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ABSTRACT

We describe non-relativistic limits of the 3D Proca and
√

Proca theories
that yield spin-1 Schroedinger equations. Analogous results are found by
generalized null reduction of the 4D Maxwell or complex self-dual Maxwell
equations. We briefly discuss the extension to spin-2.
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1 Introduction

Relativistic field theories of massless particles, such as Maxwell’s electro-
dynamics or Einstein’s General Relativity (GR), have non-relativistic limits
in which these particles disappear, in accordance with the instantaneous
action at a distance of electro/magneto-statics or Newtonian gravity. Put
differently, they disappear because their velocity of propagation has become
infinite. This suggests that relativistic theories of massive particles, which
move subluminally, should survive a non-relativistic limit, but this is not
generally true. For example, one can take the speed of light to infinity in the
Klein-Gordon (KG) equation if the particle’s Compton wavelength is kept
fixed, but the result is a Yukawa/Laplace equation that does not propagate
any disturbance.

However, if the KG scalar field is complex then a different non-relativistic
limit is possible, and this yields a Schroedinger equation for a massive particle
of zero spin. A similar limit is possible for relativistic tensor field equations
describing massive particles of non-zero integer spin, such as the Proca equa-
tions for spin-1 or the Fierz-Pauli (FP) equations for spin-2, but again only
if the tensor fiield is complex. However, the 3D case (i.e. field theories in
a spacetime of 2 + 1 dimensions) is an exception to this rule. As we have
recently shown [1], the 3D FP equations have a novel non-relativistic limit
to a planar spin-2 Schroedinger equation proposed previously in the context
of the “gapped” spin-2 GMP mode of fractional Quantum Hall states1.

The 3D case is also special in another respect: one can take the “square-
root” of the Proca equation [3] and of the spin-2 FP equation [4]. These first-
order equations, which propagate a single mode rather than a parity doublet,
are equivalent to linearizations of parity-violating “topologically massive”
gauge theories, such as “topologically massive gravity” in the spin-2 case [5];
a systematic derivation of such equivalences may be found in [6]. For such
theories a non-relativistic limit to a planar Schroedinger equation requires a
complex field. Here we describe this limit for complex

√
Proca and show that

it yields the same planar spin-1 Schroedinger equation that one finds from
an application of the “novel non-relativistic” limit of [1] to real-field Proca.
Moreover, we do this at the level of the actions, not just the equations.

It was also shown in [1] that a generalized null reduction of the linearized
4D Einstein equations leads to the same planar spin-2 Schroedinger equation
as found from the non-relativistic limit of the 3D real-field FP equations.
This is a further illustration of the long-established connection between the
Galilei and Lorentz groups in d and d+1 dimensions [7], and may be compared
with the derivation of 4D Newtonian gravity from 5D GR [8]. Here we
consider the same generalized null reduction for the 4D Maxwell equations
(real, complex or complex self-dual) in Bargmann-Wigner form. We find a
complete correspondence with the 3D non-relativistic limit results.

In our conclusions, we extract some general lessons and discuss briefly the
extension of our results to spin-2 and beyond. For simplicity, we set ~ = 1
throughout.

1See [2] for a recent discussion with references to the condensed matter literature.
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2 The non-relativistic limit for 3D spin-1

Non-relativistic limits are most simply investigated at the level of field equa-
tions but it is also of interest to know whether, and if so how, the limit can
be taken in the action. As the spin-1 cases considered here are relatively
simple, we shall consider the non-relativistic limits of the complex Proca and√

Proca theories, in a 3D Minkowski vacuum, at the level of the action. In
both cases the Proca field is a 3-vector Aµ (µ = 0, 1, 2) but an additional
auxilary vector field will be needed for the

√
Proca case.

2.1 Complex 3D Proca

The Lagrangian density for a complex 3D Proca field Aµ (µ = 0, 1, 2) is

L = −1

4

√
− det η ηµρηνσF ∗

µνFρσ −
1

2
(mc)2

√
− det η ηµνA∗

µAν , (1)

where c is the speed of light and ηµν = diag.(−c2, 1, 1) is the 3D Minkowski
metric. After a time-space split µ = (0, i) (i = 1, 2),

c−1L = −1

4
F ?
ijFij +

1

2c2
F ?
0iF0i +

m2

2
A?0A0 −

(mc)2

2
A?iAi , (2)

where Fij = 2∂[iAj] and F0i = Ȧi − ∂iA0, and there is an implied sum over
repeated 2-space indices. We now define new complex fields (a0, ai) by setting

A0 = e−imc
2ta0 , Ai = e−imc

2tai . (3)

After substitution into (2), one finds a cancellation of terms on the right hand
side of (2) that diverge as c → ∞. The subleading, and Galilean invariant,
terms are

Lnon-rel = −1

4
f ?ijfij +

i

2
ma?i f0i −

i

2
maif

?
0i +

m2

2
a?0a0 , (4)

where fij = 2∂[iaj] and f0i = ȧi − ∂ia0. The a0 field is auxiliary and can be
eliminated; omitting a total derivative, this yields

Lnon-rel =
1

2
a∗i∇2ai +

i

2
m (a∗i ȧi − aiȧ∗i ) , ∇2 = ∂21 + ∂22 . (5)

The field equation is
2miȧi +∇2ai = 0 , (6)

which is an SO(2)-rotation doublet of Schroedinger equations.
In terms of the following helicity eigenfunctions

Ψ[1] = a1 + ia2 , Ψ[−1] = a∗1 + ia∗2 , (7)

the equations (6) become

iΨ̇[±1] = ∓ 1

2m
∇2Ψ[±1] . (8)
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The two equations are exchanged by parity, but we may impose the self-
duality constraint

ai = ∓iεijaj , (9)

which implies that Ψ[∓1] = 0, thereby leaving a single parity-violating planar
spin-1 Schroedinger equation for Ψ[±1]. Assuming that m is positive we must
choose to retain the equation for Ψ[1] in order to have a positive Hamiltonian.

2.2 Complex 3D
√

Proca

We now turn to the complex
√

Proca theory. It turns out that to take the
non-relativistic limit we must include a complex auxiliary vector field Bµ;
the Lagrangian density is

L = εµνρA∗
µ∂νAρ − (mc)

√
− det η ηµν(A∗

µAν − 2B∗
µBν) (10)

or, after a time-space split,

Lrel = −εijA?i Ȧj − (mc2)(A∗
iAi − 2B∗

iBi)

+ εij(A?0∂iAj + c.c.) +m(A∗
0A0 − 2B∗

0B0) . (11)

We can eliminate the auxiliary fields A0 and B0 to get

L = −εijA?i Ȧj − (mc2)(A∗
iAi − 2B∗

iBi)−
1

m

∣∣εij∂iAj∣∣2 . (12)

We now define new complex fields (ai, bi) by

Ai = e−imc
2tai , Bi = e−imc

2t

(
[Pa]i +

1

2mc2
bi

)
, (13)

where P is a complex projector matrix:

Pij =
1

2
(δij − iεij) , P2 = P , PP̄ = P̄P = 0 . (14)

Substitution yields a Lagrangian in which the terms proportional to c2 have
cancelled. Taking the c→∞ limit, we arrive at

Lnon−rel = −εija∗i ȧj −
1

m

∣∣εij∂iaj∣∣2 + (b∗i [Pa]i + c.c.) . (15)

The projection P̄b of b no longer appears because it drops out in the c→∞
limit; the other projection of b is a Lagrange multiplier for the constraint
Pa = 0, which is equivalent to

ai =
[
P̄a
]
i
. (16)

This implies that εij∂iaj = −i∂iai, which can be used to show that

[
P̄∂
]
i
(εkl∂kal)) = − i

2
∇2ai . (17)
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The field equation found from variation of ai in (15) is

[Pb]i = εij ȧj +m−1εij∂j
(
εkl∂kal

)
. (18)

This determines Pb, which is therefore auxiliary, but it also implies that

m
[
P̄ ȧ
]
i
+
[
P̄∂
]
i
(εkl∂ka`) = 0 . (19)

Using (16) and (17), we may rewrite this as

2miȧi +∇2ai = 0 . (20)

This is (6), but here a is constrained to satisfy ai = iεijaj; as we saw, this is
equivalent to Ψ[−1] = 0, which leaves a single parity-violating Schroedinger
equation for Ψ[1], with positive Hamiltonian if m is positive. We saw pre-
viously that this truncation could be imposed ‘by hand’ but here it is the
result of a field equation.

If the sign of m is changed then we can maintain the positivity of the
Hamiltonian if we also replace P by P̄ in (13), but then we get a Schroedinger
equation for Ψ[−1] in place of Ψ[1].

2.3 Real Proca

We are now going to see how the above result for the non-relativistic limit
of
√

Proca can also be found by taking a novel non-relativistic limit of real
3D Proca. To this end, we return to the Proca Lagrangian (1) but now for
a real vector field Aµ = (A0,A). A time-space decomposition then yields

L =
1

2c2
|Ȧ|2 − 1

2
A ·∆A +

1

2
(∇ ·A)2 +

1

2c2
A0∆A0 +

1

c2
A0(∇ · Ȧ) , (21)

where
∆ = −∇2 + (mc)2 > 0 . (22)

Elimination of the auxiliary field A0 yields the following Lagrangian

L =
1

2c2
ȦiKijȦj −

1

2
Ai∆KijAj (23)

where Ai (i = 1, 2) are the components of A and

Kij = δij + ∆−1∂i∂j . (24)

These are the entries of a matrix K, with inverse

K−1
ij = δij − (mc)−2∂i∂j . (25)

Next, we set

Ai = [K−1
2 ]ijBj (26)

for a new 2-vector field B. In terms of B, the Lagrangian density is

L =
1

2c2
|Ḃ|2 − 1

2
B ·∆B . (27)

4



In terms of the complex field B = (B1 + iB2)/
√

2, this is

L =
1

c2
|Ḃ|2 + B̄∇2B − (mc)2|B|2 . (28)

If we now set
B = e−imc

2tΨ[1] , (29)

for new complex variable Ψ[1], we may take the c→∞ limit to arrive at the
Galilean invariant Lagrangian density

LNR = 2imΨ̄[1]Ψ̇[1] + Ψ̄[1]∇2Ψ[1] . (30)

The field equation is

− 1

2m
∇2Ψ[1] = iΨ̇[1] , (31)

which is the planar spin-1 Schroedinger equation.

3 Spin-1 Schroedinger from 4D Maxwell

We will now explain how all the spin-1 planar Schroedinger equations found
above from non-relativistic limits of real or complex Proca, and complex√

Proca, can also be found from a generalized null reduction of the real or
complex 4D Maxwell equations, and the complex self-dual Maxwell equa-
tions. We work directly with equations, rather than the action, and we start
from the Bargmann-Wigner (BW) form of Maxwell’s equations for a com-
plex symmetric Sl(2;C) bi-spinor Fαβ (α, β = 1, 2). In Fourier space, the
BW equations are

pαα̇Fαβ = 0 , (32)

where, in the Sl(2;C) spinor conventions spelled out in [9],

pαα̇ =

(
−
√

2p− −p
−p̄

√
2p+

)
, p = p1 + ip2 . (33)

Inspired by the Scherk-Schwarz dimensional reduction [10], we now effect
a generalized null reduction by choosing2

p− = m (34)

for mass m. This choice is consistent with the fact that p− is the Fourier-
dual of the complex differential operator −i∂− because Fαβ is complex, and
it gives us

pαα̇ =

(
−
√

2m −p
−p̄ −

√
2E

)
, E = −p+ . (35)

Using this in the BW equations, we have(
−
√

2m −p
−p̄ −

√
2E

)(
F1β

F2β

)
= 0 , (36)

2The choice m = 0 corresponds to a standard null reduction, equivalent to supposing
that all fields are independent of x−, and does not lead to a Schroedinger equation.
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which is equivalent to

√
2mF1β = −pF2β ,

[
2mE − |p|2

]
F2β = 0 . (37)

In other words, F1β is auxiliary and F2β satisfies a Schroedinger equation.
Moreover, because Fαβ = Fβα the same applies to Fα1 and Fα2, so the only
component of Fαβ that is not auxiliary is F22, and this satisfies[

2mE − |p|2
]
F22 = 0 , (38)

which is a Schroedinger equation for a single complex wavefunction.
Taking the complex conjugate of this Schroedinger equation we find that[

2mE − |p|2
]
F̄2̇2̇ = 0 . (39)

If we had started from the Maxwell equations for a complex vector potential
then F22 and F̄2̇2̇ would be independent complex wavefunctions rather than
complex conjugates of each other, and we would recover the parity-doublet
of Schroedinger equations that we found from the non-relativistic limit of the
complex 3D Proca equations. However, in this case it is consistent to impose
Fα̇β̇ = 0, without this implying Fαβ = 0. This is equivalent to imposing a self-
duality condition on the complex Maxwell field-strength 2-form. This effects
the same truncation to the parity-violating spin-1 Schroedinger equation that
we found from the non-relativistic limit of the complex

√
Proca equations.

4 Conclusions

We have investigated the non-relativistic limits of free 3D field theories for
spin-1 particles of non-zero mass m; specifically, 3D Proca and

√
Proca and

their complexifications. A common feature is that the initial relativistic 3D
theory must propagate pairs of modes of equal mass, since two are needed for
every complex wavefunction satisfying a Schroedinger equation in the limit.
This condition is satisfied automatically for a complex vector field, and for
the 3D Proca with real vector field but not for

√
Proca with real vector field;

in this last case the only non-relativistic limit is one to equations that do not
propagate any non-relativistic particle.

Since the Proca theory preserves parity, one might expect its non-relativistic
limit to also preserve parity and this is true if one starts from complex 3D
Proca; its non-relativistic limit is a Schroedinger equation for two complex
wavefunctions transforming under rotations as an SO(2) doublet. This sys-
tem of equations is equivalent to equations for a parity-doublet of complex
helicity eigenstate wavefunctions Ψ[±1] with opposite sign Hamiltonians, and
the non-relativistic limit of the parity-violating

√
Proca theory yields just one

of these Schroedinger equations, which one depending on the sign of m.
In general, there is no non-relativistic limit of the real Proca theory to a

Schroedinger equation preserving rotational invariance but the 3D case is an
exception to this rule. In this case there is such a limit, as we showed for the
spin-2 FP equations in [1]. Here, for the spin-1 case, we have shown how this
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novel non-relativistic limit may be taken in the action (and not merely for the
field equations). Somewhat surprisingly, it leads to the same parity-violating
single Schroedinger equation that one gets from complex

√
Proca.

We have further demonstrated a correspondence between these results
and those obtained from a generalized null reduction [1] of 4D field theories
for spin-1 particles of zero mass. Specifically, a generalized null reduction of
the Bargmann-Wigner equations equivalent to complex 4D Maxwell, com-
plex self-dual Maxwell and real 4D Maxwell leads to the same spin-1 pla-
nar Schroedinger equations as 4D complex Proca, complex

√
Proca and real

Proca, respectively. Furthermore, there is a straightforward generalization
to any integer spin; for example, the linearized 4D Einstein equations are
equivalent to the spin-2 Bargmann-Wigner equations

pαα̇Rαβγδ = 0 , (40)

where Rαβγδ is totally symmetric in its four Sl(2;C) indices. Following the
example of the spin 1 case we deduce that only R2222 is independent, and
that it satisfies [

2mE − |p|2
]
R2222 = 0 . (41)

This is equivalent to the generalized null-reduction of [1]. Complexifying the
linearized Einstein equations leads to independent equations for R2222 and
R̄2̇2̇2̇2̇, and the analog of Maxwell self-duality in this case is then R̄2̇2̇2̇2̇ = 0.

Our results for non-relativistic limits of massive 3D spin-1 theories can
also be generalized to any integer spin. For example, the

√
FP action has a

non-symmetric tensor field [4]. After the addition of an FP-type mass term
for an auxiliary non-symmetric tensor field, redefinitions similar to those of
(13) allow a non-relativistic limit to be taken. This yields the same parity-
violating planar spin-2 Schroedinger equation as that found in [1] from a
“novel non-relativistic limit” of the real spin-2 FP equations. However, as
mentioned there, the need for a complex field in the

√
FP case complicates

the issue of interactions because a metric perturbation is naturally real. This
problem does not arise for the real 3D FP equations because these result from
linearization of the equations of “New Massive Gravity” [11].

Finally, we should mention that non-relativistic limits of the Jackiw-Nair
equations for massive particles of any spin have been proposed in [12]; the
limits considered there do not include the novel real-field limit of [1] that we
have explained here for spin-1, but there is presumably an overlap with the
non-relativistic limit of the complex

√
Proca case considered here.
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