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Abstract 1 

 2 

Adaptations indicative of habitual bipedalism are present in the earliest recognized hominins. 3 

However, debate persists about various aspects of bipedal locomotor behavior in fossil hominins, 4 

including the nature of gait kinematics, locomotor variability across different species, and the 5 

degree to which various australopith species engaged in arboreal behaviors. In this study, we 6 

analyze variation in trabecular bone structure of the femoral head using a sample of modern 7 

humans, extant non-human hominoids, baboons, and fossil hominins attributed to 8 

Australopithecus africanus, Paranthropus robustus, and the genus Homo. We use µCT data to 9 

characterize the fabric anisotropy, material orientation, and bone volume fraction of trabecular 10 

bone to reconstruct hip joint loading conditions in these fossil hominins. Femoral head trabecular 11 

bone fabric structure in australopiths is more similar to that of modern humans and Pleistocene 12 

Homo than extant apes, indicating that these australopith individuals walked with human-like hip 13 

kinematics, including a more limited range of habitual hip joint postures (e.g., a more extended 14 

hip) during bipedalism. Our results also indicate that australopiths have robust femoral head 15 

trabecular bone, suggesting overall increased loading of the musculoskeletal system comparable 16 

to that imposed by extant apes. These results provide new evidence of human-like bipedal 17 

locomotion in Pliocene hominins, even while other aspects of their musculoskeletal systems 18 

retain ape-like characteristics. 19 

 20 
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1. Introduction 24 

Pliocene hominins display a variety of adaptations for habitual terrestrial bipedalism (Stern, 25 

2000; Ward, 2013), but some aspects of their gait kinematics, locomotor variability, and the 26 

amount and nature of arboreality in their behavioral repertoires (i.e., its selective importance) 27 

remain unresolved (Ward, 2002; Lovejoy et al., 2009; Harcourt-Smith, 2016). Recent fossil 28 

evidence suggests that there may have been considerable locomotor variability among early 29 

hominins, and among australopiths in particular (Lovejoy et al., 2009; Zipfel et al., 2011; Haile-30 

Selassie et al., 2012; DeSilva et al., 2013; Harcourt-Smith, 2016). Reconstruction of australopith 31 

gait kinematics has typically relied on interpretations of a variety of morphological characteristics, 32 

biomechanical models, fossilized trackways, and experimental studies of locomotor energetics 33 

(Ruff, 1995, 2010; Stern, 2000; Wang et al., 2003, 2004; Lovejoy, 2005b, a, 2007; Nagano et al., 34 

2005; Sellers et al., 2005; Sockol et al., 2007; Raichlen et al., 2008, 2010; Lovejoy and McCollum, 35 

2010; Kibii et al., 2011; Ward et al., 2011; Barak et al., 2013; Hatala et al., 2016; Dowdeswell et 36 

al., 2017; Raichlen and Gordon, 2017). While many of these studies agree that australopiths likely 37 

walked with relatively extended lower limbs rather than with a bent-hip, bent-knee (BHBK) gait 38 

(e.g., similar to the bipedal kinematics of chimpanzees; Sockol et al., 2007; Crompton et al., 2008), 39 

debate continues as to whether other kinematic aspects of their gait may have differed from those 40 

of later hominins and modern humans (DeSilva et al., 2013; Harcourt-Smith, 2016; Hatala et al., 41 

2016; Su and Carlson, 2017). Recent fossil discoveries and comparative analyses have also 42 

refocused attention on the degree to which australopiths engaged in selectively advantageous 43 

arboreal locomotor behaviors (DeSilva, 2009; Zipfel et al., 2011; Green and Alemseged, 2012; 44 

Haile-Selassie et al., 2012; Churchill et al., 2013; Kappelman et al., 2016; Ruff et al., 2016; Rein 45 

et al., 2017). Debate about locomotor kinematics and the degree of arboreality in australopiths and 46 



	 4 

other early hominins often centers on interpretation of the functional significance of apparently 47 

primitive traits associated with arboreal locomotion in these fossil taxa (Ward, 2002). The retention 48 

of primitive features associated with arboreality in australopiths suggests either that these traits 49 

were not detrimental or that they may have provided some adaptive advantage (Ward, 2002), 50 

although differentiating between these scenarios is difficult (Lauder, 1996).  51 

Biomechanically informative phenotypically plastic traits, or ecophenotypic traits, have the 52 

potential to provide significant insight into the mechanical environment and specific behaviors that 53 

an animal engaged in throughout its life (Ruff et al., 1999, 2016; Barak et al., 2013; Ward, 2013). 54 

Because of the mechanosensitivity of bone during development, structural variation in both 55 

cortical and trabecular bone provides insight into limb use and joint loading in extant and extinct 56 

organisms (Pearson and Lieberman, 2004; Ruff et al., 2006). Trabecular bone, in particular, not 57 

only has the potential to reveal important information about the magnitude and frequency of 58 

loading, but also can inform interpretations of the directionality of joint reaction forces and, by 59 

extension, provide insight into joint posture and loading. The distribution of trabecular bone 60 

material in three-dimensional space is highly correlated with its mechanical behavior (Mittra et al., 61 

2005). In particular, the principal material direction of trabeculae corresponds closely to the 62 

principal elastic direction (Odgaard et al., 1997). Barak et al. (2017) recently demonstrated that 63 

the principal trabecular orientation represents a robust metric reflecting habitual joint loading 64 

differences between chimpanzees and humans in the third metacarpal. When considered together 65 

with the phenotypic plasticity of trabecular bone as a site-specific local response (Sugiyama et al., 66 

2012) to locomotor loading (Pontzer et al., 2006; Barak et al., 2011; Wallace et al., 2013), this 67 

structure-function relationship provides a direct functional signal of loads incurred during habitual 68 

locomotor and postural behavior (Ryan and Ketcham, 2005; Kivell, 2016; Barak et al., 2017). 69 
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Experimental and comparative work has demonstrated that the principal orientation of trabeculae 70 

in a joint reflects the orientation of peak compressive forces experienced during locomotion 71 

(Pontzer et al., 2006; Barak et al., 2011, 2013, 2017). Previous work within primates indicates that 72 

humans have highly oriented trabeculae (high structural anisotropy) in the femoral head (Ryan and 73 

Shaw, 2015), suggesting that trabecular bone organization reflects unique aspects of joint loading 74 

during bipedal locomotion (Ryan and Krovitz, 2006; Raichlen et al., 2015), and providing the 75 

opportunity to assess whether fossil hominins possess femoral head trabecular bone structure 76 

reflective of modern human-like hip joint loading. 77 

The goal of this study is to use microcomputed tomography (µCT) to characterize variation in 78 

trabecular bone anisotropy, material orientation, and bone volume fraction in the femoral head 79 

using a diverse extant primate sample that includes five modern groups of Homo sapiens, Pan 80 

troglodytes, Gorilla ssp., Pongo ssp., and Papio ssp. We also assess trabecular bone structure in 81 

six specimens of Australopithecus africanus, four of Paranthropus robustus, and four Pleistocene 82 

specimens of Homo, including two Homo neanderthalensis, one Paleolithic Homo sapiens, and 83 

the Homo sp. femur from Berg Aukas, Namibia. We hypothesize that primate groups that are 84 

primarily terrestrial, including quadrupedal baboons and bipedal humans, and therefore exhibit a 85 

relatively constrained range of motion at the hip joint, will display more anisotropic hip joint 86 

trabecular bone. Further, the primary trabecular bone material orientations in these terrestrial 87 

groups will reflect adaptation to repetitive, mostly unidirectional loading. The African apes are 88 

primarily terrestrial quadrupeds, but also engage in a variety of locomotor activities on arboreal 89 

substrates, including climbing, bridging, and below-branch suspension. As a result, this more 90 

diverse loading environment in chimpanzees and gorillas relative to modern humans should be 91 

reflected by a relatively more isotropic trabecular bone structure within the hip joint. Orangutans 92 
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are the most arboreal of the great apes, and therefore should have relatively isotropic femoral head 93 

trabecular structure, reflecting their more diverse joint postures and hip joint loading directions. If 94 

the trabecular bone degree of anisotropy in the femoral head of australopiths resembles that of 95 

modern humans and extinct members of the genus Homo, it would indicate that australopiths have 96 

rather stereotypical hip joint loading, suggesting less variable hip postures and substrate types. By 97 

contrast, if australopith femoral head anisotropy is more like that of extant great apes, it would 98 

indicate that, while bipedal, australopiths exhibited much greater variability in hip joint loading 99 

conditions and, possibly, more varied substrate use. Bone volume fraction is expected to vary in 100 

relation to inferred activity pattern with non-human primates and fossil hominins having higher 101 

bone volume compared to Holocene modern humans (Chirchir et al., 2015). 102 

 103 

2. Materials and methods 104 

2.1. Sample 105 

The sample of extant species consisted of adult individuals from five modern populations of 106 

Homo sapiens (n = 60) and four non-human primate taxa (Table 1): Pan troglodytes (n = 17), 107 

Gorilla ssp. (n = 8; 4 Gorilla gorilla, 4 Gorilla beringei), Pongo ssp. (n = 7; 5 Pongo pygmaeus, 108 

2 Pongo abelii), and Papio ssp. (n = 11; 4 Papio hamadryas, 3 Papio cynocephalus, 3 Papio 109 

ursinus, 1 Papio anubis). See SOM Table S1 for details about extant and fossil specimens used in 110 

this study and their museum information. All individuals used in the study were adult based on 111 

epiphyseal fusion and free of pathology. Age-at-death estimates for the human samples were taken 112 

from museum collection records when available. Most humans in the sample were young adults 113 

between 20 and 35 years, although some individuals were as old as 45. The fossil sample included 114 

six femora from Sterkfontein assigned to A. africanus (StW 99, StW 311, StW 392, StW 403, StW 115 
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479, StW 501), four femora from Swartkrans attributed to Paranthropus robustus (SK 19, SK 82, 116 

SK 97, SK 3121), and four Pleistocene Homo individuals including the Berg Aukas femur (Homo 117 

sp.), La Ferrassie 1 and 2 (Homo neanderthalensis), and Cro-Magnon 4321 (Homo sapiens). We 118 

include the StW 311 proximal femur as A. africanus, but note that it comes from the younger 119 

Sterkfontein Member 5 (Kuman and Clarke, 2000) and therefore may not be attributable to 120 

Australopithecus (DeSilva, 2011). 121 

 122 

2.2. Data collection 123 

One proximal femur from each extant individual was scanned using µCT, with voxel 124 

dimensions ranging from 0.020 to 0.069 mm. The range of voxel dimensions used from each taxon 125 

are listed in Table 1 and voxel sizes for each individual in the sample are listed in the SOM Table 126 

S1. Two femora of Papio hamadryas were imaged with voxel sizes of 0.069 mm, which were 127 

slightly larger than the voxel dimensions used for the other individuals in the sample. Studies have 128 

shown that quantification of trabecular bone structure can be affected by scan resolution (Kothari 129 

et al., 1998; Sode et al., 2008; Isaksson et al., 2011), although results for these two individuals fall 130 

within the range of variation for the other Papio individuals analyzed here.  131 

We used several µCT scanning facilities, depending on the location of the skeletal and fossil 132 

collections (Table 1). In all cases, bones were mounted upright in the scanner and transverse slices 133 

were collected with resulting datasets oriented similarly relative to anatomical axes. For specimens 134 

scanned on the OMNI-X HD600 µCT scanner at the Penn State Center for Quantitative Imaging 135 

(non-human primates, Norris Farms, and Black Earth human groups), voxel dimensions were not 136 

isotropic due to the configuration of the scanner. In these scans, the slice thickness was slightly 137 

larger than the inline pixel size. The datasets were therefore resampled so that the x,y pixel 138 
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dimensions matched the slice thickness to create isotropic voxel dimensions. These resampled 139 

voxel sizes are the values reported in Table 1 and SOM Table S1. Because a single femur from 140 

each individual was scanned from either the left or right side, depending on quality of preservation, 141 

all left femora in the sample were mirror imaged, so that they appeared as right side elements. In 142 

addition, some scans were inverted in the z-axis. These transformations ensured that all quantified 143 

trabecular bone orientation data would be consistent across the sample. In addition, partial 144 

australopith femora were oriented using SK 82 as a guide for femoral head positioning. This step 145 

was performed in Avizo 9.0 (FEI Visualization Sciences Group, 2017) using 3D isosurfaces to 146 

position the femoral head so that the neck shaft angle matched that of SK 82 when oriented in 147 

approximate anatomical position. 148 

A cubic volume of interest (VOI) was defined in the center of the femoral head bounding box 149 

using Avizo 9.0, following previously described methods (Fig. 1; Ryan and Shaw, 2013, 2015). 150 

The edge length of each VOI was equal to one-third of the superoinferior height of the articular 151 

surface. In the case of StW 99, StW 403, and StW 479, the complete articular surface of the femoral 152 

head was not fully preserved. In each of these cases, the bounding box was fit to the maximum 153 

extents of the preserved portion of the femoral head and the VOI was extracted from the center of 154 

this bounding box. In these three cases, while the VOI was still positioned entirely within the 155 

femoral head, it is likely that it was not located in the true center of the femoral head, as in the 156 

other specimens. For both SK 82 and La Ferrassie 1, internal damage and cracks were present in 157 

the center of the femoral head. Because cracks can have significant effects on quantification of 158 

degree of anisotropy (DA) (Bishop et al., 2017), we translated the SK 82 VOI laterally 159 

approximately 3.5 mm and the La Ferrassie 1 VOI approximately 3 mm in the lateral, posterior, 160 

and superior directions to avoid damaged regions. The translation of these VOIs, although small 161 
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relative to the overall size of the femoral head, may affect our ability to effectively compare these 162 

individuals with others in the sample due to documented effects of VOI position and size on 163 

quantification of trabecular bone (Kivell et al., 2011). 164 

Each VOI was segmented using an iterative algorithm (Ridler and Calvard, 1978), and the fabric 165 

anisotropy and bone volume fraction (BV/TV; bone volume divided by total volume of the VOI) 166 

were quantified using the BoneJ plugin (Doube et al., 2010) for ImageJ (Schneider et al., 2012). 167 

Due to unique characteristics of preservation for several of the South African fossils, an anisotropic 168 

diffusion or 3D median filter was applied prior to segmentation to reduce noise and ensure that the 169 

bone/matrix interface was sufficiently distinct for the automatic segmentation. Anisotropy was 170 

quantified using the mean intercept length (MIL) method (Odgaard, 1997). The resulting 171 

calculated DA values ranged from 0 for an isotropic structure to 1 for a highly anisotropic structure. 172 

In addition to the DA, the primary material axes were calculated from the MIL analysis and used 173 

to assess variation in the material orientation. Datasets generated for the current study are available 174 

from the corresponding author on request. 175 

 176 
2.3. Statistical analyses 177 

Analysis of variance (ANOVA) was used to assess interspecific differences among the non-178 

human primates, each modern human group, and the australopith species. The cumulative 179 

Pleistocene Homo sample was not considered in these statistical tests because it is not a natural 180 

grouping. Differences in DA and BV/TV between species were assessed with Hochberg's GT2 or 181 

Games-Howell post hoc tests, depending on the results of the Levene’s test for equality of variance. 182 

Cohen’s d was used to compare effect sizes for between group comparisons of each variable. 183 

Pearson correlations were used to address the relationship between BV/TV and DA within each 184 
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extant species. Statistical analyses were performed in SPSS v24 (IBM Corp., 2016) and R (R 185 

Development Core Team, 2013).  186 

Primary trabecular orientations were compared with Fisher statistics for directional data in 187 

R. Fisher statistics provide a way to assess variation in directional data (Fisher et al., 1987; Butler, 188 

1992). All orientations were transformed to be in the positive hemisphere. Orientation data were 189 

plotted on equal area stereonet projections. These plots visualize the directional data with each 190 

point representing the tip of a vector emanating from the center and terminating on the edge of the 191 

sphere. All points are located in the same hemisphere except three Gorilla specimens and one Pan 192 

specimen, which were inverted to facilitate visualization and calculation of Fisher statistics. Fisher 193 

statistics for directional data were calculated using the following equations (Fisher et al., 1987; 194 

Butler, 1992). The length of the resultant vector (R) was calculated for each species using the 195 

equation: 196 
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where N is the number of component vectors in the population, and l, m, and n are the direction 198 

cosines of the vectors. R approaches N as the orientation of the vectors in the population become 199 

more tightly clustered. The precision parameter, k, is an estimate of dispersion and is calculated 200 

as: 201 

k = 	
𝑁 − 1
𝑁 − 𝑅 202 

As R approaches N, the precision parameter k increases. The angular standard deviation (s) is 203 

estimated by the following equation: 204 

s ≈
81°
√k

 205 
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The 95% confidence limit of the mean, a95, is calculated as an angular radius from the mean with 206 

the equation: 207 

cos α=> = 1 −
N − R
R @A

1
0.05E

*
(F*G

− 1H 208 

 209 

3. Results 210 

Coronal sections through the proximal femur from a representative individual from each extant 211 

taxon and all of the fossils used in the current study are shown in Figure 2. Modern humans and 212 

baboons have significantly more anisotropic femoral head trabecular bone (high DA) than 213 

chimpanzees, gorillas, and orangutans (Table 2, Fig. 2). ANOVA comparisons indicate significant 214 

differences (Table 3) and large effect sizes in DA among the species sampled (Table 4). It is likely 215 

that the relatively small standard deviations within human populations contribute to the very large 216 

effect sizes observed in DA. Post hoc pairwise comparisons of DA among the five modern human 217 

groups revealed only one significant difference. The Norris Farms group has significantly higher 218 

DA than the St. John’s (p < 0.01), but neither group is significantly different than any of the other 219 

human groups (Table 4). Although all three ape species tend to overlap the lower range of most of 220 

the modern human groups and baboons, all modern human groups and Papio have significantly 221 

more anisotropic bone than each of the extant ape species (Table 4). The lone exception is the 222 

borderline non-significant (p = 0.056) pairwise comparison between orangutans and the St. John’s 223 

group. The three ape species have the highest coefficients of variation, indicating high intraspecific 224 

variation in DA, in addition to relatively isotropic, or less organized, trabecular structure. Fossil 225 

hominins, including specimens assigned to Australopithecus africanus (StW 99, 311, 392, 403, 226 

479, 501), Paranthropus robustus (SK 19, 82, 97, 3121), and the genus Homo (Berg Aukas, La 227 

Ferrassie 1, La Ferrassie 2, Cro-Magnon 4321), all have relatively anisotropic femoral head 228 
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trabecular bone, falling within the cumulative range of variation exhibited by the modern human 229 

groups (Fig. 3). The six A. africanus specimens appear similar to one another with DA values 230 

ranging from 0.54 to 0.68. The femora of Paranthropus from Swartkrans have DA values between 231 

0.50 and 0.61. The low anisotropy value for SK 82 may have been influenced by the large crack 232 

in the femoral head that necessitated slight lateral translation of the VOI. The four Pleistocene 233 

Homo fossils all have relatively anisotropic trabecular bone, falling within the range of modern 234 

humans and baboons, and on the upper end of the range of variation of orangutans. Even though 235 

most of the fossils have relatively anisotropic femoral head trabecular bone, we note that fossil 236 

specimens SK82, SK97, StW311, StW403, Cro Magnon, and La Ferrassie 1 fall at the upper end 237 

or only just outside the ranges of variation for gorillas and chimpanzees. All of the fossils except 238 

StW501, StW99, and La Ferrassie 2 overlap the upper end of the range of variation of orangutans.  239 

In addition to having significantly more anisotropic trabeculae, primary material orientation in 240 

the femoral heads of modern humans is tightly clustered and broadly similar across groups (Fig. 241 

4). Mean primary trabecular orientations of individuals within each of the modern human groups 242 

were tightly clustered, so they are plotted as one group for the entire species in Fig. 4. The principal 243 

material axis in human femoral heads lies medial and slightly anterior to the superoinferior axis 244 

(Fig. 4). Modern humans are tightly clustered with high R and k values, the lowest s and the 245 

smallest a95 values of all extant taxa analyzed (Table 2). These tightly clustered material 246 

orientation results are also evident within each modern human group, each of which has sample 247 

sizes comparable to those of the non-human primates. The main material orientation in baboon 248 

femoral heads is similar to those in modern humans, lying slightly medial to the superoinferior 249 

axis, but also tends to more frequently lie posterior to the superoinferior axis compared to humans 250 

(Fig. 4). Baboons, like human groups, also pair high R and k values together with relatively low s 251 
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and a95, indicating tightly clustered, uniform main trabecular material orientations. Even though 252 

there appears to be general similarity in primary material orientation between baboons and 253 

humans, the lack of overlap between the a95 confidence ellipses indicates that the mean directions 254 

are significantly different between these taxa. 255 

In contrast to modern humans and baboons, chimpanzees, gorillas, and orangutans have more 256 

dispersed distributions of their primary material axes relative to conspecifics, as each of these taxa 257 

exhibit lower values for R and k and larger s and a95 confidence limits (Table 2). The higher 258 

variation in primary material orientation in apes is likely a correlate of the relatively isotropic, or 259 

less organized, trabecular structure in individuals of these taxa. Low DA values indicate somewhat 260 

more uniform distribution of bone in all directions within the femoral head. In spite of the 261 

significant variation within each species, mean primary fabric directions for chimpanzees and 262 

gorillas are similar, lying along a generally posterolateral-anteromedial axis rather than a more 263 

superoinferior orientation (Fig. 4). Orangutans have a mean primary fabric direction more closely 264 

aligned to that of modern humans and baboons (Fig. 4), but exhibit much larger intragroup 265 

variability in primary material orientations, as indicated by the very high a95 confidence limit and 266 

high dispersion estimate s (Table 2). 267 

Primary material axes for nearly all of the individual hominin specimens fall within the range 268 

of variation of modern humans. Mean primary material directions for the Australpithecus and 269 

Paranthropus femoral heads lie close to one another with a95 confidence ellipses overlapping the 270 

mean direction of modern humans and one another, and also falling within the a95 confidence limit 271 

of orangutans. Fisher statistics indicate relatively tight clustering within both Australopithecus and 272 

Paranthropus, which is more similar to the pattern found in modern human and baboon femoral 273 

heads compared with the other hominoids. The four Pleistocene Homo specimens all plot within 274 
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or close to the modern human cumulative range. Both La Ferrassie 1 and 2 are outliers with slightly 275 

more posteriorly directed trabeculae that plot just outside of the observed modern human 276 

cumulative range of variation. 277 

Results for BV/TV indicate a different pattern among the extant and fossil taxa (Fig. 5). 278 

ANOVA comparisons indicate significant differences among the species sampled (Table 3). As 279 

with the results for DA, effect sizes in comparisons among the human groups and nonhuman 280 

primate species are very large and likely attributable to small standard deviations within each 281 

human group (Table 5). All modern human groups, except the Black Earth hunter-gatherers, have 282 

significantly lower femoral head BV/TV than the extant non-human catarrhine groups (Table 5). 283 

The Black Earth group exhibits significantly higher BV/TV compared to all other modern human 284 

groups in this analysis, which corroborates their high BV/TV found in earlier analyses (Ryan and 285 

Shaw, 2015; Saers et al., 2016). The only other significant pairwise comparison among the modern 286 

human groups is the significantly higher BV/TV in the Norris Farms agriculturalists compared to 287 

the Inuit. The Norris Farms group overlaps with the lower end of the ranges of non-human 288 

catarrhines and the Black Earth group and the upper end of the ranges of the Kerma and St. John’s 289 

groups. The non-human primate groups generally exhibit a narrower range of intraspecific 290 

variation in BV/TV compared to the cumulative modern human sample, based on coefficients of 291 

variation for each species as a whole. Among the non-human primate groups, gorillas have the 292 

lowest BV/TV values and overlap not only with the Black Earth hunter-gatherers, but also with all 293 

of the other human groups except the Inuit. 294 

Australopiths have significantly higher BV/TV than all modern human groups, except the Black 295 

Earth group (Fig. 5, Table 5). There are no significant differences between Australopithecus 296 

africanus and Paranthropus robustus, or between these fossil hominins and the extant non-human 297 
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catarrhine groups in our sample. The four Pleistocene hominin individuals assigned to the genus 298 

Homo have BV/TV values that fall below the observed range of earlier australopiths, and within 299 

the upper half of the observed range of modern human groups, specifically overlapping the Norris 300 

Farms early agriculturalist sample. No significant correlations were found between BV/TV and 301 

DA in any of the extant groups (Table 6), although the full sample shows a significant but weak 302 

correlation (r = -0.33, n = 102, p < 0.001).  303 

 304 

4. Discussion 305 

The results of this study demonstrate that Australopithecus africanus and Paranthropus  306 

robustus both have highly anisotropic femoral head trabecular bone structure with principal strut 307 

orientation similar to that of later hominins and modern humans. If higher trabecular bone 308 

anisotropy in the femoral head is indicative of reduced within-individual variability in the 309 

directionality of the forces experienced at this joint, as suggested by experimental and modeling 310 

data (Christen et al., 2012, 2015), then the increased anisotropy in the femoral heads of 311 

Australopithecus africanus and Paranthropus robustus suggests a narrower range of hip joint 312 

postures during locomotion in these taxa than that of African apes. Similarity in principal 313 

trabecular bone orientation between australopiths and later hominins suggests similar orientations 314 

of peak hip joint compressive loads during locomotion. This indicates that the range of hip joint 315 

loading that characterizes habitual bipedalism, and human-like bipedal gait kinematics, had 316 

emerged in these hominins. Highly anisotropic bone observed in both hominin bipeds and the 317 

predominantly terrestrial quadrupedal baboons suggests that this characteristic is a distinctive 318 

functional signal that reflects adaptation to repetitive hip joint reaction forces within a narrow 319 

range of hip joint postures during locomotion. Among the diverse modern human groups, femoral 320 
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head trabecular material is primarily directed slightly medial to the superoinferior axis, which 321 

corresponds closely to the observed trajectory of the primary compressive arcade of the proximal 322 

femur. This material organization also corresponds to orientations of peak joint reaction forces 323 

measured during bipedal walking in living humans outfitted with instrumented hip implants 324 

(Bergmann et al., 2001), as well as finite element model-based calculations of peak hip joint forces 325 

(Christen et al., 2015). Importantly, variation in fabric anisotropy is independent of the amount of 326 

bone present in the hip joint in all taxa analyzed here, suggesting that trabecular anisotropy, 327 

specifically, preserves the functional response of bone to joint loading (Pontzer et al., 2006; Polk 328 

et al., 2008; Barak et al., 2011).  329 

Baboons, like hominins, have a distinct pattern of highly anisotropic trabecular bone structure 330 

matching the medial compressive arcade in the femoral head, as noted in previous studies (Fajardo 331 

et al., 2007). The primary material orientation of trabeculae in the baboon femoral head is also 332 

directed along a trajectory just medial and slightly posterior to the superoinferior axis, as found in 333 

some of the human groups. The baboon trabecular trajectory roughly matches the somewhat 334 

limited experimental results for hip joint load orientation in quadrupedal dogs and sheep 335 

(Bergmann et al., 1984), and hip joint loading data derived from finite element models (Christen 336 

et al., 2015). This pattern likely results from the relatively stereotypical loading of the hip joint 337 

during pronograde quadrupedal walking, the relative lack of diverse hip joint postures adopted 338 

during normal terrestrial locomotion (Rose, 1977), and the more limited range of positional 339 

behaviors expressed by baboons compared to chimpanzees (Hunt, 1992), and, presumably, other 340 

apes. However, it is important to note, as it is among many modern human populations 341 

(Venkataraman et al., 2013), that baboons are not exclusively terrestrial. Many baboon groups 342 

regularly use arboreal sleeping sites (Markham et al., 2016), indicating that a stereotypical loading 343 
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pattern reflected in the architecture of the femoral head does not preclude limited arboreality that 344 

may be behaviorally important. 345 

In contrast to the pattern of highly anisotropic bone observed in hominins and papionins, the 346 

three ape groups have more isotropic femoral head trabecular bone, and importantly, individuals 347 

within each of the taxa collectively exhibit more variable primary material orientations relative to 348 

one another. All three apes overlap somewhat with the lower range of variation in DA for modern 349 

humans and baboons. Orangutans display the highest amount of variation in both DA and principal 350 

material orientation, likely reflecting their more varied locomotor postures (Thorpe and Crompton, 351 

2006). While the principal fabric direction corresponds to the orientation of peak joint reaction 352 

forces during locomotion (Barak et al., 2011, 2013, 2017; Christen et al., 2015), the relatively 353 

isotropic trabecular bone of the femoral head in apes strongly suggests that intraindividual hip joint 354 

loading in these taxa is sufficiently diverse to maintain a relatively distributed, or isotropic, 355 

trabecular structure. This isotropic pattern contrasts with the more uniformly oriented pattern 356 

observed in modern humans. The primary material axes in the African apes are positioned along a 357 

posterolateral to anteromedial axis, and are therefore quite distinct from all other groups in the 358 

study. Although limited, the data on hip joint angles during quadrupedal walking in African apes 359 

and orangutans suggest a wider range of hip joint motion within individuals and much higher 360 

variability in hip joint angles between individuals compared to bipedal humans (D'Aout et al., 361 

2002; Raichlen et al., 2009; Watson et al., 2009; Pontzer et al., 2014; Finestone et al., 2018) and 362 

baboons (Berillon et al., 2010). When walking bipedally, chimpanzees exhibit substantially greater 363 

hip abduction and adduction, internal and external rotation of the lower limb, and a less vertical 364 

femur than humans (O'Neill et al., 2015). The observed differences in trabecular anisotropy 365 

between the predominantly quadrupedal apes (chimpanzees and gorillas) and the quadrupedal 366 
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baboons may derive from these differences in hip joint kinematics during terrestrial locomotion. 367 

A comparatively more diverse range of loading orientations and magnitudes among chimpanzees 368 

and gorillas, at least within terrestrial quadrupedalism, may be due to: higher standard deviation 369 

in hip joint angles during walking in chimpanzees (Pontzer et al., 2014) compared to baboons 370 

(Berillon et al., 2010); and differences in trunk angles between the pronograde baboon and 371 

orthograde chimpanzees (Pontzer et al., 2014). To the extent that this difference may not be driven 372 

by terrestrial quadrupedalism, it is worth noting that apes perform a broad range of arboreal 373 

positional behaviors (Hunt, 1992; Doran, 1997; Carlson, 2005; Thorpe and Crompton, 2006), 374 

which also would seem to elicit more diverse hip joint angles. It has also been reported that 375 

orangutans adopt highly extended hind limbs during assisted bipedal walking in trees (Thorpe et 376 

al., 2007), which may contribute to the more diverse loading and isotropic trabeculae in this taxon. 377 

The observed differences in femoral head trabecular bone between quadrupedal baboons and 378 

African apes may also derive from phylogenetic differences or differences in the process of 379 

endochondral ossification during ontogeny. While the effects of behavioral differences during 380 

ontogeny are likely to have a significant impact on femoral head trabecular bone structure (Ryan 381 

and Krovitz, 2006; Raichlen et al., 2015), little is known about the role of interspecific differences 382 

in ontogenetic processes or phylogeny in determining adult trabecular bone structure. 383 

The fourteen fossil hominins included in this analysis span at least five species and yet all have 384 

fabric anisotropy characteristics most similar to modern humans, although there is some overlap 385 

with the extant apes. This structural correlate for hip loading suggests that habitual bipedalism 386 

characterized each taxon, and that hip kinematics were probably broadly human-like. Each of the 387 

two South African fossil species has relatively tightly clustered DA values and closely aligned 388 

primary material orientations that are nearly indistinguishable from those of some modern humans. 389 
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The anisotropy of several of the South African fossil specimens overlaps with the upper end of the 390 

range of African apes, and nearly all of the hominin fossils overlap the upper end of the orangutan 391 

range for DA. This overlap in femoral head anisotropy between the fossil hominins on the one 392 

hand and African apes and orangutans on the other, and in primary trabecular orientation between 393 

fossil hominins and only orangutans suggests some variability in proximal femoral loading during 394 

locomotion both in extinct hominins and extant apes. These results from the hip joint suggest that 395 

some arboreal activities in australopiths cannot be definitively excluded. More data are needed to 396 

better understand the nature of variation in Pliocene hominin and extant ape trabecular bone 397 

structure at the hip joint.  398 

The Homo fossils from the Late Pleistocene display relatively more variability, with the Cro-399 

Magnon and La Ferrassie femora plotting on the edge or slightly outside the modern human range 400 

for primary trabecular orientation. The intraspecific differences in orientation among Neanderthals 401 

may result from a suite of derived characteristics of the pelvis and femur (Weaver, 2009; De 402 

Groote, 2011). There is little doubt, however, that these members of the genus Homo practiced 403 

fully modern human-like terrestrial bipedalism that requires an extended hip and knee (Bramble 404 

and Lieberman, 2004).  405 

Clear structural similarities between the two australopith species and modern human groups 406 

suggest that these Pliocene hominins walked with a relatively extended hip, rather than a flexed 407 

hip. Due to lower limb kinematic constraints, one may deduce that australopith knee flexion and 408 

ankle dorsiflexion would have had to resemble human joint kinematics as well (Schmitt, 2003). 409 

Theoretically, joint kinematics during BHBK walking could result in an individual with either 410 

more isotropic femoral head trabeculae (i.e., response to a wider range of joint reaction force 411 

orientations), or more anterior or ventral positioning of the principal material axis (i.e., response 412 
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to habitually more flexed hip posture), or even both. The hip joint may present a challenge when 413 

trying to decipher BHBK gait in australopiths, however, due to the additional degrees of freedom 414 

of movement at this joint compared to other lower limb joints that configurationally emphasize 415 

predominantly sagittal plane movements (e.g., knee flexion/extension and ankle 416 

dorsiflexion/plantarflexion). However, based on data from bipedally walking chimpanzees (Foster 417 

et al., 2013; O'Neill et al., 2015) and bonobos (D'Aout et al., 2002), it seems likely that BHBK gait 418 

in australopiths would result in both different hip joint postures and more variable hip loading 419 

during the gait cycle compared to modern humans. The observed skeletal differences between 420 

modern humans, with a comparatively more limited range of hip joint postures, and extant apes, 421 

who engage in more varied locomotor behaviors and a greater range of hip joint positions, suggests 422 

that hip loading experienced by these australopith species resembled modern human-like hip 423 

loading with a relatively extended hip and knee during walking gaits. This interpretation accords 424 

with reconstructions of locomotor behavior and kinematics in australopiths based on trabecular 425 

morphology of the ankle and foot (Barak et al., 2013; Zeininger et al., 2016; Su and Carlson, 2017), 426 

other morphological characteristics (Ward et al., 2011; Haile-Selassie et al., 2016), kinematic and 427 

energetics studies (Wang et al., 2003; Sockol et al., 2007; Crompton et al., 2012; Foster et al., 428 

2013), and fossil trackways (Raichlen et al., 2008, 2010; Crompton et al., 2012). 429 

The results of the present study also have the potential to inform our understanding of the degree 430 

to which australopiths frequently or habitually engaged in arboreal locomotion. While there is little 431 

question that Pliocene hominin postcranial morphology reflects adaptations for committed 432 

terrestrial bipedal locomotion (Ward, 2013), evidence from other parts of the skeleton suggests 433 

that these early hominins may have engaged in at least some arboreal locomotor activities (Stern, 434 

2000; Green and Alemseged, 2012; Marchi, 2015; Ruff et al., 2016; Zeininger et al., 2016; Su and 435 
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Carlson, 2017). Recent reinterpretations of the A.L. 288-1 fossils of Australopithecus afarensis 436 

have suggested the potential for a significant arboreal component in the behavioral repertoire of 437 

this species (Kappelman et al., 2016; Ruff et al., 2016). Femoral head trabecular bone structure in 438 

Australopithecus africanus and Paranthropus robustus, specifically, indicates hip joint postures 439 

and loading patterns that are inconsistent with an ape-like range of arboreal positional behaviors. 440 

It seems likely, therefore, that if these australopiths incorporated any arboreality into their 441 

locomotor repertoire, they did so less diversely, more infrequently (Ward, 2013), or with hip joint 442 

postures and climbing mechanics similar to those used by modern human climbers (Venkataraman 443 

et al., 2013) rather than those employed by extant apes (DeSilva, 2009). 444 

Anisotropy of femoral head trabecular bone appears to be independent of variation in bone 445 

volume fraction. Australopithecus africanus and Paranthropus robustus both combine a non-446 

human primate-like pattern of robust femoral head trabecular bone (high BV/TV) with highly 447 

anisotropic fabric structure (high DA) indicative of locomotor kinematics and hip joint loading 448 

like that of later hominins and modern humans. This mismatch between australopith bone mass 449 

and anisotropy bolsters the interpretation of fabric anisotropy patterns as a locomotor functional 450 

signal, independent of other mechanical, physiological, or nutritional factors affecting skeletal 451 

robusticity. Excluding the Black Earth hunter-gatherers, who appear to have uniformly high 452 

trabecular bone volume in the hind limb (Saers et al., 2016), there is an almost step-like reduction 453 

in BV/TV through time — from the australopiths, to the four Pleistocene Homo specimens, to the 454 

more recent Holocene modern humans. This high bone volume fraction in the australopith femoral 455 

head suggests higher musculoskeletal loading, as implicated by cortical bone structural variation 456 

(Ruff et al., 1999, 2016). Higher muscle forces characterizing chimpanzees, and presumably other 457 

apes, may also characterize australopiths, with a reduction of power in the genus Homo being 458 
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driven by selection for fine motor control of muscles for tasks demanding dexterity and precision 459 

(Walker, 2009), or metabolic tradeoffs associated with increased brain size (Bozek et al., 2014). 460 

There is significant variation in femoral head bone volume fraction across the genus Homo. The 461 

relatively intermediate bone volume fraction results for the Pleistocene Homo fossils analyzed here 462 

suggest that significantly more variation exists in trabecular bone phenotype across the genus 463 

Homo than is currently documented (Chirchir et al., 2015). While the fossil sample used in this 464 

analysis is small, which is a limitation, the fact that these fossils fall within the range of a more 465 

sedentary modern human group (Norris Farms) underscores the potentially important role of non-466 

mechanical factors in driving bone mass variation in later hominins (Devlin, 2015; Weaver et al., 467 

2016). 468 

The current study provides valuable insights into the organization of trabecular bone in the 469 

femoral heads of baboons, large-bodied hominoids, and living and extinct hominins, but there are 470 

several potential limitations to this analysis. The most significant of these limitations are issues 471 

associated with the µCT approach including variation in image resolution, VOI specification, and 472 

image segmentation. Due to the distribution and variation in the preservation of the collections 473 

used in the analysis, multiple different µCT systems and scanning protocols were used in collecting 474 

the raw µCT data. This resulted in some variation in image resolution between scans. In most 475 

cases, the voxel dimensions were well within the range typical of analyses of trabecular bone 476 

structure, especially considering the size of the taxa analyzed. In the case of two baboon 477 

individuals, the voxel sizes were slightly larger (0.069 mm) than those used for other individuals 478 

in the analysis. The results for these two baboons fall within the range of variation for other 479 

baboons, but it is possible that the larger voxel dimensions potentially affected the results for these 480 

two individuals.  481 



	 23 

The use of a single VOI rather than quantifying bone structure across the entire joint is also a 482 

potential limitation to the study. We positioned the VOIs within the femoral head based on the 483 

maximum extents of the articular surface, ensuring that the volumes were homologous in the extant 484 

taxa. Due to the nature of preservation in some of the fossils, the articular surfaces were not always 485 

complete, so the precise position of the VOI may not have been homologous with the position in 486 

the extant species. In addition, in the case of SK82 and La Ferrassie 1, the VOI was translated 487 

several millimeters to avoid internal cracks through the trabecular bone, a phenomenon that may 488 

have a significant impact on quantification of anisotropy (Bishop et al., 2017). This translation of 489 

the VOIs, although small relative to the overall size of the femoral head, may affect the quantified 490 

fabric structure results for these individuals (Kivell et al., 2011), which is potentially reflected in 491 

the results of these individuals relative to the rest of the hominin sample. A whole bone approach 492 

to analyzing trabecular bone structure across the entire femoral head provides an alternative 493 

approach that avoids the limitations of the typical VOI method (Gross et al., 2014; Skinner et al., 494 

2015; Kivell, 2016).  495 

A final potential limitation related to the µCT approach concerns the segmentation of the fossil 496 

specimens. In most cases, the fossil preservation was such that segmentation was straightforward 497 

as in the extant sample. However, in the case of several of the fossil hominins, the image data were 498 

first filtered to enhance contrast prior to segmentation. The nature of the preservation of these, and 499 

many fossils, presents significant challenges for analyses of bone microstructure. 500 

In conclusion, phenotypically plastic traits such as trabecular bone and diaphyseal cortical bone 501 

structure hold the potential to provide significant insights into the specific behaviors engaged in 502 

by individual hominins, allowing for more nuanced reconstructions of locomotor biomechanics, 503 

diversity, and evolution (Ward, 2013; Kivell, 2016; Ruff et al., 2016). Broad similarity in 504 
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trabecular bone fabric anisotropy and material organization in the femoral heads of all hominins 505 

in this study (especially compared to African apes) suggests overarching similarities in the hip 506 

kinematics between australopiths and later members of the genus Homo, including modern 507 

humans. Our data, when considered together with evidence from trabecular bone structure of the 508 

ankle joint (Barak et al., 2013; Su and Carlson, 2017), locomotor kinematics based on fossil 509 

trackways (Raichlen et al., 2010; Crompton et al., 2012; Raichlen and Gordon, 2017), locomotor 510 

energetics (Wang et al., 2003; Sockol et al., 2007), and morphological features of the lower limb 511 

and foot (Ward et al., 2011), indicate that australopiths were human-like in many aspects of their 512 

bipedalism, such as using a relatively extended hip and knee. Further, our data suggest that if 513 

australopiths climbed, they loaded their hip in a manner unlike extant apes, and probably more 514 

similar to modern human climbers (Venkataraman et al., 2013). 515 
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 830 

Figure legends 831 

 832 

Figure 1. VOI selection method. The VOI was placed centrally within the femoral head as 833 

denoted in two dimensions by the red box. 834 

 835 

Figure 2. Coronal sections through the proximal femur of one individual from each extant taxon 836 

and all fossils used in this analysis. Note that the matrix infilling the intertrabecular spaces in SK 837 

19 and SK 3121 is higher density than the surrounding bone creating the appearance of an 838 

inverted dataset. 839 

 840 

Figure 3. Boxplots comparing femoral head degree of anisotropy (DA) across extant non-human 841 

catarrhines, modern human groups, and fossil hominin taxa. All volumes of interest were 842 

positioned centrally within the femoral head except for SK 82, which was translated laterally to 843 

avoid a crack, and La Ferrassie 1, which was translated approximately 3 mm laterally, 844 

posteriorly, and superiorly to avoid this damaged region. Colored boxes represent the 50% 845 

interquartile range with the black horizontal line representing the median of each species or 846 

group. Whiskers represent the highest and lowest values, excluding outliers represented as open 847 

circles. 848 

 849 

Figure 4. Stereonet projections showing principal trabecular material orientations in the femoral 850 

head. (A) Within and between species variation in principal material orientation. (B) Detail of 851 

circular region from A showing extent of variation in principal material directions in modern 852 
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humans and fossil hominins. (C) Group mean directions with a95 confidence limits for each 853 

taxon. (D) Detail of mean principal direction and a95 confidence limits covering the same region 854 

of the graph as in B. Symbols: brown squares = Pan troglodytes; green triangles = Gorilla ssp.; 855 

solid gray diamonds = Pongo ssp.; orange triangles = Papio ssp.; yellow circles = Holocene 856 

modern Homo sapiens; red stars = Australopithecus africanus; blue crossed circles = 857 

Paranthropus robustus; green crossed squares = Pleistocene Homo. All points represent the tips 858 

of vectors emanating from the center and terminating on the edge of a hemisphere. The center of 859 

the plot denoted by a black cross represents the superoinferior orientation. All points are in the 860 

same hemisphere, except three Gorilla and one Pan inverted to calculate Fisher statistics. These 861 

four specimens are denoted as white triangles (Gorilla) or squares (Pan). 862 

 863 

Figure 5. Boxplots comparing femoral head bone volume fraction across extant non-human 864 

catarrhines, modern human groups, and fossil hominin taxa. All volumes of interest were 865 

positioned centrally within the femoral head except for SK 82, which was translated laterally to 866 

avoid a crack, and La Ferrassie 1, which was translated approximately 3 mm laterally, 867 

posteriorly, and superiorly to avoid this damaged region. Colored boxes represent the 50% 868 

interquartile range with the black horizontal line representing the median of each species or 869 

group. Whiskers represent the highest and lowest values, excluding outliers represented as open 870 

circles. 871 

 872 



Table 1 

Taxonomic sample and scanning details. 

    Taxon n (f/m/u) Behavior/subsistencea Voxel size (mm) Scan locationb 

Extant taxa 
  

 
 

 
Homo sapiens 

  
 

 

  
Black Earth 13 (4/9/0) Hunter-gatherer, semisedentary 0.055 PSU 

  
Inuit 8 (0/0/8) Hunter-gatherer, seafaring 0.0378 CBC 

  
Norris Farms 15 (8/7/0) Horticulture 0.057–0.058 PSU 

  
Kerma 10 (2/7/1) Preindustrial intensive agriculture 0.0378 CBC 

  
St. Johns 14 (5/9/0) Preindustrial intensive agriculture 0.0378 CBC 

 
Pan troglodytes 17 (4/12/1) Knuckle-walking/quadrupedalism, climbing 0.051–0.055 PSU 

 Gorilla ssp.  8 (3/5/0) Knuckle-walking/quadrupedalism, climbing 0.045–0.052 PSU 

 
Pongo ssp.  7 (2/5/0) Quadrumanous climbing 0.061 PSU 

 
Papio ssp. 11 (4/3/4) Terrestrial quadrupedalism 0.037–0.069 PSU 

Fossil taxa        

 
Australopithecus africanus 6 

 
 Wits 

  
StW 99 

  
0.030 

 

  
StW 311 

  
0.030 

 

  
StW 392 

  
0.030 

 



  
StW 403 

  
0.030 

 

  
StW 479 

  
0.030 

 

  
StW 501 

  
0.030 

 

 
Paranthropus robustus 4 

 
 Wits 

  
SK 19 

  
0.020 

 

  
SK 82 

  
0.020 

 

  
SK 97 

  
0.021 

 

  
SK 3121 

  
0.020 

 

 
Pleistocene Homo sp. 3 

 
 

 

  
Berg Aukas 

  
0.045 Wits 

  
La Ferrassie 1 

  
0.050 MNHN 

  
La Ferrassie 2 

  
0.050 MNHN 

  
Cro-Magnon 4321 

  
0.050 MNHN 

Abbreviations: f = female; m = male; u = unknown. 

a Human subsistence descriptions come from Jefferies and Lynch (1983), Buikstra and Milner (1991), Starling and Stock (2007), Cessford (2015), 

and also museum records. Locomotor descriptions for nonhuman primates come from Gebo (2014) and Rowe (1996). 

b CBC = Cambridge BioTomography Centre; MNHN= Muséum National d’Histoire Naturelle AST-RX, Paris; PSU = Penn State Center for 

Quantitative Imaging; Wits = University of the Witwatersrand Microfocus X-ray Computed Tomography facility.  

 



Table 2 

Summary statistics for trabecular bone volume fraction (BV/TV) and degree of anisotropy (DA) for each taxon. 

Taxon n BV/TV 
BV/TV 

SD 

BV/TV 

CV 
DA 

DA 

SD 

DA 

CV 
R k s α95 

Mean Direction 

x y z 

Papio 11 0.54 0.06 11.85 0.67 0.08 12.24 10.58 24.09 16.50 9.50 0.40 0.18 0.90 

Pongo. 7 0.52 0.04 8.18 0.45 0.15 34.20 4.82 2.75 48.81 44.98 0.19 -0.30 0.93 

Gorilla 8 0.50 0.06 11.16 0.45 0.10 21.47 7.45 12.82 22.63 16.08 0.57 -0.82 0.03 

Pan troglodytes 17 0.60 0.07 12.38 0.39 0.08 21.20 16.07 17.21 19.52 8.85 -0.30 0.91 0.27 

Homo sapiens 60 0.39 0.09 23.87 0.63 0.08 12.91 58.99 58.45 10.59 2.42 0.36 -0.09 0.93 

 
Black Earth 13 0.53 0.05 9.76 0.66 0.07 10.46 12.83 71.19 9.60 4.95 0.44 -0.05 0.89 

 
Norris Farms 15 0.41 0.04 10.13 0.69 0.07 10.74 14.80 68.47 9.79 4.65 0.37 -0.17 0.91 

 
Kerma 10 0.34 0.04 10.54 0.61 0.09 14.53 9.91 104.40 7.93 4.75 0.35 -0.06 0.93 

 
Inuit 8 0.29 0.03 10.54 0.60 0.07 11.83 7.83 41.78 12.53 8.67 0.29 -0.01 0.96 

 
St Johns 14 0.35 0.05 14.18 0.58 0.06 9.87 13.79 63.30 10.18 5.03 0.31 -0.09 0.95 

Australopithecus africanus 6 0.59 0.07 12.38 0.61 0.06 9.31 5.95 96.26 8.26 6.86 0.37 -0.17 0.91 

 
StW 99 

 
0.66 

  
0.68 

         

 
StW 311 

 
0.51 

  
0.54 

         

 
StW 392 

 
0.57 

  
0.60 

         

 
StW 403 

 
0.63 

  
0.56 

         



 
StW 479 

 
0.67 

  
0.61 

         

 
StW 501 

 
0.50 

  
0.67 

         
Paranthropus robustus 4 0.52 0.03 6.11 0.58 0.07 11.90 3.99 208.75 5.61 6.37 0.39 0.00 0.92 

 
SK 19 

 
0.52 

  
0.65 

         

 
SK 82 

 
0.55 

  
0.50 

         

 
SK 97 

 
0.48 

  
0.55 

         

 
SK 3121 

 
0.54 

  
0.61 

         
Pleistocene Homo sp. 4 

             

 
Berg Aukas (Homo sp.) 

 
0.45 

  
0.59 

         

 

La Ferrassie 1 (H. 

neanderthalensis)  
0.43 

  
0.54 

         

 

La Ferrassie 2 (H. 

neanderthalensis)  
0.39 

  
0.70 

         

  
Cro-Magnon 4321 (H. 

sapiens) 
  0.44     0.54                   

Abbreviations: α95 = 95% confidence limit; CV = coefficient of variation; k = precision parameter; R = resultant vector; s = angular standard 

deviation; SD = standard deviation. 

 



Table 3 

ANOVA results for comparisons of degree of anisotropy (DA) and bone volume fraction (BV/TV) among 

human groups, extant catarrhines, and fossil taxa. 

    
Sum of 

squares 
df 

Mean 

square 
F p 

DA Between groups 1.233 10 0.123 18.112 <0.001 

 
Within groups 0.694 102 0.007 

  
  Total 1.927 112       

BV/TV Between groups 1.231 10 0.123 42.230 <0.001 

 Within groups 0.297 102 0.003   

  Total 1.528 112       

 

 



Table 4 

Cohen’s d effect sizes for comparisons of degree of anisotropy (DA) among human groups, extant catarrhines, and fossil taxa. Negative effect sizes 

indicate higher mean degree of anisotropy in the species or group listed in each row. ANOVA post hoc (Hochberg GT2) results with p-values less 

than 0.05 are indicated with bold texta. 

  
Black 

Earth 
Inuit 

Norris 

Farms 
Kerma St. Johns Pan Gorilla Pongo Papio A. africanus 

Inuit 0.819 
         

Norris Farms -0.462 -1.233 
        

Kerma 0.576 -0.147 0.973 
       

St. Johns 1.238 0.337 1.671* 0.460 
      

Pan  3.518*** 2.696*** 3.859*** 2.655*** 2.662*** 
     

Gorilla 2.520*** 1.712 2.857*** 1.703** 1.693* -0.766 
    

Pongo 1.969*** 1.284 2.294*** 1.358** 1.308 -0.589 0.031 
   

Papio -0.180 -0.907 0.253 -0.685 1.324 -3.449*** -2.439*** -1.927*** 
  

A. africanus 0.709 -0.161 1.137 0.019 -0.553 -2.905*** -1.886* -1.338* 0.803 
 

P. robustus 1.145 0.310 1.528 0.401 0.013 -2.382** -1.383 -0.973 1.165 0.524 



a * = p <0.05; ** p <0.01, *** = p < 0.001. 

 



Table 5 

Cohen’s d effect sizes for comparisons of bone volume fraction (BV/TV) among human groups, extant catarrhines, and fossil taxa. Negative effect 

sizes indicate higher mean bone volume fraction in the species or group listed in each row. ANOVA post hoc (Hochberg GT2) results with p-values 

less than 0.05 are indicated with bold texta.  

  
Black 

Earth 
Inuit 

Norris 

Farms 
Kerma St. Johns Pan Gorilla  Pongo Papio  A. africanus 

Inuit 5.483*** 
         

Norris Farms 2.638*** -3.274*** 
        

Kerma 4.306*** -1.540 1.873 
       

St. Johns 3.678*** -1.420 1.387 -0.240 
      

Pan  -1.007 -4.900*** -3.093*** -4.167*** -3.927*** 
     

Gorilla  0.630 -4.782*** -1.914* -3.585*** -2.953*** 1.443** 
    

Pongo  0.233 -6.487*** -2.667** -4.809*** -3.695*** 1.156 -0.443 
   

Papio  -0.151 -4.849*** -2.526*** -3.905*** -3.463*** 0.813 -0.696 -0.353 
  

A. africanus 0.964 -5.811*** -3.480*** -4.867*** -4.273*** 0.125 -1.425 -1.168 -0.715 
 

P. robustus 0.242 -7.707*** -2.784* -5.343*** -3.751*** 1.124 -0.439 0.008 0.351 1.126 



a * = p <0.05; ** p <0.01, *** = p < 0.001. 

 



Table 6 

Results of Pearson correlation analyses of BV/TV and DA. 

Taxon r p t df 

Papio 0.38 0.25 1.24 9 

Pongo -0.02 0.96 -0.05 5 

Gorilla 0.11 0.80 0.27 6 

Pan  0.08 0.77 0.30 15 

Homo sapiens 0.23 0.08 1.81 58 

All extant -0.30 0.0005 -3.22 101 
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SOM Table S1  
Details of skeletal sample. 

Species Group Museum Specimen 
sex 

(0=f,1=m,2=u) 
Voxel 
Size 

Homo sapiens Black Earth Southern Illinois, Carbondale 20B 0 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 22 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 33 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 50 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 86 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 99 0 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 106 0 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 110 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 113 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 141A 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 142 1 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 145 0 0.055 
Homo sapiens Black Earth Southern Illinois, Carbondale 201 1 0.055 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819941 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819951 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819957 0 0.057 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819963 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819977 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 819983 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820647 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820652 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820696 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820715 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820735 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 820740 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 821042 0 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 821228 1 0.058 
Homo sapiens Norris Farms Illinois State Museum, Springfield 821230 1 0.058 
Homo sapiens Kerma Duckworth Museum, Cambridge 149-745 1 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 610 2 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 704 0 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 737 1 0.038 



Homo sapiens Kerma Duckworth Museum, Cambridge 759 1 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 781 1 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 783 1 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 849 0 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge 1065 1 0.038 
Homo sapiens Kerma Duckworth Museum, Cambridge A5 1 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge A' 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge Greenland-II 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge Greenland_Folio_76 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge Labrador_82 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge B' 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge C' 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge E1' 2 0.038 
Homo sapiens Inuit Duckworth Museum, Cambridge 1929_Folio_80 2 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2293_3285_394 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2202_2310_805 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2282_3195_364 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2349_3347_917 0 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2356_3398_935 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2360_3475_958 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2362_3530_970 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2702_1211_184 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2727_2205_264 0 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2748_3207_367 0 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2790_1241_709 0 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2817_1400_768 1 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2818_1402_769 0 0.038 
Homo sapiens St. Johns Cambridge Archaeological Unit 2833_2311_809 1 0.038 

Pan troglodytes schweinfurthii  American Museum of Natural History 51202 1 0.051 
Pan troglodytes schweinfurthii  American Museum of Natural History 51205 2 0.055 
Pan troglodytes schweinfurthii  American Museum of Natural History 51376 0 0.055 
Pan troglodytes schweinfurthii  American Museum of Natural History 51377 1 0.055 
Pan troglodytes schweinfurthii  American Museum of Natural History 51379 1 0.051 
Pan troglodytes schweinfurthii  American Museum of Natural History 51381 1 0.055 
Pan troglodytes schweinfurthii  American Museum of Natural History 51393 1 0.051 

Pan troglodytes verus  American Museum of Natural History 89351 0 0.052 



Pan troglodytes verus  American Museum of Natural History 89353 1 0.052 
Pan troglodytes verus  American Museum of Natural History 89354 0 0.052 
Pan troglodytes verus  American Museum of Natural History 89355 1 0.052 
Pan troglodytes verus  American Museum of Natural History 89406 1 0.052 
Pan troglodytes verus  American Museum of Natural History 89407 1 0.052 

Pan troglodytes troglodytes  American Museum of Natural History 167341 1 0.052 
Pan troglodytes troglodytes  American Museum of Natural History 167342 1 0.052 
Pan troglodytes troglodytes  American Museum of Natural History 201469 0 0.051 

Pan troglodytes  American Museum of Natural History 174861 1 0.052 
Pongo abelii  Smithsonian Museum of Natural History 49855 1 0.061 
Pongo abelii  Smithsonian Museum of Natural History 49859 1 0.061 

Pongo pygmaeus  Smithsonian Museum of Natural History 49769 0 0.061 
Pongo pygmaeus  Smithsonian Museum of Natural History 49957 0 0.061 
Pongo pygmaeus  Smithsonian Museum of Natural History 49962 1 0.061 
Pongo pygmaeus  Smithsonian Museum of Natural History 49967 1 0.061 
Pongo pygmaeus  Smithsonian Museum of Natural History 153823 1 0.061 

Gorilla gorilla  American Museum of Natural History 54089 1 0.051 
Gorilla gorilla  American Museum of Natural History 54090 1 0.051 
Gorilla gorilla  American Museum of Natural History 54091 0 0.051 
Gorilla gorilla  American Museum of Natural History 54092 0 0.052 
Gorilla gorilla  American Museum of Natural History 54355 1 0.045 
Gorilla gorilla  American Museum of Natural History 90289 1 0.052 
Gorilla gorilla  American Museum of Natural History 90290 1 0.051 
Gorilla gorilla  American Museum of Natural History 54327 0 0.052 
Papio anubis  Smithsonian Museum of Natural History 162899 1 0.045 

Papio cynocephalus  Smithsonian Museum of Natural History 384238 0 0.037 
Papio cynocephalus  Smithsonian Museum of Natural History 384239 0 0.037 
Papio cynocephalus  Smithsonian Museum of Natural History 452508 0 0.037 

Papio hamadryas  American Museum of Natural History 52668 0 0.055 
Papio hamadryas  American Museum of Natural History 82096 2 0.069 
Papio hamadryas  American Museum of Natural History 82097 2 0.055 
Papio hamadryas  American Museum of Natural History 120388 1 0.069 

Papio ursinus  American Museum of Natural History 80774 1 0.051 
Papio ursinus  American Museum of Natural History 216250 2 0.042 
Papio ursinus  American Museum of Natural History 216251 2 0.051 

      



Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW501 – 0.030 

Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW99 – 0.030 

Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW479 – 0.030 

Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW403 – 0.030 

Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW311 – 0.030 

Australopithecus africanus  
Evolutionary Studies Institute, 

University of the Witwatersrand 
StW392 – 0.030 

Paranthropus robustus  Ditsong National Museum of Natural History SK19 – 0.020 
Paranthropus robustus  Ditsong National Museum of Natural History SK82 – 0.020 
Paranthropus robustus  Ditsong National Museum of Natural History SK97 – 0.021 
Paranthropus robustus  Ditsong National Museum of Natural History SK3121 – 0.020 

Homo sp.  
Evolutionary Studies Institute, 

University of the Witwatersrand 
Berg Aukas – 0.045 

Homo neanderthalensis  Muséum national d'Histoire naturelle La Ferrassie 1 1 0.050 
Homo neanderthalensis  Muséum national d'Histoire naturelle La Ferrassie 2 0 0.050 

Homo sapiens  Muséum national d'Histoire naturelle Cro-Magnon 1 1 0.050 
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