Planck 68% and 95% confidence
limits are shown in grey. These contours use Planck high-` polarisation, combined with
temperature data [63]. Here Λh = 0.4MPl, εV 0 = 10−11 and ηV 0 = −10−4.

This leads to a striking result: not only do power spectra become well approx-
imated by power laws for large number of fields, but they do so in such a dramatic
way that the running is highly predicitve. Figure 10, to the right, shows the ensemble
average and standard deviation of the running as a function of the number of fields.
For small Nf , the random DBM potentials provide highly featured power spectra and
no reliable predictions for the running. However, for sufficiently large Nf , the DBM po-
tentials are well-described by an approximate power-law and make a sharp prediction
pointing towards a preference for small negative running. In contrast to the case of ns,
the theoretical predictions for the running are much tighter than the current observa-
tional constraints. To further highlight this point, Fig. 11 shows a scatter plot of ns
versus αs for 1000 DBM realisations with Nf = 100 together with current constraints
from Planck [63].

Future probes of the large-scale structure of the universe and the CMB spectrum
and polarisation are expected to improve the observational constraints on the running:
an optical galaxy survey of Euclid-type may reach a sensitivity of σ(αs) = 0.002 and
a CoRe-like CMB experiment, in combination with other experiments, may be even
more sensitive, obtaining σ(αs) = 0.0011–0.0019 [72]. These experiments may rule out
essentially all DBM models with a large number of fields. This makes the running a
promising observational test for manyfield inflation.26
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Figure 12. The spectral index as function of Λh, in units of MPl. The grey shaded region
indicates the 68% confidence limits from Planck [63]. The red line shows prediction of
Ref. [31]. Here Nf = 20, εV 0 = 10−11, and ηV 0 = −10−4.

7 Lesson IV: The smoother the potentials, the sharper the
predictions

The intrinsic smoothness of the potentials affects the predictions of random multifield
models. In the DBM construction, the ‘horizontal scale’ Λh sets the distance scale in
field space over which the eigenvalue spectrum of the Hessian matrix equilibrate. As
mentioned in §2.1, Λh can be given a natural interpretation as a Wilsonian ultraviolet
cut-off of the theory. DBM potentials with Λh � MPl tend to be highly featured on
small scales and require excessive levels of fine-tuning of the initial εV parameter to
support 60 efolds of inflation. We here focus on the interesting sub-Planckian range
of 0.2 ≤ Λh/MPl ≤ 1 and investigate the impact of the smoothness on the observables
generated during inflation.

In this section, we also study the influence of the initial ε parameter on the
observables. While εV 0 only sets the magnitude of the gradient vector at a point in
field space, the fields spend most of inflation very close to this point, and hence, a
small εV 0 effectively smoothens the potential experienced by the fields during inflation.

Figure 12 shows the dependence of the spectral index on Λh for DBM models with
Nf = 20. For small Λh, models supporting at least 60 efolds of inflation are quite rare:
we find 1134 successful examples out of 20,000 randomly generated DBM models with
Nf = 20, εV 0 = 10−11 and ηV 0 = −10−4. The resulting power spectra for the successful
models tend to be highly featured, leading to a large variance for the spectral index
computed over the 10 efold window as in §6. As Λh is increased, examples with a
large number of efolds become more common,27 and the variance of the spectral index

26We note however that the DBM models typically produce a ‘running of the running’ that is
consistent with zero.

27For Λh = 0.4MPl, we find 1066 examples with at least 60 efolds of inflation from 2000 models.
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Figure 13. The spectral index as a function of εV 0. The grey shaded region indicates the
68% confidence limits from Planck [63]. Here Nf = 20, Λh = 0.4MPl, and ηV 0 = −10−4.

decreases, as does its mean value. Since Λh is a measure of the correlation length of
the potential, we conclude that the smoother the potential, the sharper the prediction
for the spectral index, and the redder the spectra.28

From Fig. 12, we see that for large Λh, most DBM models are too red to be
consistent with the observationally favoured grey band from Planck [63]. We conclude
that small Λh is preferred by the data. Moreover, the red line in the left plot of Fig. 12
shows the single-field prediction of Ref. [31], which is there assumed to be applicable
for Λh < MPl. We see that this prediction improves as Λh → MPl, and is compatible
with the result of the full simulations, at least for large Λh and moderate values of Nf .
Again, as discussed, this single-field approximation should be regarded with caution.
Given the compatibility of the DBM predictions with observational constraints for
models with smaller Λh, the strong conclusions of Ref. [31] appear harder to justify.

The initial value of εV is the hyperparameter that controls the flatness of the
potential near the approximate saddle-point. A smaller value of εV 0 leads to a more
slowly rolling field and, generically, more efolds of inflation. The effect of a decrease
in εV 0 on observables is very similar to that of an increase of Λh. Figure 13 shows
how, as εV 0 is decreased, the spectrum becomes more red and the standard deviation
taken over 1000 random realisations decreases, in analogy with Fig. 12 for increasing
Λh. Thus, also for the εV 0 hyperparameter, we see that a smoother potential leads to
sharper predictions.

8 Lesson V: Hyperparameters can transition from stiff to
sloppy

In any model of inflation, one generally seeks an understanding of how the model pre-
dictions depend on the model parameters. For the DBM models where the potentials

For Λh = MPl, 70% of the examples were successful.
28Qualitatively similar behaviour was found in Ref. [38] for the case of 2-field Gaussian random

potentials supporting large-field inflation.
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Figure 14. Spectral index as a function of the initial slow-roll parameter ηV 0. Here Nf = 20,
Λh = 0.4MPl, and ε = 10−11. The grey shaded region indicates the 68% confidence limits
from Planck [63].

are generated stochastically, we seek to understand the distribution of observables for
a fixed choice of hyperparameters, and the dependence of these distributions to hyper-
parameter variations. We have already considered the dependence on Nf in §5 and the
dependence on Λh and εV 0 in §7. In this section we describe the dependence on the
final hyperparameter of our DBM ensemble, the initial slow-roll parameter ηV 0. We
also comment on the problem of inference for this ensemble of models.

In Ref. [13], it was found that the the Dyson Brownian motion of the Hessian
matrix quickly spoils any fine-tuning of the eigenvalue spectrum made in the first
patch: already a short distance (� Λh) away from the approximate critical point, the
Hessian matrix develops small off-diagonal terms which cause ‘eigenvalue relaxation’
and a prompt erasure of any tuning of the curvature of the potential. As a direct
consequence, for |ηV 0| not too large, we expect the predictions of the model to be
independent of |ηV 0|. This should be contrasted with the case common to many single-
field models, in which Ne ∼ 1/|ηV 0|, and ns−1 ∼ ηV ∗ ∝ ηV 0. Reference [13] found that
the distribution of the number of efolds generated by DBM models become independent
of ηV 0 as |ηV 0| . 0.1. Here, we compute the effects of ηV 0 on observables, such as the
spectral index.

Figure 14 shows the ensemble averages and standard deviations for five sets of
1000 randomly generated DBM models with Nf = 20, Λh = 0.4MPl and εV 0 = 10−11,
and with ηV 0 varying from −10−5 to −10−1. For ηV 0 = −0.1, examples supporting at
least 60 efolds of inflation are quiet rare (success rate: 1/15.6), and the predictions,
just as in the case of small Λh, become unsharp. For |ηV 0| < 0.1, the spectral in-
dex becomes independent of ηV 0, consistent with the picture of eigenvalue relaxation
proposed in [13].

8.1 Stiffness, sloppiness and inference

The appearance of parameters that have little or no effect on observables is a ubiquitous
feature of complex multi-parameter systems. For instance, in systems biology, nuclear
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physics and statistical physics such parameters are sometimes referred to as ‘sloppy’ or
‘ill-conditioned’, to distinguish them from ‘stiff’ parameters for which a small change
has a direct effect on observables [73–75]. ‘Sloppiness’, i.e. the separation of the model
parameters into a few stiff and multiple sloppy parameters, has been argued to be a
natural emergent phenomenon in complex systems.

We have already found several examples of sloppy parameters in the DBM models:
for sufficiently large Nf , the distribution of ns and αs are given by Gaussians that are
insensitive to the number of fields, cf. Fig’s. 8 and 10; for sufficiently large Λh, the
observables are independent of Λh, cf. Fig. 12; and finally, we have seen that the
predictions become independent of ηV 0 for small enough absolute values, cf. Fig. 14.
As the sloppy parameters no longer affect the observables, these parameter regimes
exhibit ‘universal’ predictions that are rather insensitive to the details of the system.

An intriguing feature of the hyperparameters of the DBM model is that param-
eters can transition from being stiff to being sloppy. This behaviour is evident in
e.g. Fig. 8: for small numbers of fields, the distribution changes quite dramatically as
Nf is increased but when the number of field is larger, a similar change in the number
of fields seems to have a much less dramatic effect. Similar transitions occur also for
the hyperparameters Λh and ηV 0. A stiff-to-sloppy transition for Nf was also observed
in the context of N-flation in Ref. [33]. In §10 we will relate large-Nf sloppiness to the
notion of universality in random matrix theory.

Clearly, there are two sides to sloppiness. Sloppy parameters enable one to make
robust, ‘universal’ predictions for observables, but precisely because these parameters
are sloppy, they are ‘ill-conditioned’ and hard or impossible to determine from observa-
tions. For example, the well-defined large-Nf limit of DBM inflation limits our ability
to, even in principle, determine the precise number of fields present in the early uni-
verse. Inference in sloppy systems is sometimes discussed using the notion of ‘model
complexity’, or ‘Bayesian complexity’ [76, 77] which seeks to compute the effective
number of parameters of a model which can be inferred from data.

9 Lesson VI: Despite tachyons, isocurvature can decay

In multifield models of inflation, the curvature perturbation evolves on superhorizon
scales if sourced by the isocurvature perturbations, cf. Eq. (3.54). This can make it
challenging to extract reliable predictions from these models as one may need to follow
the perturbations through reheating to extract the observational predictions for the
spectrum of the primordial perturbations. A common approach to this problem is to
ensure (or assume) the existence of an ‘adiabatic limit’ in which entropic perturba-
tions become massive and hence suppressed, leaving only the then constant curvature
perturbation. However, an adiabatic limit in the sense of only a single remaining light
field is not a general feature of multifield models of inflation, and it is certainly not
a property of the models of inflation that we study here. In this section, we address
the critical question of the evolution of the curvature and isocurvature perturbations
in the absence of an adiabatic limit.
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Figure 15. Evolution of the eigenvalues of
(
Γ>Γ

)
during inflation in the 100-field model of

§4.

9.1 Isocurvature suppression in the case study

In slow-roll inflation, the field perturbations in the flat gauge evolve according to
Eq. (3.15). Entropic perturbations that correspond to eigendirections of the Hessian
matrix with negative eigenvalues grow in magnitude. In other words, multiple tachyons
in the spectrum may signal the growth of entropic modes. In the transport formalism,
field perturbations evolve with the propagator Γab(N,N0), as discussed in §3. An esti-
mate of the growth of the modes can then be obtained by computing the eigenvalues of(
Γ>Γ

)
ac

= Γab(N,N0)Γcb(N,N0). Eigenvalues λΓ>Γ > 1 correspond to modes that have
grown since horizon crossing, while modes with λΓ>Γ < 1 have become suppressed.29

An adiabatic limit corresponds to having a single non-vanishing eigenvalue, and all
others negligibly small.

Figure 15 shows the evolution of the eigenvalues of
(
Γ>Γ

)
during inflation in

the 100-field case study of §4. A large fraction of the eigenvalues quickly become
suppressed: these correspond to modes that during the slow passage of the approximate
critical point have m2 > 0, yielding exponentially suppressed perturbations. A few
modes are nearly massless or tachyonic during this period, and remain unsuppressed
or grow during inflation: these modes are the main source of superhorizon evolution
of ζ.

Towards the end of inflation, as the eigenvalue spectrum of the Hessian matrix
relaxes back to the Wigner semi-circle, more modes become tachyonic. This results in
an ‘upturn’ in the spectrum of

(
Γ>Γ

)
towards the end of inflation and an increase in

the number of modes with λΓ>Γ > 1. Clearly, the eigenvalue spectrum of Fig. 15 does
not correspond to only one non-vanishing eigenvalue at the end of inflation, and hence,
an adiabatic limit is not reached in this model.

29 If at horizon crossing all fields are comparatively light and have M2 < 9/4H2, Σab(N0) ∝ δab and
the eigenvalues of Γ>Γ precisely measure the growth of the field perturbations. For the more general
situation with both massive and light modes, the eigenvalues of Γ>Γ overestimates the importance of
modes with M2 > 9/4H2.
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Figure 16. More fields lead to more superhorizon evolution. Here ∆Pζ = Pζ(Nend)−Pζ(N?).

An important question is then: with multiple modes growing after horizon cross-
ing, can a model like the 100-field case study be at all predictive? Exactly how relic
isocurvature power impacts observables through post-inflationary physics is highly
model dependent. As a first step to answering this question we now show how, despite
growing field perturbations, the relative magnitude of isocurvature-to-curvature per-
turbations can decay during inflation, and in many cases becomes radically suppressed.

In the case study of §4, Fig. 6 shows the magnitudes of Pζ(N, k∗), Piso(N, k∗)
and Pcross(N, k∗) during inflation. At the horizon crossing, each light mode fluctuates
with an amplitude set by H∗, and since there is only one adiabatic mode but multiple
light entropic modes, Piso(N∗, k∗) > Pζ(N∗, k∗). On superhorizon scales, the power
spectra evolve non-trivially: the isocurvature perturbation shows a decaying trend,
while the curvature perturbation increases in a step-like fashion. At the end of inflation,
Piso/Pζ = 0.0067. Thus, despite the numerous positive eigenvalues of Γ>Γ, the ratio of
isocurvature-to-curvature perturbations decreases substantially during inflation.

9.2 Isocurvature suppression: generalities

The suppression of the isocurvature-to-curvature ratio at the end of inflation is not
unique to the case study of §4. On the contrary, we find even smaller ratios in the vast
majority of inflationary realisations that we study. Figure 17 shows the distributions of
log(Piso/Pζ) as evaluated at the end of inflation for various numbers of fields. For Nf ≤
10, most models give ratios smaller than the numerical accuracy our our simulation:
Piso/Pζ < 10−15. For larger Nf , the levels of isocurvature increase slowly, but remain
small until Nf = 100, for which a moderate suppression of Piso/Pζ ≈ 10−2 is typical.

Thus, despite numerous tachyons and high levels of isocurvature at horizon cross-
ing, isocurvature can decay and become negligibly small at the end of inflation. To gain
some intuition for these results, we first consider the very simple (non-random) case in
which the Hessian matrix is constant during inflation and the field velocity is aligned
with the eigenvector of the smallest eigenvalue of the Hessian matrix. With these
assumptions, the field makes no turns during inflation and, as is evident from (3.54),
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Figure 17. Distribution of isocurvature-to-curvature ratio at the end of inflation. Left:
Histograms for, from left to right, Nf = 10, 20, 40, 100; the black vertical line indicates the
numerical accuracy. Right: Dependence with Nf ; the shaded blue area indicates the limit of
numerical accuracy. For Nf = 10, most examples are consistent with vanishing isocurvature
at the end of inflation.

P ′ζ = 0. However, the Hessian matrix may have several tachyonic directions leading
to growing field perturbations with λΓ>Γ > 1. Since na is aligned with the eigenvector
of the smallest eigenvalue, δφ‖ is the fastest growing mode. Since ζ is constant, the
growth of this field perturbation has to be exactly matched by a corresponding growth
of the slow-roll parameter εV , cf. Eq. (3.40). The remaining, entropic modes grow more
slowly than δφ‖ and lead to isocurvature perturbations, cf. Eq. (3.43), that become in-
creasingly suppressed as εV grows. This illustrates how the existence of multiple large
eigenvalues of Γ>Γ can be consistent with both a constant curvature perturbation and
decreasing levels of isocurvature. For more details on this example, see Appendix A. As
we now discuss, these arguments directly generalise to the case of manyfield inflation
in random potentials.

The superhorizon evolution of the power spectra in a general model of multifield
slow-roll inflation are governed by Eqns. (3.54)–(3.56). As discussed in §3, we do not
solve these equations directly, but rather use the transport method to evolve the cor-
relators. We here use Eqns. (3.54)–(3.56) to obtain a conceptual understanding of the
evolution of isocurvature in manyfield inflation. Figure 6 provides a clear illustration
of these general considerations.

First, Eq. (3.54) indicates that the curvature power spectrum is only sourced by
the isocurvature-curvature cross-correlation, and the sourcing only occurs when na is
misaligned with an eigenvector of Vab, i.e. when the slow-roll trajectory turns. At
horizon crossing, the isocurvature-curvature cross-correlation is zero, as is the cross-
correlation between different isocurvature modes. The initial suppression of Pcross

makes Pζ evolve very slowly immediately after horizon crossing.
The isocurvature-curvature cross-correlation is sourced directly by the isocurva-

ture modes, cf. Eq. (3.55). This leads to a rapid growth of the cross-correlation after
horizon crossing, and substantial levels of superhorizon evolution are possible once
Pcross ≈ Pζ . However, both the Pcross and Piso tend to decay during inflation. This
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decay is related to the terms,

(P ii
iso)′ = 2

(
na
Vab
V
nb − vai

Vab
V
vbi − 2εV

)
P ii

iso + . . . ,

(P i
cross)

′ =

(
na
Vab
V
nb − vai

Vab
V

vbi − 2εV

)
P i

cross + . . . . (9.1)

The effects of these contributions can be understood as follows: during inflation na

tends to align with the eigenvector of the smallest eigenvalue of the Hessian matrix.
The combination na Vab

V
nb−vai VabV vbi will then be negative and contribute to a suppression

of P ii
iso and P i

cross. In the small-field models that we study, the factor of εV is often too
small to be important during most of inflation, but towards the end of inflation it
grows substantially and causes additional suppression of the isocurvature-curvature
cross-correlation and the isocurvature power spectrum. Once the isocurvature decays
and becomes negligible, Pζ again effectively become constant. This explains how, even
in the absence of an adiabatic limit, Pζ often ceases to evolve well before the end of
inflation.

Equation (9.1) also indicates that the eigenvalue spacing of the Hessian matrix is
a key factor in determining the suppression of isocurvature. As the number of fields
increases, the separation of the squared masses is squeezed and the suppression of
isocurvature is less substantial.

To summarise, the models we study typically have several tachyons, and multiple
components of the flat-gauge field perturbations grow during inflation. However, de-
spite the absence of an adiabatic limit, isocurvature tends to become highly suppressed,
forcing the evolution of Pζ to peter out.

We note in closing that observations constrain isocurvature left in the post-
inflationary, post-reheating universe. We have here only analysed the evolution of the
curvature and isocurvature perturbations during inflation. To our knowledge, there
exists no systematic understanding of how isocurvature at the end of inflation trans-
lates into isocurvature post-reheating, and thus, the levels of isocurvature suppression
computed here do not lend themselves to direct comparison with observational con-
straints.

10 Lesson VII: Eigenvalue repulsion drives the predictions

In §5, we showed that the primordial power spectra generated by the DBM models
become both simpler and sharper as the number of fields is increased. In this section we
show that these results can be understood as being a direct consequence of eigenvalue
repulsion, and we suggest that this may indicate broad applicability of the results,
extending beyond the details of the DBM construction.

10.1 Why predictions become simpler and sharper at large Nf

As measures of how predictive and simple the models are, we consider the ensemble
variance of the spectral index and its running. A small variance of the model prediction

43



��� ��� ��� ��� ��� ���

�

�

�

�

��� ��� ��� ��� ��� ���
�
�
��
��
��
��
��

��� ��� ��� ��� ��� ���
��
��
��
��
��
��
���

Figure 18. Ensemble median and standard deviation of the components of the vector ea,
defined with respect to an ordered eigenbasis of (Vab)∗, for ensembles with, from left to right,
Nf = 4, 30 and 100. Here Λh = 0.4MPl, εV 0 = 10−11 and ηV 0 = −10−4.

for the spectral index indicates a highly predictive model, while small values of the
running indicate that the power spectra are simple and not very featured.

In the small-field models that we study in this paper, ε∗ tends to be highly sup-
pressed with respect to ηV ∗, and the dominant contribution to the spectral index is
given by,

ns − 1 ≈ −2 ea
(
Vab
V

)
∗
eb . (10.1)

Equation (3.67) for the running similarly simplifies to,

αs ≈ 4ea
(
VacVcb
V 2Λ4

h

)
∗
eb − 4

(
ea
(
Vab
V Λ2

h

)
∗
eb
)2

+ 2ea
(
V ′ab
V Λ2

h

)
∗
eb . (10.2)

Here, as in Eq. (3.65), the unit vector ea is proportional toNbΓ
b
a(Nend, N∗) and captures

the entire superhorizon evolution of the spectral index and its running. Unfortunately,
ea is hard to compute analytically for a general multifield model. Here, we use our
numerical simulations to gain some insight into the properties of ea, as evaluated at
the end of inflation.

Figure 18 shows the ensemble medians and standard deviations of the components
of ea in the eigenbasis of (Vab)∗, ordered by descending squared mass: (m2

a)∗ > (m2
b)∗

for a < b. For a small number of fields we see almost perfect alignment of ea with the
eigenvector of the smallest eigenvalue, (m2

min)∗. For a large number of fields, ea is still
well aligned with this eigenvector but develops a few non-negligible components. The
increased misalignment of ea is consistent with the increased levels of superhorizon
evolution as Nf is increased (cf. Fig. 16).

Using Eq. (10.1), we see that ns is primarily determined by the weighted sum of
the smallest few eigenvalues of (Vab)∗, and the dominant contribution corresponds to
the most negative squared mass. Hence, we can gain a qualitative understanding of
the distribution of ns by considering the behaviour of the smallest eigenvalue, λmin, of
vab.

Figure 19 shows the evolution of λmin over the course of example trajectories for
models with Nf from 2 to 100. All examples start with a highly fluctuated spectrum,
cf. Fig. (2), but the subsequent evolution looks very different depending on the number
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Figure 19. Evolution of the smallest eigenvalue for example trajectories as a function of the
path length.

of fields. In particular the trajectories are much more varied when the number of fields
is small, resulting in a large variance in the smallest mass at horizon crossing. In
contrast, at largeNf the eigenvalues of vab become more dense, and eigenvalue repulsion
tames the variability of trajectories considerably. This leads to a sharp reduction in
the variance in the smallest squared mass at horizon crossing. Hence we can ascribe
the predictive nature of the DBM construction at large Nf to eigenvalue repulsion.

Figures 18 and 19 also indicate why the power spectra become smoother and less
featured as the number of fields is increased. Using Eq. (10.2) for the running, we see
that for ea exactly aligned with the eigendirection of the smallest eigenvalue, the first
two terms cancel. For an approximate alignment, this cancelation is approximate and
the dominant term is the final one, which depends on the volatility of Vab at horizon
crossing. Figure 19 demonstrates how this volatility becomes heavily suppressed at
large Nf . As the number of fields increases, the spacing between eigenvalues decrease
(cf. Fig. 4). Eigenvalue repulsion then suppresses the random fluctuations, resulting
in smoother evolution of the smallest eigenvalue.

Eigenvalue repulsion is not unique to the DBM construction. For example, con-
structions of random scalar potentials using Gaussian Random Fields (GRFs) take
the distribution of the Hessian matrix to be slightly different from that of the GOE
[13, 40, 41]. Still, eigenvalue repulsion is a manifestation of the presence of a Vander-
monde determinant appearing in the change of variables from the randomly distributed
entries of the Hessian to its eigenvalues,∏

a<b

dVab =
∏
a<b

|m2
a −m2

b |
∏
a

dm2
a , (10.3)

which is common to DBM, GRFs and many other possible constructions. This suggests
that the results found in this paper may extend to much broader classes of models than
those considered here.

45



11 Conclusions

We have used Dyson Brownian Motion to construct random scalar potentials for mul-
tiple fields, and we have adapted the transport method to study the generation of
observables during inflation. These methods are numerically very efficient and have
allowed us, for the first time, to explicitly study models of inflation with a very large
number of interacting fields. We have statistically generated an ensemble of inflation-
ary models giving at least 60 efolds of inflation, and we have used these to determine
the statistical properties of manyfield inflation. We draw seven lessons from these
studies:

1. Manyfield inflation is not single-field inflation. In particular, superhorizon
evolution of the curvature perturbation is common in manyfield models, and
cannot be captured by single-field models.

2. Planck compatibility is not rare. It has been speculated, based on single-
field toy models designed to mimic the DBM potentials, that manyfield inflation
typically gives a too red spectrum compared to observations, and can be ruled
out by current observations [31]. We find, consistently with [17], that this is not
true: many of the manyfield models that we study are compatible with Planck
constraints on ns. Interestingly however, the DBM potentials lead to rather sharp
predictions for a small negative running of the spectral index, with a typical
spread of the predictions much below the current observational sensitivity.

3. The larger the number of fields, the sharper the predictions. As the
number of fields increases, the number of couplings and the complexity of the
model increases. The predictions, however, become sharper, and the power spec-
tra become smoother and less featured.

4. The smoother the potentials, the sharper the predictions. One of the
hyperparameters of the DBM models is the horizontal scale, Λh, which can be in-
terpreted as an ultraviolet cut-off of the theory. We find that as Λh/MPl increases
towards unity, the predictions become sharper. Conversely, for Λh ≤ 0.2MPl, the
distributions of observables generated during inflation become exceedingly broad.

5. Hyperparameters can make stiff to sloppy transitions. We have shown
that there exist regions of the hyperparameter space in which the predictions for
observables are universal and largely insensitive to the values of these parameters.
Such ‘sloppy’ regions exist for large Nf , large Λh and small |ηV 0|.

6. Despite tachyons, isocurvature can decay. With many light fields, the
cosmological perturbations, in addition to the adiabatic mode, include multiple
entropic modes which give rise to isocurvature. We show that while isocurvature
typically dominates the curvature perturbation at horizon crossing, inflation leads
to a dynamical suppression of the power in isocurvature modes, which in many
cases leads to drastically suppressed levels of isocurvature at the end of inflation,
despite many tachyonic directions in field space.
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7. Eigenvalue repulsion drives the predictions. Several of the predictions of
the DBM models can be understood from the evolution of a few of the smallest
squared masses, which due to eigenvalue repulsion ‘repel’ when closely spaced.
As the number of fields increases, the spacing between eigenvalues decreases
and random fluctuations decrease in amplitude. We show that this ‘eigenvalue
repulsion’ drives the predictions of the DBM models. We note that as eigenvalue
repulsion is common to systems with interacting fields, our results may extend
well beyond the particular setup of DBM potentials.

It is often said that the generic predictions of single-field inflation include adiabatic
perturbations and an approximately scale invariant spectrum. Our results emphasise
the strength of these generic predictions: despite the complicated nature of the ran-
domly interacting manyfield models that we study, isocurvature is commonly highly
suppressed, and spectra are approximately scale invariant. Reversely, our results il-
lustrate how many microscopic models map to the same observables, which makes
it impossible from observations of the power spectrum of curvature and isocurvature
alone to ‘invert’ the map and find the underlying microphysical model.

There are a number of interesting future directions to this work. Some models
of multiple-field inflation can generate local non-Gaussianity with an amplitude of
fNL ∼ O(1), while single-field inflation predicts |fNL| � 1. As the next generation of
cosmological experiments aim for a sensitivity of fNL ∼ O(1), it is a pressing question
to determine what we can learn from these observations: Should a future observational
constraint of |fNL| � 1 be interpreted as evidence for single-field inflation? Moreover,
at the level of the 3-point function, additional effects such as particle production can
lead to distinctive signatures, which would be interesting to study in these (or related)
models.

Interesting theoretical extensions of this work include a comparison between the
predictions of models constructed using random matrix theory with those constructed
using Gaussian Random Fields (GRFs). Thus far, due to the numerical complexity
of this construction, GRFs have only been used to explicitly study inflation with a
small number of fields [38–42]. It would be interesting to extend this work to the
manyfield case. Moreover, we have here worked with a flat field space metric and we
expect our results to be applicable to models which are not too strongly curved around
the inflationary approximate saddle-point. Strong curvature can lead to interesting
‘flattening’ effects (cf. Ref. [23]), which would be interesting to incorporate.

More generally, we have demonstrated that the use of stochastic methods can
be effective in overcoming critical challenges in early universe cosmology. A natural
question to ask is where else these techniques may be useful. Very little is known
about reheating after multifield inflation, in large part due to the computational com-
plexity of the problem. It is tempting to think that stochastic methods could be
useful in making progress on this front. Finally, while string theory strongly motivates
the study of low-energy effective theories with a large number of fields, most explicit
models of inflation in string theory have focussed on more tractable single-field case.
It would be interesting to see if random matrix theory and random function theory
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techniques can be adapted to shed light on more complicated multifield string theory
compactifications.
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A A very simple model of inflating off a steep saddle point

Qualitatively we can reproduce the behaviour observed in §9 with a simple model of
saddle point inflation where all quantities of interest can be computed analytically.
Consider a potential of the form,

V = Λ4

[
v0 +

1

2
λa(φ

a)2

]
, (A.1)
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where λa are ordered such that λa < λb for a < b. We assume that inflation evolves
purely along φ1 with all the other fields stationary at 0, such that,

uab =


− λ1
v0+ 1

2
λ1φ2

+
λ21φ

2

(v0+ 1
2
λ1φ2)2

. . .

− λα
v0+ 1

2
λ1φ2

. . .

 . (A.2)

Here we drop the label of field 1, φ ≡ φ1, since all other fields are stationary. Further-
more, all off-diagonal terms are zero. With this field configuration, Eq. (3.28) is a bit
fiddly to evaluate. Instead we solve Eq. (3.7) directly,

Γab = P exp

{
−
∫

dφ
v0 + 1

2
λ1φ

2

λ1φ
uab

}
, (A.3)

where we have used dN = 1/φ′dφ and P denotes path ordering. We find that,

Γab =



φf
φi

v0+ 1
2
λ1φ2i

v0+ 1
2
λ1φ2f

. . . (
φf
φi

)λa
λ1

. . .

 . (A.4)

If λ1 < 0 the field φ evolves to larger values, and hence Γ11 grows. If λa > 0 then Γaa
decreases, as expected — this is simply the usual result that inflation along the bottom
of a valley will suppress isocurvature, resulting in single field like behaviour. If λa < 0
then Γaa grows, but slower than Γ11. This reproduces the behaviour that was seen in §9.
Here it is clear that Γ11 determines the evolution of fluctuations along the trajectory.
Note, that Γ11 evolves at a rate proportional to

√
εV , hence upon substituting Eq. (A.4)

in to Eq. (3.38), we see that Pζ is independent of φf and so conserved, as expected.
Substituting Eq. (A.4) in to Eq. (3.44), we see that each tachyonic direction makes a
contribution P aa

iso to Piso of the form,

P aa
iso ∝

1

2εV

(
φf
φi

) 2λa
λ1

, (A.5)

which, since 1/εV decreases faster than the second factor, decays as observed in §9. We
therefore see Piso will always decrease as long as inflation takes place along the most
tachyonic direction.

54


	Introduction
	Inflation in random potentials
	Local potentials, generated from Random Matrix Theory 
	Inflation in DBM potentials
	Subtleties of the DBM potentials

	Method: Computing Observables
	The general method
	Drastic slow-roll simplifications
	From field space to 
	Curvature and isocurvature power spectra
	Superhorizon evolution
	The tilt and the running
	Testing the slow-roll analysis

	Lesson I: Manyfield inflation is not single-field inflation
	Case study: 100-field inflation

	Lesson II: The larger the number of fields, the simpler and sharper the predictions
	Lesson III: Planck compatibility is not rare, but future experiments may rule out this class of models
	Lesson IV: The smoother the potentials, the sharper the predictions
	Lesson V: Hyperparameters can transition from stiff to sloppy
	Stiffness, sloppiness and inference

	Lesson VI: Despite tachyons, isocurvature can decay
	Isocurvature suppression in the case study
	Isocurvature suppression: generalities

	Lesson VII: Eigenvalue repulsion drives the predictions
	Why predictions become simpler and sharper at large Nf 

	Conclusions
	A very simple model of inflating off a steep saddle point

