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1 Introduction

The renormalisation group running of parameters from high to low scales is often dom-
inated by infra-red stable fixed points. Formally, these are points in parameter space
where couplings are invariant under the renormalisation group. From any initial values
at say the GUT scale, the couplings will flow asymptotically toward the infra-red fixed
points at lower scales. In certain cases, a possible example being the top-quark Yukawa
coupling, the convergence is enough to increase the predictivity of the theory [1, 2]. In
the Minimal Supersymmetric Standard Model (MSSM) for instance, in the limit that one
can neglect hb, hτ , the bottom and tau Yukawa couplings, a prediction for ht(mt) yields
a prediction for tanβ through the relation

sin β =
mt(mt)

vht(mt)
(1)

where mt(mt) ∼ 167GeV is the running top quark mass extracted from experiment and
v = 174.1GeV is the Higgs vacuum expectation value parameter extracted from MZ . The

MSSM fixed point prediction for ht is ht(mt) =
√

7/18g3(mt), where g3 is the QCD gauge

coupling. For mt(mt) ≈ 167GeV, αs(mt) = 0.108, we obtain the fixed point prediction
ht(mt) = 0.73. Substituting these values into Eq.(1), however, yields sin β = 1.32, and
hence this is an unphysical scenario. There are then two possible scenarios within the
MSSM:

• The assumption of small hb, hτ is not valid and therefore tanβ is large, say tanβ >
30. This possibility was discussed in Ref.[3].

• The top quark Yukawa coupling is outside the domain of attraction of the fixed
point but tan β < 30 is small [2].

In this paper, we shall examine what happens in the second scenario. For larger values
of ht(MGUT ) a different type of behaviour takes over which we shall refer to as quasi-
fixed behaviour (see [4, 5] and references therein). Large values of ht(MGUT ) quickly
converge to the envelope bounding the perturbative region, giving a quasi-fixed point
(QFP) prediction at mt. The QFP limit is formally defined as the landau pole of ht at
the scale MGUT . Although the renormalised top coupling is still running with scale Q it
is insensitive to ht(MGUT ). We define the quasi-fixed regime to be where ht(mt) is close
to the QFP prediction.

These fixed and quasi-fixed behaviours (with electroweak and two-loop contributions
included and for a top mass of 140 GeV) are shown in figure (1), where we show a
numerical running for the MSSM, with a superpotential of the form

W = hUQLH2UR + hDQLH1DR + hELH1ER + µH1εH2, (2)

in which generation indices are implied, and the superfields have the standard defini-
tion [6]. The program described in Ref.[7, 8] is the one we use to perform the running
(without thresholds). We also take αs(mt) = 0.108 throughout, and define MGUT to be
the scale Q for which 3

5
α1(Q) = α2(Q). We do not unify g3 with g2 and g1 because g3 at

the high scale is sensitive to GUT threshold effects [9]. The fixed point is only slightly

2



dependent on the electroweak corrections and the focusing behaviour is not changed signif-
icantly by them, although the numerical value of the QFP prediction is slightly modified.
For this reason we shall neglect electroweak corrections in later analytic discussions of
focusing behaviour and find that, when they are switched off, all our numerical and an-
alytic results are in good agreement. From figure (1), the quasi-fixed point prediction is
ht(mt) = 1.09, so that for mt = 167 GeV, we find tan β = 1.85.

This focusing property of ht is well known; our aim in this paper is to examine what
happens to the other couplings, in particular the soft supersymmetry breaking parameters,
when ht is in the quasi-fixed regime. Many of the soft supersymmetry breaking terms also
have QFPs; in the quasi-fixed regime, their low energy predictions are focused to running
values which are independent of the inputs at MGUT . These soft parameters formally
have true fixed point values as well, but a necessary condition for the true fixed point
predictions to be valid is that ht is at its fixed point prediction, which we have shown
above to be untrue for small tan β and so these values are not physically relevant. Some of
the remaining couplings (which do not formally have QFPs) also have true fixed points,
and they are significantly focused towards them. They might then be said to exhibit
quasi-fixed behaviour even though they are not fully independent of the inputs at the
GUT scale.

The parameter that always has a QFP and that shows the most striking convergence
is At, the trilinear stop coupling [4]. Its running is shown in figure (2) for various starting
values at the GUT scale. When ht is in the quasi-fixed regime, this coupling is determined
to be,

At(mt) = −0.59 mg. (3)

(We use At as shorthand for AU33
and mg for the gluino mass). In this and subsequent

occasions where we demonstrate numerically the (lack of) dependence on the initial con-
ditions, we take, simply for convenience, the supersymmetry breaking terms,

− δL = m2
ijziz

∗

j +
1

2
MAλAλA

+AUhU q̃
∗

Lh2ũR + ADhDq̃
∗

Lh1d̃R + AEhE l̃
∗h1ẽR +Bµh1εh2 + h.c., (4)

to be of the ‘constrained’ MSSM (CMSSM) form at the GUT scale;

AU,D,E = A

m2
ij = δijm

2
0

MA = m1/2. (5)

In Eq.(4), zi stand for all scalar fields in the theory. We will specifically refer to m2
Qij

,

m2
Uij

, m2
Dij

for the left-handed squarks, the right-handed up and the right-handed down
squark soft mass parameters respectively.

Later we shall see why the strong focusing seen in figure (2) is quite independent of the
pattern of supersymmetry breaking. Hence, since both At and tanβ are fully determined
in the quasi-fixed regime, there are at least two less free parameters in all versions of the
MSSM (except trivially the no-scale models). The mass spectrum of the CMSSM, for
example, depends (to first order in mb/mt) only on m0 and m1/2 [4].

The behaviour of At suggests that other low scale soft parameters may be quite in-
sensitive to the high scale inputs and, as stated above, we shall indeed find this to be the
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case, by solving the renormalisation group equations (RGEs) analytically for all the soft
supersymmetry breaking terms including the flavour changing ones. In the CMSSM we
shall show that combinations of the latter also have QFPs.

2 The fixed points

First, let us derive the fixed point values that the couplings would run towards in the
infra-red if the top-quark fixed point were valid. They correspond to the point where
the beta function vanishes for the coupling in question [1, 2]. So, for example, using the
RGEs of Refs.[10] without electroweak or two-loop contributions,

dg3
dt

= −3
g33

16π2

dht

dt
=

ht

16π2
(6h2

t −
16

3
g23), (6)

the RGE of h2
t/g

2
3 [2] vanishes when

h2
t

g23
=

7

18
. (7)

In the evolution from from high to low energy scales, h2
t/g

2
3 runs towards this value

because the fixed point is infra-red stable. A similar procedure can be carried out for
all of the couplings in the MSSM, again neglecting electroweak corrections and all but
the top Yukawa contributions to the running. If there are any large hierarchies in the
soft masses (comparable in size to the hierarchy between the top and bottom Yukawa
couplings) then this approximation may not always be valid. We will investigate this
possibility in detail elsewhere [11]. Normalising the couplings by the gluino mass, so that
Ãt ≡ At/mg, B̃t ≡ B/mg and m̃2

i ≡ m2
i /m

2
g, we find the following infra-red fixed points;

− ÃU =







25
18

25
18

1
25
18

25
18

1
1 1 1





 −ÃD =







16
9

16
9

16
9

16
9

16
9

16
9

89
54

89
54

89
54







m̃2
Q =







8
9

0 0
0 8

9
0

0 0 41
54





 m̃2
U =







8
9

0 0
0 8

9
0

0 0 17
27







m̃2
D =







8
9

0 0
0 8

9
0

0 0 8
9







m̃2
2 = − 7

18

µ2 = 0

B̃ = 7
18
.

(8)

The parameter m2
2 has a negative fixed point, because it is dragged down by the top

Yukawa coupling. This guarantees electroweak symmetry breaking in the fixed regime,
and underlies the breaking that is found away from it. Fixed points for a subset of Eq.(8)
(Ãt, µ, µ̃2

2, m̃2
t , B̃, m̃2

Qt
) were previously found by Lanzagorta and Ross [2], and our

results agree with those. Notice that the fixed points are independent of the quark basis
in which we choose to calculate them (so long as it is still accurate to assume ht ≈ hU33

to be the dominant Yukawa coupling in that basis). (Note, however, that if we choose
a basis where the down quarks’ masses are diagonal at mt, then ADi6=j

is of course not
defined at mt whereas AUi6=j

is, and vice versa.)
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3 Exact one-loop RGE solutions

There is obviously a difference between the fixed point value of At, and that in Eq.(3).
This is because Eq.(3) is in fact also a quasi-fixed point; even though it is focused, At is
still running at mt. Evidently we need to solve the renormalisation group equations and
apply the solutions to the quasi-fixed regime. In this section we do this analytically and
exactly to one loop and in the approximation that the electroweak and non-ht Yukawa
contributions are negligible. It is simplest to do this in terms of the ratio of strong coupling
constants;

r(Q) ≡ α3(MGUT )

α3(Q)
= 1− 6 α3(MGUT ) log ( Q

MGUT
). (9)

The RGE for R ≡ h2
t/g

2
3 may be solved [2] such that

R(r) =
7

18− 18 r7/9 + 7 r7/9R−1
0

(10)

where R0 ≡ R(MGUT ). The fixed point corresponds to r → 0, and the QFP to R0 → ∞
with r = 1/(25 × 0.108) = 0.37, so that R(r) < RQFP (r) = 0.72. Next we solve for
following combinations of couplings to find solutions in terms of Ãt and m̃2

U33
; here the

suffix 0 again implies values taken at the GUT scale and α, β = 1, 2, 3 and i, j = 1, 2

B̃ − 1

2
Ãt = −8

9
(r − 1) + r(B̃ − 1

2
Ãt)|0

ÃD3α
− 1

6
Ãt =

40

27
(r − 1) + r(ÃD3α

− 1

6
Ãt)|0

ÃDiα
=

16

9
(r − 1) + r ÃDiα

|0

ÃUij
− 1

2
Ãt =

8

9
(r − 1) + r(ÃUij

− 1

2
Ãt)|0

ÃU3i
− Ãt = r

(

R r7/9

R0

)1/6

(ÃU3i
− Ãt)|0

ÃUi3
− Ãt = r

(

R r7/9

R0

)1/12

(ÃUi3
− Ãt)|0

m̃2
1 = r2 m̃2

1|0

m̃2
2 −

3

2
m̃2

U33
= −4

3
(1− r2) + r2(m̃2

2 −
3

2
m̃2

U33
)|0

m̃2
Q33

− 1

2
m̃2

U33
=

4

9
(1− r2) + r2(m̃2

Q33
− 1

2
m̃2

U33
)|0

m̃2
Qii

=
8

9
(1− r2) + r2 m̃2

Qii
|0
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m̃2
Uii

=
8

9
(1− r2) + r2 m̃2

Uii
|0

m̃2
Dαα

=
8

9
(1− r2) + r2 m̃2

Dαα
|0

m̃2
Qαβ

= r2
(

R r7/9

R0

)1/12

m̃2
Qαβ

|0 αβ = i3 or 3i

m̃2
Uαβ

= r2
(

R r7/9

R0

)1/6

m̃2
Uαβ

|0 αβ = i3 or 3i, (11)

with the other off-diagonal squark mass squareds m̃2
o being

m̃2
o = r2m̃2

o|0. (12)

We stress that these solutions are for generic couplings2, and care should be taken over
the choice of basis especially for the Ã-terms. One instance is the basis used in Ref.[8],
where the down quarks are diagonal, and the up quark Yukawas are diagonalised just by
a rotation by the CKM matrix on the left handed up quarks. In this basis, Ã3i behaves
more like Ãij because of the cancellation of certain terms in the RGE. Now we need to
solve for Ãt and m̃2

U33
themselves; the RGE for Ãt becomes

r
dÃt

dr
=

16

9
+ 2ÃtR + Ãt (13)

and gives

Ãt =
18

7
R
(

−1 + r7/9(
16

9
− 7

9
r)
)

+
(

R

R0

)

r7/9
(

rÃt|0 −
16

9
(1− r)

)

. (14)

To solve for m̃2
U33

, we form the RGE for Z ≡ m̃2
U33

+ m̃2
Q33

+ m̃2
2 − Ã2

t ,

r
dZ

dr
= −32

9
− 32

9
Ãt + 2ZR + 2Z, (15)

whose solution is

Z =
32

9
R r7/9(1− r)2 +

1

9

(

R

R0

)

r7/9
(

32 r(1− r)Ãt|0 + 9 r2Z|0 −
16

9
(7− 25r)(1− r)

)

. (16)

Substituting from Eq.(11) into Z gives,

m̃2
U33

− 1

3
Ã2

t −
1

3
Z =

8

27
(1− r2) +

1

3
r2(2m̃2

U33
− m̃2

Q33
− m̃2

2)|0. (17)

2Given the proviso of no large hierarchies in soft masses.
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Eqs.(11,12,14,16,17) are completely general solutions to the full set of one-loop RGEs when
ht and g3 are dominant. These solutions are consistent with Ref.[12], where electroweak
corrections were also included. We have presented them here in a form which makes the
dependence on Ãt and Z, two parameters which always have QFPs, clear, and makes
the existence of additional QFPs obvious in more constrained models. (Here we omit
electroweak corrections principally because they only serve to obscure the fixed point
structure which is governed by ht and g3.) We also prefer to leave the dependence on R0

explicit, rather than substitute RQFP .
We are now able to make some comments more specific to the MSSM in the quasi-fixed

regime. Firstly note that, consistent with Ref.[4], at the QFP (R−1
0 = 0), both Ãt and Z

are independent of any of the input parameters. This then is the reason for the remarkable
convergence of Ãt seen in figure (2) and is in fact true of ÃUα3

and ÃU3α
although, generally,

Ãt converges most strongly. Because their leading terms are dependent only on r, it makes
sense to refer to them as QFPs as well. Inserting R = 0.72 and r = 0.37 into Eq.(14), we
find the quasi-fixed value for ÃUα3

and ÃU3α
consistent with the numerical determination

in Eq.(3);
ÃUα3

= ÃU3α
= −0.58. (18)

The remaining A parameters converge approximately linearly to their fixed point, and the
m2 terms quadratically to theirs. This dependence is due to the diverging gluino mass
mg = r−1mg|0.

Coincidentally, in the constrained MSSM (CMSSM), there are a number of other
QFPs which can be deduced from the solutions above (two of which were noted in Ref.[4])
including one for m̃2

U33
itself (which is why we wrote Eq.(11) in terms of it). In our analytic

approximation these are

ÃUα3
= ÃU3α

= −0.58
6

5
ÃD3α

− 2ÃUij
= 0.46

ÃDiα
− 2ÃUij

= 0.58

m̃2
U33

= 0.53

m̃2
Q33

+ m̃2
2 = 0.28

m̃2
Qii

+ 2m̃2
2 = 0.04

m̃2
Uii

+ 2m̃2
2 = 0.04

m̃2
Dαα

+ 2m̃2
2 = 0.04

m̃2
1 + 2m̃2

2 = −0.73

(19)

where the meanings of the indices are as before. In the CMSSM, all of these combinations
are independent of the GUT scale parameters when R0 → ∞, and converge to their QFPs
roughly in the same manner as Ãt. The value of R0 regulates how quickly the convergence
to the QFP occurs (with R−1

0 = 0 giving instant convergence). The running of m̃2
U33

for
various starting values in the CMSSM is shown in figure (3), and the running of the
combinations m̃2

Q33
+ m̃2

2 and ÃD22
− 2ÃU22

are shown, with electroweak and two loop
contributions included, in figures (4) and (5) respectively. These QFPs allow us to assess
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the net effect of electroweak and two-loop contributions; numerically we find

ÃUα3
= ÃU3α

= −0.59
6

5
ÃD3α

− 2ÃUij
= 0.49

ÃDiα
− 2ÃUij

= 0.60

m̃2
U33

= 0.47

m̃2
Q33

+ m̃2
2 = 0.29

m̃2
Qii

+ 2m̃2
2 = 0.04

m̃2
Uii

+ 2m̃2
2 = −0.01

m̃2
Dαα

+ 2m̃2
2 = −0.02

m̃2
1 + 2m̃2

2 = −0.72

(20)

which agree well with the analytic approximation. We stress that the analytic and nu-
merical results provide a powerful (and successful) cross check.

These fixed points reveal a remarkable fact for the CMSSM. We have already noted
that m2

2 is driven negative, a requirement of electroweak symmetry breaking. These
QFPs tell us that, in the quasi-fixed regime, all the remaining squark mass-squareds are
guaranteed to be positive at low energy scales, even if their GUT scale values are zero.

Finally in this section, when can we say that we are in the quasi-fixed regime? As a
working definition, let us define the quasi-fixed regime to be when Ãt varies at the weak
scale by less than 5% of its deviation at the GUT scale. Using the solution for Ãt with
r = 0.37, we find that this is true for a remarkably low value; R0

>∼ 2.5 or

ht(MGUT ) >∼ 1.1 (21)

This is the case for example in models which, with string theory in mind, take as their
Yukawa couplings ht =

√
2g >∼ 1.2 (assuming that renormalisation between the Planck

and GUT scales doesn’t reduce the Yukawa couplings significantly.)

4 The Spectrum

As well as these QFPs for the specific case of the CMSSM, our solutions quite generally
imply a convergence towards the true fixed points in the infra-red. In this section, we
return to non-specific patterns of supersymmetry breaking, to consider what this con-
vergence means for the MSSM in general. We will call the focusing effect quasi-fixed
behaviour.

Clearly quasi-fixed behaviour indicates that uncertainties in our knowledge of GUT
(or Planck) scale physics are less important at low energy. To make this statement quanti-
tative, we introduce a ‘focal factor’ F (Y ) which is defined for some quantity Y (mt) by the
deviation in Y (mt) produced by independently varying all GUT scale input parameters
by 100% of mg (each deviation being added in quadrature). This value is dependent upon
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how near one is to the top Yukawa QFP, and here we assign ht(MGUT ) = 2 as an example.
F (Y ) then gives a measure of the dependence of each parameter upon initial conditions3.

Our prejudice is that the soft supersymmetry breaking terms should all be at least of
the same order of magnitude. Accordingly, we choose to determine the spectrum around
the central values at the GUT scale;

m̃2
ij = Ã = B̃ = 1 (22)

In our analytic approximation we find

− ÃU =







0.67 0.67 0.59
0.67 0.67 0.59
0.59 0.59 0.59





 −ÃD =







0.75 0.75 0.75
0.75 0.75 0.75
0.72 0.72 0.72







m̃2
U =







0.90 0.14 0.08
0.14 0.90 0.08
0.08 0.08 0.54





 m̃2
D =







0.90 0.14 0.14
0.14 0.90 0.14
0.14 0.14 0.90







m̃2
Q =







0.90 0.14 0.10
0.14 0.90 0.10
0.10 0.10 0.72





 m̃2
2 = −0.41 (23)

and the numerical values when all electroweak and two-loop corrections are included are

− ÃU =







0.82 0.87 0.59
0.82 0.97 0.59
0.59 0.59 0.59





 −ÃD =







0.96 0.96 0.96
0.96 0.96 0.96
0.90 0.90 0.90







m̃2
U =







0.91 0.14 0.07
0.14 0.91 0.06
0.07 0.06 0.48





 m̃2
D =







0.91 0.14 0.14
0.14 0.91 0.14
0.14 0.14 0.91







m̃2
Q =







0.98 0.14 0.10
0.14 0.98 0.11
0.10 0.11 0.75






m̃2

2 = −0.46 (24)

Since B̃ and µ̃ are determined by the minimisation of the effective potential they are no
longer free parameters. The focal factors are

F (ÃU) =







.19(.41) .19(.41) .02(.39)

.19(.41) .19(.41) .02(.39)

.02(.30) .02(.30) .02(.02)





 F (ÃD) =







.37(.37) .37(.37) .37(.37)

.37(.37) .37(.37) .37(.37)

.31(.37) .31(.37) .31(.37)







F (m̃2
U) =







.14(.14) .14(.14) .08(.08)

.14(.14) .14(.14) .08(.08)

.08(.08) .08(.08) .02(.17)





 F (m̃2
D) =







.14(.14) .14(.14) .14(.14)

.14(.14) .14(.14) .14(.14)

.14(.14) .14(.14) .14(.14)







F (m̃2
Q) =







.14(.14) .14(.14) .11(.11)

.14(.14) .14(.14) .11(.11)

.11(.11) .11(.11) .07(.11)





 F (m̃2
2) = .08(.11) (25)

3And is also equivalent to the 1σ error in the prediction for Y (mt) produced by assuming that the
GUT scale parameters each have a 1σ deviation of mg̃ around mg̃.
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where the un-bracketed entries are valid in a more constrained (but still non-universal)
case where m2

ij(MGUT ) = m2
0, AU,D,E(MGUT ) = A etc. and the bracketed entries are true

for the general (i.e. unconstrained) MSSM.
As an example, let us determine the squark mass-spectrum for these central values,

whose values we expect to be close to the real ones (modulo the respective focusing
factors). The mass spectrum depends (to first order) only on At through the mixing in
the top squark mass matrix. Since Ãt always has a QFP, tan β is determined, and µ
and B are determined by minimising the effective potential, the entire spectrum depends
only on m̃2

ij and mg. Furthermore, the dependence on m̃2
ij is also reduced by the infra-

red focusing factors above. The minimisation to find µ and B may be done in the same
manner as in described in Refs.[13, 7], and yields the mass spectrum for the squarks shown
in figure (6), which was determined for negative µ. The masses are almost proportional to
mg (deviation from proportionality coming from M2

Z and m2
t terms in the mass-squared

matrices).
We then expect various models of supersymmetry breaking to give a spectrum close

to this one in the quasi-fixed regime (modulo the ‘uncertainty’ represented by the focus
factors above). Even allowing for an uncertainty of 100 % in our knowledge of the pattern
of supersymmetry breaking at the GUT scale, the focal factors tell us that the mass
squareds are determined at the weak scale to better than 14% of m2

g. However, note that
the off-diagonal elements of the squark mass-squareds m̃2

o are given by m̃2
o ∼ 0.1m̃2

o|0, and
so the quasi-fixed behaviour does not predict the squark mixing, it merely says that it
will be fairly small. Thus information about the high-energy physics is retained in the
squark sector in the form of the mixings.

Finally, we stress that the improvement in our knowledge of the mass spectrum is due
to the existence of non-zero true fixed points towards which the soft terms are focusing
in the infra-red, and is not simply due to the diverging gluino mass; if all the fixed points
had been zero, the squark masses would all have been focused towards zero and, relative
to the average squark mass, would have been no better determined than at the GUT
scale.

5 Discussion

We now list the assumptions it is necessary to take in order for our analytic solutions in
Eq.(11) to be accurate:

• A desert consisting of the MSSM between MSUSY and MGUT

• Low tanβ < 30, such that hb and hτ may be regarded as a small perturbation

• No large hierarchies in the soft masses

The last assumption is natural in models of SUSY breaking which have no flavour depen-
dence. A violation of the last assumption may still not be enough to destroy the validity
of all of the QFP predictions [11].

It is striking that just by increasing ht we greatly enhance the predictivity of the
MSSM especially in the mass spectrum. Moreover, the soft mass predictions we find
are broadly in agreement with electroweak symmetry breaking, and with phenomenology;

10



the m2
2 term has a negative fixed point to which it is attracted, and in the CMSSM the

remaining squark mass-squareds are guaranteed to be positive irrespective of their value
at the GUT scale. Perhaps the most interesting and powerful additional constraints may
come from the avoidance of charge and colour breaking minima and potentials which are
unbounded from below [14, 15, 5]. In the CMSSM a strong condition comes from the
slepton mass squareds [15, 5];

m2
2 +m2

L > 0. (26)

From our solutions above this translates into m̃2
1 > 0.72, which, taken at face value, means

quite a strong constraint on m0,
m2

0 > 5.5m2
1/2 (27)

Whether this and all the other constraints are valid and can be satisfied within the
CMSSM will be investigated elsewhere.

Another obvious area of relevance is flavour changing neutral current (FCNC) phe-
nomenology. The focusing behaviour tends to decrease the FCNCs generated from split-
tings of GUT scale soft masses, supporting previous numerical studies [16]. It is clear
however, that the soft parameters do not focus enough to solve the notorious flavour
problem associated with the most general supersymmetric breaking. In fact, avoiding too
large FCNCs typically implies a constraint on parameters such as

m2
s̃ −m2

d̃

m2
s̃ +m2

d̃

.

These are not reduced by the orders of magnitude which would be required for a more
general (non-universal) case.

On the other hand we can say something about a picture of CP violation in the MSSM
which was proposed recently in Ref.[8], where it was suggested that the CP violation
observed in the Kaon system could be solely due to CP violation in the A-terms of the
third generation, with the CKM matrix being entirely real. In the quasi-fixed regime,
we see that this scenario cannot work when the top Yukawa is at the QFP or very large;
the third generation A-terms run to QFPs which are independent of the initial conditions
and which do not violate CP. As we have seen this is a quite general property of the
MSSM. Thus, deep in the quasi-fixed regime of the MSSM, the only possible source of
the observed CP violation is the CKM matrix.

There are many other theoretical and phenomenological aspects of phenomenology
where quasi-fixed behaviour could be of relevance. It would be interesting, for example,
to calculate what FCNCs the spectrum above predicts. A separate question is whether
it is possible to provide similar (but more complicated) analytic solutions for the large
tan β regime.

The inverse (‘bottom up’) approach to that taken in this paper was tried in Ref.[17],
where constraints were placed upon GUT scale values from low energy FCNC constraints.
However if, as seems likely, ht is far above its true-fixed point, then the ‘bottom up’
approach fails (as the authors of Ref.[17] pointed out themselves); a small error in the
low energy constraint (such as two loop effects) produces a large error in the GUT scale
parameters. This is because, in trying to extract information at the GUT scale, one has
to fight against the infra-red fixed point structure (i.e. there is no information accessible
for At(MGUT ) precisely because it has a QFP).

11



In summary, we have presented analytic solutions to the RGEs of the soft parameters
of the MSSM in the low tan β regime, and examined their quasi-fixed behaviour. They are
valid when there are no large hierarchies in the soft parameters. The solutions add to our
understanding of how the RGEs in the MSSM act. They exhibit a strong focusing effect:
i.e. the low energy parameters are insensitive to their high energy values thus showing
quasi-fixed behaviour. The AUα3

and AU3α
parameters actually have QFPs irrespective of

the pattern of supersymmetry breaking, and in the CMSSM there exist other independent
QFPs as well. For values of ht(MGUT ) >∼ 1.1 quasi-fixed behaviour is a dominant feature
of the renormalisation group evolution in the MSSM.
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Figure 1: The two-loop renormalisation of the top Yukawa coupling, ht, formt = 140GeV.
We have included electroweak and hb, hτ corrections and tanβ is determined seperately
for each line by Eq.(1). The true fixed point is ht/g3 = 0.9 and is invariant under the
renormalisation group. Electroweak corrections make this higher than the naive value,

ht =
√

7/18g3. The QFP limit is formally defined as the ht trajectory for which ht has a
Landau pole at MGUT .
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Figure 2: Two-loop renormalisation of At/mg in the CMSSM for various different initial
values, with ht(GUT ) = 5g3(GUT ) and mt = 175GeV. All electroweak and Yukawa
contributions are included.
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Figure 3: Two-loop renormalisation of m2
U33

/m2
g in the CMSSM, with ht(GUT ) =

5g3(GUT ) and mt = 175GeV. All electroweak and Yukawa contributions are included.
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Figure 4: Two-loop renormalisation of (m2
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2
g in the CMSSM, with ht(GUT ) =

5g3(GUT ) and mt = 175GeV. All electroweak and Yukawa contributions are included.
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Figure 5: Two-loop renormalisation of (ÃD22
−2ÃU12

)/mg in the CMSSM, with ht(GUT ) =
5g3(GUT ) and mt = 175GeVin the CMSSM. All electroweak and Yukawa contributions
are included.
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