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Abstract

In the context of Large Eddy Simulations, deconvolution is an attractive alternative

for modelling the un-closed terms appearing in the filtered governing equations. Such

methods have been used in a number of studies for non-reacting and incompressible flows,

however their application in reacting flows is limited in comparison. Deconvolution methods

originate from clearly defined operations, and in theory can be used in order to model any

un-closed term in the filtered equations including the scalar flux. In this study, an iterative

deconvolution algorithm is used in order to provide a closure for the scalar flux term in

a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment

of the method is conducted a priori using a three-dimensional direct numerical simulation

database of a turbulent freely-propagating premixed flame in a canonical configuration.

In contrast to most classical a priori studies, the assessment is more stringent as it is

performed on a much coarser LES mesh which is constructed using the filtered fields as

obtained from the direct simulations. For the conditions tested in this study, deconvolution

is found to provide good estimates both of the scalar flux and of its divergence.
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I. INTRODUCTION

The numerical simulation of turbulent and reacting flows using Large Eddy Sim-

ulation (LES) is becoming ever more common in industry. This includes devices

of realistic size and geometry in many different combustion and flow configurations

[1, 2]. LES reduces the computational workload as compared to Direct Numerical

Simulations (DNS) by filtering the governing equations using a spatial filter. The

filtering process produces a smoothed version of the original field which can be re-

solved on a much coarser mesh [3]. The filtering operation however results in many

un-closed terms in the governing equations, and accurate combustion and turbu-

lence Sub-Grid Scale (SGS) models are required in order to close these terms [3].

Un-closed terms include filtered source terms, diffusion terms, scalar-flux terms, to

name but a few. Scalar flux terms in particular, appear very often in many reacting

LES formulations. These are given by,

fia = ρ̄ (ũia− ũiã) (1)

where the overbar denotes a spatial filtering operation, and˜denotes a Favre filtering

operation. The variable a may be any scalar field variable such as a species mass

fraction Yk, temperature T and so on. In many reacting LES formulations, a progress

variable c is solved for which is used to distinguish fresh (c=0) from burnt gases

(c = 1), and a model is required for the scalar flux of c, namely fic. The scalar flux

term is particularly important in regions with a low reaction rate. In a premixed

flame such a region occurs in the preheat zone of the flame, and the scalar flux

term becomes important in determining the correct progress variable variation in

this region, which in turn controls the propagation speed of the flame.

In the canonical modelling approach, scalar flux terms are modelled using suit-

able functions of the resolved (known) quantities such as the Favre-filtered progress
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variable and velocity c̃ and ũi-these functions usually include gradients of the above

quantities also. Many different models have been developed for the scalar flux.

Roughly speaking, scalar flux models can be grouped in Eddy Diffusivity models

(ED), Structural/Gradient-based models (SG), Transport-Equation-based models

(TE), Scale-Similarity models (SS), but also combinations of the above. In the

simplest ED models, the scalar flux is modelled using fi = −ρ̄Dt∂c̃/∂xi where the

turbulent diffusivity Dt is usually calculated assuming a constant Schmidt number

Sc ' νt/Dt, where νt is the turbulent viscosity which is estimated from the tur-

bulence model. ED models are simple and easy to implement in LES and provide

the necessary dissipation, however they have some important drawbacks. The main

drawback lies in the fact that the turbulent diffusivity Dt has no directional de-

pendence. This leads to the scalar flux always being aligned with the gradient of

the mean scalar field which is not generally true. For example, in the case of pre-

mixed flames, counter-gradient transport is often observed [4]. In order to include

anisotropy in the modelling of the scalar flux, Batchelor [5] originally proposed using

an anisotropic diffusivity tensor Dij instead. Henceforth, there have been a number

of studies employing this approach with varying and often escalating levels of com-

plexity in the evaluation of Dij [6]-[9]. This approach has generally improved the

directionality of the scalar flux but not always its magnitude. To this end, dynamic

versions of the ED model have also been developed. A very popular dynamic (yet

isotropic) model for the scalar flux often used in reacting flow simulations was de-

veloped by Moin et al. [10] by extending the dynamic process introduced for the

Reynolds stresses by Germano et al. [11]. Dynamic models improve considerably

the predictions of the magnitude of the scalar flux, however they may result in sig-

nificant spatial variations of the models’ dynamic parameters. SG models for the

scalar flux were developed in analogy to modelling the Reynolds stress term in the

work of Clark et al [12] who used a Taylor series expansion of the filter operation in
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order to approximate the actual un-filtered field. SG models as in [12] include the

required anisotropy and were found to provide quantitatively good estimates of the

scalar flux in a priori studies. Their performance however in a posteriori studies was

generally observed to be poorer in comparison as they did not provide the necessary

dissipation. To this end, dynamic but also mixed ED-SG models were developed

[13]-[15]. More complex models using the transport equation for the scalar flux term

have also been proposed, see for example [16]-[18]. In [16] a generalised scalar flux

model was developed based on the assumption of a suitable functional form for the

scalar flux. It was shown that ED and SG models are essentially a subset of the

more generalised model, something which would explain the improved predictions

observed in the case of mixed models. However, the model developed in [16] includes

a substantial amount of additional terms which are not all present in the majority of

mixed models. This implies that the predictive ability of mixed models lacking some

of these terms is limited. At the same time, any model should be relatively simple

and easy to implement in practical LES. In that regard, SS-based models are an

attractive alternative. In SS-based models the scalar flux is estimated using suitable

functions of the filtered and test-filtered values [19]-[21]. SS models however were

also found to have a poorer performance in a posteriori studies as compared to a

priori studies. As a result, mixed models are again required to provide the necessary

dissipation [20]. In the context of premixed reacting flames, a number of different

models have also been developed based on the above approaches [4][22]-[26]. Most of

these models are additionally modified compared to their non-reacting counter-parts

in order to explicitly include the effects of heat release. A detailed a priori analysis of

the performance of a number of different scalar flux models in the case of turbulent

premixed flames using 1-step chemistry is given in [27]. All the models tested in

[27] exhibited significant variations in their predictions, particularly in flames having

Lewis numbers (ratio of thermal diffusion rate to mass diffusion rate) Le <1 which
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showed relatively large discrepancies in comparison with the DNS data.

It is apparent that there exist a multitude of different models for the scalar flux

whose complexity and ease of implementation varies substantially. A common char-

acteristic between the majority of the aforementioned models is that they have been

developed usually using at least one major simplifying assumption. This may restrict

their generality and use. In addition, most of the aforementioned models include pa-

rameters/constants whose value greatly affects their performance in addition to the

turbulence model used. In the case of dynamic formulations this issue is somewhat

alleviated provided the dynamic procedure is suitably defined. This procedure how-

ever is not always clear or justifiable and may in some cases be flow-regime and

combustion-mode dependent [11].

A different, perhaps more universal and parameter-free modelling approach is

based on deconvolution. Deconvolution methods aim to provide an approximation

φ∗ of the original signal φ from knowledge of the filtered field φ̄. Hence, functions

of φ which require modelling e.g. y(φ) may be modelled using y(φ∗) i.e. by ex-

plicitly filtering the deconvoluted fields on the LES mesh. Deconvolution methods

were introduced in fluid mechanics research in [12, 28]. The SG scalar flux model

for example which forms the basis of many mixed models, is essentially a form of

deconvolution [12]. In later works, deconvolution was used to provide a model for the

Reynolds stresses [29]-[31]. Deconvolution methods were also found to provide good

results in wall-bounded flows as well [32] where classic models are notoriously too

dissipative. Deconvolution was also recently found to be a powerful tool for comple-

menting physical modelling by directly exploiting the information contained within

the resolved signals [33, 34] In the case of reacting flows, deconvolution methods were

used both in a priori and a posteriori studies with overall good results [35]-[39]. The

focus of these studies in particular has been on deconvoluting the progress variable

c or temperature T and species mass fractions Yk, in order to model the filtered
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reaction rate w̄(T ∗, Y ∗k ) in the transport equation for the filtered progress variable.

In the context of modelling the SGS scalar flux term which also appears in the

progress variable transport equation, deconvolution may also be an attractive alter-

native due to its generality and simplicity: deconvolution methods are based on using

an inverse filter operation which is mathematically clearly defined. Compared to a

scalar-gradient eddy viscosity closure for example, a deconvolution approach does not

make any explicit assumption for the Schmidt number, or the form of the turbulent

diffusivity tensor. To this end, the aim of this study in particular is to evaluate the

performance of an Iterative Deconvolution Method, combined with Explicit Filtering

(IDEF) in order to model the scalar flux. The assessment is conducted a priori using

DNS data of a freely-propagating turbulent premixed flame in a canonical inflow-

outflow configuration. It is important to note at this point that a priori assessments

do not guarantee functionality of the models in actual LES. However, in contrast to

a posteriori assessments using LES where the influence of modelling and numerical

errors are often too difficult to distinguish, a priori assessments involve using direct

simulations which are conducted using high-order numerical schemes on fine meshes.

This minimises the effect of numerical/discretisation errors and the performance of

the models can be clearly evaluated. Another important point to note, is that the

majority of a priori assessments in the literature are conducted on the fine DNS

mesh-in contrast in order to simulate an actual LES, we conduct the assessment on

a much coarser LES mesh which is constructed using the DNS-filtered values on the

LES mesh points only. This presents a more stringent a priori assessment, since

variable values between the LES mesh points (sub-grid scales) are not known.

The rest of this study is organised as follows: section II gives a short descrip-

tion of the DNS database used, section III presents the filtering and deconvolution

operations, and results are discussed in section IV.
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II. DESCRIPTION OF THE DNS DATABASE

Direct Numerical Simulations have been conducted using the SENGA2 code [40]

which solves the compressible reacting flow Navier-Stokes equations using a 10th

order finite difference scheme for interior points, and a 4th order Runge-Kutta scheme

for the time-stepping,

∂ρ

∂t
+
∂ρuk
∂xk

= 0 , (2)

∂ρui
∂t

+
∂ρukui
∂xk

= − ∂p

∂xi
+
∂τki
∂xk

, (3)

∂ρE

∂t
+
∂ρukE

∂xk
= −∂puk

∂xk
− ∂qk
∂xk

+
∂τkmum
∂xk

, (4)

∂ρYα
∂t

+
∂ρukYα
∂xk

= ẇα −
∂ρVα,kYα
∂xk

. (5)

α is the species identifier and usual notations have been otherwise introduced. A

freely-propagating premixed multi-component fuel-air flame in a canonical inflow-

outflow configuration is simulated [41]. A detailed chemical mechanism which was

developed specifically for such fuels was used, with 49 reactions and 15 species [42,

43]. A turbulent fuel-air mixture flows from one end of the computational domain,

burns, and the hot products leave from the other end of the domain.

Table I lists the turbulence parameters for the DNS. Cases A and B were con-

ducted on a (Lx, Ly, Lz) 14x7x7 mm domain, and case C on a 21x7x7 mm domain

where y, z are the homogeneous directions, and x is the inhomogeneous direction i.e.

the direction of flame propagation. urms is the rms value of the fluctuating compo-

nent of the incoming velocity field, with an integral length scale lT on the reactant

side. The turbulence Reynolds number is ReT = urmslT/νr, the Damkohler number
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is Da = (lT/urms)/(δ/sL) and the Karlovitz number is Ka = (δ/ηk)
2, where sL is

the laminar flame speed, and the (diffusive) thickness δ = νr/sL. Note that the

laminar flame thickness is defined as δL=(Tp−Tr)/max(dT/dx) where Tr, Tp are the

reactant and product temperatures respectively. These conditions place the flame

in the distributed/broken reaction zones regime according to the classic combustion

diagram by Peters [44]. Within this regime, the flame no longer appears as a smooth

connected surface as in the flamelet regime particularly for the highest turbulence

level case: turbulent eddies are able to penetrate the heat-release zone and break

apart the flame surface. This presents a challenging environment for the deconvolu-

tion method as a result of the presence of many un-connected surfaces in the scalar

fields. Further details of the simulations are given in [41].

III. FILTERING AND DECONVOLUTION OPERATIONS

The DNS data have been explicitly filtered using a Gaussian filter. The filtered

value of a variable φ̄(x, t) is defined as,

φ̄(x, t) =

∞∫
x′=−∞

G(x− x′)φ(x′, t)dx′ (6)

The filter function is given by,

G(x) =

(
6

π∆2

) 3
2

exp

(
−6x · x

∆2

)
(7)

where ∆ is the corresponding filter width. The laminar flame thickness δL is used as

a basis for filtering at ∆+ = ∆/δL=1,2 and 3. Note that these choices correspond to

filter widths which are significantly larger than the Kolmogorov length scale of the

incoming turbulent field. Favre-filtered variables are defined as,
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φ̃(x, t) =
ρφ

ρ̄
(8)

The DNS data have also been filtered for a period of more than 1 flame time tfl =

t/(δL/sL) when the flame was fully developed. Average quantities have also been

time-averaged over the same period, in order to increase the statistical accuracy of

the results.

A number of different deconvolution algorithms have been developed in the lit-

erature for solving inverse problems [45, 46]. The filtering operation in LES is a

convolution operation between the filter G and the signal φ,

φ̄(x, t) =

∞∫
x′=−∞

G(x− x′)φ(x′, t)dx′ = G ∗ φ(x, t) (9)

and in Fourier space this becomes,

F (φ̄) = F (G) · F (φ) (10)

where F denotes a Fourier transform. The inverse problem in this case is obtaining

an approximation φ∗ from knowledge of the filtered field values φ̄(x). An additional

restriction is that the filtered field is known only on the LES mesh which is much

coarser than the DNS mesh. In order to simulate this, we define an LES mesh having

h/∆=0.25. This choice is somewhat finer than traditional meshes used in practical

LES which typically have h/∆=1 , however this is necessary so that the filtered fields

are accurately resolved on the LES mesh. This is particularly the case for non band-

limited signals such as the the progress variable in premixed flames which resembles

an error/step function. This point was recently examined in [47] where a simple

model for LES mesh requirements for premixed flame simulations was derived. For

h/∆ =0.25, this would ensure that the filtered flame thickness is sufficiently resolved
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throughout the domain [47]. This may be a strict bound, and in a recent actual LES

with deconvolution h/∆ =0.5 has been used instead with overall good results [36]

which is a reasonable resolution for an accurate LES simulation. This point leads

to a further one: actual LES implementations using deconvolution-based modelling

have been conducted for reacting flows, despite any errors/biases introduced by the

numerical schemes used in LES.

In order to simulate an LES, the data are first filtered on the fine DNS mesh using

Eq. 6. The filtered values on the LES mesh are then extracted from the fine DNS

mesh by interpolating the DNS-filtered values onto the LES mesh using high-order

Lagrange polynomials. Details of the DNS and LES meshes are given in Table II for

cases A and B and in Table III for case C. Note that ∆ is normalised with respect to

the laminar flame thickness δL. Hence, h = 0.25 ·∆ = 0.25 ·∆+ · δL, and Nx · h = Lx

the length of the computational domain as given in the previous section. It is clear

that in comparison to the DNS mesh the LES mesh is much coarser. In addition, the

spacing in the LES mesh is at most equal to the integral length scale of the incoming

turbulence field. With respect to the Komogorov length scale, the LES mesh is much

coarser in comparison: the ratio h/ηk for cases A,B and C for the finest LES mesh

(∆+ =1.0) is 6.8, 14.9 and 20.7 respectively, and much larger for the coarsest LES

mesh (∆+ = 3.0) considered in this study. Therefore, all small-scale information of

the order of the Kolmogorov scale is lost on the simulated LES mesh which presents

a challenging environment for the deconvolution method.

Deconvolution using iterative algorithms was used to deconvolute scalar fields

such as the species mass fractions and temperature in the case of laminar flames in

[38], and for turbulent flames in [39] (on the DNS mesh) with overall good results.

The Van Cittert algorithm [48] is a fundamental and simple iterative deconvolution

algorithm, which makes it very attractive for practical implementations. In its most

basic form the algorithm reads,
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φ∗n+1 = φ∗n + b(φ̄−G ∗ φ∗n) (11)

with φ∗0 = φ̄. This is similar to the unsharp masking technique used in image

processing for de-blurring images [49]. The classic unsharp masking technique is

analogous to one iteration of the Van Cittert algorithm. Many different variations of

the algorithm exist, both in constrained and un-constrained forms. In constrained

formulations the multiplication factor b is defined so that the deconvoluted variable

lies within specified limits [45]. In the case where b is a constant, specific convergence

conditions can be derived in the case of periodic signals. Such conditions have been

derived in earlier works for general filter functions [50]-in this study specific conditions

in the case where G is a Gaussian filter are derived in the Appendix. In the case of

a periodic signal we have the result (further details given in the Appendix),

φ∗n = φ+
∞∑

r=−∞

(
1− be−cr

)n
(φ̄r − φr) (12)

and the convergence condition on b is,

b


b = ecr , immediate convergence for wavenumber r

0 < b < ecr , convergence with a non-oscillating reducing sequence for wavenumber r

ecr < b < 2ecr , convergence with an oscillating reducing sequence for wavenumber r

(13)

where cr = ∆2kr
2/24, and where kr, φr correspond to the r wavenumber and r

wavenumber component of the signal respectively.

The above results show that for a given value of b the deconvolution of large

wavenumbers is slower (requiring more iterations n), which is to be expected. Al-

ternatively, for a given number of iterations, larger wavenumbers require a larger
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correction factor b for convergence. In the case where we choose the convergence

to follow a non-oscillating reducing sequence, convergence will be faster for larger

values of b (for a particular wavenumber), up until the upper limit ecr where cr is

non-zero. In the case of signals composed of many different wavenumber components,

convergence will be complete for all wavenumbers at a sufficiently large number of

iterations provided 0 < b < ecrmin . This simple result is consistent with previous

studies where b=1 was used [38, 39]. Clearly, this is a very convenient choice which

does not require knowledge of the original wavenumbers contained within the original

signal since b = 1 is the minimum value of the upper bound ecr which is not realised

since k is non-zero. Hence, b = 1 is used throughout this study as well.

A detailed analysis of the error, and of the asymptotic behaviour of this basic form

of the deconvolution algorithm, with regards to the energy spectrum of the turbulent

kinetic energy is given in [50]. In general, the deconvolution error increases with

increasing filter width ∆, and with increasing wave-numbers contained within the

original signal (see Appendix). Successive iterations using Eq. (11) will eventually

lead to higher-order approximations of the un-filtered signal [45]. However, successive

iterations may also enhance the noise components contained within the signal. Hence,

in practice, the algorithm should be applied with an error controller in order to limit

the number of iterations [46].

A simple error controller is used in this study based on the difference between the

filtered signal φ̄ and the explicitly filtered deconvoluted signal φ∗. In particular we

define,

e =< |φ̄∗ − φ̄| > (14)

where <> denotes a volume-averaging operation over the LES mesh points. This

is used as a measure of the accuracy of the deconvoluted signal. In practice, no
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threshold on this error is implemented, rather the error controller is implemented

so that the iteration continues as long as the error e is reducing, with a limit im-

posed on the maximum number of iterations for every run-this was set to 100 for

this study. Under this condition, and for the filter widths tested in this study, the

deconvolution process did not incur a significant computational cost. During an

actual LES simulation, successive iterations using this method may prove to be com-

putationally more expensive than directly using a classical model for the quantity to

be modelled-and this also depends on the complexity of the model (algebraic-based,

transport equation-based etc.). Nevertheless, the strength of the deconvolution ap-

proach lies in its generality. As a result, it can be used to model additional un-closed

terms in the LES equations. In addition, the deconvolution step, which is a series of

successive filtering operations, is an ideal candidate for parallelisation using Graph-

ics Processing Units (GPUs): in practice, deconvolution is local to every grid point.

All that is needed are the values of the filtered field in the neighbourhood of the

grid point i.e. up to a distance of about 2∆ in every direction where the filter value

essentially drops to zero relative to its maximum (center-point) value. This process

would render the deconvolution step computationally efficient for use in LES.

In essence, the deconvolution-based scalar flux model is similar to a scale-similarity

model: successive iterations using Eq. 11 lead to more accurate predictions of the

unfiltered field by the addition of successively filtered corrections:

φ1 = φ̄+ b(φ̄− ¯̄φ)

φ2 = φ̄+ 2b(φ̄− ¯̄φ) + b2(
¯̄̄
φ− ¯̄φ)

(15)
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Most SGS closures are designed to operate with the cut-off length scale lying within

the inertial range where the scale-similarity assumption is likely to be valid. This

fine point reinforces the idea that the resolution level should be high enough for

deconvolution to be valid. Another important point to note is that the method is

consistent in the limit of zero filter width since at this limit Eq. (11) recovers the

DNS result-starting from the initial guess then by definition the term in parenthesis

will be zero.

IV. SCALAR FLUX MODELLING

In the case of variable density flows, the available variables from the LES would

be ρ̄ and ρφ. Hence, scalar fields are recovered from Favre-averaged variables using,

φ∗(x, t) =
{ρ(x, t)φ(x, t)}∗

ρ∗(x, t)
(16)

where function approximations are denoted by an asterisk. The deconvoluted field

is then explicitly filtered to recover estimates of any filtered variable in question e.g.

φ̃∗(x, t) =
{ρ(x, t)φ(x, t)}∗

ρ̄(x, t)
(17)

In order to model the scalar flux, we begin from the available solution variables

from the LES: these are ρ̄, ρui and ρc. These are calculated by filtering ρ, ρui and

ρc on the DNS mesh, and then sampling them using interpolation to obtain their

values on the coarse LES mesh. Deconvolution (Eq. 11) is then applied to ρ̄, ρui and

ρc on the LES mesh in order to recover estimates of ρ, ρui and ρc on the LES mesh

namely ρ∗, {ρui}∗ and {ρc}∗. Note that the deconvolution step is conducted in 3D

space and that the same filter is used both in the filtering and deconvolution steps.

Once these estimates are obtained, an estimate of the product ρuic on the LES mesh
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is calculated using {ρuic}∗={ρui}∗ · {ρc}∗/ρ∗. The scalar flux can then be modelled

using,

fi
IDEF = ρ̄

(
{ρuic}∗/ρ̄− ũic̃

)
= ρ̄

(
{̃uic}∗ − ũic̃

)
(18)

where the filtering is conducted on the coarse LES mesh as would be the case in

actual LES, and not on the fine DNS mesh. Note that the progress variable c is

based on temperature i.e. c=(T − Tr)/(Tp − Tr).

In order to illustrate the process, consider the deconvolution of ρuc for the highest

turbulence level, case C, shown in Figure 1. Figure 1 (a) shows instantaneous x, y

snapshots of the original un-filtered DNS field ρuc sampled onto the LES mesh-this

and all other fields in the rest of the images are normalised using the maximum

instantaneous DNS value found in Fig. 1 (a) in order to warrant a fare comparison.

Reactants flow from the bottom of the figures, burn, and the hot products leave

from the top end of the domain. The second column of images in Fig. 1 shows the

filtered field ρuc, on the LES mesh, for ∆+ = 1, 2 and 3 respectively. Filtering has a

major effect for this term, and as one may observe from the second column of images

(b), (e), and (h), much of the small-scale features at the leading edge of the flame

front are lost, and this effect is more pronounced as expected as the filter width

increases. The third column of images in Fig. 1, shows the deconvoluted field {ρuc}∗

as obtained on the LES mesh using Eq. 11 and the process outlined in the previous

paragraph. For ∆+ =1, deconvolution is very accurate and produces a field {ρuc}∗

which is almost in perfect agreement with the DNS field just by visual inspection.

For ∆+ =2 and 3, deconvolution performs poorer in comparison as expected: note

in particular that for ∆+ =3.0 the finer scales at the leading edge of the flame front

i.e. close to the cold side (blue side) are not as accurately recovered. This result

is in agreement with the prediction of Eq. 13 since a larger cr value implies slower
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convergence for the same number of iterations. The larger-scale structures however

found in the products’ side (red side) are recovered to a very good degree. Finally,

the last column of images in Fig. 1, shows the filtered-deconvoluted field {ρuc}∗, on

the LES mesh, obtained by filtering the deconvoluted field in the third column of

images. It is clear that for all filter widths considered, the last column of images is

in very good agreement with the second column of images.

Figure 2 shows the effect of devonvolution between successive iterations up to the

threshold value of 100 set in this study. Figure 2 (a), shows the filtered field ρuc for

a filter having ∆+ =2.0. Going from left to right during the deconvolution iteration,

one obtains successively more accurate (finer) approximations of the original un-

filtered field. This is more pronounced at the reactants’ side where smaller-scale

structures are found.

In order to benchmark the performance of the IDEF-based model against more

established models in the literature we also calculate scalar flux predictions using

the Clark model,

fi
Clark = ρ̄

∆2

12

∂ũi
∂xj

∂c̃

∂xj
(19)

This model was found in [27] to provide overall the highest correlations against

the DNS data in the case of a 1-step chemistry premixed flame, hence it is used here

as a benchmark model. It is important to note however that the evaluation of this

model in [27] was conducted on the DNS mesh in contrast with the evaluation in

this study which is conducted on a much coarser simulated LES mesh.

In order to quantify the performance of the above models we examine two different

quantities: a) the actual flux in the (inhomogeneous) direction of mean flow x i.e. f1,

and b) the divergence of the flux F = ∂fi/∂xi. The scalar flux in the mean direction

of flow propagation f1 is the dominant term since this is also the mean direction
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of flame propagation and there are large gradients in the progress variable c in this

direction. The divergence of f on the other hand F , allows us to: (a) examine the

collective ability of the model in modelling the scalar flux terms in the two other

homogeneous directions y, z as well, and (b) to determine whether the gradients of

the scalar flux are accurately recovered in addition to its actual local magnitude.

Note that in an actual LES the term (−F ) would be the one contributing to the

right-hand side of the transport equation for the filtered progress variable [23].

The data are averaged in the homogeneous directions y, z at every point in the

direction of the mean incoming turbulent velocity field x. For any variable v we have,

vx(i) =
1

NyNz

∑
j,k

v(xi, yj, zk) (20)

where Ny, Nz are the number of LES mesh points in the y, z directions respectively

as given in Tables II and III for the different filter widths. A correlation coefficient

is also used in order to quantify the local spatial agreement between the modelled

variable and the actual variable as obtained from the DNS. For any two variables

x, y this is defined as,

R(x, y) =

∑N
i=1(xi − x̄i)(yi − ȳi)√∑N

i=1 (xi − x̄i)2
√∑N

i=1 (yi − ȳi)2
(21)

where the overbar in Eq. 21 denotes the sample mean and not filtering. The cor-

relation coefficients for any two quantities are calculated at every time-step and are

time-averaged over successive instances in order to increase the statistical accuracy

of the results.

Figures 3 (a) and 3 (b) show instantaneous values of the scalar flux component f1

as predicted using the IDEF method and Clark’s model against the DNS values for

the lowest turbulence level case A, for ∆+=1. Both the DNS values and the models’
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predictions are normalised using the maximum instantaneous f1 value as obtained

from the DNS. It is clear that there is a strong correlation both for the IDEF-based

model and the Clark model. Figures 4(a) and 4(b) show the models’ predictions

in the case ∆+=3 instead. Both models again appear to retain strong correlations

against the DNS data despite the larger filter width.

Figures 5(a) and 5(b) show the instantaneous predictions of the IDEF and Clark

models against the DNS result for the highest turbulence level instead, case C, at

∆+ =1. The correlations for this case deteriorate for both models in comparison

with the lower turbulence level case A. In the case of the IDEF method, the highest

turbulence level implies larger wavenumbers in the original field are to be deconvo-

luted. Since the IDEF method is applied with a maximum iteration limiter, these

wavenumbers are not recovered as accurately which explains the deterioration in

the correlation. In the case of the Clark model, the coarse LES mesh may not be

sufficient for the derivatives which appear in Eq. 19 to be accurately calculated.

The same is also true if a larger filter width is used as one may observe from the

results in Figs. 6(a) and 6(b) which show the models’ predictions in the case where

∆+=3 instead. The Clark model is found to perform less well in comparison to the

IDEF-based model which appears to have an improved correlation (though weak)

with the DNS data. The Clark model appears to under-estimate, on average, the

magnitude of the scalar flux term in regions with negative flux: the coarse mesh

implies the derivatives appearing in Eq. 19 are under-estimated which would explain

this behaviour.

Figures 7, 8 and 9 (a)-(c) show the y, z-averaged values of the scalar flux compo-

nent in the direction of mean inflow (f1x) obtained using Eq. 20 for cases A,B and

C, for the filter widths ∆+ = 1,2 and 3, respectively. These are normalised using

the reactant’s density ρr and the laminar flame speed sl. It is important to note

the difference in scalar flux behaviour between case A, and cases B and C: case A
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exhibits counter-gradient behaviour while cases B and C exhibit gradient behaviour.

A scalar flux model should be able to capture both types of behaviour and classic

gradient-type models for the scalar flux predict only one of the two. The x-axis

corresponds to the y, z-averaged value of the Favre-filtered progress variable c̃x. For

case A and for ∆+=1 shown in Fig. 7 (a), both the IDEF and Clark models show a

very good agreement with the DNS data. For ∆+=2 and 3 shown in Figs. Fig. 7 (b)

and (c), the Clark model shows a poorer performance while the IDEF model provides

a relatively improved prediction. For the intermediate turbulence level case B, the

Clark model shows a poor agreement as one may observe from the results in Figs.

8 (a)-(c): the magnitude of the scalar flux is under-estimated for all filter widths

considered. This is somewhat in contrast to the results in [27] where a relatively

better agreement was observed for the Clark model for all filter widths considered,

however the evaluation in [27] was conducted on the DNS mesh in contrast with the

evaluation in this study which is conducted on a simulated LES mesh which is much

coarser. Hence, gradients in the Clark model are not calculated on the fine DNS

mesh which would explain the difference. This point would also explain the good

agreement observed for the Clark model in a priori studies, but the poorer agreement

observed in a posteriori studies which are conducted on the coarser LES mesh [15, 28].

The IDEF model on the other hand, shows good agreement with the DNS results for

all filter widths both in the case of gradient and counter-gradient flux behaviour. An

additional point to note is that such a priori studies where simulated LES meshes

are used can be useful to elucidate such differences in models’ performance. For the

highest turbulence level case C, a similar trend is observed. Figures 9 (a)-(c) show

that for small filter widths the IDEF method provides quantitatively good estimates

of the scalar flux component f1, while the Clark model performs less well in compari-

son. For ∆+ =3 the IDEF method shows poorer agreement particularly in the region

0.5 < c̃x < 1.0 approximately, where there is a clear over-estimation of the scalar
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flux. This is owing to insufficient resolution due to the coarse mesh in this region of

the flame brush where the density drops and the flow accelerates towards the burnt

products. This transition is not captured on the LES mesh hence the deconvolution

is unable to recover the un-filtered field in this part of the flame.

Figures 10, 11 and 12 (a)-(c) show the y, z averages, calculated using Eq. 20, for

the divergence of the scalar flux F = ∂fi/∂xi, for cases A,B and C respectively. This

is normalised using the reactant’s density and laminar flame speed only (dimensions

are inverse length) for convenience with plotting. Tables IV and V show in addi-

tion the relevant correlation coefficients for the two models for this term. As the

divergence term includes contributions from the scalar fluxes in the y, z directions it

functions as a good marker of the overall performance of a scalar flux model. For

case A both models show a good agreement with the DNS data for all filter widths

considered as one may observe from the results in Figs. 10 (a)-(c). This is also

reflected in the near- unity correlation coefficients which are listed in Tables IV and

V, for this case. For the intermediate turbulence level case B, significant differences

are observed between the two models: the IDEF-based model provides good predic-

tions of the divergence of the scalar flux F for all filter widths considered while the

Clark model provides a poorer agreement in comparison. Tables IV and V also show

relatively poorer correlation coefficients for the Clark model. For the highest filter

width considered i.e. ∆+=3, and for the highest turbulence level case C, the IDEF

model is found to give a reasonable prediction of F despite the poorer agreement

for the x−component of the flux in Figure 7 (c). The correlation coefficients are

also larger in comparison than the Clark model correlations. In agreement with the

results in Fig. 9 the Clark model under-estimates the magnitude of F -this may be

a result of the coarser LES mesh which gives rise to lower values of the calculated

spatial derivative product term (∂ui/∂xj)(∂c/∂xj) of the model. This is where mod-

ifications of the Clark model such as dynamic or mixed models would be required in
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order to provide the necessary dissipation [14, 15].

V. CONCLUSIONS

A three-dimensional direct numerical simulation database of a turbulent premixed

flame is used in order to assess the performance of a deconvolution-based model for

the scalar flux of the progress variable ρ̄(ũic− ũic̃), in the context of LES.

The DNS data are first filtered on the fine DNS mesh and are then sampled on

the much coarser LES mesh. An iterative deconvolution algorithm is then used in

order to provide estimates of the values of the original (un-filtered) fields on the LES

mesh. The deconvolution estimates are then explicitly filtered on the coarser LES

mesh using the same filter in order to provide an estimate of the scalar flux. This

procedure is thus more stringent than the procedure followed in classical a priori tests

where the models’ performance is evaluated directly on the fine DNS mesh where all

sub-grid scale information is available.

For the filter widths considered in this study, deconvolution is found to provide im-

proved estimates of the scalar flux in comparison to a classic model which is known to

provide good results in a priori studies for turbulent premixed flames. This includes

both average quantities but also local quantities with relatively high correlation co-

efficients, both for gradient and counter-gradient-type scalar flux behaviour. The

deconvolution process appears to be less sensitive to the filter width variation, and

since the method does not explicitly involve any tunable parameters/constants this

implies the method can be applied to different flow regimes and combustion modes.

The method does involve an integration operation over the filtered field values which

implies sufficient resolution on the LES mesh is required for the filtered fields to be

accurately deconvoluted.

As highlighted in the introduction, it is important to note again that any priori
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validation of a sub-grid scale model does not guarantee functionality in actual LES.

However, recent implementations of deconvolution in reacting LES with overall good

results [32, 35, 36], are indicative of the merit of this modelling approach.
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Appendix: Convergence conditions for a Gaussian filter function.

Consider a periodic 1D function given by,

φ(x) =
∞∑

r=−∞

are
ikrx

where kr are the corresponding wavenumbers. We will assume that the function

extends in an unbounded domain. Since the filtering operation as defined by Eq. 6

is linear we have,

φ̄(x) =
∞∑

r=−∞

are
−creikrx

where cr=∆2kr
2/24. Now let,
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φ∗n =
∞∑

r=−∞

Ar
neikrx

where the coefficients Ar
n are to be determined. Then we have,

G ∗ φ∗n = φ∗n =
∞∑

r=−∞

Ar
ne−creikrx

Van Cittert’s algorithm reads φ∗n = φ∗n + b(φ̄−G ∗φ∗n). Inserting the above results

into Van Cittert’s algorithm we have,

∞∑
r=−∞

Ar
n+1eikrx =

∞∑
r=−∞

Ar
neikrx + b

(
∞∑

r=−∞

are
−creikrx −

∞∑
r=−∞

Ar
ne−creikrx

)

Equating the coefficients,

Ar
n+1 = Ar

n
(
1− be−cr

)
+ bare

−cr

which is a geometric series with the solution,

Ar
n = ar +

(
1− be−cr

)n
(Ar

0 − ar)

The solution at the nth iteration is then given by,

φ∗n =
∞∑

r=−∞

are
ikrx +

(
1− be−cr

)n
(Ar

0 − ar)eikrx (A.1)

= φ+
∞∑

r=−∞

(
1− be−cr

)n
(φ̄r − φr) (A.2)

where φr corresponds to the r wavenumber component of the signal. For convergence

we require,
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− 1 <
(
1− be−cr

)
< 1 (A.3)

which sets bounds on the value of the constant b for a given wavenumber r as follows,

b


b = ecr , immediate convergence for wavenumber r

0 < b < ecr , non-oscillating reducing sequence for wavenumber r

ecr < b < 2ecr , oscillating reducing sequence for wavenumber r
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Case urms/sL lT/δ ReT Da Ka

A 3.18 16.54 52.66 5.19 1.39

B 9.00 16.66 150.05 1.85 6.62

C 14.04 16.43 230.69 1.17 12.97

TABLE I: Turbulent flame parameters for the DNS cases.

∆+ Nx Ny Nz h/ lT

DNS 768 384 384 0.03

1 74 37 37 0.35

2 37 18 18 0.69

3 24 12 12 1.04

TABLE II: DNS and LES meshes for cases A and B with h/∆ = 0.25.

∆+ Nx Ny Nz h/ lT

DNS 1632 544 544 0.02

1 112 37 37 0.21

2 56 18 18 0.42

3 37 12 12 0.64

TABLE III: DNS and LES meshes for case C with h/∆ = 0.25.
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∆+/R(F IDEF , F ) A B C

1 0.9746 0.9704 0.9459

2 0.8852 0.9155 0.8609

3 0.8751 0.8302 0.7777

TABLE IV: Global time-averaged Pearson correlation coefficients for F using IDEF.

∆+/R(FClark, F ) A B C

1 0.9597 0.9122 0.9085

2 0.8919 0.7596 0.7661

3 0.8694 0.4849 0.6118

TABLE V: Global time-averaged Pearson correlation coefficients for F using

Clark’s model.
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FIG. 1. The deconvolution/explicit-filtering process applied to φ̄ = ρuc. Going from left to

right are the original DNS field (a) ρuc, the filtered field ρuc, the deconvoluted field {ρuc}∗,

and the filtered-deconvoluted field {ρuc}∗ for each filter in (b)-(j). The data correspond

to an instantaneous snapshot in the z direction for case C, and are normalised using the

maximum instantaneous DNS value. Reactants flow from the bottom and hot products

exit from the top. Note that deconvolution is conducted in 3D-the figures are simply 2D

contours.
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FIG. 2. Sample output from successive iterations n using the deconvolution algorithm.

Starting from the left is the filtered field (a) φ̄ = ρuc for ∆+ = 2.0, and moving to the right

(b)-(d) are the deconvoluted fields on the LES mesh. Notice the gradual sharpening of

the image as smaller-scale structures are recovered particularly in the reactants side (blue

side). 28
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FIG. 3. Case A instantaneous scatter plot of x-component of the scalar flux term, f1, against the DNS result for

∆+ =1.0: (a) using IDEF and (b) using Clark’s model.
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FIG. 4. Case A instantaneous scatter plot of x-component of the scalar flux term, f1, against the DNS result for

∆+ =3.0: (a) using IDEF and (b) using Clark’s model.
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FIG. 5. Case C instantaneous scatter plot of x-component of the scalar flux term, f1, against the DNS result for

∆+ =1.0: (a) using IDEF and (b) using Clark’s model.
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FIG. 6. Case C instantaneous scatter plot of x-component of the scalar flux term, f1, against the DNS result for

∆+ =3.0: (a) using IDEF and (b) using Clark’s model.
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FIG. 7. Averaged (in homogeneous directions y, z) flux term f1x for case A: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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FIG. 8. Averaged (in homogeneous directions y, z) flux term f1x for case B: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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FIG. 9. Averaged (in homogeneous directions y, z) flux term f1x for case C: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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FIG. 10. Averaged (in homogeneous directions y, z) flux term Fx for case A: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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FIG. 11. Averaged (in homogeneous directions y, z) flux term Fx for case B: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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FIG. 12. Averaged (in homogeneous directions y, z) flux term Fx for case C: (a) ∆+=1, (b) ∆+=2, (c) ∆+=3.
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