
On the shape of bistable creased strips

Martin G. Walker1,∗, Keith A. Seffen1

Cambridge University Engineering Department
Trumpington St, Cambridge, United Kingdom, CB2 1PZ

Abstract

We investigate the bistable behaviour of folded thin strips bent along their cen-

tral crease. Making use of a simple Gauss mapping, we describe the kinematics

of a hinge and facet model, which forms a discrete version of the bistable cre-

ased strip. The Gauss mapping technique is then generalised for an arbitrary

number of hinge lines, which become the generators of a developable surface as

the number becomes large. Predictions made for both the discrete model and

the creased strip match experimental results well. This study will contribute

to the understanding of shell damage mechanisms; bistable creased strips may

also be used in novel multistable systems.
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1. Introduction

Studies on the deformation of strips with a curved [1] or folded [2] cross-

section have only captured smooth deformation of the strip axis. When the

cross-section of the strip consists of a sharp crease or fold, new singular bistable

behaviour occurs, which is not revealed by previous models. We address this

need here.

In their study of bistable creased disks, Lechenault and Adda-Bedia [3] fold

a thin disk about equi-spaced radii, in order to create rotationally symmetrical
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creases. For two or more creases, a central vertex is formed initially, which

can be inverted by turning the disk inside out. This configuration is usually

bistable, with gently curved material in between creases that have not opened

or closed any further. Assuming inextensible i.e. developable deformation, and

rigidly-fixed crease angles, they calculate the shapes of the initial and inverted

states. Their simplest case is a singly creased disk or strip, which can be readily

made using, say, paper card of reasonable stiffness, such as a beer mat: after

flexing a few times to establish a crease, it can be “pushed through” to form

a vertex, where it maintains inversion. We can do the same in Fig. 1 using a

plastically folded metal strip. The observed deformation always has two planes

of symmetry centred around the central vertex. It is clear the deformed shape

shares features with familiar, if unwelcome, indentations straddling fold lines in

car body panels, see Fig. 2. This study therefore applies more broadly to folded

or pressed thin-walled structures, typically made of metal and used as skins in

vehicles, building cladding, etc.

Because of the developable assumption, infinite material strains and, hence,

stresses and strain energy density occur at the vertex in theory. In practice,

these are limited by localised yielding and stretching close to the vertex but not

extensively if the disk is relatively thin. This begs an obvious question about

how bistability is predicated upon formation of the vertex. As a simple counte-

rexample, consider when a small perforation or hole is made where the vertex

would appear, see Fig. 1. The effort needed to push through and invert the

strip is now less compared to one of similar size without a hole, and bistability

remains, as later experiments attest. There are also no discernible differences

in shape, which could be scrutinised, for example, by modifying the analysis in

[3] to include a central hole.

We choose instead a discrete kinematical formulation in which the deformed

shape is approximated by rigid facets folding about hinge lines in the original

strip; the central crease is also a hinge line but of fixed rotation. In the limit of

a large number of hinges we approach the continuum framework but this is not

essential nor analytically efficient. As shown originally in [4] for the familiar “d-
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Cone” and then in [5] for general conical defects, the set of compatible rotations

for the least number of viable hinges have a unique geometrical solution when the

vertex is assumed to be developable; the resulting folded shape has remarkably

similar overall properties compared to the continuous example it represents.

When the apex of the vertex is removed by making a hole, the formulation also

applies if we assume that hinge lines intersect at a “virtual” vertex at its centre.

The system is kinematically indeterminate for more hinge lines. If we assume

that some form of elastic bending is represented by folding, we may extract,

hopefully, a single set of unique rotations that also satisfy equilibrium. We

therefore construct the “equivalent” strain energy of bending stored by discrete

hinge lines before minimising under the developable vertex constraint. When

the vertex hole is reduced in size to zero, the level of strain energy approaches

infinity, as noted, just as infinite vertex stresses emerge from the continuum

analysis in [3], which seem unsatisfactory. However our equilibrium analysis

leads to coupled differential equations in the rotations that behave in a bounded

manner irrespective of the size of the hole, even if the hole is reduced to zero.

In other words, infinite strain energy (and stresses) are largely irrelevant and

geometry dominates the nature of solution. This emergent property of the

formulation with a hole, we believe, makes an alternative contribution to how

such problems are tackled.

The layout is as follows. We first describe the simplest rigid-facet model of

a singly-creased strip, where we introduce the Gauss mapping technique for a

developable vertex behaviour. We then extend our approach to an arbitrary

number of hinge lines, and furnish a worked example to demonstrate a vani-

shing hole size. Three sets of experimental data are presented and compared

to theoretical predictions of the overall shape. When a vertex hole is present,

a twofold paradox emerges: the shape of the strip is largely unaffected by the

size of the hole even though theory would suggest some differences, and that all

specimens appear to conform to the prediction for no hole. We offer a possible

explanation but we not do not formally resolve matters before concluding our

study. Note that by the nature of our analysis we cannot predict whether or
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Figure 1: Creased strips with and without a
hole in their initial and inverted states. They
are made from copper beryllium of thickness
0.1 mm, are 50 mm wide and 200 mm long.

Figure 2: An inverted strip compared to a
“dent” in a vehicle body. Note the similarity
of vertex shapes lying on the original crease
lines.

not the inverted configurations are robustly stable but we do give general limits

informed by experiments.

2. Kinematic Analysis

2.1. Gauss Mapping

We construct two phenomenological models of rigid facets connected by strai-

ght hinge lines. The deformation is assumed to be doubly symmetric with

respect to the crease axis and the transverse centre line of the strip. Non-

symmetric deformations may be possible depending on the hinge line geometry

but the bistable behaviour we see always forms a doubly symmetric shape.

Consider first a creased strip with a pair of orthogonal hinge lines as shown in

Fig. 3a.

When the strip is bent along the crease axis, the crease must flatten comple-

tely before rotations about the hinge lines can occur. The second model shown

in Fig. 3b has four hinge lines and six facets. It has a second compatible state

which is clearly a simplified version of the inverted shape shown in Fig. 1: there

is well defined central vertex under a fixed crease angle.

All possible shapes must satisfy rigid folding compatibility of the hinge lines,

which can be enforced through a simple Gauss mapping technique [6]. We map

the unit normal vector of each facet to the centre of a unit sphere. As the facets
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(a) (b)

Figure 3: Phenomenological hinge models with (a) two and (b) four hinge lines (dashed) in
their initial and deformed shapes; the central crease line is shown solid. (a) The crease flattens
completely and a single central fold forms. (b) A central vertex forms under a fixed crease
angle.

rotate, their normal vectors trace out arcs of great circles on the surface of the

sphere, with lengths equal to the relative rotation angles between the facets

across hinge lines [7]. The signed area enclosed by these arcs is equal to the

angular defect at the vertex, which measures the solid angle and, hence, the

Gaussian curvature of the vertex [8]. For rigid facets that fold without tearing

or crumpling, there can be no defect and thus, the enclosed area must equal

zero.

To illustrate how this method works consider the simple two-hinged model

shown in Fig. 3a. The facet labelling is shown in Fig. 4a. The rigid facets

(A,B,C,D) are labelled according to Bow’s notation [9], while the hinge rotation

directions satisfy the right-hand rule. The general Gauss mapping is shown in

Fig. 4b, which does not correspond to any developable state shown in Fig. 3a.

To satisfy the requirement for zero enclosed area, there are two possible cases:

ab = dc = 0, which is the initial state, or β = 0, a flattened crease. Since

the possible shapes for this configuration of hinges do not correspond to the

observed bistable behaviour, more hinges are needed to capture the observed

behaviour.

The hinge line layout of Fig. 3b is formalised in Fig. 5. Each of the four hinge

lines are symmetrically separated from the crease line by the same angle α, which

affords equal rotations, θ, in the deformed case. The six facets (A,B,C,D,E,F)

yield a mapping with two crossover points and three enclosed areas, S1, S2, S3,
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Figure 4: (a) Two hinge line model; (b) its Gauss mapping onto the unit sphere of enclosed
area S.
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Figure 5: (a) Four hinge line model. (b) Its Gauss mapping where rotations ab, bc, de, and
ef all equal θ; the crease angle, β, is fixed. The enclosed areas are S1, S2 and S3.
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which sum to zero for a developable folded shape. For each area, a right-handed

orientation in the sense of following the vectors is declared positive, and vice

versa. Obviously ab = bc = de = ef = 0 gives zero area for af = cd = β, which

is simply the initial strip layout. The second and only non-trivial solution has

ab = bc = de = ef = θ and obviates the following exact relationship between

θ, α and β, which is found by calculating the areas using spherical geometry

(Appendix A):

tan
θ

2
=

tan (β/2)

cosα
(1)

We are interested, in particular, in the strip end rotation, which is defined as

Ψ in Fig. 6 and provides a means of comparison to [3] and experiments. The

distance between lines af and cd in the Gauss mapping, which correspond to

the crease line segments between facets AF and CD, respectively, is the relative

rotation of the crease line segments, or 2Ψ. Therefore, Ψ depends on the facet

rotation, θ, but we can eliminate this using Eqn 1 (see Appendix A) in order to

return an expression written purely in terms of the fixed parameters, β and α:

sin
Ψ

2
=

sinα tan (β/2)√
cos2 α+ tan2 (β/2)

(2)

There are no other developable states since other rotations yield a Gauss map-

ping with net area, which implies stretching of the facets at the vertex as the

strip is deformed beyond its initial configuration. As the strip approaches its

final developable state and the vertex forms, stretching cannot accumulate and

must be relieved. Whilst this leads to possible damage in practice if peak

in-plane stresses are high enough, their mitigation by non-linear changes in geo-

metry is a familiar pre-requisite for bistable behaviour e.g. the snap-through of

shallow arch beams [9]. We cannot however prove as such since our model does

not capture the intervening deformation; we can only assess the accuracy of

Eqn 2 by comparing it to inverted shapes in practice, which we do in Section 3.

2.2. Approaching the continuous case

The Gauss mapping gives a unique solution for the least number of hinge

lines. This may be sufficient to capture the gross shape fairly well but more
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Figure 6: Definition of end rotation angle, Ψ, of a deformed strip measured relative to its
initial crease line; this also applies to experimental specimens.

lines offer more accuracy and a better description of the shape around the

vertex. Since the mapping is a statement of geometrical compatibility for a single

developable vertex, it returns only one equation in all of the hinge rotations.

Extra solution information is now garnered from an equilibrium scheme.

A strip with width 2w and length 2l is assumed. There are 4n hinge lines in

total, with n hinge lines confined to each symmetrical quadrant and separated

by equal subtended angles, α = π/(2n + 1), as shown in Fig. 7. Within each

quadrant, the hinge line rotations are different and equal to θi, and repeated

fourfold for all quadrants. All hinge lines radiate outwards from a virtual vertex

at the centre of a hole of small, but finite, radius R. A Gauss mapping assuming

a single virtual vertex is applicable despite the hole since R is small and is

ultimately reduced to zero for a real vertex.

The adjunct equilibrium behaviour is derived from equivalent strain energy

considerations when the hinge lines perform as elastic elements. Rather than

endow the hinge line as a conventional torsional spring [10], we spread this ro-

tation over a sector angle α, shown shaded in Fig. 7, in the form of a conical

section. When the hinge lines are each treated in this manner and assembled

together they form a continuous, developable, surface. The corresponding tran-

sverse curvature, c, is approximately the hinge-line rotation divided by the local

width of strip and, if we assume simple linear elastic behaviour, the strain energy

density per unit area is Dc2/2 [7], where D is the flexural rigidity. First, we

isolate the hole from within the strip by enclosing it within a disk of radius w,

shown dotted in Fig. 7.

Inside the disk, the hinge line rotation per sector admits an equivalent conical

curvature at radial distance, r, equal to θi/rα. The strain energy density follows
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Figure 7: Generalised hinge line model with a central hole of radius R and strip length 2l.
The disk region (dashed) has radius w, and the generator lines subtend equal angles of α. A
sector relating to a single hinge line is highlighted.

easily, which is then integrated over the area of each sector before summing over

4n sectors to give the equivalent total strain energy of conical bending, U1, as:

U1 = 4

∫ w

R

n∑
i=1

D

2

(
θi
rα

)2

rαdr =
2D

α
ln
(w

R

) n∑
i=1

θ2i (3)

Beyond the disk, the energy is similarly calculated but where the upper inte-

gration limit, Li, is now the total radial length of hinge i:

U2 = 4

n∑
i=1

∫ L

w

D

2

(
θi
rα

)2

rαdr =
2D

α

n∑
i=1

ln

(
Li

w

)
θ2i (4)

such that

Li = min

(
w

sin iα
,

l

cos iα

)
(5)

depending on where the hinge line terminates. The total strain energy, U =

U1 + U2, can now be minimised for equilibrium configurations of θi subject to

zero net area of the Gauss mapping. One approach involves first solving for θ1

in terms of the other rotations from the Gauss mapping, substituting into U

and then differentiating with respect to each of the remaining θi. This gives

n− 1 equations of the form:

∂U

∂θj
=

n∑
i=1

ln

(
Li

R

)
θi
∂θi
∂θj

= 0 for j ∈ Z : 2 ≤ j ≤ n (6)

Noting that ∂θi/∂θj = 0 for i 6= j, and that θ1 is a function of the remaining θi

due to the zero net area constraint, Eqns 6 become:

lnL1 − lnR

lnLj − lnR
θ1
∂θ1
∂θj

+ θj = 0 for j ∈ Z : 2 ≤ j ≤ n (7)

Alternatively, the zero net area constraint could be enforced using a Lagrange

multiplier which yields an equivalent result. In the limit of R → 0 for no hole,
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Figure 8: Eight hinge line model and its planar Gauss mapping.

the coefficient of the first term in Eqn 7 becomes unity for all j:

θ1
∂θ1
∂θj

+ θj = 0 for j ∈ Z : 2 ≤ j ≤ n (8)

and the strip width, w, and length, l, do not feature i.e. the inverted shape is

independent of planform geometry. The reason is that as R tends to zero, U1

becomes much larger than U2 in U , and the equilibrium solution is dominated

by the performance of the inscribed disk region: the deformed shape should

therefore approach the continuum solution in [3] for large n. Conversely, as

R increases, the coefficient of the first term in Eqn 7 is larger than unity and

different for each value of j, which promotes U2 over U1. Note also that D is

absent, signifying independence from material properties.

As a worked example, consider the creased strip with eight hinges (α = 36◦)

in Fig. 8. From symmetry of the Gauss mapping, the hinge line rotations ab,

de, fg, and ij are equal to θ1, and bc, cd, gh equal to θ2. For this example we

assume that β and the hinge rotations are small enough to render the Gauss

mapping approximately planar, thereby removing the need for more complex

spherical trigonometry. The signed enclosed areas are found straightforwardly
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to be

S1 = S3 = −β
2

4
tan 36◦ (9)

S2 =
β2

2
tan 36◦ − 2θ2 sin 72◦(β − 2θ1 cos 36◦) (10)

+ 2θ1 sin 36◦(θ1 cos 36◦ − β) + θ22 sin 144◦

From S1 + S2 + S3 = 0, we can solve for θ1 in terms of θ2 and β as

θ1 =
1

2 cos 36◦

(√
4θ22 cos 72◦ + β2 + 4θ22 − 4θ2 cos2 36◦ + β

)
(11)

Since there are two independent variables, there is one minimised energy ex-

pression from applying Eqn 8, noting from Eqn 11:

dθ1
dθ2

= 2 cos 36◦

(
2θ2√

4θ22 cos 72◦ + β2 + 4θ22
− 1

)
(12)

After substituting into Eqn 8, we obtain

2θ1 cos 36◦

(
2θ2√

4θ22 cos 72◦ + β2 + 4θ22
− 1

)
+ θ2 = 0 (13)

Equations 11 and 13 are now a pair of coupled, non-linear algebraic equations

in θ1 and θ2 with the unique solution:

θ2 = 0.458635β θ1 = 0.771859β (14)

From the Gauss mapping in Fig. 8, the end rotation is easily read as

Ψ = θ1 sin 36◦ + θ2 sin 76◦ = 0.889875β (15)

Thus, we see a linear relationship between the end rotation and the crease angle.

For the general case, the solution process can be automated using, for exam-

ple, the commercial software package MATLAB [11] but with increasing solution

times for large n. The Gauss mapping approaches a smooth curve of 4n separate

rotations, Fig. 9, and the ratio Ψ/β is plotted against the total number of hinge

lines, 4n, in Fig. 10. As expected, the ratio approaches the asymptotic result of

0.4386 from Lechenault and Adda-Bedia [3] for a singly creased disk.
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(a) 4x2 Hinges (b) 4x3 Hinges (c) 4x6 Hinges (d) 4x12 Hinges

Figure 9: Gauss mappings for 8, 12, 24, and 48 hinge line models of a creased strip. Each
model is symmetric about the dashed centreline.

Total Hinges (4n)

Ψ

0.4386

Figure 10: Ratio of end rotation to crease angle, Ψ/β, vs the number of hinge lines for a
creased strip (solid) and a disk (dashed). The asymptotic limit is for a creased disk deforming
continuously where Ψ/β = 0.4386 [3].
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This analysis assumes that the crease sector angle, β, remains fixed during

deformation. If β were allowed to change, the Gauss mapping would have to

be adjusted accordingly and the resulting end rotation would be affected. In

principal this could be incorporated into the present analysis by adding an

additional energy term corresponding to the change in crease sector angle. This

is not straightforward since the crease sector angle will vary along the the length

of the crease in practice. The length over which this transition occurs is unclear

but similar behaviour has been investigated for cylindrically curved shells [12, 13]

which may offer some insight. The fixed sector angle assumed in this study is

a good approximation for the behaviour of sharply creased metallic sheets at

least [14].

3. Experimental Results

Three sets of experiments are performed: a direct assessment of Eqn 2 by

folding creases in paper card; an evaluation of the general case using folded

metal strips; and an investigation of the effect of adding a hole along the crease

line.

We first compare the simplest discrete model to equivalent physical speci-

mens with β = 60◦ and β = 20◦ made from thick card, as shown in Fig. 11.

Hinge lines are scored with a scalpel at different inclinations of α ranging from

20◦ to 60◦, and the crease angle is then set rigid by applying a thin line of

resin to affirm the fixed angle assumption. The scored lines are then folded as

carefully as possible without bending the flat facets but unavoidably the vertex

incurs local damage. Once formed, however, all specimens are found to be bi-

stable. The resulting end rotations are measured using a protractor, and Ψ is

compared to Eqn 2 in Fig. 12, where there is excellent agreement.

The end rotations for strips folded using a manual press are plotted in Fig. 13

against β and compared to the prediction Ψ/β = 0.4386. They are made either

from shim steel or age-hardened copper beryllium, with thicknesses in the range

0.05 mm to 0.15 mm, widths between 25 mm to 55 mm, and lengths between

120 mm and 250 mm. The range of materials and dimensions were chosen in
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Figure 11: Four hinge line model made from
paper card in its initial and inverted states.

Figure 12: Comparison of Eqn 2 to experi-
mental paper card models with hinge lines
scored at various angles, α.

order to confirm the conclusion that the deformed shape is independent of ma-

terial and planform geometry. The crease sector angles of the undeformed strips

were measured at each end using a protractor, and an average value taken. The

strips were then carefully inverted by hand. Given the sharpness of the crease,

we assumed the crease angle was unchanged, especially so for metallic strips

[14]. Visually, this seemed to be reasonable but precise measurements would be

difficult. Moreover, our interest is focused on the deforming material around

it. The end rotation was obtained by directly measuring the angle between the

two sides of the crease using a protractor and completing the triangle with two

equal end rotations, as shown in Fig. 6.

For medium crease angles between 20◦ and 40◦ experimental results are ca-

ptured rather well and no dependance on material properties or strip dimensions

are apparent, as predicted. Shallower strips with β below 20◦ are not bistable

and Ψ is absent. We observe that, on pushing through, there is no softening in

these cases and no clear snap. Snapping through also disappears in bistable arch

beams if they are too shallow initially [9] and we surmise a similar crease angle

threshold here. For β larger than 40◦, the experimental results begin to diverge

from the prediction. This is not the result of a small-angle approximation since

the results shown in Fig. 10 were obtained using a spherical Gauss mapping

and are therefore valid for large angles. On closer inspection of the vertices, we

do not see a well-formed vertex but a number of prominent features, including

local buckling (Fig. 14b), extensive plastic deformation (Fig. 14c), and vertex
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β (o)

Ψ (o)

=0.4386Ψ

n=100 Gauss Mapping

Figure 13: End rotation, Ψ, against crease angle, β, via experiments and theory. The solid
line is the prediction from [3] of Ψ/β = 0.4386. The filled circles are predictions from Sec. 2.2
using an exact Gauss Mapping calculation for n=100.

bifurcation (Fig. 14d), or some combination of these. The developable assum-

ption is clearly breaking down and increasingly limiting the rotations across the

vertex along the crease line for larger crease angles.

Since a precise well-formed vertex did not occur for larger β, which may

be responsible for the diverging trend from the linear predictions, we added a

hole to the vertex location. Strips were manufactured from 0.1 mm shim steel

55 mm wide and 250 mm long. Holes with diameters of 19 mm, 8 mm and 4 mm

were formed in the flat strip using a standard sheet metal punch before being

folded. The undeformed sector angle and end rotations were measured in the

same manner as before. The deformation appears to be entirely elastic and no

residual damage was observed even under repeated inversion. The end rotations

for strips with an initial hole are plotted in Fig. 15. Compared to before, the

results all appear to lie on the theoretical prediction of Ψ/β = 0.4386 more

or less without diverging at larger crease angles. There also appears to be no

significant differences due to the hole size. However, when predictions of the

ratio of Ψ/β are included in Fig. 15 by using the actual hole diameters and

strip dimensions in Eqn. 7 instead of using Eqn. 8, we should expect some

variation—namely, higher ratios for larger holes. In practice, a hole removes

the unwanted singular effects of the vertex whilst enabling the generators to
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(a) Vertex damage in paper card mo-
dels.

(b) Localised buckling, where a “bub-
ble” has formed.

(c) Heavy plastic deformation around
the vertex.

(d) Bifurcation of the vertex.

Figure 14: Non-developable deformations of the crease vertex.

be well formed beyond it; this can account for why linearity is maintained for

longer with respect to β—certainly for the strips with the larger two holes of

diameters 8 mm and 19 mm. But a larger hole also gives greater potential

variation in the local distribution of generators since they can emanate from

any point within the hole, indeed, many virtual points right up to the hole

boundary. This ultimately results in a configuration with lower strain energy

compared to the case where they would emanate from a single central point,

so we expect a marginally smaller end rotation in practice compared to theory;

that this happens in our results to coincide with the prediction for no-hole is a

fortuitous one given how relatively small the deviations from theory are. Also

note that a slightly higher crease angle of around 30◦ is required for strips to

become bistable compared to before. Recall that bistability follows when the

snapping force during push-though becomes large enough, and the presence of

a hole in general reduces this force. We have been able to confirm this effect
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Figure 15: End rotation vs crease angle for creased strips containing a central hole on the
crease line. The strips are 0.1 mm thick shim steel with a total length of 250 mm and a width
of 55 mm. Hole diameters range from 4 mm to 19 mm.

using finite element analysis, which will be presented in a later study.

4. Conclusions

When a creased strip is bent along its axis, a snap-through change in shape

occurs, often rendering a sharp bistable vertex. A rigid-facet folded appro-

ximation of this shape shows comparable gross behaviour to a creased strip.

We have used a Gauss mapping technique to find the hinge rotations and the

end rotation corresponding to a second geometrically compatible state, and our

predictions show excellent agreement with experiments using thick card. The

Gauss mapping approach was then generalised to an arbitrary number of hinge

lines, in order to approach a developable continuum surface shape by minimising

the total equivalent energy of bending. Experiments confirmed the predictions

for medium crease angles, however, for larger crease angles the prediction and

experiments diverge due to non-singular deformations at the vertex. Experi-

ments also showed that the second stable state ceases to exist for crease angles

below about 20◦. When the crease is perforated with a hole exactly where the

vertex would form, the snap-through behaviour remains without the associated

damage. Formal experiments showed that the shapes of creased strips with a
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Figure A.16: Bottom half of Gauss mapping shown in Fig. 5b

hole match the predicted end rotation well for a creased strip without a hole,

even for large crease angles. This suggests that the singularity at the vertex

is responsible for the non-linearity seen in the experimental results for creased

strips without a hole. The exact nature of the singularity and its effect on the

mechanical behaviour of the strip, however, remains an open question. The

approach we propose could be extended to several folded creases as per [3] and

the developable deformation of other structures.

The results of this study have applications in the design of thin-walled stru-

ctures. We have shown that in order for the inverted shape to form an incom-

patibility along the crease line must be overcome which is accomplished by

localised deformation of the crease. This suggests a simple method to improve

resistance to this form of damage by reinforcing the crease line. The simple

bistable structure formed by a creased strip with a hole could also be used as

part of a multistable structure.

Appendix A. Derivation of equations 1 and 2

In order to accommodate large rotations, the geometry of the Gauss mapping

must be solved using spherical trigonometry [15]. Considering the bottom half

of the Gauss mapping in Fig. 5b, shown in Fig. A.16, we solve for the areas S1

and S2 as well as the hinge rotations, bc and de, equal to θ. Using the spherical

law of cosines for the triangle dcg:

cosφ = sin2 α cosβ − cos2 α (A.1)
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d can be obtained using the cotangent four-part formula:

cosβ cosα = cot d sinβ − cotα sinα

=⇒ tan d =
tanβ/2

cosα
(A.2)

Then considering the triangle ebg and using Napier’s analogy:

tan
γ

2
=

1

tanα cos (θ − d)
(A.3)

The areas can now be calculated:

S1 = 2α+ φ− π = 2α− π + arccos
(
sin2 α cosβ − cos2 α

)
(A.4)

S2 = 2γ + 4α− 2π = 4α− 2π + 4 arctan

(
1

tanα cos (θ − d)

)
(A.5)

Solving the condition of net zero area of the Gauss mapping given by 2S1 = S2:

tan
θ

2
=

tanβ/2

cosα
(A.6)

Comparing to Eqn A.2 we can immediately see that θ = 2d. Using the spherical

law of sines:
sinα

sin Ψ/2
=

1

sin d
(A.7)

Therefore the end rotation Ψ, after substituting Eqn A.2, is:

sin
Ψ

2
=

sinα tan (β/2)√
cos2 α+ tan2 (β/2)

(A.8)
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