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ABSTRACT

We describe non-relativistic limits of the 3D Proca and v/Proca theories
that yield spin-1 Schroedinger equations. Analogous results are found by
generalized null reduction of the 4D Maxwell or complex self-dual Maxwell
equations. We briefly discuss the extension to spin-2.
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1 Introduction

Relativistic field theories of massless particles, such as Maxwell’s electro-
dynamics or Einstein’s General Relativity (GR), have non-relativistic limits
in which these particles disappear, in accordance with the instantaneous
action at a distance of electro/magneto-statics or Newtonian gravity. Put
differently, they disappear because their velocity of propagation has become
infinite. This suggests that relativistic theories of massive particles, which
move subluminally, should survive a non-relativistic limit, but this is not
generally true. For example, one can take the speed of light to infinity in the
Klein-Gordon (KG) equation if the particle’s Compton wavelength is kept
fixed, but the result is a Yukawa/Laplace equation that does not propagate
any disturbance.

However, if the KG scalar field is complez then a different non-relativistic
limit is possible, and this yields a Schroedinger equation for a massive particle
of zero spin. A similar limit is possible for relativistic tensor field equations
describing massive particles of non-zero integer spin, such as the Proca equa-
tions for spin-1 or the Fierz-Pauli (FP) equations for spin-2, but again only
if the tensor fiield is complex. However, the 3D case (i.e. field theories in
a spacetime of 2 + 1 dimensions) is an exception to this rule. As we have
recently shown [1], the 3D FP equations have a novel non-relativistic limit
to a planar spin-2 Schroedinger equation proposed previously in the context
of the “gapped” spin-2 GMP mode of fractional Quantum Hall states!.

The 3D case is also special in another respect: one can take the “square-
root” of the Proca equation [3] and of the spin-2 FP equation [4]. These first-
order equations, which propagate a single mode rather than a parity doublet,
are equivalent to linearizations of parity-violating “topologically massive”
gauge theories, such as “topologically massive gravity” in the spin-2 case [5];
a systematic derivation of such equivalences may be found in [6]. For such
theories a non-relativistic limit to a planar Schroedinger equation requires a
complex field. Here we describe this limit for complex v/Proca and show that
it yields the same planar spin-1 Schroedinger equation that one finds from
an application of the “novel non-relativistic” limit of [1] to real-field Proca.
Moreover, we do this at the level of the actions, not just the equations.

It was also shown in [1] that a generalized null reduction of the linearized
4D Einstein equations leads to the same planar spin-2 Schroedinger equation
as found from the non-relativistic limit of the 3D real-field FP equations.
This is a further illustration of the long-established connection between the
Galilei and Lorentz groups in d and d+1 dimensions [7], and may be compared
with the derivation of 4D Newtonian gravity from 5D GR [8]. Here we
consider the same generalized null reduction for the 4D Maxwell equations
(real, complex or complex self-dual) in Bargmann-Wigner form. We find a
complete correspondence with the 3D non-relativistic limit results.

In our conclusions, we extract some general lessons and discuss briefly the
extension of our results to spin-2 and beyond. For simplicity, we set h = 1
throughout.

1See [2] for a recent discussion with references to the condensed matter literature.



2 The non-relativistic limit for 3D spin-1

Non-relativistic limits are most simply investigated at the level of field equa-
tions but it is also of interest to know whether, and if so how, the limit can
be taken in the action. As the spin-1 cases considered here are relatively
simple, we shall consider the non-relativistic limits of the complex Proca and
v/ Proca theories, in a 3D Minkowski vacuum, at the level of the action. In
both cases the Proca field is a 3-vector A, (¢ = 0,1,2) but an additional
auxilary vector field will be needed for the v/Proca case.

2.1 Complex 3D Proca
The Lagrangian density for a complex 3D Proca field A4, (1 =0,1,2) is
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,1) is the 3D Minkowski

1 1 m? (mc)?
-1 L * * * *
where Fj; = 20;A; and Fy; = A; — 0;Ap, and there is an implied sum over

repeated 2-space indices. We now define new complex fields (ag, a;) by setting
AO — e—imc2ta0 7 14z — e—imc2tai ) (3)

After substitution into (2), one finds a cancellation of terms on the right hand
side of (2) that diverge as ¢ — oco. The subleading, and Galilean invariant,
terms are
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where f;; = 20;a; and fo; = a; — ;ap. The ap field is auxiliary and can be
eliminated; omitting a total derivative, this yields

1 .
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The field equation is
2mia; + Va; = 0, (6)

which is an SO(2)-rotation doublet of Schroedinger equations.
In terms of the following helicity eigenfunctions

U[l] = a1 + iaq, U[—1] = a] +iaj, (7)

the equations (6) become

P[] = ;%vmﬂ]. (8)
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The two equations are exchanged by parity, but we may impose the self-
duality constraint

a; = :Fieijaj , (9)
which implies that W[F1] = 0, thereby leaving a single parity-violating planar
spin-1 Schroedinger equation for ¥[+1]|. Assuming that m is positive we must
choose to retain the equation for ¥[1] in order to have a positive Hamiltonian.

2.2 Complex 3D v/Proca

We now turn to the complex v/Proca theory. It turns out that to take the
non-relativistic limit we must include a complex auxiliary vector field B,;
the Lagrangian density is

L=e"PAL0,A, — (mc)y/—detnn (AL A, — 2B, B,) (10)
or, after a time-space split,

Lo = —eTATA;— (mé®)(A]A; - 2B B))
+ €9 (A50;A; + c.c.) + m(A§Ag — 2B By) - (11)

We can eliminate the auxiliary fields Ay and By to get
L=—IAA; — (m) (AT A — 2B B;) — — |€99,A,]" . (12)
m
We now define new complex fields (a;, b;) by
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where P is a complex projector matrix:

1 L
Substitution yields a Lagrangian in which the terms proportional to ¢? have
cancelled. Taking the ¢ — oo limit, we arrive at

. 1 .
‘CHOH—rel = _EZ]a;jkaj - — ‘Gwaiajf + (b: [Pa]z + C.C.) . (15)
m
The projection Pb of b no longer appears because it drops out in the ¢ — oo

limit; the other projection of b is a Lagrange multiplier for the constraint
Pa = 0, which is equivalent to

a; = [75(1}2. (16)
This implies that €0;a; = —id;a;, which can be used to show that
[P3], (Moyar)) = —%v%i. (17)
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The field equation found from variation of a; in (15) is
[Pb], = €9a; + m™'€70; (" Opay) . (18)
This determines Pb, which is therefore auxiliary, but it also implies that

m [7501] + [758} (Eklakag) =0. (19)

Using (16) and (17), we may rewrite this as
2mia; + Via; = 0. (20)

This is (6), but here a is constrained to satisfy a; = i€;;a;; as we saw, this is
equivalent to W[—1] = 0, which leaves a single parity-violating Schroedinger
equation for W[1], with positive Hamiltonian if m is positive. We saw pre-
viously that this truncation could be imposed ‘by hand’ but here it is the
result of a field equation.

If the sign of m is changed then we can maintain the positivity of the
Hamiltonian if we also replace P by P in (13), but then we get a Schroedinger
equation for W[—1] in place of W[1].

2.3 Real Proca

We are now going to see how the above result for the non-relativistic limit
of v/Proca can also be found by taking a novel non-relativistic limit of real
3D Proca. To this end, we return to the Proca Lagrangian (1) but now for
a real vector field A, = (Ap, A). A time-space decomposition then yields

1, 1 1 , 1 1 ,
L= 5 AP = SA-AA L (VAP + S A0 + S A(V-A), (21)

where

A =—-V?+ (me)® > 0. (22)
Elimination of the auxiliary field Aq yields the following Lagrangian

1 . . 1
where A; (i = 1,2) are the components of A and
Kij — 52‘]‘ + A_laz-@j . (24)

These are the entries of a matrix K, with inverse

Kigl =0, — (mc)’zaz@j ) (25)
Next, we set
A = [K_%]z'ij (26)
for a new 2-vector field B. In terms of B, the Lagrangian density is
L:i|B|2—lB-AB. (27)
2¢? 2

4



In terms of the complex field B = (B; + iB,)/+/2, this is
1 . _
L= C—2|B\2+BV2B— (me)?|B|?. (28)

If we now set

B = e mN[1], (29)

for new complex variable ¥[1], we may take the ¢ — oo limit to arrive at the
Galilean invariant Lagrangian density

Lyg = 2imU[1)U[1] + ¥[1]V¥[1]. (30)
The field equation is
1 _, o
—%V Ull] =a¥[1], (31)

which is the planar spin-1 Schroedinger equation.

3 Spin-1 Schroedinger from 4D Maxwell

We will now explain how all the spin-1 planar Schroedinger equations found
above from non-relativistic limits of real or complex Proca, and complex
v/ Proca, can also be found from a generalized null reduction of the real or
complex 4D Maxwell equations, and the complex self-dual Maxwell equa-
tions. We work directly with equations, rather than the action, and we start
from the Bargmann-Wigner (BW) form of Maxwell’s equations for a com-
plex symmetric SI(2;C) bi-spinor F,s (o, = 1,2). In Fourier space, the
BW equations are

ad

P af = O, (32)
where, in the SI(2;C) spinor conventions spelled out in [9],

o V2o ) :
o = _ y — + . 33
p ( _p \/§p+ P=Pp1T1ip2 (33)

Inspired by the Scherk-Schwarz dimensional reduction [10], we now effect
a generalized null reduction by choosing?

p-=m (34)

for mass m. This choice is consistent with the fact that p_ is the Fourier-
dual of the complex differential operator —:0_ because F,z is complex, and
it gives us

P = ( _\/?m _\_/%’E ) : E=—p,. (35)

—-Pp
Using this in the BW equations, we have

( _\—/zm —;]%E ) ( 2? ) =0, (36)

2The choice m = 0 corresponds to a standard null reduction, equivalent to supposing
that all fields are independent of x~, and does not lead to a Schroedinger equation.
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which is equivalent to
V2mFig = —pFys, [2mE — |p*] Fos = 0. (37)

In other words, Fis is auxiliary and Fhg satisfies a Schroedinger equation.
Moreover, because Fig = Fj3, the same applies to F,,; and Fi9, so the only
component of F,g that is not auxiliary is Fy,, and this satisfies

[2mE - |p|2} F22 = 0, (38)

which is a Schroedinger equation for a single complex wavefunction.
Taking the complex conjugate of this Schroedinger equation we find that

[2mE — |p|*] F3 =0. (39)

If we had started from the Maxwell equations for a complex vector potential
then Fyy and Fy; would be independent complex wavefunctions rather than
complex conjugates of each other, and we would recover the parity-doublet
of Schroedinger equations that we found from the non-relativistic limit of the
complex 3D Proca equations. However, in this case it is consistent to impose
F 5 = 0, without this implying F,s = 0. This is equivalent to imposing a self-
duality condition on the complex Maxwell field-strength 2-form. This effects
the same truncation to the parity-violating spin-1 Schroedinger equation that
we found from the non-relativistic limit of the complex v/Proca equations.

4 Conclusions

We have investigated the non-relativistic limits of free 3D field theories for
spin-1 particles of non-zero mass m; specifically, 3D Proca and v/Proca and
their complexifications. A common feature is that the initial relativistic 3D
theory must propagate pairs of modes of equal mass, since two are needed for
every complex wavefunction satisfying a Schroedinger equation in the limit.
This condition is satisfied automatically for a complex vector field, and for
the 3D Proca with real vector field but not for v/Proca with real vector field;
in this last case the only non-relativistic limit is one to equations that do not
propagate any non-relativistic particle.

Since the Proca theory preserves parity, one might expect its non-relativistic
limit to also preserve parity and this is true if one starts from complex 3D
Proca; its non-relativistic limit is a Schroedinger equation for two complex
wavefunctions transforming under rotations as an SO(2) doublet. This sys-
tem of equations is equivalent to equations for a parity-doublet of complex
helicity eigenstate wavefunctions W[+1]| with opposite sign Hamiltonians, and
the non-relativistic limit of the parity-violating v/ Proca theory yields just one
of these Schroedinger equations, which one depending on the sign of m.

In general, there is no non-relativistic limit of the real Proca theory to a
Schroedinger equation preserving rotational invariance but the 3D case is an
exception to this rule. In this case there is such a limit, as we showed for the
spin-2 FP equations in [1]. Here, for the spin-1 case, we have shown how this
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novel non-relativistic limit may be taken in the action (and not merely for the
field equations). Somewhat surprisingly, it leads to the same parity-violating
single Schroedinger equation that one gets from complex v/Proca.

We have further demonstrated a correspondence between these results
and those obtained from a generalized null reduction [1] of 4D field theories
for spin-1 particles of zero mass. Specifically, a generalized null reduction of
the Bargmann-Wigner equations equivalent to complex 4D Maxwell, com-
plex self-dual Maxwell and real 4D Maxwell leads to the same spin-1 pla-
nar Schroedinger equations as 4D complex Proca, complex v/Proca and real
Proca, respectively. Furthermore, there is a straightforward generalization
to any integer spin; for example, the linearized 4D Einstein equations are
equivalent to the spin-2 Bargmann-Wigner equations

PadRaﬁya =0, (40)

where R, is totally symmetric in its four SI(2;C) indices. Following the
example of the spin 1 case we deduce that only Rasoo is independent, and
that it satisfies

[ZmE’ — |p|2] RQQQQ =0. (41)

This is equivalent to the generalized null-reduction of [1]. Complexifying the
linearized Einstein equations leads to independent equations for Rasss and
Rss53, and the analog of Maxwell self-duality in this case is then Rsss5 = 0.

Our results for non-relativistic limits of massive 3D spin-1 theories can
also be generalized to any integer spin. For example, the v/FP action has a
non-symmetric tensor field [4]. After the addition of an FP-type mass term
for an auxiliary non-symmetric tensor field, redefinitions similar to those of
(13) allow a non-relativistic limit to be taken. This yields the same parity-
violating planar spin-2 Schroedinger equation as that found in [1] from a
“novel non-relativistic limit” of the real spin-2 FP equations. However, as
mentioned there, the need for a complex field in the vFP case complicates
the issue of interactions because a metric perturbation is naturally real. This
problem does not arise for the real 3D FP equations because these result from
linearization of the equations of “New Massive Gravity” [11].

Finally, we should mention that non-relativistic limits of the Jackiw-Nair
equations for massive particles of any spin have been proposed in [12]; the
limits considered there do not include the novel real-field limit of [1] that we
have explained here for spin-1, but there is presumably an overlap with the
non-relativistic limit of the complex v/Proca case considered here.
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