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A Variational Model for Joint Motion Estimation and Image Reconstruction∗
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Abstract. The aim of this paper is to derive and analyze a variational model for the joint estimation of motion
and reconstruction of image sequences, which is based on a time-continuous Eulerian motion model.
The model can be set up in terms of the continuity equation or the brightness constancy equation.
The analysis in this paper focuses on the latter for robust motion estimation on sequences of two-
dimensional images. We rigorously prove the existence of a minimizer in a suitable function space
setting. Moreover, we discuss the numerical solution of the model based on primal-dual algorithms
and investigate several examples. Finally, the benefits of our model compared to existing techniques,
such as sequential image reconstruction and motion estimation, are shown.
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1. Introduction. Image reconstruction and motion estimation are important tasks in im-
age processing. Such problems arise for example in modern medicine, biology, chemistry, and
physics, where even the smallest objects are observed by high resolution microscopes. To char-
acterize the dynamics involved in such data, velocity fields between consecutive image frames
are calculated. This is challenging, since the recorded images often suffer from low resolu-
tion, low contrast, different gray levels, and noise. Methods that simultaneously denoise the
recorded image sequence and calculate the underlying velocity field offer new opportunities,
since both tasks may endorse each other.

Our ansatz aims at reconstructing a given sequence u of images and calculating flow fields
v between subsequent images at the same time. For given measurements f = Ku this can be
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JOINT MOTION ESTIMATION AND IMAGE RECONSTRUCTION 95

achieved by minimizing the variational model∫ T

0

1
2
‖Ku(·, t)− f(·, t)‖22 + αR(u(·, t)) + βS(v(·, t))dt(1.1)

s.t. M(u,v) = 0

with respect to u and v simultaneously. The denoising part is based on the Rudin–Osher–
Fatemi (ROF) model [34]. The first part ‖Ku− f‖22 connects the input data f with the image
sequence u via a linear operator K that acts on one single time step t. Depending on the
application K may model the cutting out of a subset Σ ⊂ Ω for inpainting, a subsampling for
superresolution, a blur for deconvolution, or a Radon transform for computed tomography.
Additional a priori information about the structure of u, respectively, v can be incorporated
into each frame via the regularization terms R(u(·, t)) and S(v(·, t)), while their significance is
weighted using α and β. Finally, flow field and images are coupled by a constraintM(u,v) = 0
(e.g., the optical flow (2.1)).

In the last two decades, variational models for image reconstruction have become very
popular. One of the most famous models, introduced by Rudin, Osher, and Fatemi in 1992
[34], is the total variation (TV) model, where the authors couple an L2 data fidelity term
with a TV regularization. Data term and regularizer in the ROF model match with the first
two terms model (1.1). The TV regularization results in a denoised image with cartoon-
like features. This model has also been adapted to image deblurring [45], inpainting [39],
superresolution [29, 43], and tomographic reconstruction [36, 26]. We collectively call these
image reconstruction models.

Estimating the flow from image sequences has been discussed in the literature for decades.
Already in 1981, Horn and Schunck proposed a variational model for flow estimation [25].
This basic model uses the L2 norm for the optical flow term as well as for the gradient
regularizer and became very popular. Aubert, Deriche, and Kornprobst analyzed the L1 norm
for the optical flow constraint [1] in 1999 and demonstrated its advantages towards a quadratic
L2 norm. In 2006, Papenberg et al. [31] introduced the TV regularization, respectively,
the differentiable approximation, to the field of flow estimation. An efficient duality-based
L1-TV algorithm for flow estimation was proposed by Zach, Pock, and Bischof in 2007 [47].
Model (1.1) also incorporates a flow estimation problem by the constraintM(u,v) and suitable
regularization S(v(·, t)). Despite the fact that the optical flow is estimated between subsequent
frames in a complete series of images, we do not incorporate time regularization on the flow
fields. The problem of time-coherent optical flow can for example be found in [44].

The topic of joint models for motion estimation and image reconstruction was already
discussed by Tomasi and Kanade [42] in 1992. Instead of a variational approach, they used
a matrix-based discrete formulation with constraints to the matrix rank to find a proper
solution. In 2002, Gilland et al. published a joint variational model for gated cardiac CT
[22]. For two images, they formulated a data term, based on the Kullback–Leibler divergence
(cf. [13] for details) and incorporated the motion field via quadratic deformation term and
regularizer. In the field of optimal control Borzi, Ito, and Kunisch [10] formulated a smooth
cost functional for an optimal control problem that incorporates the optical flow formulation
with unknown image sequence and motion field with an additional initial value problem for
the image sequence.
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96 M. BURGER, H. DIRKS, AND C.-B. SCHÖNLIEB

Bar et al. proposed a variational framework for joint motion estimation and image deblur-
ring in 2007 [4]. The underlying flow is assumed to be a translation and coupled into a blurring
model for the foreground and background. This results in a Mumford–Shah-type functional.
Also in 2007, Shen et al. proposed a statistical approach for joint motion estimation, segmen-
tation, and superresolution [38]. The model assumes an affine linear transformation of the
segmentation labels to incorporate the dynamics and is solved calculating the MAP solution.
Another possible approach was given by Brune in 2010 [13]. The four-dimensional (three-
dimensional + time) variational model consists of an L2 data term for image reconstruction
and incorporates the underlying dynamics using a variational term, introduced by Benamou
and Brenier [6] and Benamou, Brenier and Guitt [7]. In our model, the constraint M(u,v)
connects image sequence u and velocity field v. We mention a recent development in [15],
which also discusses a joint motion estimation and image reconstruction model in a similar
spirit. The focus there is, however, motion compensation in the reconstruction relative to an
initial state, consequently a Lagrangian approach with the initial state as reference image is
used and the motion is modeled via hyperelastic deformations. Finally, in [8] Benamou, Car-
lier, and Santambrogio draw a connection to stochastic mean field games, where the underlying
motion is described from the Eulerian and Lagrangian perspectives.

1.1. Contents. The paper is structured as follows: In section 2 we briefly introduce a
basic framework for variational image reconstruction and motion estimation and combine
both which leads to our joint model. Afterwards, we give a detailed proof for the existence
of a minimizer based on the fundamental theorem of optimization in section 3. Finally, we
introduce a numerical framework for minimizing our model in section 4 and evaluate the
proposed model in different image processing applications in section 5.

2. Joint motion estimation and image reconstruction.

2.1. Noise sensitivity of motion estimation. Throughout this work let Ω ⊂ R2
be an

image domain and ΩT := Ω× [0, T ] a space-time domain. One of the most common techniques
to formally link intensity variations in image sequences u(x, t) to the underlying velocity field
v(x, t) is the optical flow constraint. Based on the assumption that the image intensity u(x, t)
is constant along a trajectory x(t) with dx

dt = v(x, t) we get, using the chain rule,

0 =
du

dt
=
∂u

∂t
+

n∑
i=1

∂u

∂xi

dxi
dt

= ut +∇u · v.(2.1)

The last equation is generally known as the brightness constancy assumption. The assumption
constitutes in every point x ∈ ΩT one equation, but in the context of motion estimation
from images we usually have two or three spatial dimensions. Consequently, the problem is
massively underdetermined. However, it is possible to estimate the motion using a variational
model

min
v
D(u,v) + αR(v),

where D(u,v) represents the so-called data term and incorporates the optical flow constraint
in a suitable norm. The second part R(v) models additional a priori knowledge on v and is
denoted as the regularizer. The parameter α regulates between data term and regularizer.
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JOINT MOTION ESTIMATION AND IMAGE RECONSTRUCTION 97

Figure 1. Image and color-coded ground-truth velocity field from the Middlebury optical flow database [3].

Possible choices for the data term are

D(u,v) :=
1
2
‖v · ∇u+ ut‖22 or D(u,v) := ‖v · ∇u+ ut‖1 .

The quadratic L2 norm can be interpreted as solving the optical flow constraint in a least-
squares sense inside the image domain Ω. On the other hand, taking the L1 norm enforces
the optical flow constraint linearly and is able to handle outliers more robustly [1].

The regularizer R(v) has to be chosen such that the a priori knowledge is modeled in a
reasonable way. If the solution is expected to be smooth, a quadratic L2 norm on the gradient
of v is chosen as in the classical Horn–Schunck model. Another possible approach is to choose
the TV of v if we expect piecewise constant parts of motion, an approach we focus on in this
paper.

In practical applications (e.g. microscopy) the recorded images often come with a lack of
image quality that is caused by low acquisition times. This leads to another very interesting
aspect in motion estimation—how does the noise level on the image data correspond to the
quality of the estimated velocity field v? To answer this question we created a series of noisy
images, where Gaussian noise with increasing variance σ was added. Compare Figure 1 for
one of the two images and the corresponding ground-truth velocity field vGT . Afterwards, we
estimated the motion using the L1-TV optical flow algorithm. In Figure 2 we plotted the vari-
ance of noise on the x-axis versus the absolute endpoint error (see (B.1)) of the reconstruction
on the y-axis. We observe that already small levels of noise have massive influence on the
motion estimation process. Consequently, before estimating the motion field, a preprocessing
step may be applied to remove the noise. A more advanced technique is a variational model
that is able to simultaneously denoise images and estimate the underlying motion, while both
tasks improve each other.

2.2. Proposed model. In the reconstruction process we deal with measured data f , which
can be modeled as f = Ku+δ, where δ represents additive noise, often assumed to be Gaussian.
The linear operator K represents the forward operator modeling the relation of the image
sequence u on the measured data f . This general choice allows us to model applications such
as denoising, deblurring, inpainting, super resolution, or even a Radon transform (dynamic
CT, PET). Simultaneously we seek the velocity field v : ΩT → R2 describing the motion in
the underlying image sequence u.
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Figure 2. Angular error (left) and absolute endpoint error (right) for L1-TV estimated velocity field (solid)
and proposed model (dotted) for increasing levels of noise in the underlying data.

To reconstruct both, u and v at the same time, we propose the following general model:

arg min
u,v

∫ T

0

1
2
‖Ktu(·, t)− f(·, t)‖22 + αR(u(·, t)) + βS(v(·, t))dt(2.2)

s.t. M(u,v) = 0 in D′([0, T ]× Ω).

The first term in this functional acts as a data fidelity between the measured data f
and the objective function u in the case of Gaussian noise. One may think of other data
fidelities such as the L1 distance for salt and pepper noise or the Kullback–Leibler divergence
for Poisson noise.

The second term R in our general model constitutes a regularizer for the image sequence
u. We mention that R only acts on single time steps For reconstructing smooth images, the
quadratic L2 regularization on the gradient can be used, but a more natural regularization
in the context of images is the TV, which preserves edges to some extent and favors locally
homogeneous intensities. The TV coincides with the seminorm on the space of functions with
bounded variation (BV) and we set

R(u(·, t)) = |u(·, t)|BV .

We mention that of course other higher-order versions of TV (cf. [9, 12]) can be used for the
regularization as well, with hardly any changes in the analysis due to the similar topological
properties [11]. Regularizers for the velocity field v can be motivated very similarly to those
for images. An L2 penalization of the gradient of v,

S(v(·, t)) = ‖∇v(·, t)‖22 ,

leads to smooth velocity fields whereas a TV-based regularizer

S(v(·, t)) = |v(·, t)|BV
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JOINT MOTION ESTIMATION AND IMAGE RECONSTRUCTION 99

favors piecewise constant flow fields. We mention that constraints such as an upper bound
on the norm of v can be incorporated into S by adding the characteristic function of the
constraint set.

The final ingredient is to connect image data and the flow field by choosing a suitable
constraint M(u,v). Using the brightness constancy assumption leads to the classical optical
flow constraint and we set

M(u,v) = ut +∇u · v.

Another approach that will not be further discussed within this work is given by the continuity
equation

M(u,v) = ut +∇ · (uv)

that arises from the natural assumption that mass keeps constant over time. For an extension
to sequences of 3d data, the continuity equation is a much more natural assumption than the
optical flow.

Both constraints add a nonlinearity to the model, which leads to difficulties in the analysis
arising from the product∇u·v, respectively, ∇·(uv). Moreover, the model becomes nonconvex
and thus challenging from a numerical point of view, because local minimizers can appear. On
the other hand the motion constraints and possibly strong regularization of motions provide a
framework where motion estimation can enhance the image reconstruction and vice versa. In
particular this makes the motion estimation more robust to noise (cf. Figure 2). To simplify
our notation, we use abbreviations of our model in the structure [regularizer u]-[regularizer v]
[constraint ] as, e.g., for the [TV]-[TV] [optical flow] model. For the sake of readability we will
omit the brackets.

2.3. Preliminaries. In what follows we consider gray valued image data u on a space-time
domain ΩT := Ω× [0, T ] ⊂ R2 ×R+, u : ΩT → R. The sequence of flow fields will be denoted
by v and is defined on ΩT with Neumann boundary conditions in space, v : ΩT → R2. We
expect finite speeds which gives the useful natural bound

‖v‖∞ ≤ c∞ <∞ a.e. in Ω× [0, T ] .(2.3)

This assumption is reasonable since we have an application to real data (e.g., cell movement,
car tracking) in mind.

Besides this, a bound on the divergence of v in some Lebesgue space Θ is later needed in
order to prove the existence of a minimizer. From the physical point of view the divergence
measures the magnitude of the source or sink of v. Consequently, having ∇ · v ∈ Lp means
an overall boundedness of sources and sinks, which is, however, not necessarily pointwise
Moreover, for the flow v the divergence is a measure of compressibility. We speak of an in-
compressible flow if ∇·v = 0, so bounding the divergence means bounding the compressibility
of v.

Definitions and notations are explained in Appendix A. Moreover, we illustrate error
measures for velocity fields and explain the discretization of our model in detail there. Finally,
the appendix contains a pseudocode and further results.
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3. Analysis of the variational problem. The most challenging model from an analytical
viewpoint is the joint TV-TV optical flow model

J(u,v) =
∫ T

0

1
2
‖Ku− f‖2F + α |u(·, t)|pBV + β |v(·, t)|qBV dt(3.1)

s.t. ut +∇u · v = 0 in D′(ΩT ),
‖v‖∞ ≤ c∞, ‖∇ · v‖Θ ≤ c

∗

for p > 1 and q ≥ 1. For simplicity we restrict ourselves to the TV-TV optical flow model with
spatial dimension two here. We refer to [18] for the full analysis including other cases such
as the mass preservation constraint and L2 regularization. We want to mention that our re-
sults apply for any convex regularizers R,S satisfying R(u(·, t)) ≥ |u(·, t)|pBV and S(v(·, t)) ≥
|v(·, t)|qBV , such as, e.g., the total generalized variation-functional. We assume K : L1(Ω) →
F(Ω) to be a bounded linear operator to some Hilbert space F(Ω). The operatorK operates on
single time steps only, however, the analysis can be generalized for time dependent K (cf. com-
ment). Note that due to the embedding of Sobolev spaces W 1,s into BV , the results can also be
generalized to other gradient regularizations with s > 1. Finally, we mention that in the case
of the continuity equation as a constraint the results can even be obtained under weaker condi-
tions if the continuity equation is considered in a weak form; we refer to [18] for further details.

Note that for the following analysis the bound on the divergence of v is crucial. The
chosen bound for v induces a condition on the space Θ for which we will need to assume that

(3.2) ∃s > 1, k > 2 : Lp
∗s(0, T ;Lk(Ω))2 ↪→ Θ

with p∗ being the Hölder conjugate of p.
Our main result in this section is the following.

Theorem 3.1. Let Ω ⊂ R2, p, q > 1, p̂ = min {p, 2}, K1 6= 0, and (3.2) be satisfied. Then
there exists a minimizer of (3.1) in the space{

(u,v) : u ∈ Lp̂(0, T ;BV (Ω)),v ∈ Lq(0, T ;BV (Ω))2,∇ · v ∈ Θ
}
.

The proof of Theorem 3.1 is based on an application of weak lower semicontinuity and com-
pactness techniques. It follows from the following three properties established below:

1. Weak-star compactness of sublevel sets (coercivity) is shown in Lemma 3.2,
2. Weak-star lower semicontinuity follows from Lemma 3.3,
3. Closedness of the constraint set via convergence in a distributional sense is the most

challenging part and will be proven in Lemma 3.6.
We finally mention that most arguments can be extended in a straightforward way if

the operator K also changes with time by assuming appropriate regularity assumptions, e.g.,
having a linear operator bounded into L2(0, T ;F).

3.1. Coercivity and lower semicontinuity. We mention that coercivity and lower semi-
continuity are independent of the constraint.

Lemma 3.2 (coercivity). Let p̂ = min {p, 2}, K1 6= 0, and (u,v) be such that

J(u,v) ≤ ν, ‖v‖∞ ≤ c∞.
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Then there exists c ∈ R such that

‖u‖Lp̂(0,T ;BV (Ω)) ≤ c, ‖v‖Lq(0,T ;BV (Ω)) ≤ c,

and, consequently, the sublevel set

Sν := {u ∈ Ω : J(u,v) ≤ ν}

is not empty and precompact in the weak-star topology of Lp̂(0, T ;BV (Ω))×Lq(0, T ;BV (Ω))2.

Proof. We begin with the bound for u and have to prove that for arbitrary u ∈
Lp(0, T ;BV (Ω)) with J(u, ·) ≤ ν we have

‖u‖p̂
Lp̂(0,T ;BV (Ω)) ≤ 2p̂−1

(∫ T

0
‖u‖p̂

L1(Ω) dt+
∫ T

0
|u|p̂BV (Ω) dt

)
≤ c.(3.3)

To deduce this bound we need to estimate each of the two terms in the last line of the
inequality.

Since all three terms in energy (3.1) are positive, from J(u,v) ≤ ν we directly get a bound
on each of the three parts. It follows that

‖Ku− f‖L2(0,T ;L2(Ω)) ≤ ν,

which naturally implies

(Ku(·, t)− f(·, t)) ∈ L2(Ω) a.e. in [0, T ] .

Consequently, ‖Ku(·, t)− f(·, t)‖L2(Ω) is bounded almost everywhere in t ∈ [0, T ] and we
define

cK(t) := ‖Ku(·, t)− f(·, t)‖L2(Ω) .

We want to emphasize here that cK(t) gives a constant for every time step t ∈ [0, T ], but the
integral

∫ T
0 cp̂Kdt is only bounded for 1 < p̂ ≤ 2 due to the L2-regularity in time.

Proceeding now to (3.3) we directly get from J(u, ·) ≤ ν that∫ T

0
|u|pBV (Ω) dt =

∫ T

0
TV (u)pdt ≤ ν.

Consequently, the crucial point is to find a bound for ‖u‖Lp(0,T ;L1(Ω)). Let t ∈ [0, T ] be an
arbitrary time step. First, we deduce a bound for this single time step ‖u(·, t)‖L1(Ω) and start
with a decomposition for u:

ū =
1
|Ω|

∫
Ω
u(x, t)dx, u0 = u(·, t)− ū.

From this definition it follows directly that u0 fulfills∫
Ω
u0dx = 0 (mean value zero),
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and TV (u(·, t)) = TV (u0) ≤ ν. Using the Poincaré–Wirtinger inequality [28] we obtain an L2

bound for u0:

‖u0‖L2(Ω) ≤ c3TV (u0) ≤ c3ν,

where c1, c2, and c3 are positive constants. Moreover, we need a bound for ‖Kū‖L2(Ω), which
we get by calculating

‖Kū‖2L2 − 2 ‖Kū‖L2 (‖K‖ ‖u0‖L2 + ‖f‖L2) ≤ ‖Kū‖2L2 − 2 ‖Ku0 − f‖L2 ‖Kū‖L2

≤ ‖Ku0−f‖2L2 +‖Kū‖2L2−2 ‖Ku0−f‖L2 ‖Kū‖L2

= (‖Ku0−f‖L2−‖Kū‖L2)2≤‖Ku0 +Kū− f‖2L2

= ‖Ku(·, t)− f(·, t)‖2L2 ≤ cK(t)2.

Defining x := ‖Kū‖L2(Ω) , a := ‖K‖ ‖u0‖L2(Ω) +‖f‖L2(Ω), we get the simple quadratic inequal-
ity

x2 − 2xa ≤ cK(t)2(3.4)

and, furthermore, know

0 ≤ a ≤ ‖K‖ c3ν + ‖f‖L2(Ω) =: c4.

Plugging this into the quadratic inequality (3.4) yields the solution

0 ≤ x ≤ c4 +
√
ν + c2

4 ≤ c4 + c7(cK(t) + c4).

The assumption K1 6= 0 leads to an estimate for the operator

‖Kū‖L2(Ω) =
∣∣∣∣ 1
|Ω|

∫
Ω
udx

∣∣∣∣ ‖K1‖L2(Ω) ≤ c4 +
√
ν + c2

4

⇔
∣∣∣∣ 1
|Ω|

∫
Ω
udx

∣∣∣∣ ≤ c4 + c7(cK(t) + c4)
‖K1‖L2(Ω)

=: c5(t).

We are now able to bound the L1 norm of a single time step t ∈ [0, T ] by a constant cu(t) as
follows:

0 ≤ ‖u(·, t)‖L1(Ω) ≤ c6 ‖u(·, t)‖L2(Ω) = c6

∥∥∥∥u0 +
1
|Ω|

∫
Ω
u(x, t)dx

∥∥∥∥
L2(Ω)

≤ c6

(
‖u0‖L2(Ω) +

∣∣∣∣ 1
|Ω|

∫
Ω
u(x, t)dx

∣∣∣∣) ≤ c6 (c3ν + c5(t)) =: cu(t).

Since we are integrating over all these constants cu(t) and the integral is only bounded for
1 < p̂ ≤ 2, we see that the assumption on p̂ and p is crucial. Consequently, we have∫ T

0
‖u(·, t)‖p̂

L1(Ω) dt ≤
∫ T

0
cu(t)p̂dt ≤ cM .
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JOINT MOTION ESTIMATION AND IMAGE RECONSTRUCTION 103

Combining both estimates we conclude with the required bound for arbitrary u ∈
Lp̂(0, T ;BV (Ω)):

‖u‖p̂
Lp̂(0,T ;BV (Ω)) =

∫ T

0
‖u‖p̂BV (Ω) dt ≤

∫ T

0
‖u‖p̂

L1(Ω) dt+
∫ T

0
|u|p̂BV (Ω) dt ≤ cMT + ν.

A bound for v is easier to establish, since we have ‖v‖L∞(Ω) ≤ c∞ (see (2.3)) almost every-
where. Similar to u, from J(u,v) ≤ ν we obtain the a priori bound∫ T

0
|v(·, t)|qBV (Ω) dt ≤ ν

for v from (3.1). We calculate the bound for v directly as

‖v‖qLq(0,T ;BV (Ω)) =
∫ T

0
‖v(·, t)‖qBV (Ω) dt ≤

∫ T

0
‖v(·, t)‖q

L1(Ω) dt+
∫ T

0
|v(·, t)|qBV (Ω) dt

≤
∫ T

0
cqv |Ω|dt+ ν = cqv |Ω|T + ν,

where we have used the L∞ bound on v. Combining the bounds for u and v, we conclude
with an application of the Banach–Alaoglu theorem (see, for example, [35]), which yields the
required compactness result in the weak-star topology:

It can be shown that BV (Ω) is the dual space of a Banach space Y (see [14]). From the
duality theory of Bochner spaces (cf. [16]) we get

Lp̂(0, T ;BV (Ω)) = Lp
∗
(0, T ;Y(Ω))∗,

where p∗ is the Hölder conjugate of p. With the same argumentation we get

Lq(0, T ;BV (Ω)) = Lq
∗
(0, T ;Y(Ω))∗.

Since both spaces are duals, an application of the Banach–Alaoglu theorem yields the com-
pactness in the weak-star topology.

Lemma 3.3. The functional J is lower semicontinuous with respect to the weak-star topol-
ogy of Lp̂(0, T ;BV (Ω))× Lq(0, T ;BV (Ω))2.

Proof. Norms and affine norms as well as their powers with an exponent larger than or
equal to one are always convex. Convex functionals on Banach spaces can be proven to be
weakly lower semicontinuous. Due to the reflexivity of L2 we directly obtain weak-star lower
semicontinuity.

Furthermore, it can be shown [14] that the TV is weak-star lower semicontinuous. This
property holds for exponentials p of TV satisfying p > 1.

Lower semicontinuity holds for sums of lower semicontinuous functionals, which concludes
the proof.

3.2. Convergence of the constraint. For completing the existence proof we have to de-
duce closedness of the constraint set. Consider admissible sequences un and vn in a sublevel
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set of J . From the regularization we obtain boundedness and consequently weak∗ convergence

un ⇀∗ u, vn ⇀∗ v.

In this context, the most challenging point is to prove convergence (in at least a distributional
sense) of the constraint

(ut)n +∇un · vn → ut +∇u · v.

The major problem arises from the product ∇un · vn, which does not necessarily converge to
the product of their individual limits. A counterexample can be found in [41]. To achieve
convergence we need at least one of the factors to converge strongly, but this cannot be deduced
from boundedness directly. A way out uses the Aubin–Lions theorem [2, 27, 40] which yields
a compact embedding

Lp(0, T ;X ) ⊂⊂ Lp(0, T ;Y),

and hence strong convergence in Y, if un is bounded in Lp(0, T ;X ) and (ut)n is bounded
in Lr(0, T ;Z) for some r for Banach spaces X ⊂⊂ Y ↪→ Z. Applied to our case we set
X = BV (Ω) and Y = Lr(Ω). For further analysis it is crucial to consider velocities v in the
set

(3.5) V =
{
v ∈ L∞(Ω)2 : ‖v‖∞ ≤ c∞, ‖∇ · v‖Θ ≤ c

∗}
for positive constants c∞ and c∗.

The first goal is to calculate a bound for (ut)n in some Lebesgue space Lr(0, T ;Z), which
is given by the following lemma.

Lemma 3.4 (bound for ut). Let Ω ⊂ R2, u ∈ Lp(0, T ;BV (Ω)),v ∈ Lq(0, T ;BV (Ω))2 ∩ V
such that ut +∇u · v = 0.

Then we have

ut ∈ L
ps

p+s−1

(
0, T ;L

2k
k+1 (Ω)

)
with uniform bounds.

Proof. Our goal is to show that a sequence un (we will omit the lower n in the following),
satisfying the optical flow equation, acts as a bounded linear functional in some Bochner space,
thus being an element of the corresponding dual space. We write down the weak form of the
optical flow equation with some test function ϕ:∣∣∣∣∫ T

0

∫
Ω
utϕdxdt

∣∣∣∣ =
∣∣∣∣∫ T

0

∫
Ω
u∇ · (vϕ)dxdt

∣∣∣∣ ≤︸︷︷︸
Hölder

∫ T

0

(∫
Ω
u2dx

) 1
2
(∫

Ω
(∇ · (vϕ))2dx

) 1
2

dt

≤︸︷︷︸
Mink.

∫ T

0
‖u‖L2

[(∫
Ω

(ϕ∇ · v)2dx
) 1

2

+
(∫

Ω
(v · ∇ϕ)2dx

) 1
2

]
dt

=
∫ T

0
‖u‖L2

(∫
Ω

(ϕ∇ · v)2dx
) 1

2

dt︸ ︷︷ ︸
(i)

+
∫ T

0
‖u‖L2

(∫
Ω

(v · ∇ϕ)2dx
) 1

2

dt︸ ︷︷ ︸
(ii)

.
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JOINT MOTION ESTIMATION AND IMAGE RECONSTRUCTION 105

Let us start with an estimate for part (i), which we obtain after three subsequent applications
of the Hölder inequality:∫ T

0
‖u‖L2

(∫
Ω

(ϕ∇ · v)2dx
) 1

2

dt ≤ ‖u‖Lp(0,T ;L2) ‖∇ · v‖Lp∗s(0,T ;L2k) ‖ϕ‖Lp∗s∗ (0,T ;L2k∗ )

for p∗ and s as in the statement of the theorem. An estimate for part (ii) follows using
Cauchy–Schwarz and Hölder:∫ T

0
‖u‖L2

(∫
Ω

(v · ∇ϕ)2dx
) 1

2

dt ≤ cv
∫ T

0
‖u‖L2 ‖ϕ‖W 1,2 dt ≤ cv ‖u‖Lp(0,T ;L2) ‖ϕ‖Lp∗ (0,T ;W 1,2) .

Combining these estimates we obtain∣∣∣∣∫ T

0

∫
Ω
utϕdxdt

∣∣∣∣ ≤ ‖u‖Lp(0,T ;L2) ‖∇ · v‖Lp∗s(0,T ;L2k) ‖ϕ‖Lp∗s∗ (0,T ;L2k∗ )

+ cv ‖u‖Lp(0,T ;L2) ‖ϕ‖Lp∗ (0,T ;W 1,2)

≤ (‖∇ · v‖Lp∗s(0,T ;L2k) + cv) ‖u‖Lp(0,T ;L2) ‖ϕ‖Lp∗s∗ (0,T ;L2k∗ ) .

In the first inequality, we used the embedding

W 1,2(Ω) ↪→ L2k∗(Ω) ∀1 ≤ k∗ <∞.

The sum of the first terms is bounded because of the assumptions made above. A bound for
u follows again from the BV (Ω) embedding into L2(Ω) and we conclude

〈ut, ϕ〉 :=
∫ T

0

∫
Ω
utϕdxdt ≤ C ‖ϕ‖Lp∗s∗ (0,T ;L2k∗ ) .

Thus, ut forms a bounded linear functional on Lp
∗s∗(0, T ;L2k∗(Ω)) and we end up with

ut ∈
(
Lp
∗s∗(0, T ;L2k∗(Ω))

)∗
= L

ps
p+s−1

(
0, T ;L

2k
k+1 (Ω)

)
.

Theorem 3.5 (compact embedding for u). Let Ω ⊂ R2,v ∈ Lq(0, T ;BV (Ω))2 ∩ V. Then
the set

{u ∈ Lp(0, T ;BV (Ω)) : ‖u‖ ≤ C, ut +∇u · v = 0}

can be compactly embedded into Lp(0, T ;Lr(Ω)) for 2k
k+1 ≤ r < 2, and k as in constraint (3.2).

Proof. We have a natural a priori estimate for u in Lp(0, T ;BV (Ω)). We moreover deduced
a bound for ut in L

ps
p+s−1 (0, T ;L

2k
k+1 (Ω)). Embeddings of BV (Ω) into Y = Lr(Ω) are compact

for r < n
n−1 , where n is the spatial dimension. Moreover, the embedding Lr(Ω) ↪→ L

2k
k+1 (Ω)

is continuous for 2k
k+1 ≤ r. Combining this we see that embedding

BV (Ω) ⊂⊂ Lr(Ω) ↪→ L
2k

k+1 (Ω)

is fulfilled for all 2k
k+1 ≤ r < 2. An application of the Aubin–Lions Lemma A.1 yields the

compact embedding

{u : u ∈ Lp(0, T ;BV (Ω)), ut +∇u · v = 0} ⊂⊂ Lp(0, T ;Lr(Ω)).
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Another application of this fairly general result can be found in [18]. With this compact
embedding result we conclude with strong convergence for un → u in Lp(0, T ;Lr(Ω)) and are
now able to prove convergence of the product ∇un ·vn to the product of their individual limits
∇u · v.

Lemma 3.6 (convergence of the constraint). Let Ω ⊂ R2, un ∈ Lp(0, T ;BV (Ω)), and
vn ∈ Lq(0, T ;BV (Ω))2 ∩ V be bounded sequences. Then

(ut)n +∇un · vn ⇀ ut +∇u · v

in the sense of distributions.

Proof. For the following proof let ϕ ∈ C∞0 (Ω), un ∈ Lp(0, T ;BV (Ω)), and vn ∈
Lq(0, T ;BV (Ω))2. For the time derivative we simply calculate∫ T

0

∫
Ω

((ut)n − ut)ϕdxdt = −
∫ T

0

∫
Ω

(un − u)ϕtdxdt→ 0.

Since test functions are dense in the dual space of u, we directly obtain convergence from the
weak convergence un ⇀ u. For the second part we begin with an analogous argument and
estimate

−
∫ T

0

∫
Ω

(∇un · vn −∇u · v)ϕdxdt

=
∫ T

0

∫
Ω
un∇ · (ϕvn)− u∇ · (ϕv)dxdt

=
∫ T

0

∫
Ω

(un − u)∇ · (ϕvn)dxdt︸ ︷︷ ︸
(i)

+
∫ T

0

∫
Ω
u∇ · (ϕ(vn − v))dxdt︸ ︷︷ ︸

(ii)

.

Part (i) can be estimated as follows:∫ T

0

∫
Ω

(un − u)∇ · (ϕvn)dxdt

≤ ‖un − u‖Lp(0,T ;Lr) ‖ϕ∇ · v
n + vn · ∇ϕ‖Lp∗ (0,T ;Lr∗ )

≤ ‖un − u‖Lp(0,T ;Lr(Ω)) · (‖ϕ∇ · v
n‖Lp∗ (0,T ;Lr∗ (Ω)) + ‖vn · ∇ϕ‖Lp∗ (0,T ;Lr∗ (Ω)))

≤ ‖un − u‖Lp(0,T ;Lr(Ω))

· (‖ϕ‖Lp∗s∗ (0,T ;Lr∗ (Ω))‖∇ · v
n‖Lp∗s(0,T ;Lr∗ (Ω))︸ ︷︷ ︸

(i.1)

+ ‖vn · ∇ϕ‖Lp∗ (0,T ;Lr∗ (Ω))︸ ︷︷ ︸
(i.2)

).

(i.1): ϕ is a test function and therefore bounded. From the assumptions we also have
∇ · vn ∈ Lp∗s(0, T ;L2k(Ω))2. Consequently, we have to prove

Lp
∗s(0, T ;L2k(Ω)) ↪→ Lp

∗s∗(0, T ;Lr
∗
(Ω)).

In terms of the embedding theory of Lebesgue spaces we show that 2k ≥ r∗. At this point it
is important to keep in mind that r and r∗ are Hölder conjugated and the embedding theorem
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for optical flow allows 2k
k+1 ≤ r < 2. The condition 2k ≥ r∗, on the other hand, translates to

2k
2k−1 ≤ r, which is smaller than 2 for all k > 1. By taking max( 2k

k+1 ,
2k

2k−1) ≤ r both of our r
conditions are satisfied. This yields the required bound for ∇ · vn in Lp

∗s∗(0, T ;Lr
∗
(Ω)).

(i.2): This part is bounded by a constant due to the boundedness of vn and the charac-
teristics of ϕ. Following the arguments for strong convergence of u from above, we conceive
that (i) tends to zero.

Estimating part (ii) again requires Lebesgue embedding theory, since∫ T

0

∫
Ω
u∇ · (ϕ (vn − v)) dxdt =

∫ T

0

∫
Ω
uϕ∇ · (vn − v)︸ ︷︷ ︸

(ii.1)

+u(vn − v) · ∇ϕ︸ ︷︷ ︸
(ii.2)

dxdt.

(ii.1): Using Lebesgue embedding theory we show

Lp(0, T ;BV (Ω)) ↪→ Lp(0, T ;L
2k

2k−1 (Ω)) = Lp(0, T ;L(2k)∗(Ω))

↪→ L
ps

ps−p+1 (0, T ;L(2k)∗(Ω)) = L(p∗s)∗(0, T ;L(2k)∗(Ω)).

Consequently, u ∈ L(p∗s)∗(0, T ;L(2k)∗(Ω)), which is the dual of Lp
∗s(0, T ;L2k(Ω)). Due to the

weak-star convergence of ∇ · vn part (ii.1) tends to 0 as n→∞.
(ii.2): The boundedness of v gives us v ∈ L∞([0, T ]×Ω) and a priori weak-star convergence.

Consequently, we need u∇ϕ ∈ L1([0, T ] × Ω). Due to the compact embedding BV (Ω) ⊂⊂
L1(Ω) and p > 1 we get Lp(0, T ;BV (Ω)) ↪→ L1(0, T ;L1(Ω)). This gives us u ∈ L1([0, T ]×Ω)
and since test functions are dense in L1 we end up with the required u∇ϕ ∈ L1([0, T ]× Ω).

Putting all arguments together we end up with convergence of the constraint

lim
k→∞

∣∣∣∣∫ T

0

∫
Ω

(∇un · vn −∇u · v)ϕdxdt
∣∣∣∣ ≤ C lim

k→∞
‖un − u‖Lp(0,T ;Lr)

+ lim
k→∞

∣∣∣∣∫ T

0

∫
Ω
uϕ∇ · (vn − v)dxdt

∣∣∣∣
+ lim
k→∞

∣∣∣∣∫ T

0

∫
Ω
u(vn − v) · ∇ϕdxdt

∣∣∣∣ = 0.

In the numerical part of the paper (section 4), we will reformulate the constrained problem
into an unconstrained formulation using an L1 penalty for the optical flow constraint. In the
following lemma we prove convergence of solutions of the unconstrained problem to solutions
of the constrained formulation when the penalty weight tends to infinity. Let therefore J∞
denote the functional in the constrained formulation discussed so far and

Jγ(u,v) :=
∫ T

0

1
2
‖Ku− f‖22 + α |u(·, t)|BV + β |v(·, t)|BV + γ ‖ut +∇u · v‖1 dt,(3.6)

an unconstrained formulation of our model using an L1 penalty term with weight γ > 0.
Further let

J∞(u,v) :=

{∫ T
0

1
2 ‖Ku− f‖

2
2 + α |u(·, t)|BV + β |v(·, t)|BV dt if ut +∇u · v = 0,

+∞ otherwise.
(3.7)

In what follows we consider the minimization of Jγ and J∞, respectively, in the set
Lp(0, T ;BV (Ω))× (Lq(0, T ;BV (Ω))2 ∩ V).D
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Lemma 3.7. The functionals Jγ are equicoercive in Lp(0, T ;BV (Ω))×(Lq(0, T ;BV (Ω))2∩V)
and Γ-converge to J∞ on bounded sets in the weak∗ topology of Lp(0, T ;BV (Ω)) ×
Lq(0, T ;BV (Ω))2.

Proof. The existence of a solution for Jγ can be shown in analogy to the existence proof
of the constrained model. Moreover, Jγ are equicoercive since Jγ ≥ J0.

In order to show Γ-convergence we need to show the lower and upper bound inequalities.
The upper bound inequality follows in a straightforward way by choosing the recovering se-
quence for (u,v) to be (uγ ,vγ) = (u,v). Now, let (uγ ,vγ) be a sequence of converging to
(u,v) in the weak∗ topology. We distinguish two cases:

• Case 1: if (u,v) is admissible, i.e., ut +∇u · v = 0, then J∞(u,v) = J0(u,v). Due to
the lower-semicontinuity of J0 and the nonnegativity of the penalty term we have that

J0(u,v) ≤ liminfJ0(uγ ,vγ) ≤ liminfJγ(uγ ,vγ).

• Case 2: if (u,v) is not admissible, i.e., ut +∇u · v 6= 0, then by lower semicontinuity

0 < ‖ut +∇u · v‖ ≤ liminf‖(uγ)t +∇uγ · vγ‖,

hence, liminf‖(uγ)t +∇uγ · vγ‖ =∞ = J∞(u,v).

4. Primal-dual numerical realization. Similarly to the analytical part, we illustrate the
numerical realization of the joint TV-TV optical flow model. Numerical schemes for the
other models can be derived with only minor changes. We refer to [18] for details. The
proposed energy (3.1) is a constrained minimization problem. The constraints on v and ∇ · v
are technical assumptions for the analysis of the model, where the bounds can be chosen
arbitrarily large. Therefore, we neglect them in the following in the numerical considerations.
The common strategy for solving constrained optimization problems with linear constraints
(such as Au = f with some linear operator A) is an alternating direction method of multipliers
(ADMM) [32] or split Bregman [24] method. Unfortunately, these methods cannot be applied
directly in our case due to the nonlinearity of the optical flow constraint ut +∇u · v = 0. In
Appendix C we discuss a potential way of adjusting the ADMM method to our problem.

Here, we propose a different method that can be justified both from the theoretical and
the numerical viewpoint. By introducing an L1 penalty term for the optical flow constraint
with additional weight γ we obtain an unconstrained joint minimization problem

arg min
u,v

∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + β

(
‖∇v1‖2,1 + ‖∇v2‖2,1

)
+ γ ‖ut +∇u · v‖1 dt.

(4.1)

In the problem above, the BV seminorm has been replaced with the discrete isotropic TV
defined as

‖∇u‖2,1 :=
∑
i,j

∣∣∣∣√ux(i, j)2 + uy(i, j)2

∣∣∣∣ .
In Lemma 3.7 we have proven that (4.1) converges for γ → ∞ to the minimizer of the
constrained model and we discuss this strategy from a numerical point of view in section 5.4.
Due to the dependence of energy (4.1) on the product of ∇u · v, the energy is nonlinear and
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therefore nonconvex. Moreover the involved L1 norms are nondifferentiable and we have linear
operators acting on u and v. Hence, minimizing the energy is numerically challenging.

We propose an alternating minimization technique, switching between minimizing with
respect to u and with respect to v, while fixing the other variable. This leads to the following
two-step scheme:

uk+1 = arg min
u

∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + γ

∥∥∥ut +∇u · vk
∥∥∥

1
dt,(4.2)

vk+1 = arg min
v

∫ T

0

∥∥∥uk+1
t +∇uk+1 · v

∥∥∥
1

+
β

γ

(
‖∇v1‖2,1 + ‖∇v2‖2,1

)
dt,(4.3)

where each of the subproblems is now convex and a primal-dual algorithm [17, 33] can be
applied.

Problem in u. Illustrating the problem in u, we have to solve a classical ROF problem [34]
coupled with an additional transport term arising from the optical flow component. Each of
the terms contains an operator and is therefore dualized. We set

F (Cu) :=
∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + γ

∥∥∥(Dt + vk1Dx + vk2Dy

)
u
∥∥∥

1
dt

with an underlying operator

Cu =

 K
∇

Dt + vk1Dx + vk2Dy

u.

We first write down the convex conjugate F ∗ corresponding to F :

F ∗(y) =
∫ T

0

1
2
‖y1‖22 + 〈y1, f〉+ δ{y:‖y‖2,∞≤1}(y2/α) + δ{y:‖y‖∞≤1}(y3/γ)dt.

We refer to Appendix D for a detailed notation and derivation of the convex conjugates. This
leads to the primal-dual problem

arg min
u

arg max
y

∫ T

0
〈Cu,y〉 − 1

2
‖y1‖22 − 〈y1, f〉 − δ{y:‖y‖2,∞≤1}(y2/α)− δ{y:‖y‖∞≤1}(y3/γ)dt.

Plugging this into the primal-dual algorithm yields the following iterative systems consisting
mostly of proximity problems

ỹl+1 = yl + σC
(

2ul − ul−1
)
,

yl+1
1 = arg min

y

{∫ T

0

1
2

∥∥∥y − ỹ1
l+1
∥∥∥2

2
+
σ

2
‖y‖22 + σ〈y, f〉dt

}
,

yl+1
2 = arg min

y

{∫ T

0

1
2

∥∥∥y − ỹ2
l+1
∥∥∥2

2
+ δ{y:‖y‖2,∞≤1}(y/α)dt

}
,

yl+1
3 = arg min

y

{∫ T

0

1
2

∥∥∥y − ỹ3
l+1
∥∥∥2

2
+ δ{y:‖y‖∞≤1}(y/γ)dt

}
,

ul+1 = arg min
u

{∫ T

0

1
2

∥∥∥u− (ul − τCTyl+1
)∥∥∥2

2
dt
}
.
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The parameters σ, τ refer to step sizes. The have to fulfill τσ‖C‖ ≤ 1 and can be chosen in
analogy to [17]. The subproblem for y1 is a linear L2 problem which has a direct solution.
Both problems for y2 and y3 can be solved by projecting pointwise onto the unit ball with
radius α, respectively, γ. This leads to the iterative scheme

ỹl+1 = yl + σC
(

2ul − ul−1
)
,

yl+1
1 =

ỹl+1
1 − σf
σ + 1

, yl+1
2 = πα

(
ỹ2
l+1
)
, yl+1

3 = πγ

(
ỹ3
l+1
)
,

ul+1 = ul − τCTyl+1.

The projection onto the unit ball is given by

πα(y) =
y

max(1, ‖y‖2α )
.

Problem in v. The problem in v is a simple L1-TV optical flow problem. As a first step,
we define λ := β

γ and split out the regularizer in analogy to the problem for u. This leads to
the primal-dual formulation of the problem

arg min
v

arg max
y

∥∥∥uk+1
t +∇uk+1 · v

∥∥∥
1

+ 〈Cv,y〉 − δ{y:‖y‖2,∞≤1}

(y1

λ

)
− δ{y:‖y‖2,∞≤1}

(y2

λ

)
,

where Cv :=
(∇ 0

0 ∇
)
v.

Plugging this into the primal-dual algorithm yields the following problems:

ỹl+1 = yl + σC
(

2vl − vl−1
)
,

yl+1
1 = arg min

y

{
1
2
‖y − ỹ1‖22 + δ{y:‖y‖2,∞≤1}

(y
λ

)}
,

yl+1
2 = arg min

y

{
1
2
‖y − ỹ2‖22 + δ{y:‖y‖2,∞≤1}

(y
λ

)}
,

vl+1 = arg min
v

{
1
2

∥∥∥v − (vk + τCTyl+1
)∥∥∥2

2
+ τ

∥∥∥uk+1
t +∇uk+1 · v

∥∥∥
1

}
.

Similarly to u, the subproblem for y can be solved by pointwise projections onto the L2 unit
ball with radius λ. The proximal problem in v can be directly solved by an affine linear
shrinkage formula. Therefore, we set

ρ(v) := uk+1
t +∇uk+1 · v, β :=

(
uk+1
x , uk+1

y

)
.

Then the solution is given by

v = ṽl+1 +


τβ if ρ

(
ṽl+1) < −τ ‖β‖22 ,

−τβ if ρ
(
ṽl+1) > τ ‖β‖22 ,

−ρ(ṽl+1)
‖β‖22

β else.
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Combining both formulas we obtain the following scheme:

yl+1 = πλ

(
yl + σC

(
2vl − vl−1

))
,

ṽl+1 = vl − τCTyl+1,

vl+1 = ṽl+1 +


τβ if ρ

(
ṽl+1) < −τ ‖β‖22 ,

−τβ if ρ
(
ṽl+1) > τ ‖β‖22 ,

−ρ(ṽl+1)
‖β‖22

β else.

4.1. Discretization. For the spatial regularization parts ‖∇u‖2,1 and ‖∇v‖2,1 we use
forward differences to discretize the involved gradient, respectively, backward differences for
the adjoint. The coupling term ‖ut +∇xu · v‖1 is the more challenging part. Using forward
differences for the time derivative ut and central differences for the spatial derivatives ∇u
yields a stable discretization of the transport equation, because the scheme is solved implicitly.
Details can be found in Appendix D.

As a stopping criterion for both minimization subproblems we use the primal-dual residual
(see [23]) as a stopping criterion. For the alternating minimization we measure the difference
between two subsequent iterations k and k + 1 by

errmain :=

∣∣uk − uk+1
∣∣+
∣∣vk − vk+1

∣∣
2 |Ω|

and stop if this difference falls below a threshold ε. A pseudocode can be found in Appendix E.

5. Numerical evaluation. The proposed main algorithm is implemented in MATLAB.
For the subproblems in u and v we use the optimization toolbox FlexBox [19]. The toolbox
comes with a C++ module, which greatly enhances the runtime. Code and toolbox and be
downloaded [19]. In the following evaluation, the stopping criterion was chosen as ε = εu =
εv = 10−6. Furthermore, the weighting parameter γ for the optical flow constraint in the joint
model is set to 1 in all experiments, which is enough for practical applications (see Table 1).
The evaluated parameter range for α is the interval [0.01, 0.05], whereas β takes values in
[0.05, 0.1].

5.1. Joint reconstruction and optical flow model versus pure optical flow. In our initial
motivation example in Figure 2 in section 2.1 we compare our joint TV-TV optical flow model
with the TV-L1 optical flow model on the Dimetrodon sequence from [3] with increasing levels
of noise. We use additive Gaussian noise with variance σ ∈ [0, 0.03]. For the pure optical flow
model the parameter ranges in [0, 0.2]. Both plots from Figure 2 indicate that our joint
approach outperformes the pure optical flow model especially at higher noise levels.

5.2. Denoising and motion estimation. To demonstrate the benefits of our model we
compare the TV-TV optical flow model with different classical methods for image denoising
and motion estimation, on different datasets. For image denoising we compare our joint model
with a standard two-dimensional (2d) ROF model [34] and with a modified 2d+t ROF model
from [37], which contains an additional time regularization ‖ut‖1 for the image sequence. Both
regularizers are equally weighted. For motion estimation purposes we calculate the motion
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Table 1
Energies for the L1 optical flow penalty term ‖v̄ · ∇ū+ ūt‖1 and scaled with the L1 norm u ‖v̄·∇ū+ūt‖1

‖ū‖1
for

the evaluated datasets from section 5.2.

γ Dimetrodon Grove 2 Hydrangea Rubber whale Urban 2
0.01 1.12e-02 2.26e-02 1.36e-02 2.82e-02 1.20e-02 2.31e-02 1.19e-02 2.19e-02 1.04e-02 2.80e-02
0.1 1.03e-03 1.91e-03 2.03e-03 4.14e-03 1.16e-03 1.96e-03 1.11e-03 1.98e-03 8.82e-04 2.11e-03

1 3.05e-04 5.41e-04 7.99e-04 1.73e-03 1.55e-04 2.21e-04 1.32e-04 2.39e-04 1.78e-04 4.48e-04

field with a TV-L1 optical flow approach for noisy and for previously TV-denoised image
sequences.

Due to the limitations of our model to movements of small magnitude that arise from
the first-order Taylor expansion, we take datasets from the Middlebury optical flow database
[3] and scale down the available ground-truth flow to a maximum magnitude of 1. After-
wards, these downscaled flows are used to create sequences of images by cubic interpolation of
I1(x + kv) (k represents the kth consecutive image). The image sequence is then corrupted
with Gaussian noise with variance σ = 0.002. The weights for each algorithm are manually
chosen to obtain the corresponding best results.

Table 2 contains the evaluation results. It becomes clear that our model outperforms
both the standard method for image denoising as well as the method for motion estimation
significantly. The visualized results can be found in Figure 3. The images suggest good de-
noising properties while the estimated motion field contains some significant errors which may
arise from the noise in the input images. In general, higher regularization parameters for the
flow field generate a better structural similarity index (SSIM)/average endpoint error (AEE)
ratio. Consequently, the resulting motion fields are dominated by a few constantly moving
regions. For example the Dimetrodon sequence (first row in Figure 3) is well approximated by
motion in one main direction, except for a few small outliers that occur due to the L1 optical
flow constraint. For datasets that have many objects moving towards different directions,
the motion field contains more regions of constant direction. Artifacts appear especially at
the boundaries of moving objects, as for example in the Hydrangea and City dataset (third
and fifth row in Figure 3). The denoised images, nevertheless, appear visually pleasing. In
contrast to standard TV regularization finer details are also visible as, for example, the small
tree in the Grove sequence or the structure of the curtains in the rubber whale dataset.

5.3. Temporal inpainting. The proposed model can be adjusted to perform temporal
inpainting. Therefore, the data fidelity term ‖Ku− f‖22 is evaluated only on known frames
and the weight α for the total variation is set to zero for unknown frames. A proof of concept
is shown in Figure 4, where we chose two known frames as start and end position of the block
and let our model interpolate 60 frames in-between given the flow field v. As a comparison,
the linear interpolation between both images is shown as well. Our model transports the block
from top to bottom smoothly, while the linear interpolation fades out the top block, fades in
the bottom block, and keeps the middle part constant.

As a real data application we choose the Hamburg taxi sequence from Nagel and the Mini
Cooper sequence from the Middlebury database. Both image sequences have an underlying
motion with a magnitude larger than one pixel. The model can be adjusted to this situation
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Table 2
Table comparing the joint motion estimation and image reconstruction model with classical models for

image denoising and motion estimation. ROF 2D: Rudin–Osher–Fatemi model applied to single frames of the
image sequence; ROF 2 D+t: ROF model with additional time-regularization; OF Noisy: TV-L1 optical flow
model applied to noisy images; OF Denoised: TV-L1 optical flow model applied to previously TV-denoised
images. Previously undefined heading abbreviations are peak signal-to-noise ratio (PSNR) and angular error
(AE).

Dataset Algorithm SSIM PSNR AEE AE

Dimetrodon

optical flow noisy - - 0.253 0.164
ROF2D & optical flow 0.86621 79.3403 0.066 0.044
BM3D & optical flow 0.89688 80.5991 0.071 0.047

VBM3D & optical flow 0.924 82.693 0.067 0.045
our joint model 0.917 82.436 0.061 0.041

Grove 2

optical flow noisy - - 0.298 0.189
ROF2D & optical flow 0.734 74.454 0.090 0.060
BM3D & optical flow 0.792 75.551 0.089 0.059

VBM3D & optical flow 0.853 77.667 0.081 0.053
our joint model 0.851 78.030 0.069 0.046

Hydrangea

optical flow noisy - - 0.261 0.167
ROF2D & optical flow 0.803 76.754 0.085 0.056
BM3D & optical flow 0.839 77.889 0.071 0.047

VBM3D & optical flow 0.869 79.952 0.067 0.045
our joint model 0.871 80.170 0.067 0.044

Rubber whale

optical flow noisy - - 0.255 0.164
ROF2D & optical flow 0.777 77.733 0.091 0.061
BM3D & optical flow 0.810 79.173 0.091 0.061

VBM3D & optical flow 0.834 80.539 0.066 0.044
our joint model 0.847 80.478 0.065 0.043

Urban 2

optical flow noisy - - 0.228 0.148
ROF2D & optical flow 0.768 78.211 0.094 0.062
BM3D & optical flow 0.823 79.881 0.086 0.057

VBM3D & optical flow 0.851 81.147 0.080 0.053
our joint model 0.842 80.869 0.080 0.053

by adding additional frames between the known images and using the model to perform
temporal inpainting. The resulting images, time interpolants, and velocity fields are visualized
in Figure 5. We zoom into the image to make differences between original and reconstruction
better visible. The complete images can be found in Appendix E (Figures 8 and 9). In terms
of denoising, both the car in front and the background are more homogeneous. Moreover, the
model generated two time interpolants and estimated the flow on the whole sequence.

5.4. Constrained optical flow. Instead of directly minimizing the analytical model, we
chose an L1 penalty term for the optical flow constraint. From the practical perspective,
the ADMM [32] or split Bregman [24] method could be applied to the analytical model, but
this would lead in both cases to a variational subproblem with an L2 penalty for the optical
flow constraint (see Appendix C). Similarly to our approach, the problem is nonlinear and
nonconvex and could be treated in an alternating manner leading to a slightly modified itera-
tive scheme. However, this would increase the numerical complexity due to the fact that the
nonlinear problem has to be treated in each iteration of the split Bregman or augmented La-
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114 M. BURGER, H. DIRKS, AND C.-B. SCHÖNLIEB

Figure 3. Image sequences that were generated using data from the Middlebury database [3]. Noisy input
image and corresponding reconstruction are shown in the first two columns. Ground-truth velocity field and
estimated velocity field are shown in columns three and four. The figure contains the second image for each
sequence from Table 2.

grangian method, opposed to our framework which requires the solution of only one nonlinear
and nonconvex problem in the L1 penalty.

From the theoretical side, the choice of an L1 penalty is justified in Lemma 3.7, where
we show that an L1 penalty is solved exactly for large weighting factors. We evaluate this
result numerically using Table 1 in which we denoted the energy of the optical flow constraint
‖v̄ · ∇ū+ ūt‖1, where (ū, v̄) denotes the minimizer of each dataset from section 5.2.
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(a) (b) (c) (d)

Figure 4. Temporal inpainting example. For our model, images (a) and (b) are taken as known input data
and the model interpolates 60 frames using the optical flow approach. Image (c) contains frame 30 of the result.
As a comparison, the linear interpolation between frame (a) and (b) is shown in image (d).

5.5. Image sequences with large-scale motion. Due to the linearization of the optical
flow constraint, our model is limited to flows of small magnitude (usually up to one pixel).
To better understand the consequences of violating this assumption, we took the original
Grove 2 sequence from the Middlebury database which has in total eight images and added
Gaussian noise (σ = 0.01). The ground-truth flow is only available between frame four and
five and contains flows up to a magnitude of 5 pixels. First, we applied our classical model
with α = 0.05, β = 0.5, and γ = 1 to the sequence. The resulting images and flow fields can be
found in Figure 6. From a visual point of view, the estimated images look very blurry while
moving objects are visible in the colored flow fields but do not have the correct orientation.
Due to the time discretization using the difference ui+1 − ui, the model calculated flow fields
with a maximum magnitude of 2 pixels. Therefore, from the image reconstruction perspective,
the optical flow term ‖ui+1−ui+∇ui+1 ·vi‖ compares points in ui and ui+1 that do not match,
leading to the blurry result. Next, we used the idea of time interpolation from section 5.3
to address the drawbacks of the standard model. The temporal resolution is enhanced and
therefore the motion between consecutive images is reduced. The results can be found in
rows four and five in Figure 6. The images look less blurry and the velocity fields are already
pointing towards the correct direction.

A third possible approach is given by reducing the spatial resolution of the images and
therefore lowering the magnitude of motion. This approach leads to well-known coarse-to-fine
optical flow approaches (see, e.g., [31]). Figure 6 also contains results of a modified large-
scale framework (see [20]) that is able to handle large-scale motion fields. For the large-scale
framework, an explicit time discretization is chosen and the following energy is minimized:

(5.1) arg min
u=u1,...,un

v=v1,...vn−1

n∑
i=1

1
2
‖Aiui−f i‖22 +α

∥∥∇ui∥∥1,2 +
n−1∑
i=1

‖ui+1(x+vi)−ui‖1 +β

2∑
j=1

∥∥∇vi,j∥∥1,2 .

Similarly to modern optical flow approaches, the flow problem is solved on coarser grids first
and then iteratively refined. This large-scale framework is formalized in a time-discrete sense
and is therefore less amenable to an analytic investigation.
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Figure 5. Zoom into the Hamburg taxi (from Nagel) and Mini Cooper [3] sequences. First and fourth row:
Input images, grey ones are unknown. Second and fifth row: Resulting sequence including time interpolants.
Third and sixth row: Estimated flow fields. The full images can be found in Appendix E (Figures 8 and 9).
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Figure 6. First three frames from the large-scale motion experiment. First row contains input images,
second and third row display the image reconstruction and motion estimation performed by the proposed model,
rows four and five show the results using temporal interpolation, and the last two rows contain results generated
by an improved model for large-scale motion [20].

D
ow

nl
oa

de
d 

07
/1

1/
18

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

118 M. BURGER, H. DIRKS, AND C.-B. SCHÖNLIEB

6. Conclusion. In this paper we propose a joint model for motion estimation and image
reconstruction. The model takes a sequence of noisy images as input and simultaneously
removes noise while estimating the optical flow between consecutive frames. For the proposed
model the existence of a minimizer is proven and we introduce a numerical scheme using an
L1 penalty term for the optical flow constraint aiming at solving the variational energy by
alternately applying a primal-dual method to the problem for the image sequence u and the
flow sequence v. The L1 penalty approach is justified both from the theoretical and numerical
viewpoint. In the results part we show the benefits of our method in contrast to classical
methods for separate image denoising or motion estimation. The presented numerical results
include image denoising and temporal inpainting but note that the well-posedness analyzed in
this paper holds for a general linear operator K and in particular can include image deblurring,
image inpainting, or sampled Radon transform. Finally, we present a main drawback of our
model, namely, its limitation to motion of small magnitude and give an outlook to a possible
extension for large-scale motion fields.

Appendix A. Notations. Throughout this work Ω ⊂ R2
is an image domain and

ΩT := Ω × [0, T ] a space-time domain. Moreover, D′(ΩT ) denotes the space of distributions
on ΩT . The gradient operator ∇ (and the associated divergence operator ∇·) only refers to
the spatial dimensions, while time derivatives are explicitly denoted with subindex t.

The total variation of u is a seminorm in the space of functions with BV(Ω):

BV (Ω) :=

{
u ∈ L1(Ω) : |u|BV = sup

φ∈C∞0 (Ω;RN ),‖φ‖∞≤1

∫
Ω
u∇ · φdx <∞

}
.(A.1)

For a functional J : Ω → R, the sublevel set is the set of all u for which the functional value
lies below α:

Sα := {u ∈ Ω : J(u) < α} .(A.2)

Due to the fact that the image domain consists of time and space, suitable spaces including
space and time are required for the analysis in this paper. The Bochner space

Lp(0, T ;X ) :=
{
u : u(·, t) ∈ X ∀t ∈ [0, T ] ,

∫ T

0
‖u(·, t)‖pX dt <∞

}
is a Banach space with norm

‖u‖Lp(0,T ;X ) =
(∫ T

0
‖u(·, t)‖pX dt

) 1
p

.

A very useful result that will be used in our analysis is the Aubin–Lions lemma.

Lemma A.1 (Aubin–Lions). Let X ,Y,Z be Banach spaces with a compact embedding
X ⊂⊂ Y and a continuous embedding Y ↪→ Z. Let un be a sequence of bounded functions
in Lp(0, T ;X ) and ∂tu

n be bounded in Lq(0, T ;Z) (for q = 1 and 1 ≤ p < ∞ or q > 1 and
1 ≤ p ≤ ∞).

Then un is relatively compact in Lp(0, T ;Y).
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Proof. See [2, 27, 40] for the proof.

In other words: If there exists a compact embedding from one space into another, the
compact embedding carries over to the induced Bochner space if enough time regularity can
be shown.

Appendix B. Error measures. To evaluate the performance of the overall model, quality
measures for the reconstructed image sequence and the velocity field are needed.

To measure the quality of the reconstructed image sequence we consider the structural sim-
ilarity index (SSIM ) [46], which measures the difference in luminance, contrast, and structure
of the ground-truth image u and the reconstruction urec as follows:

SSIM :=
(2µuµurec + C1)(2σu,urec + C2)

(µ2
u + µ2

urec
+ C1)(σ2

u + σ2
urec

+ C2)
,

where µu, µurec , σu, σurec , and σu,urec are local means, standard deviations, and cross covari-
ances for ground-truth image u and reconstruction urec, respectively. The constants are fixed
to C1 = 0.012 and C2 = 0.032. The SSIM takes values between −1 and 1, where 1 stands for
perfect similarity. Moreover, we calculate the SNR and PSNR between ground truth u and
reconstruction urec:

SNR := 10 log10

(
mean(u2)

mean((u− urec)2)

)
,

PSNR := 10 log10

(
max(u2)

mean((u− urec)2)

)
.

For the evaluation of the motion field we refer to the work of Baker et al. [3]. The most
intuitive measure presented there is the average endpoint error AEE proposed in [30], which
is the vector-wise Euclidean norm of the difference vector v−vGT , where v is the reconstructed
velocity field and vGT is the true velocity field. For normalization, the difference is divided
by |Ω| and we have

AEE :=
1
|Ω|

∫
Ω

√
(v1(x)− vGT1 (x))2 + (v2(x)− vGT2 (x))2dx.(B.1)

Another measure we use is the angular error (AE ), which goes back to the work of Fleet and
Jepson [21] and a survey of Barron, Fleet, and Beauchemin [5]. Here v and vGT are projected
into the 3d space (to avoid division by zero) and normalized as follows:

v̂ :=
(v1, v2, 1)√
‖v‖2 + 1

, v̂GT :=
(vGT1 , vGT2 , 1)√
‖vGT ‖2 + 1

.

The error is then calculated measuring the angle between v̂ and v̂GT in the continuous setting
as

AE :=
1
|Ω|

∫
Ω

arccos(v̂(x) · v̂GT (x))dx,
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Appendix C. ADMM Scheme. In this section we present an alternative to the primal-
dual iterative scheme from section 4 which is based on an augmented Lagrangian approach.
For the constrained problem,

arg min
u,v

∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + β

(
‖∇v1‖2,1 + ‖∇v2‖2,1

)
dt,

s.t. ut +∇u · v = 0;

the augmented Lagrangian formulation reads

L(u,v, λ) =
∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + β

(
‖∇v1‖2,1 + ‖∇v2‖2,1

)
+ 〈λ, ut +∇u · v〉+

µ

2
‖ut +∇u · v‖22dt.

The method of multipliers then alternatingly iterates between a minimization problem for
(u,v) and a subsequent gradient ascent for the Lagrange multiplier λ that reads as follows:

(
uk+1,vk+1

)
= arg min

u,v

∫ T

0

1
2
‖Ku− f‖22 + α ‖∇u‖2,1 + β

(
‖∇v1‖2,1 + ‖∇v2‖2,1

)
+
〈
λk, ut +∇u · v

〉
+
µ

2
‖ut +∇u · v‖22dt,

(C.1)

λk+1 = λk + µ
(
uk+1
t +∇uk+1 · vk+1

)
.(C.2)

Problem (C.1) is very similar to our proposed unconstrained L1 minimization formulation (see
(4.1)) with the difference that the optical flow is penalized in the squared L2 norm instead
of the L1 norm and an additional inner product occurs. From the numerical viewpoint the
problem is challenging in the same way due to the nonlinearity of the optical flow formulation.
Similarly to our approach, one could alternately fix u, respectively, v and optimize for the
other variable, but convergence cannot be guaranteed for this scheme either.

A drawback in terms of runtime originates from the iteration between (C.1) and (C.2),
because the full nonlinear problem has to be solved for each iteration.

We have implemented the augmented Lagrangian method for this problem using FlexBox
[19] and alternately minimize with respect to u and v and afterwards update λ. The result
can be found in Figure 7. We can see minor differences compared to the proposed L1 penalty
approach. From a visual point of view, both reconstructions are good and they are hard to
differentiate. For the velocity field, the L1 penalty contains sharper edges, while the augmented
Lagrangian contains smoother transitions in the flow field. The L1 penalty method has an
AEE of 0.069 for the Grove 2 sequence and an AEE of 0.061 for the rubber whale sequence.
The augmented Lagrangian method results for the Grove 2 sequence in a slightly better AEE
of 0.64, but has a worse AEE of 0.68 for rubber whale.

In general, the augmented Lagrangian method does not allow any violation of the optical
flow constraint and results in visually smoother results. The penalty approach on the other
hand allows for outliers and therefore the flow field contains small artifacts where the violation
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Figure 7. Comparison of L1 penalty term for the optical flow constraint versus augmented Lagrangian,
where parameters are the same as in section 5.2. The top and third rows show the second frame of the noisy
input data, the L1 penalty reconstruction, and the augmented Lagrangian reconstruction. The second and fourth
rows show the ground-truth motion field, and the estimated motion fields with L1 penalty reconstruction and
augmented Lagrangian reconstruction, respectively.

of the optical flow constraint is beneficial for the total energy. Both methods will most likely
converge to local minima due the nonlinearity of the problem, but it is unclear if one strategy
is preferable in general. An extended comparison of both methods (and other minimization
approaches) is beyond the scope of this paper.
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Appendix D. Discretization. First, we assume the underlying space-time grid to consist
of the following set of discrete points:

{(i, j, t) : i = 1, . . . , nx, j = 1, . . . , ny, t = 1, . . . , nt} .

Therefore, the image u and each of the vector components v1 and v2 are quantities in X =
Rnxnynt , whereas the (spatial) gradient is a vector in the space Y = X×X. The spaces X and
Y are equipped with standard scalar products. The resulting discrete derivatives for vi are
calculated using forward differences and Neumann boundary conditions. The corresponding
adjoint operator consists of backward differences with Dirichlet boundary conditions and is
applied to the dual variables y. The resulting scheme reads

vix(i, j) =

{
v(i+ 1, j)− v(i, j) if i < nx,

0 if i = nx,

viy(i, j) =

{
v(i, j + 1)− v(i, j) if j < ny,

0 if j = ny,

∇ · y(i, j), =


y1(i, j)− y1(i− 1, j) if i > 1,
y1(i, j) if i = 1,
−y1(i− 1, j) if i = nx,

+


y2(i, j)− y2(i, j − 1) if j > 1,
y2(i, j) if j = 1,
−y2(i, j − 1) if j = ny.

The discrete derivatives for the regularizer of u have the same structure. For the operator in
the optical flow part we use a forward discretization for the temporal derivative and a central
discretization for the spatial derivative. Again, Neumann boundary conditions are applied:

ut(i, j, t) =

{
u(i, j, t+ 1)− u(i, j, t) if t < nt,

0 else,

ux(i, j, t) =

{
u(i+1,j,t)−u(i−1,j,t)

2 if i > 1 and i < nx and t < nt,

0 else,

uy(i, j, t) =

{
u(i,j+1,t)−u(i,j−1,t)

2 if j > 1 and j < ny and t < nt,

0 else.
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The adjoint operator then yields:

yt(i, j, t) =


y(i, j, t)− y(i, j, t− 1) if t > 1 and t < nt,

y(i, j, t) if t = 1,
−y(i, j, t− 1) if t = nt,

yx(i, j, t) =


y(i+1,j,t)−y(i−1,j,t)

2 if i > 1 and i < nx − 1 and t < nt,
y(i+1,j,t)

2 if i ≤ 1 and t < nt,
y(i−1,j,t)

2 if i ≥ nx − 1 and t < nt,

0 else,

yy(i, j, t) =


y(i,j+1,t)−y(i,j−1,t)

2 if j > 1 and j < ny − 1 and t < nt,
y(i,j+1,t)

2 if j ≤ 1 and t < nt,
y(i,j−1,t)

2 if j ≥ ny − 1 and t < nt,

0 else.

The symbol ‖∇u‖2,1 represents the discrete spatial isotropic TV

‖∇u‖2,1 :=
∑
i,j,t

∣∣∣∣√ux(i, j, t)2 + uy(i, j, t)2

∣∣∣∣ .
In analogy we define ‖y‖2,∞ for a vectorial quantity y = (y1, y2) as

‖y‖2,∞ := max
i,j,t

√
y1(i, j, t)2 + y2(i, j, t)2.

The primal-dual formulation of the underlying problems contains several indicator functions
on convex sets denoted as

δY (ỹ) :=

{
0 if ỹ ∈ Y,
∞ else.

For a functional J(x) = ‖x‖2,1, where x = (x1, x2) represents a vectorial quantity on the
previously defined grid, we calculate the convex conjugate J∗(p) as

J∗(p) = sup
x
〈p, x〉 − J(x) = sup

x
〈p, x〉 − ‖x‖2,1

= sup
x

∑
i,j,t

p1(i, j, t)x1(i, j, t) + p2(i, j, t)x2(i, j, t)−
√
x1(i, j, t)2 + x2(i, j, t)2.

At this point the argumentation can be done for each summand independently and we see
that if

√
p1(i, j, t)2 + p2(i, j, t)2 > 1 for any (i, j, t) the supremum takes infinity. If on the

other hand
√
p1(i, j, t)2 + p2(i, j, t)2 ≤ 1 the supremum takes 0. Consequently, we calculate

J∗(p) =

{
0 if maxi,j,t

√
p1(i, j, t)2 + p2(i, j, t)2 ≤ 1,

∞ else,
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as the convex conjugate for the isotropic total variation. For J(x) = 1
2‖x‖

2
2 one can easily

calculate the convex conjugate as J∗(p) = 1
2‖p‖

2
2.

Let us furthermore recall some basic rules for the convex conjugates:

(J(·+ a))∗ = J∗(·)− 〈·, a〉 ,
(J(·) + a)∗ = J∗(·)− a,

(λJ(·))∗ = λJ∗
( ·
λ

)
, λ > 0.

Appendix E. Algorithm.

Algorithm 1 Joint TV -TV Optical Flow Motion Estimation and Image Reconstruction.

function JointTVTVOpticalFlow(f, α, β, γ,K)
v, u ← 0
while ε < threshold do

uOldM ← u
vOldM ← v
y, ū ← 0
while εu < threshold do

uOld ← u
ỹ ← y + σCuū
y1 ← ỹ1−σf

σ+1
y2 ← πα(ỹ2)
y3 ← πγ(ỹ3)
u ← u− τCTu y
ū ← 2u− uOld

end while
y, v̄ ← 0
while εv < threshold do
vOld ← v
ỹ ← y + σCvv̄
y ← πλ(ỹ)
ṽ ← v − τCTv y
v ← solveAffine(ṽ)
v̄ ← 2v − vOld

end while
ε ← |u−uOldM |+|v−vOldM |

2|Ω|
end while
return v

end function

Full resolution of the Hamburg taxi and Mini Cooper sequences are given in Figures 8 and
9.
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Figure 8. Full resolution Hamburg taxi sequence (from Nagel). Left: Input images, black are unknown.
Middle: Resulting sequence including time interpolants.
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Figure 9. Full resolution Mini Cooper sequence (Middlebury). Left: Input images, grey are unknown.
Middle: Resulting sequence including time interpolants. Right: Estimated flow fields.
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