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1 Introduction

The purpose of this paper is to build a four-dimensional quantum Hall state out of Yang-

Mills instantons.

This work has its motivation in condensed matter physics, but rapidly converges to-

wards a set of ideas and techniques that are more familiar in the world of supersymmetry,

most notably the Nekrasov partition function. Because of these somewhat diverse ingre-

dients, we will take this opportunity to present some pertinent background material while

summarising our results.

Relationship to the 4d quantum Hall effect. The two dimensional quantum Hall

effect (QHE) is one of the gems of physics, where beloved theoretical ideas such as Chern-

Simons theories, conformal symmetry, and the intricate structures that they contain, find

physical realisation in the laboratory. Despite many years of study, this system continues to

offer new insight and has inspired many recent developments in understanding topological
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phases of matter. Given the huge impact of these ideas, it is natural to search for higher

dimensional generalisations.

A four-dimensional analog of the quantum Hall effect was suggested some time ago by

Zhang and Hu [1, 2]. The original proposal caused some excitement, in large part because of

the claim that the d = 3+1 boundary theory included a massless spin 2 particle, admittedly

in conjunction with a tower of higher spin massless particles. Nervous about the violation

of the spirit of the Weinberg-Witten theorem, Elvang and Polchinski subsequently argued,

persuasively, that the boundary theory could not be a local quantum field theory [3]. Our

results for the particular model of the 4d QHE considered here support this conclusion.

Nonetheless, the 4d quantum Hall effect (QHE) contained enough interesting structure

to encourage further study, and there have been a number of follow-up works exploring

different aspects of this phase of matter [4–10], as well as quantum Hall effects in higher

dimensions [11, 12]. More recently, despite the very obvious dimensional limitations im-

posed by our Universe, there has even been a proposal to construct the 4d QHE in a cold

atom system [13, 14].

There are some differences between our set-up below and the original proposal of Zhang

and Hu. In the latter, each particle moves on a spatial S4 and carries an internal SU(2)

isospin index. This has the advantage that one can introduce a background SU(2) magnetic

field, known as a Yang-monopole, which preserves the full SO(5) rotational invariance [15].

However, this also comes with some features which appear rather unnatural. In order to

have a continuum limit, the SU(2) isospin, I, of the particle must scale with the radius R

of the S4 as I ∼ R2. This means that the original “4d QHE” is perhaps better thought

of as “6d QHE”, with the particle moving on a phase space of volume R6, which can be

identified as CP3 [7].

In contrast, our particles will move in spatial R4. We subject them to an Abelian

magnetic field which breaks the SO(4) rotational symmetry. Nonetheless, the particles do

carry internal degrees of freedom and this dictates the physics.

Specifically, our particles arise as Yang-Mills instantons, viewed as solitons in a d = 4+1

U(N) Yang-Mills theory.1 For U(1), these particles have no internal degrees of freedom

and the resulting ground states are the higher dimensional generalisation of the Laughlin

states. For N ≥ 2, the particles carry both an internal isospin under SU(N), and also a

scale size. This results in a higher dimensional generalisation of a class of 2d non-Abelian

Hall states, first discovered by Blok and Wen [16].

Relationship to the Nekrasov partition function. In section 3, we compute the

spectrum of excitations above the quantum Hall ground state. We show that the resulting

partition function is an object first introduced by Nekrasov in the context of N = 2

supersymmetric gauge theories in d = 3 + 1 dimensions [17].

We stress that the Nekrasov partition function arises even though our starting point

is a many-body quantum mechanics involving purely bosonic degrees of freedom. Morally

1We note in passing that the Yang-monopole employed in [1] is really an instanton on S4. This means

that instantons have never been far from the 4d quantum Hall effect; in our set-up they are dynamical,

rather than providing a background field.
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speaking, the connection between the two can be traced to the importance of holomorphy

in both supersymmetry and in the lowest Landau level.

Over the years, the Nekrasov partition function has become a staple in the web of

connections linking gauge theories and integrable systems in various dimensions, and the

original work has been generalised in a myriad of different directions. Two of these gener-

alisations will prove important in this work.

First, one can define a Nekrasov partition function for d = 4 + 1 supersymmetric

theories on R3,1 × S1 [18]. This encourages a generalisation to include a 5d Chern-Simons

term at level k, and the resulting partition function was first computed in [19]; this is the

version that will describe the excitations of the 4d quantum Hall states, with k related

to the filling fraction of the state. The energies and other global charges of states in our

model are encoded in the expansion of the Nekrasov partition function in powers of the

equivariant parameters which describe the Ω-background and Coulomb branch VEVs in

the conventional setting of five dimensional supersymmetric gauge theory.

For the purposes of understanding the ground state of our model and its excitations,

the standard formula for the Nekrasov partition function as a sum over coloured partitions

is not particularly useful. Here we will make use of the standard fact that the Nekrasov

partition function counts holomorphic functions (or more generally holomorphic sections

of an appropriate line bundle) on the instanton moduli space. The ADHM construction

gives a convenient realisation of this manifold as a hyper-Kähler quotient or equivalently

as the Higgs branch of an auxiliary gauge theory. Finally, mirror symmetry provides a

dual description of the same manifold as the Coulomb branch of yet another gauge theory

which lives in three spacetime dimensions. In recent work [20–22], this perspective has

been used to provide alternative formulae for the Hilbert series of the instanton moduli

space. The equality of the resulting Coulomb branch formulae to the dual Higgs branch

expression (i.e. the sum over coloured partitions) is a highly non-trivial consequence of 3d

mirror symmetry.

In the following we will provide a derivation of this Coulomb branch formula. We also

generalise this approach to include the effects of a 5d Chern-Simons term.2 Happily the

Coulomb branch formula provides exactly the power series expansion of Nekrasov partition

function we need to analyse the ground state of our model and read off the spectrum of

low-lying modes.

Relationship to quantum Hall matrix models. The story of this paper parallels our

recent work on applying matrix model technology to the 2d QHE.

A matrix model for the 2d Laughlin states was suggested long ago by Polychronakos [23]

and subsequently extended to non-Abelian quantum Hall states in [24]. Motivation for this

description originally came from viewing the lowest Landau level as a non-commutative

plane [25]. It was subsequently realised that these matrix models describe the low-energy

dynamics of vortices in a d = 2+1 dimensional U(N) Yang-Mills-Higgs theory with Chern-

2As we will see in section 4.3, the 5d Chern-Simons level corresponds to a background magnetic charge

for a particular flavour symmetry in the 3d quiver gauge theory whose Coulomb branch coincides with the

instanton moduli space.
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Simons term at level k [26, 27]. Various properties of these matrix models have been

explored in great detail over the years; see, for example, [28–34] for a selection of papers.

In [35], we computed the partition function of the quantum Hall matrix models. This

is equivalent to computing a corresponding Hilbert series for the vortex moduli space.

This partition function can be written in closed form in terms of Kostka polynomials; the

explicit combinatoric formula for the Kostka polynomials (originally due to Kirillov and

Reshetikhin) is a direct analog of the “Coulomb branch formula” for the Nekrasov partition

function. Importantly, we could show that as the number of underlying particles becomes

large, the vortex partition function becomes the conformal block of the U(N)k chiral WZW

model that lives at the boundary of the quantum Hall fluid. In this way, the matrix model

provides a direct link between the Chern-Simons theory, the microscopic wavefunctions,

and the boundary conformal field theory.

The purpose of the present paper is to extend these ideas to d = 4 + 1 dimensions.

As we will show in the next section, the dynamics of the instantonic particles is described

— through the ADHM construction — by a matrix model quantum mechanics. This will

be our starting point for all that follows.

2 A quantum Hall fluid of instantons

Our goal in this section is to describe the dynamics of Yang-Mills instantons in a background

magnetic field, and determine the resulting quantum Hall wavefunctions governing their

ground state.

2.1 The view from d = 4 + 1 dimensions

Our starting point is U(N) Yang-Mills theory in d = 4 + 1 dimensions. We include also a

single, real adjoint scalar field φ. The action is then

SYM =

∫
d5x Tr

(
− 1

2e2
FµνF

µν − 1

e2
DµφDµφ

)
(2.1)

This theory enjoys a global U(1) topological current,

Jµtop ∼ εµνρσλ TrFνρFσλ

under which solitonic excitations carry charge. These solitons are self-dual configurations,

obeying

Fµν = ?Fµν µ, ν = 1, 2, 3, 4

In the context of d = 3 + 1 dimensional Yang-Mills, these objects are referred to as instan-

tons. We will continue to use this name, even though it is less appropriate in d = 4 + 1

dimensions where these are particles. Their mass is given by

Minst =
8π2

e2
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We will ultimately be interested in the dynamics of a large number of instantons, which we

place into a quantum Hall state. In order to do this, we will add a number of refinements to

the action (2.1). The first is a five-dimensional Chern-Simons term, which takes the form

SCS =
k′

24π2

∫
d5xεµνρσλ Tr

(
Aµ∂νAρ∂σAλ −

3i

2
AµAνAρ∂σAλ −

3

5
AµAνAρAσAλ

)
+ 3dmnpφ

m

(
−1

2
FnµνF

p µν −DµφnDνφp
)

(2.2)

Here dmnp = 1
2Tr (Tm{Tn, T p}) is a symmetric tensor.

The first line couples the topological current Jtop to the gauge field, ensuring that

instantons also carry non-Abelian electric charge. The requirement that action is invariant

under large gauge transformations means that we must take k′ ∈ Z. The second line

in (2.2) means that the scalar field φ acts as an effective gauge coupling. The coefficients

are fixed by the requirement of supersymmetry [36]. For our purposes, we’re not interested

in including any fermions so supersymmetry provides little motivation. However, including

this coupling means that we can import various results about the dynamics of instantons

in these theories [37–39]; we will describe these results in section 2.2.

So far our particles are free to roam around. To coax them into a quantum Hall

state, we include a coupling to a background magnetic field AµJµtop. We choose to work in

symmetric gauge, with

Aµ =
B

2
η̄3
µνx

ν

with B a constant and η̄3
µν a ’t Hooft matrix.3 After an integration by parts, this can

be written as a 3d Chern-Simons form, coupled to a constant background magnetic field

ω = Bη̄3,

Smag =

∫
d5x ωµν ε

µνρσλTr

(
Aρ∂σAλ −

2i

3
AρAσAλ

)
(2.3)

Such a term also arises in the “Kähler Chern-Simons theory” of Nair and Schiff [40, 41].

This term breaks the spatial rotational symmetry to

SO(4) ∼= SU(2)L × SU(2)R → SU(2)L ×U(1)R

This, then, is our goal: to understand the dynamics of instantons in the 5d theory with ac-

tion

S = SYM + SCS + Smag

As we will now see, there is an elegant description of the dynamics using the ADHM

construction.

3The anti-self-dual ’t Hooft matrices are give by

η̄1 =


−1

+1

−1

+1

 , η̄2 =


−1

−1

+1

+1

 , η̄3 =


+1

−1

−1

+1

 .
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2.2 The matrix model

The dynamics of n instantons in Yang-Mills theory is beautifully described by a U(n)

gauged quantum mechanics, known as the ADHM matrix model [42, 43]. In its original

formulation, the ADHM matrix model describes instantons in the Yang-Mills action (2.1).

However, as we explain below, it is possible to adapt the model to include the effects of

both SCS and Smag.

The ADHM data for n interacting particles is built around a U(n) matrix quantum

mechanics. The fields are

• Two complex adjoint scalar fields, Z and Z̃. These decompose as

Z = X1 − iX2 and Z̃ = X3 + iX4

Roughly speaking, the eigenvalues of each of these n × n matrices parameterise the

positions of the particles in the xµ, µ = 1, 2, 3, 4 directions. The “roughly speaking”

is because we will often be dealing with situations in which the Xµ do not commute,

and so cannot be simultaneously diagonalised.

• N fundamental scalars ϕi and N anti-fundamental scalars ϕ̃i, with i = 1, . . . , N .

These endow our particles with a spin, transforming in some representation of SU(N).

This will be described in more detail below.

The fields transform under a U(n) gauge symmetry as

Z → UZU † , Z̃ → UZ̃U † , ϕi → Uϕi , ϕ̃i → ϕ̃iU
† (2.4)

with U ∈ U(n).

These fields are required to obey two ADHM constraints, both of which are n × n

matrix equations. The first is real and is called the D-term; the second is complex and is

called the F-term constraint (both names come from supersymmetric theories where these

constraints are imposed by auxiliary fields),

ϕiϕ
†
i − ϕ̃

†
i ϕ̃i + [Z,Z†] + [Z̃, Z̃†] = 0 (2.5)

ϕiϕ̃i − [Z, Z̃] = 0

Solutions to (2.5), subject to the identification (2.4), define the instanton moduli space

Mn,N . It has real dimension dim(Mn,N ) = 4nN .

To impose the symmetry (2.4), we introduce a U(n) gauge field α0. The dynamics of

instantonic particles in the original Yang-Mills action (2.1) is governed by matrix quantum

mechanics with configuration space Mn,N .

S̃YM = Minst

∫
dt tr

(
|DtZ|2 + |DtZ̃|2

)
+ |Dtϕi|2 + |Dtϕ̃i|2

− tr(|[σ, Z]|2 + |[σ, Z̃]2)− ϕiσ2ϕi − ϕ̃iσ2ϕ̃†i

– 6 –
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Here DtZ = Ż− i[α0, Z] and Dtϕ = ϕ̇− iα0ϕ and Dtϕ̃ = ˙̃ϕ+ iϕ̃α0, and the fields should be

viewed subject to the constraints (2.5). In the second line, we have included one further,

adjoint field σ; this plays no role here, but becomes important at the next step.

We have two further terms in our 5d action. Each changes the ADHM matrix model in

some way. (Both terms were first discussed in the context of instanton dynamics in [44].)The

effect of the 5d Chern-Simons term is particularly simple; in the context of supersymmet-

ric theories, it was shown to introduce a worldline Chern-Simons term into the matrix

model [38, 39],

S̃CS = −k′
∫
dt tr(α0 + σ) (2.6)

Some comments are in order here. The derivation of this term given in [38] follows by

introducing fermions into the five dimensionsal theory. These induce fermion zero modes

which live in an appropriate bundle over the instanton moduli space. If these fermions are

given a mass, and subsequently integrated out, they generate a 5d Chern-Simons term. One

can follow the fate of the quantum mechanical zero modes under this procedure to discover

that they generate the Chern-Simons term (2.6). Although this derivation was originally

given in the context of supersymmetric theories, it does not rely on supersymmetry.

We note also that it is here crucial that we are dealing with U(N) theories, rather

than SU(N) theories. In particular, there is no 5d Chern-Simons term for SU(2) theories;

this too can be understood in terms of the bundle of fermi zero modes over the instanton

moduli space [38].

Meanwhile, the effect of the 5d magnetic field (2.3) was considered in [45] (see also [44]).

It adds a term to the action

S̃mag = B
(
itr(Z†DtZ + Z̃†DtZ̃) + iϕ†Dtϕ+ i(Dtϕ̃i)ϕ̃†i

)
We are left with the quantum mechanical matrix model S̃ = S̃YM + S̃CS + S̃mag.

Projection to the lowest Landau level. Quantum Hall physics arises in the limit of

large magnetic field, in which the particles are restricted to lie in the lowest Landau level.

Our interest too lies in this regime, which is B �Minst. Operationally, one can reach this

limit by rescaling lengths by
√
B, and subsequently sending B →∞.

It is straightforward to do this for the ADHM matrix model. In this limit, we lose the

second order kinetic terms, leaving ourselves only with the first order terms,

Lkin = itr(Z†DtZ + Z̃†DtZ̃) + iϕ†Dtϕ+ i(Dtϕ̃i)ϕ̃†i − k
′ trα0 (2.7)

The fact that we have first order kinetic terms means that we’re now viewing the instanton

moduli spaceMn,N as the phase space of the system, rather than the configuration space.

There is one subtlety in taking the limit of large magnetic field. The original D-term

constraint (2.5) gets projected out in this limit.4 Instead, it is replaced by the Gauss law

4From the perspective of the quantum mechanical gauge theory, the D-term constraint gets replaced

by Gauss law. Viewed as a non-linear sigma model, the sitation is less clear. Here the singular instanton

moduli space does not provide the topology necessary to support the non-trivial line bundles we will later

– 7 –
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constraint from (2.7) which reads

ϕiϕ
†
i − ϕ̃

†
i ϕ̃i + [Z,Z†] + [Z̃, Z̃†] = k′1n (2.8)

In contrast, the F-term constraint survives

ϕiϕ̃i − [Z, Z̃] = 0 (2.9)

The Gauss law (2.8) looks very much like the D-term for instantons in non-commutative

space [46]. Here, however, it arises in a rather different context. As we will see in more

detail shortly, the level k′ is telling us that wavefunctions should be sections of a line bundle

over Mn,N , rather than functions.

The Hamiltonian. Our action (2.7) contains only first order kinetic terms, and so defines

the phase space of a system with vanishing Hamiltonian. To breathe some life into our

system, we should define an energy function. To do so, note that the phase space enjoys

a symmetry

G = U(1)R × SU(2)L × SU(N)

(If we set k′ = 0 then the phase space becomes singular and the U(1)R is enhanced to

SU(2)R.) Under G, the fields transform as follows: (Z, Z̃) sits in the representation (2,1)+1;

ϕ in (1,N)+1; and ϕ̃ in (1, N̄)+1.

Later, we will study the spectrum of theory labelled by all these quantum numbers.

For now, we want to pick one to define the Hamiltonian of the system. We choose the

Hamiltonian to coincide with the U(1)R charge,

H = ω
(

tr(Z†Z + Z̃†Z̃) + |ϕi|2 + |ϕ̃i|2
)

(2.10)

This has the interpretation of placing our system in a harmonic trap, which encourages the

instantons towards the origin.

This, then, is our matrix model for the 4d quantum Hall effect: a phase space defined

by (2.7), subject to (2.9), with the Hamiltonian given by (2.10). A model using similar

field content, but differing in the details, was previously proposed in [47, 48].

2.3 Constructing the Hilbert space

The canonical commutation relations that arise from the Lagrangian (2.7) are

[Zab, Z
†
cd] = [Z̃ab, Z̃

†
cd] = δadδbc , [ϕai, ϕ

†
bj ] = [ϕ̃ai, ϕ̃

†
bj ] = δabδij

with all others vanishing. Here a, b = 1, . . . , n label the U(n) gauge indices of the various

operators. These are, of course, the commutation relations of many creation and anni-

hilation operators. We proceed in the usual manner by introducing the fiducial state |0〉
defined by

Zab|0〉 = Z̃ab|0〉 = ϕai|0〉 = ϕ̃ai|0〉 = 0

need. This issue can be circumvented by introducting non-commutivity in the four spatial dimensions,

resolving the instanton moduli space [46]. Note that this non-commutivity preserves the U(1) grading of

the partition function introduced in section 3.

– 8 –
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We then build a Hilbert space by acting with creation operators Z†, Z̃†, ϕ† and ϕ̃†.

However, not all states in this Hilbert space are physical: they must still obey the con-

straints (2.8) and (2.9). We start with the Gauss law (2.8). The traceless part of this

condition is simply the requirement that physical states are SU(n) gauge singlets. Mean-

while, the trace is

k∑
a=1

N∑
i=1

ϕaiϕ
†
ai − ϕ̃

†
aiϕ̃ai = k′n ⇒

k∑
a=1

N∑
i=1

ϕ†aiϕai − ϕ̃
†
aiϕ̃ai = (k′ −N)n (2.11)

where the shift k′ → k′ − N arises due to the normal ordering and was seen in earlier

studies [23, 24, 27]. In the matrix model for the 2d QHE, this was traced to a one-loop

shift in the 3d Chern-Simons term and it seems plausible that a similar interpretation holds

here. We define

k = k′ −N

The result (2.11) tells us that we must have an excess of kn ϕ excitations over ϕ̃ excitations.

Finally, we have the F-term constraint (2.9). One can treat this as an operator equation

which must annihilate any physical state. However, there is an equivalent interpretation

that is sometimes more useful: in any gauge invariant state, we may always commute Z†

and Z̃† at the cost of introducing (ϕiϕ̃i)
† insertions. This means that we can restrict

ourselves to representative states in which all Z operators precede the Z̃, while we allow

any number of ϕ and ϕ̃ operators. This then leaves us with the following SU(n) singlet

operators to work with: baryons,

B ∼ εa1...an(Z l1Z̃m1ϕi1)a1 . . . (Z
lnZ̃mnϕin)an (2.12)

and

B̃ ∼ εa1...an(ϕ̃i1Z
l1Z̃m1)a1 . . . (ϕ̃inZ

lnZ̃mn)an

mesons,

M ∼ ϕ̃iZ lZ̃mϕj (2.13)

and “glueballs”

G ∼ trZ lZ̃m (2.14)

All holomorphic gauge invariant operators in the theory can be obtained as products of

these generators.5 The Hamiltonian H simply counts the number of creation operators of

each type. The condition (2.11) tells us that we must have an excess of ϕ over ϕ̃ operators

and the only operators above with this property are the baryons B. As we now explain,

this results in an interesting pattern of quantum numbers for the ground state, depending

on our choice of the integers N , n and k.

2.4 Abelian quantum Hall states

We start by describing the Abelian quantum Hall states that arise when we take N = 1.

We will describe the non-Abelian states in section 2.6.
5Note that the resulting chiral ring has additional relations which are always present for finite dimensional

matrices. However, in the limit of large instanton number (for k = 0), these constraints are relaxed and the

chiral ring is freely generated.
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A single particle. For a single n = 1 particle, the matrix model is trivial. First, the ϕ

and ϕ̃ operators are fixed completely by the D- and F-term constraints (2.8) and (2.9). All

physical states in the Hilbert space are dressed by ϕ† k|0〉. No ϕ̃ excitations are allowed.

All the dynamics lies in the position operators Z and Z̃. These are neutral under the

U(1) gauge group and are governed by the free action

S =

∫
dt iZ†∂tZ + iZ̃†∂tZ − ω(|Z|2 + |Z̃|2)

This describes a single particle, moving in R4, projected to the lowest Landau level by a

strong background magnetic field Fµν ∼ η̄3
µν . (We have set the strength of this magnetic

field to 1; this, in turn, means that the coordinates on R4 are dimensionless.) Note that

the system can be viewed as two, decoupled planar systems, one with a magnetic field in

the 1− 2 plane and the other with a magnetic field in the 3− 4 plane. This magnetic field

breaks the SO(4) rotational symmetry of R4 to SU(2)L ×U(1)R.

The potential term, proportional to ω, acts as a harmonic trap, encouraging the particle

to lie near the origin. The single particle eigenstates are given by

|l,m〉 = Z† lZ̃†mϕ† k|0〉

These have energy

El,m = ω(l +m)

The ground state is |0, 0〉. States with higher energy sit further from the origin and,

correspondingly, lie in higher dimensional representations of the rotation symmetry SU(2)L.

Specifically, the states |l,m〉 have degeneracy l +m+ 1. These sit in a multiplet of SU(2)

with spin

s =
1

2
(l +m)

This single particle intuition will be useful when discussing the many particle case.

Many particles. The U(n) matrix model (again, with N = 1) describes many, inter-

acting particles, all projected to the lowest Landau level in R4. We first focus on the

ground state. The D-term constraint (2.11) tells us that all physical states must have kn

ϕ excitations, while the Hamiltonian (2.10) tells us that the ground state has the fewest

excitations possible. This means that ground state is built from the baryon operator (2.12)

that contains the fewest creation operators.

Because the ϕ are commuting operators, the baryon (2.12) is only non-vanishing if we

put a distinct Z lZ̃m in each slot. The baryon with the lowest energy is then

B = εa1...anϕa1(Zϕ)a2(Z̃ϕ)a3(Z2ϕ)a4 . . . . . . (Z
lnZ̃mnϕ)an (2.15)

One can think about this operator rather like filling atomic energy levels. In the present

case, these are the SU(2)L multiplets of a single particle. The operator B is unique only

when a shell is fully-filled. This happens when the number of particles takes the form

n = (s+ 1)(2s+ 1) s ∈ 1

2
Z (2.16)
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In this case, all SU(2) representations up to spin s are filled. Only then is the resulting

baryon operator an SU(2)L singlet.

When n takes the form (2.16), the ground state of the matrix model is given by

|Ω〉 = B† k|0〉 (2.17)

and has energy

E0 =
ωk

3
(s+ 1)(2s+ 1)(4s+ 3) ∼ ωk

3
(2n)3/2 (2.18)

We will describe the physical interpretation of this state below.

When the number of particles n does not take the form (2.16) there is no unique

ground state. Instead, the baryon operator (2.15) sits in a representation of SU(2)L which,

typically, is not an irrep. For example, when n = (s + 1)(2s + 1) + 1, the B sits in the

spin s+ 1 representation of SU(2)L. When n = (s+ 1)(2s+ 1) + 2, the baryons sits in the

anti-symmetrised representations of 2s+1⊗2s+1 (i.e. every alternate representation in the

decomposition). The ground state (2.17) then sits in the symmetrised representations of k

products of the representation of B. In general, we are left with a state which transforms

in a large slew of different irreps.

Wavefunctions. In order to illuminate the physical meaning of the ground state (2.17),

it would be useful to write it in terms of a wavefunction ψ(za, z̃a) where (za, z̃a) describes

the position in R4 of the ath particle. A number of techniques have been developed for

converting states in these matrix models into wavefunctions for point-like particles [28–30].

Here we work with the coherent state representation. We sketch only the bare details;

more information can be found in [29]. These coherent states |Z, Z̃, ϕ, ϕ̃〉 obey

Ẑ|Z, Z̃, ϕ, ϕ̃〉 = Z|Z, Z̃, ϕ, ϕ̃〉

where, for once, we’ve introduced a hat to distinguish the quantum matrix operator Ẑ from

the classical matrix Z. Similar equations hold for Z̃, ϕ and ϕ̃. Suppose one subsequently

diagonalises both Z = V DV −1 and Z̃ = V D̃V −1 where D = diag(z1, . . . , zn) and D̃ =

diag(z̃1, . . . , z̃n), and constructs the wavefunction ψ(z, z̃) = 〈z, z̃|Ω〉 — one might imagine

this is possible as a consequence of the constraint [Z, Z̃] = 0. One typically expects

that such a change of variables induces a Jacobian which can alter the nature of the

resulting state importantly, but for simplicity we will focus only on the k-dependent part

of the wavefunction.6

As we have seen, life is simplest when the number of particles takes the form (2.16).

The asymptotic form of the wavefunctions, |zi − zj |, |z̃i − z̃j | � 1, contains the universal

information describing the state. The ground state (2.17) has asymptotic behaviour

〈z, z̃|B† k|0〉 = ψ(z, z̃)→ ψ̃k0 (z, z̃) e−
1
4

∑
a |za|2+|z̃a|2 (2.19)

6It is worth recalling what the Jacobian does in matrix models for the 2d quantum Hall effect [23, 29].

In this case, the Jacobian takes the form
∏
b<c |zb − zc|

2, which naturally factorises into holomorphic ×
anti-holomorphic. The holomorphic part is then absorbed into the wavefunction ψ, where it has the effect

of shifting the filling fraction of the Laughlin state from k → k + 1. Similarly, the anti-holomorphic part is

absorbed into φ.
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where ψ̃0(z, z̃) is a Slater determinant which describes a fully filled Landau level in four di-

mensions,

ψ̃0(zi, z̃i) ≡

∣∣∣∣∣∣∣∣∣∣
1 z1 z̃1 z

2
1 z1z̃1 z̃2

1 z3
1 . . . z1z̃

2s−1
1 z̃2s

1

1 z2 z̃2 z
2
2 z2z̃2 z̃2

2 z3
2 . . . z2z̃

2s−1
2 z̃2s

2
...

...

1 zn z̃n z
2
n znz̃n z̃

2
n z

3
n . . . znz̃

2s−1
n z̃2s

n

∣∣∣∣∣∣∣∣∣∣
(2.20)

For k = 1, this state can be thought of as an incompressible fluid, filling a ball of radius

R2 ∼ 4s. The volume of this ball is V = 1
2π

2R4 ∼ 4π2n.

For k > 1, the wavefunction ψ̃k0 (z, z̃) can be viewed as the higher dimensional version

of the Laughlin state. These states were also constructed in [49] where the authors pointed

out that they satisfy a quaternionic version of analyticity.

In two dimensions, the Slater determinant — and, correspondingly, the Laughlin wave-

functions — famously take the product form
∏
a<b(za − zb)

k. This, of course, has the

property that it vanishes whenever two particles coincide. In four dimensions, the Slater

determinant (2.20) also vanishes whenever two particles coincide, but now this requires two

complex conditions

za = zb and z̃a = z̃b

The fact that the wavefunction vanishes only when two conditions are met means that it

cannot be written as a single product of holomorphic factors of complex variables.

2.5 Excited states

We now turn to the spectrum of excited states. At first glance, it appears that there

are three, distinct low-energy excitations above |Ω〉. These arise by acting with the

mesons (2.13) or glueball (2.14) operators, or by increasing the Z lZ̃m factors inside the

baryon operators (2.12).

However, not all of these give rise to independent, physical excitations. First, it turns

out that the F-term constraint (2.9) excludes all meson operators (2.13) when N = 1. This

is even true at the classical level (see Proposition 2.8 of [50]).

This leaves us with only the baryonic and glueball excitations. These are not indepen-

dent. The full relationship between them is complicated. We will describe the spectrum of

excited states in section 3 where we compute the partition function of this matrix model.

For now, we make one comment about the spectrum of excitations. We start with the

SU(2)L singlet ground state that arises when the number of particles takes the form (2.16).

There is a large number of minimal energy excitations, with E = E0 + ω, that arise by

promoting one particle from the filled spin-s shell of the baryon (2.15) to the unfilled

spin-(s + 1) shell. The degeneracy of these excitations is given by (2s + 1)(2s + 3) and

they decompose into representations 1 ⊕ 2 ⊕ . . . 2s + 1. The existence of such a large

number of low-lying excitations is the crux of the argument in [3] that there is no local

d = 3+1 boundary theory for the 4d quantum Hall effect. We will describe these boundary

excitations in more detail in section 3.

Nonetheless, it remains an interesting question to ask: what is this boundary field

theory? In particular, is there some continuum field theory in the limit n→∞, analogous
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to the 2d WZW models that were seen to arise from the partition function of vortices

in [24]? We do not know the answer to this. Some related ideas were discussed long

ago in [51].

2.6 Non-Abelian quantum Hall states

Let’s now turn to the non-Abelian states, based on instantons in a U(N) gauge theory.

The matrix model fields and constraints were described in (2.4), (2.8) and (2.9).

A single particle with spin. To start, we can build some intuition for this matrix

model by considering a single particle. The matrix model is based around a U(1) gauge

group so the adjoint fields Z and Z̃ now decouple, and describe a particle on R4 sitting in

the lowest Landau level. We’re left with the internal degrees of freedom ϕi and ϕ̃i which

must obey
N∑
i=1

ϕ†iϕi − ϕ̃
†
i ϕ̃i = k and

N∑
i=1

ϕ̃iϕi = 0 (2.21)

This describes the cotangent bundle T ?CPN−1. Endowed with the first order kinetic

terms (2.7), this is the phase space of the internal degrees of freedom.

The cotangent bundle T ?M usually appears as the phase space for a particle moving

on M. This is not the correct interpretation in the present case. Instead, the symplectic

form arising from (2.7) means that, upon quantising T ?CPN−1, one finds that the particle

carries an internal degree of freedom which we will refer to as “spin”, transforming in a

representation of SU(N).

To describe this, we first look at the ground state of the Hamiltonian (2.10), which is

now given by

|Ωi1...ik〉 =

k∏
m=1

ϕ†im |0〉

This describes the Hilbert space of a particle which sits in the kth symmetric representation

of SU(N). In terms of Young diagrams, this is k boxes

For example, when k = 1 the particle has N internal states and transforms in the funda-

mental representation of SU(N).

Even a single particle has a spectrum of excited states. These come from acting with

ϕ̃. Because of the D-term constraint (2.21), we must have an equal number of ϕ and ϕ̃

excitations. The excited states at level p take the form

p∏
m=1

(ϕ̃jmϕlm)†|Ωi1...ik〉 (2.22)

for some collection of flavour indices {jm, lm|m = 1, . . . , p}. The number of such states

is given by
(
N+p−1
N−1

)(
N+p+k−1
N−1

)
. However, not all of these obey the F-term constraint
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∑
i ϕ̃iϕi|phys〉 = 0. Acting with this gives

(
N+p−2
N−1

)(
N+p+k−2
N−1

)
linearly independent con-

straints. Thus, the dimension of the Hilbert space at level p (where p = 0 is the ground

state) is given by

dimHp =

(
N + p− 1

N − 1

)(
N + p+ k − 1

N − 1

)
−
(
N + p− 2

N − 1

)(
N + p+ k − 2

N − 1

)
These form a single, irreducible representation of SU(N) at level p. Indeed, the states (2.22)

sit in the representations Symp(N̄)⊗Symp+k(N). The F-term constraint projects onto the

highest dimension representation which, in terms of Young diagrams, looks like this:

Here, the first row has 2p+ k boxes and all other rows have p boxes, and there are N − 1

rows in total. The diagram shown above is the representation of the p = 3 excited state for

a particle in SU(6) with k = 1. Note that, for k = 0, this coincides with the holomorphic

functions on the instanton moduli space described in [52]. We will see in section 3.2 how

the above projection can be proven using the Littlewood-Richardson rule at the level of

the partition function.

The upshot of this discussion is that the moduli space of a single instanton describes

a single particle with a tower of excited states, each of which sits in increasingly higher

dimensional representations of the SU(N) flavour symmetry. We can view the particle as

containing an internal degree of freedom transforming in the adjoint of SU(N); the exci-

tations then carry an extra Symp(Adj) group structure, which dresses the kth symmetric

representation of the ground state.

Of course, from the perspective of the instanton equations we expect that this tower

corresponds to the instanton growing in size. This interpretation isn’t obviously apparent

in the description of the Hilbert space presented above.

The non-Abelian ground state. Let us now discuss the ground state of the non-

Abelian matrix model describing many instantons. Because it costs energy to excite the

meson fields, the ground state contains only ϕ excitations and no ϕ̃ excitations. This means

that we are describing a ground state of n particles, each of which transforms in the kth

symmetric representation of SU(N).

For a generic number of instantons, this ground state is neither a singlet of SU(N) nor

SU(2)L. However, nice things happen when the number of instantons is given by

n = N(s+ 1)(2s+ 1) s ∈ 1

2
Z (2.23)

In this case, there is a unique ground state. To describe this, we first introduce the SU(N)

baryon operators. These take the form

B(l,m)a1...aN = εi1...iN (Z lZ̃mϕ)i1 a1 . . . (Z
lZ̃mϕ)iN aN (2.24)
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This is an SU(N) singlet and transforms in the N th anti-symmetric representation of the

U(n) gauge symmetry. The ground state is then formed by building up consecutive baryons

which minimize the value of l + m. This means that we first act with B†(0, 0), followed

by B†(1, 0) and B†(0, 1), and so on. When the number of instantons takes the form (2.23)

there we have precisely the right number to fill the SU(2)L shells, up to spin s. The

resulting singlet state is given by

|Ω〉 =
[
εa1...anB†(0, 0)a1...aNB

†(1, 0)aN+1...a2N . . . B
†(0, 2s)an−N+1...an

]k
|0〉 (2.25)

This state has energy NE0, where E0 is the ground state energy of the Abelian quantum

Hall state (2.18).

The state (2.25) is the four-dimensional generalisation of the Blok-Wen states [16]. In

the 2d QHE, the Blok-Wen states are a particularly simple class of non-Abelian quantum

Hall states. They describe particles which each carry an internal spin, transforming in the

kth symmetric representation of SU(N). They have the special property that the associated

boundary d = 1 + 1 conformal field theory is the SU(N)k WZW model. The 2d Blok-Wen

states also arise as the ground state of a matrix model associated to the vortex moduli

space [24]. Here we see their 4d counterparts emerging from the ADHM matrix model.

The excitations above the ground state arise by acting with meson (2.13) and glue-

ball (2.14) operators, as well as by changing the occupied shells inside the k baryon opera-

tors. As in the Abelian case, there are complicated relations between these and we postpone

a detailed discussion to section 3 where we compute the partition function. One notice-

able difference from the Abelian case is that now the meson operators give new degrees of

freedom, characterised by their quantum numbers under SU(N).

Non-Abelian wavefunctions. We can, once again, translate these states into wavefunc-

tions. Now there is an extra subtlety, because, as we have seen, each particle carries an

internal spin degree of freedom. In the ground state these transform in the kth symmetric

representation of SU(N). It will be useful to work through some examples.

SU(2), k = 1. In this case, each instanton carries spin 1
2 under the SU(2) global symmetry.

There are two states: |↑〉 and |↓〉. The wavefunctions therefore depend on both the positions

(z, z̃) and the spin states. The way to interpret matrix model states as wavefunctions with

spin was described in detail in [24]. Omitting the overall exponential (2.19), the holomor-

phic part of the ground state wavefunction is given by ψ̃(z, z̃, spin) = Φ(z, z̃, spin), where

Φ(z, z̃, spin) = εa1...an(1a11a2) (za3za4)(z̃a5 z̃a6) (z2
a7z

2
a8)(za9 z̃a9za10 z̃a10)(z̃2

a11 z̃
2
a12) . . .

. . . (z̃2s
an−1

z̃2s
an)×

[
|↑a1〉 |↓a2〉 |↑a3〉 |↓a4〉 . . . |↑an−1〉 |↓an〉

]
Here, each bracket corresponds to an SU(2) baryon of the form (2.24). The an-

ti-symmetrisation ensures that the spins are arranged as |↑a1〉|↓a2〉− |↓a1〉|↑a2〉, which is an

SU(2) singlet.
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SU(2), k > 1. For k > 1, each instanton sits in the kth symmetric representation which,

for SU(2), means spin k/2. Each instanton is now labelled by an internal spin state |σ〉
with σ = −k/2, . . . ,+k/2. The ground state wavefunction is given by

ψ̃(z, z̃, σ) = P
[
⊗k Φ(z, z̃, spin)

]
(2.26)

For each particle, the spin- 1
2 state |↑〉 or |↓〉 appears k-times in tensor product. The symbol

P tells us that we should project this onto the fully symmetrised, spin k/2 representation.

For example, when k = 2, the product Φ ⊗ Φ will have two spin- 1
2 states for each

particle. We interpret these as spin-1 states using

|↑〉|↑〉 = |1〉 , |↑〉|↓〉 = |0〉 , |↓〉|↓〉 = |−1〉

For any k, the wavefunction (2.26) is a singlet under the internal SU(2). (It is also a singlet

under the rotational SU(2)L.) This fact was proven in [24].

SU(N). The story for SU(N) is similar to that described above. We start with k = 1,

where each instanton carries an internal degree of freedom in the fundamental of SU(N).

We write this as |σ〉, with σ = 1, . . . N . Given N particles, we can form a spin singlet from

the baryon

ba1...aN = εσa1 ...σaN |σa1〉 . . . |σaN 〉

The wavefunction corresponding to (2.25) is then ψ̃ = Φ(z, z, σ) where

ΦN (z, z̃, σ) = εa1...an(1a1 . . . 1aN ) (zaN+1 . . . za2N )(z̃a2N+1 . . . z̃a3N ) (z2
a3N+1

. . . z2
a4N

) . . .

. . . (za4N+1 z̃a4N+1 . . . za5N z̃a5N )(z̃2s
an−N+1

. . . z̃2s
an)×

[
ba1...aN . . . ban−N+1...an

]
This state has clustering at order N : the wavefunction remains non-zero if the positions of

up to N particles coincide. The wavefunction vanishes if N + 1 or more particles coincide.

For k > 1, each particle carries an internal spin, transforming in the kth symmetric

representation of SU(N). The ground state (2.25) is given by

ψ̃(z, z̃, σ) = P
[
Φk(z, z̃, σ)

]
where, once again, P projects onto the symmetric product of spin states. It was shown

in [24] that this state is an SU(N) spin singlet.

3 The partition function

Our goal in this section is to compute the partition function of the matrix model. Our par-

tition function will depend on the fugacities for the Cartan subalgebra of the full symmetry

group G = U(1)R × SU(2)L × SU(N). Although the physical Hilbert space contains only

SU(n) singlets (of fixed U(1) charge) under the U(n) gauge symmetry, it will prove useful

in our intermediate calculations to also introduce fugacities for this gauge symmetry. We

denote the fugacities and quantum numbers of the various Cartan elements as

U(1)R SU(2)L SU(N) U(n)

Quantum number ∆ J ji —

Fugacity q z xi wa
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Note that we have one redundant fugacity in SU(N), which means that we can decide to

fix
∏
i xi = 1 if we wish.7 The Hamiltonian (2.10) is proportional to the U(1)R charge, so

the energy of any state is E = ω∆.

We compute the partition function

Z(q, z, xi) = Tr q∆zJ
N∏
i=1

xjii (3.1)

where the trace is over all states in the Hilbert space. This means that they obey both

the Gauss law constraint (2.8) and the F-term constraint (2.9). Note that, for zero Chern-

Simons level, our states are in one-to-one correspondence with holomorphic functions on

the instanton moduli space. When k 6= 0 the resulting baryonic states correspond instead

to holomorphic sections. This means that the partition function for our theory coincides

with the Hilbert series, a fact we will use in section 4.

3.1 The Nekrasov partition function

We will first write down an expression for the partition function Z in integral form. To do

this, we enumerate all gauge-variant observables subject to the F-term constraint (2.9), and

subsequently restrict to the gauge invariant sector. Although different from the original

formulation of the Nekrasov partition function [17], this Molien integral approach is not

new and can be found in a number of previous papers, including, for k = 0, [53, 54].

Nonetheless, we will go slowly. The integral has a number of pieces:

• The adjoint fields Z and Z̃ lie in the adjoint of the gauge group, and so carry quantum

numbers waw
−1
b for some a 6= b. They also form a doublet of SU(2)L. They contribute

factors to the partition function given by

ZZ =
n∏

a,b=1

1

1− qzwa/wb
, ZZ̃ =

N∏
a,b=1

1

1− qwa/zwb

• The (anti)-fundamental fields ϕ and ϕ̃ sit in the (N,n) and (N̄, n̄) representations of

SU(N)×U(n) respectively. Their contribution to the partition function is given by

Zϕ =

n∏
a=1

N∏
i=1

1

1− qxiwa
, Zϕ̃ =

n∏
a=1

N∏
i=1

1

1− q/xiwa

• The F-term constraint (2.9) can be implemented by including the factor

ZF =

n∏
a,b=1

(
1− q2wa

wb

)
(3.2)

which subtracts from the partition function the appropriate terms which carry the

quantum numbers of the constraint.

7Alternatively, one can keep the product, which then simply tracks the fixed U(1) gauge charge of

the system.
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We then impose U(n) gauge invariance by a suitable contour integral. Including the Haar

measure on the group manifold U(n), the partition function is given by the Molien integral

Z(q, z, xi) =
1

n!

(
n∏
a=1

1

2πi

∮
dwa

wk+1
a

)∏
b 6=c

(
1− wb

wc

)
ZZZZ̃ZϕZϕ̃ZF (3.3)

The integration contours are taken around |wa| = 1, while the other fugacities are under-

stood to take values |q|, |z| � 1 and |xi| ∼ 1. The integrals over wa project onto SU(n)

gauge singlet states while the extra factor of
∏
w−ka ensures that the partition function

counts only those states that have U(1) ⊂ U(n) charge k. This captures the role of the

level k in the Gauss law constraint (2.8).

The partition function (3.3) is a variant of the Nekrasov partition function [17]. More,

precisely, this is the Nekrasov partition function for 5d, N = 1 SU(N) super-Yang-Mills

compactified on R4×S1 [18] in an Ω background. In this context, the level k is associated

to a 5d Chern-Simons term, as first discussed in [19]. The fugacities xi for the global U(N)

symmetry are identified with the Coulomb branch parameters of the 5d SUSY theory while

the fugacities, z and q of the two SU(2) rotation symmetries of R4 are identified with the

parameters of the Ω-background.

The integral is not the usual form of the Nekrasov partition function, which is typically

written as a sum over coloured Young tableaux. It is instructive to see how the more

familiar expression arises from the pole structure of the integral when k = 0. The poles

sitting inside the contour arise whenever wa = qxi or wb = qzwa or wb = qwa/z. (The pole

from Zϕ when ωa = 1/qxi sits outside the unit circle, and the pole at w = 0 is killed by the

fact that Zϕ̃ vanishes there.) The set of poles, up to Sn permutation, is then characterised

in the following way: we divide wa up into N groups, each of size ni, with
∑

i ni = n.

In each group, one element gets its pole from wa = qxi, while the others build up from

this, either through wb = qzwa or wb = qwa/z. The Haar measure ensures that no two wa
can coincide, while the F-term constraint restricts the allowed pole structure to the form

a partition λ(i) of size |λ(i)| = ni. Each partition λ(i) has an associated Young tableau.

We denote the coordinates of this Young tableau as (m,n) where 1 ≤ m ≤ l(λ(i)) and

1 ≤ n ≤ λ(i)
m and the set of poles are given by

{ωa}i = xi q
m+n−1zm−n with (m,n) ∈ λ(i)

In this way, the integral (3.3) can be written as a sum over coloured Young tableaux,

coinciding with the usual expansion of the Nekrasov partition function. This argument

works for k < N . When k > N there are further poles at the origin and more care must be

taken to massage the final answer into a sum over coloured partitions. One way this can

be done is to close the contour outside instead by changing the integration variables from

wa to ξa = 1/wa and observing that there is no pole at ξa = 0.

3.2 A single U(N) instanton

The contour integration for the partition function can be carried out in terms of symmetric

functions. However in most cases it is difficult to extract the information that we care
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about. One example where we can make progress is the simple case of a single U(N)

instanton. Here we will derive an explicit expression for the partition function in terms of

SU(N) representations and show that it reproduces the results from canonical quantisation.

More complicated cases will be discussed from a different viewpoint below.

We will need some basic facts about Schur polynomials. For a given partition λ =

(λ1, λ2, . . . , λN ) with λ1 ≥ λ2 ≥ . . . λN > 0, the Schur polynomial sλ(X) in N variables

X = (x1, x2, . . . , xN ) is defined by

sλ(X) =
∑

σ∈SN/SλN

xλ1σ(1)x
λ2
σ(2) . . . x

λN
σ(N)

∏
i>j

1

(1− xσ(i)/xσ(j))

where SλN is the stabiliser of λ. Schur polynomials form a basis for the vector space of all

symmetric functions, equipped with an orthonormal inner product

〈sλ, sµ〉S ≡
1

N !

(
N∏
i=1

1

2πi

∮
C

)∏
i 6=j

(
1− xi

xj

)
sλ(X) sµ(X−1) = δλ,µ

The completeness of this basis is expressed through the Cauchy identity

n∏
i=1

m∏
j=1

1

1− xiyj
=
∑
λ

sλ(X) sλ(Y )

Starting from the contour integral of the partition function

Z =
1

2πi

∮
dw

w

[
1− q2

(1− qz)(1− q/z)

]
1

wk

N∏
i=1

1

(1− qwxi)(1− q/wxi)

we note that (1/2πi)
∮
dw/w defines an orthonormal inner product on the space of Schur

polynomials in one variable w: 1
2πi

∮
dw
w sλ(w)sµ(w−1) = δλµ. It is therefore natural to

use Cauchy’s identity to rewrite the integral in terms of Schur polynomials in w and X =

(x1, . . . , xN )

N∏
i=1

1

1− qwxi
=
∑
p≥0

qrs(p)(w) s(p)(X), w−k = s(k)(w
−1),

N∏
i=1

1

1− q/wxi
=
∑
r≥0

qrs(r)(w
−1) s(r)(X

−1)

After using s(r)(w
−1)s(k)(w

−1) = s(r+k)(w
−1) and taking the inner product, which replaces

p with r + k, we get

Z =
(1− q2)qk

(1− qz)(1− q/z)

∑
r≥0

q2rs(r+k)(X) s(r)(X
−1)

This can be simplified further using the identity s(r)(X
−1) = s(rN−1)(X)/(

∏
i xi)

r and the

fact that xi are SU(N) fugacities satisfying
∏
i xi = 1. Here, (rN−1) denotes the partition
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of (N − 1)r with r in all N − 1 entries. The partition function now reads

Z =
qk(1− q2)

(1− qz)(1− q/z)

∑
r≥0

q2rs(rN−1)(X) s(r+k)(X)

After we multiply the factor (1 − q2) into the sum, the coefficient of the term qk+2r is

s(rN−1)(X)s(r+k)(X)− s((r−1)N−1)(X)s(k+r−1)(X) = s(k+2r,rN−2)(X)

where we use the Littlewood-Richardson rule to get the equality. In physicists’ lan-

guage it goes as follows. Since Schur polynomials are characters of irreducible repre-

sentations of SU(N), the above expression can be viewed in terms of Young diagrams.

s(rN−1)(X)s(r+k)(X) corresponds to

N−1


r︷ ︸︸ ︷

⊗
k+r︷ ︸︸ ︷

= N−1


k+2r︷ ︸︸ ︷

⊕



r−1︷ ︸︸ ︷
⊗

k+r−1︷ ︸︸ ︷


where upon subtracting s((r−1)N−1)(X)s(k+r−1)(X) which corresponds to the second sum-

mand above, we are left with the highest weight irreducible representation from the above

decomposition, whose character is s(k+2r,rN−2)(X) as claimed. The final expression for the

partition function is

Z =
qk

(1− qz)(1− q/z)

∑
r≥0

q2rs(k+2r,rN−2)(X) (3.4)

Hence the ground state has energy E0 = kω and sits in the Symk(N) representation

of SU(N). Moreover, we can read off the whole spectrum from the partition function.

For example, excited states involving only ϕ, ϕ̃ excitations have energy Er = ω(k + 2r),

r = 1, 2, 3, . . . sitting in the SU(N) representation

N−1


k+2r︷ ︸︸ ︷

In this way, we recover the spectrum we get from canonical quantisation in section 2.6.

4 The Coulomb branch formula

The partition function (3.1) also goes by a different name: it is the Hilbert series of the

instanton moduli space. In other words, for k = 0, it counts holomorphic functions on the

instanton moduli space graded by their charges under the global symmetries. For k 6= 0, it

– 20 –



J
H
E
P
0
4
(
2
0
1
8
)
0
4
0

1

n

Figure 1. The quiver for U(1) instantons.

counts instead holomorphic sections of the determinant line bundle over the moduli space

as described in [19].

A particularly powerful method to compute Hilbert series invokes mirror symmetry of

three-dimensional gauge theories [55]. This is a duality between two N = 4 supersymmetric

gauge theories, such that the Higgs branch of one theory is mapped to the Coulomb branch

of the other, and vice versa. The ADHM construction naturally realises the moduli space of

n instantons as the Higgs branch of an auxiliary U(n) gauge theory. As the Higgs branch

is dimension independent the auxiliary theory can be taken to live in three spacetime

dimensions. Mirror symmetry then provides a dual realisation of the same manifold as the

Coulomb branch of another three-dimensional gauge theory. It was shown in [20] that one

can then recast the Hilbert series in terms of Coulomb branch variables. Traditionally it

is thought to be harder to work on the Coulomb branch rather than the Higgs branch.

For example, the former receives quantum corrections, while the latter does not. However,

to compute the Hilbert series, it turns out that one has enough control over the relevant

objects, specifically the monopole operators, and one can use this to write a rather different

expansion of the Hilbert series.

The Coulomb branch approach has been used to compute the Hilbert series for many

different Coulomb branches including, most pertinently, the instanton moduli spaces [22].

The Coulomb branch approach to the partition function does not, at present, allow for

the inclusion of the effects of the five-dimensional Chern-Simons level k. We remedy this.

First, however, we will review the Hilbert series for n U(N) instantons when k = 0.

4.1 U(1) instantons

We start with n instantons in U(1). To this end, we consider a three-dimensional U(n)

gauge theory, with an adjoint hypermultiplet and a single fundamental hypermultiplet [56].

The quiver is shown in figure 1. The Higgs branch of this theory coincides with the moduli

space of n U(1) instantons, but this is something of a red herring. Indeed, it turns out that

this theory is self-mirror and, in the limit that the gauge coupling e2 → ∞, the Coulomb

branch also coincides with the moduli space of n U(1) instantons. It is this Coulomb branch

description that interests us.

As we mentioned above, the Coulomb branch suffers from quantum corrections which

often makes a detailed analysis difficult. Even the simplest questions, such as the symme-

tries of the Coulomb branch, can be hard to answer. Theories with N = 4 supersymmetry
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have an SU(2)R symmetry acting on the Coulomb branch, one that is broken to U(1)R
if we introduce masses for the hypermultiplets. We identify this with the U(1)R of the

instanton moduli space.

Other symmetries of the Coulomb branch arise from the shift of dual photons. In-

stanton effects — which are monopoles in three dimensions — break the shift symmetries

of the dual photons arising from U(1)n−1 ⊂ SU(n). This means that for each U(n) fac-

tor of the gauge group, we get just a single U(1) global symmetry, with current given by

Jµ = 1
4π ε

µνρ trfµν , where fµν is the U(n) field strength. This is sometimes referred to as a

topological symmetry. In the infra-red, it is not uncommon for these Abelian isometries to

be enhanced to non-Abelian symmetries of the Coulomb branch. Indeed, this is expected

to happen for the theory in the quiver, with the U(1) topological symmetry enhanced

to SU(2)L.

Our problem of computing the partition function (3.1) of our matrix model has now

turned into the problem of computing certain BPS operators on the Coulomb branch of

this three-dimensional gauge theory. Specifically, we are interested in operators that carry

SU(2)L charge, which we have called J above. From the Coulomb branch perspective,

these are monopole operators.

With this preamble in mind, here we present the prescription of [20, 22] for counting

monopole operators and, in doing so, computing the partition function of interest. For each

charge J , the monopole operators in U(n) can sit in any of the U(1)n Cartan elements. To

describe this decomposition, we introduce a sequence ζ.

ζ : ζ1 ≥ ζ2 ≥ . . . ζn > −∞

Note that ζa can be both positive or negative so ζ is not, in general, a partition which

includes only positive integers. The ζa are to be thought of as the charges of monopole

operators under U(1)n ⊂ U(n). We require that

|ζ| :=
n∑
a=1

ζa = J (4.1)

We need two further definitions. We write

||ζ|| :=
n∑
a=1

|ζa|

We also define the multiplicity ml(ζ) of l in the sequence ζ to be the number of ζa that

equal l, i.e.

ml(ζ) = #{a | ζa = l}

Let us write the partition function of n instantons as Zn(q, z). It can be expanded in terms

of SU(2)L quantum numbers as

Zn(q, z) =
∑
J∈Z

zJ Yn,J(q) (4.2)
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Note that J is an angular momentum quantum number and takes both positive and negative

values. The result of [20, 22] for the partition function is

Yn,J(q) =
∑
ζ

q||ζ||
∏
l∈Z

ml(ζ)∏
a=1

1

1− q2a
(4.3)

Examples of U(1) instantons. It’s useful to look at some examples. Let’s start with

a single n = 1 instanton. In this case, the sequence of integers ζ is not much of a sequence:

it consists of just a single integer which, by (4.1), is simply J itself. The product over l

then has just a single term, coming from l = J . We have

1 instanton: Y1,J(q) =
q|J |

1− q2

From this we can compute the partition function

Z1(q, z) =
∑
J>0

1 + (qz)J + (q/z)J

1− q2
=

1

1− qz
1

1− q/z

This coincides with the expected one-instanton partition function.

For two instantons, the sequence is ζ1 ≥ ζ2 with ζ1 + ζ2 = J . We decompose the

formula (4.3) into two terms, one when ζ1 > ζ2 and the other when ζ1 = ζ2. We have

2 instantons: Y2,J(q) =
∑
ζ1>ζ2

q|ζ1|+|ζ2|

(1− q2)2
+
∑
ζ1=ζ2

q2|ζ1|

(1− q2)(1− q4)

We can then use (4.2) to get the full partition function.

The above discussion was all for five dimensional Chern-Simons level k = 0. We will

discuss how one incorporates k 6= 0 in section 4.3 below.

4.2 U(N) instantons

Let’s now discuss the generalisation to U(N) instantons. The three-dimensional, N =

4 gauge theory whose Coulomb branch is the moduli space of n instantons in U(N) is

described by the quiver shown in figure 2 [56]. It has gauge group
∏N
i=1 U(n)i. There is a

bi-fundamental hypermultiplet charged under consecutive gauge groups U(n)i × U(n)i+1,

where the periodicity of the quiver means that we identify U(n)N+1 ≡ U(n)1. Finally,

there is a single hypermultiplet that sits in the fundamental of U(n)N .

As described previously, if the Coulomb branch has a non-Abelian symmetry in the

infra-red, then only its Cartan subalgebra is visible classically. For the quiver shown on the

right, we have N topological symmetries, one for each of the gauge group factors U(n)i.

We denote the corresponding fugacities as yi. Ultimately these will be identified with

the fugacities z and xi for the Cartan subalgebra of SU(2)L × SU(N) which acts on the

instanton moduli space; the map between them is

yi =
xi
xi+1

i = 1, . . . , N − 1 and yN = z
xN
xN−1

This ensures that
∏N
i=1 yi = z.
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Figure 2. The quiver for U(N) instantons.

To proceed, we again introduce sequences, ζi, now one for each factor of the

gauge group:

ζi : ζi1 ≥ ζi2 ≥ . . . ζin > −∞

As before, these describe the decomposition of monopole operators in U(n)i. The formula

of [20, 22] for the partition function is then:

Z(q, yi) =
∑
{ζi}

q∆[{ζi}]
N∏
i=1

y
|ζi|
i

∏
l∈Z

ml(ζ
i)∏

a=1

1

1− q2a

 (4.4)

We can see that this is essentially a product of the contributions from monopole operators

in each gauge group factor (4.3). These factors are tied together by the dimension of the

monopole operator, which is given by

∆[{ζi}] = −1

2

n∑
a,b=1

N∑
i,j=1

Cij |ζia − ζ
j
b |+ ||ζ

N || (4.5)

Here Cij is the Cartan matrix of the affine Dynkin diagram that arises in the quiver which,

in the present case, is

Cij = 2δij − δi,j+1 − δi+1,j

where the periodic nature of the quiver again means that we identify i ≡ i + N . One

can think of the first term as the contribution of vector bosons to the dimension of the

monopole operator (they come with −2) and the second term as the contribution of the

hypermultiplets (they come with +1). The final term in (4.5) comes from the solitary

hypermultiplet coupled to U(n)1.

The Coulomb formula (4.4) also takes the form of an infinite sum. However, the term

are now arranged in order of their energy, making it simple to read off the ground state

energy, and the quantum numbers of the low lying states.

4.3 Adding the Chern-Simons term

To describe the 4d quantum Hall states, we would like to generalise the Coulomb branch

formula (4.4) to include the five-dimensional Chern-Simons level k.
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In the three-dimensional gauge theory whose Higgs branch coincides with the instanton

moduli space, this corresponds to projecting onto operators of baryon number equal to

k.8 In the mirror, Coulomb branch theory, one can mimic this by introducing k units

of magnetic flux for a suitable global symmetry, associated with the periodic boundary

condition around the circle in the standard brane construction of the affine ÂN quiver. For

the Â0 quiver, this is just the symmetry which acts on the adjoint hypermultiplet. The

mirror deformation is then a particular shift of the topological charges as we go around the

periodic direction of the quiver.

This is rather straightforward to enact in the Coulomb branch formula (4.4): the

dimension of the monopole operator in (4.5) is shifted to read

∆[{ζi}; k] =
∑
i,j

∑
a,b

(
−δij |ζia − ζ

j
b |+ δi,j+1|ζia − ζ

j
b + kδj,N |

)
+ ||ζN || (4.6)

There are also some subtleties regarding the identification of the SU(2)L × SU(N) and

U(1)1 × · · · × U(1)N fugacities. In terms of the former,

Z(q, z, xi) =
∑
{ζi}

q∆[{ζi};k]z|ζ
N |

N∏
i=1

x
|ζi−ζi−1+kδi,1|
i

∏
l∈Z

ml(ζ
i)∏

a=1

1

1− q2a

 (4.7)

Here we have chosen the shift to lie between the nodes labelled N and 1 and the formula

is therefore not manifestly invariant under the Weyl group of U(N). Despite this the Weyl

group is restored by the sum over magnetic charges in our formula. Note that now the

total weight in the fugacities xi is always kn, in agreement with the canonical quantization

picture. (Strictly, we are using them here as U(N) fugacities, and this measures the overall

U(1) charge enforced by the constraints in the theory.)

It is worth getting a feel for the effect of these modifications by exploring the physics

encoded in (4.6). In particular, we would like to make contact with the canonical quanti-

zation picture.

An illuminating example: Abelian theories at k = 1. First, let us consider in-

stantons in the simplest theory: U(1) at level k. In Abelian theories, (4.6) simplifies

significantly, leaving

∆[ζ; k] = 2
∑
a 6=b

max {0, |k| − |ζa − ζb|}+ |k|n+ ||ζ||

Clearly, the first term wants to space out the ζa with gaps of size ≥ |k|, while the last term

penalises placing them too far from 0. In general, this creates an elaborate balancing act

which gives rise to the subtle pattern of SU(2) irreps that we saw in section 2.4.

We will satisfy ourselves with observing what happens for k = 1. Here, the only

relevant contributions to the energy are a cost of +2 for each pair of ζa which are the

8Note that this is not the same as introducing a Chern-Simons term in (either of) the three- dimensional

theories underlying the Higgs and Coulomb branch descriptions of the moduli space.
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same, and an overall cost of
∑

a |ζa|. But this precisely parallels the canonical quantization

picture, with the interpretation that a particular ζ corresponds to a baryon that looks like

ζ ←→ |ψ〉 ∼

∏
l≥0

ml(ζ)∏
a=1

Z l+aZ̃aϕ

† ∏
l<0

ml(ζ)∏
a=1

ZaZ̃ l+aϕ

† |0〉
Notice that indeed the energy of this baryon is precisely ∆[ζ; k], and also that the total

U(1) ⊂ SU(2) charge is
∑

l lml(ζ) = |ζ|.
The only remaining terms in (4.7) to understand are the tower of excited states of

the same SU(2) charge encoded in the final bracket. But these simply encapsulate the

possibility of adding extra ZZ̃ factors into each term of the baryon, correctly taking account

of the combinatorics when there are terms in the baryon which differ by a power of ZZ̃.

It is slightly subtle to understand larger values of k because ζ measures quantities

which are summed over all baryons, so one must work out how to partition things up

between baryons. However, the basic idea described above carries over, with ζ encoding

the SU(2) quantum numbers of the terms in the baryons. One can also extend this to the

non-Abelian case; the xi fugacities are a guide to decide which ϕi, ϕ̃j to insert for the initial

state analogous to |ψ〉 above. Then one enumerates not only ZZ̃ powers as excitations,

but also ϕiϕ̃i powers.

In this way, the Coulomb branch parametrization of states in terms of the sequences

ζ parallels the description of baryons seen in canonical quantization. We have essentially

gone full circle, from canonical quantization to a Molien-type integral, to a Higgs branch

partition function, to a Coulomb branch partition function, and back to the canonical

picture once more.

Another example: Schur polynomials for 1 instanton in U(2). We can also try

to make contact with the expression (3.4) for the one instanton partition function, as

decomposed into its irrep constituents. This is non-trivial because the Coulomb branch

expression does not have a very transparent relationship with the U(N) symmetry of the

original theory.

Because of this, it is most practical to restrict ourselves to the case N = 2. The

Coulomb branch formula then reads

Z =
1

(1− q2)2

∑
ζ1,ζ2

q|ζ
2−ζ1|+|ζ1−ζ2+k|+|ζ2|zζ

2
N∏
i=1

x
ζi−ζi−1+kδi,1
i

We can now write s = ζ1 − ζ2 and do the ζ2 sum. This reduces the expression to

Z =
1

(1− q2)(1− qz)(1− q/z)

∑
s

q|s|+|s+k|
(
x1

x2

)s
xk1

To get to the final result, we split the s summation up into the ranges s ≥ 0, s < −k, and

what remains. One may easily verify that combining these terms together and multiplying
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by the series expansion for (1 − q2) gives

Z =
1

(1− qz)(1− q/z)

∞∑
s=0

q2s+kxk1

[(
x1

x2

)s
+

(
x1

x2

)s−1

+ · · ·+
(
x1

x2

)−s−k]

=
1

(1− qz)(1− q/z)
(x1x2)k/2

∞∑
s=0

q2s+k s(2s+k)(x1, x2)

(x1x2)(2s+k)/2

with the correct total U(1) charge; alternatively, setting x1x2 = 1 we get

Z =
qk

(1− qz)(1− q/z)

∞∑
s=0

q2ss(2s+k)(x1, x2) (4.8)

in precise agreement with (3.4).

Thus the Schur form, which makes explicit the SU(N) structure of the partition func-

tion, is obtained from the Coulomb branch expression only upon doing various non-trivial

manipulations. It would be nice to understand the SU(N) structure of the spectrum more

directly from the Coulomb branch formula.

4.4 Derivation of the Coulomb branch formula

In this section we derive the Coulomb branch formula (4.4) and (4.6) from the original

Molien integral form of the partition function (3.3) coincide. To proceed, we will need a

little bit of symmetric functionology; the canonical reference for this material is [57].

Some symmetric function notation. To start, we define the set of variables W =

{w1, . . . , wn}. Associated to each partition λ with the length `(λ) 6 n there is a non-

zero symmetric polynomial in W over the field Q(t) (finite Laurent polynomials in t with

rational coefficients) called the Hall-Littlewood polynomial,

Pλ(W ; t) :=
1

Nλ(t)

∑
σ∈Sn

σ

(∏
l

wλll

∏
l<m

wl − twm
wl − wm

)
,

where Sn is the symmetry group acting on the indices of the W variables by permutations.

Here Nλ is a normalisation factor defined by

Nλ(t) :=
ϕn−`(λ)(t)

∏
j>1 ϕmj(λ)(t)

(1− t)n
,

where

ϕa(t) =

a∏
j=1

(1− tj) and mj(λ) = |{i > 1 : λi = j}|

The Hall-Littlewood polynomials with variables W and t form a basis for all symmetric

functions in W over the field Q(t). We have an inner product on symmetric polynomials
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defined by the integral

〈Pλ, Pµ〉t :=

∮
C
dµ[W ; t] Pλ(W ; t)Pµ(W−1; t) (4.9)

:=
1

n!

(
n∏
l=1

1

2πi

∮
C

dwl
wl

)∏
l 6=m

1− wl/wm
1− twl/wm

Pλ(W ; t)Pµ(W−1; t)

=
1

Nλ(t)
δλµ .

We can further generalise our polynomials to be a basis for all finite symmetric Laurent

polynomials in W over Q(t). To do this we first define the set of n ordered integers

M := {(ζ1, . . . , ζn) ∈ Zn|ζ1 > ζ2 > · · · > ζn} ∼= Zn/Sn . (4.10)

For any ζ ∈M we can define a partition λ via λl := ζl− ζn for l = 1, . . . , n− 1 and λn = 0,

then we can define

Nζ(t) := Nλ(t) ,

and we define the shifted Hall-Littlewood polynomials by

Ψζ(W ; q) :=
∏
l

wζnl Pλ(W ; q) . (4.11)

One can quite easily show that given these definitions we have, using the same inner

product,

〈Ψζ ,Ψη〉t =
1

Nζ(t)
δζη . (4.12)

A simple trick, that we will use extensively, is the following: for ζ, η ∈M, we can write a

product of two of these polynomials shifted by an arbitrary constant a ∈ Z, namely

Ψζ(W )Ψη(W
−1) = Ψζ+(an)(W )Ψη+(an)(W

−1) (4.13)

We have the Cauchy identity∏
l,m

1− txlym
1− xlym

=
∑
λ

Pλ(X; t)Qλ(Y ; t) . (4.14)

4.4.1 Back to the partition function

The machinery above can be brought to bear on our partition function. Our original

expression for the partition function (3.3) is

Z(k) =
1

n!

n∏
l=1

(∮
dwl

2πiwk+1
l

N∏
i=1

1

(1− qwlxi)(1− q/wlxi)

)

×
∏
l 6=m

(1− wl/wm)
n∏

l,m=1

1− q2wl/wm
(1− qwl/zwm)(1− qzwl/wm)

.

Here we have explicitly written the dependence on the background baryonic charge k.
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To start, we write the second line as

∏
l 6=m

(1− wl/wm)
n∏

l,m=1

1− q2wl/wm
(1− q

zwl/wm)(1− qzwl/wm)

=
1

(1− q2)n

∏
l 6=m

1− wl/wm
1− q2wl/wm

∏
l,m

(1− q2wl/wm)(1− q2wl/wm)

(1− qzwl/wm)(1− q
zwl/wm)

,

and define functions

Q[W, W̃ ; z, q] :=
∏
l,m

(1− q2wl/wm)(1− q2w̃l/w̃m)

(1− qzwl/w̃m)(1− q
z w̃l/wm)

and

πf (W ;x) :=
N∏
l=1

1

1− qwlx
, πf̄ (W ;x) :=

N∏
l=1

1

1− q/wlx
.

The partition function can then be written as

Z(k) =
1

(1− q2)n

∮
C
dµ[W ; q2]

n∏
l=1

w−kl

(
N∏
i=1

πf (W ;xi, q)πf̄ (W ;xi, q)

)
Q[W,W ; z, q] .

Here the contour C is defined to be the unit n-torus.

To convert our Higgs branch expression into a Coulomb branch expression for the

mirror dual theory, we will make use of “Dirac delta functions” for symmetric polynomials.

These allow us to rewrite the Hilbert series as an integral over the maximal torus of the

gauge group of the affine quiver, T (U(n)N ) ∼= TnN ∼= CN . To do this we first define

the function

K[W, W̃ ] :=
∑
ζ∈M

Nζ(q
2)Ψζ(W ; q2)Ψζ(W̃

−1; q2) ,

where M is the set of n ordered integers defined in equation (4.10) and the shifted Hall-

Littlewood polynomials Ψ are defined in equation (4.11). Then, using the meaure (4.9),

we have for any symmetric Laurent polynomial f in W over Q(q2)

f(W ) =

∮
C
dµ[W̃ ; q2] K[W, W̃ ] f(W̃ ) .

This follows from the fact that the functions Ψζ form a linear Q(q2)-basis for symmetric

finite Laurent polynomials and the orthogonality property outlined in equation (4.12).

There is a notational subtlety here; the sum should not be inside the integral, but rather

f(W ) =
∑
ζ∈M

∮
C
dµ[W̃ ; q2] Nζ(q

2) Ψζ(W ; q2) Ψζ(W̃
−1; q2) f(W̃ ) .

It is understood that whenever we write K we mean that the sum sits outside the integral.

This is akin to how the Dirac delta function is not well defined as a function unless inside

an integral.
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Defining W (0) ≡ W and W (N+1) ≡ W̃ , we insert a complete set of states to rewrite

the integral as

Z(k) =
1

(1− q2)n

∮
C
dµ[W ; q2]

∮
C
dµ[W̃ ; q2]

N∏
i=1

∮
C
dµ[W (i); q2]

Q[W, W̃ ]

N∏
i=1

πf (W (i), xi)πf̄ (W (i), xi)

N+1∏
i=1

K[W (i−1)−1,W (i)−1]

This motivates us to define, for ζ, η ∈M,

Mζη(x) := Nζ(q
2)

∮
C
dµ[W ; q2] Ψζ(W ; q2)πf (W ;x, q)πf̄ (W ;x, q) Ψη(W

−1; q2) ,

and

Oζη(k) :=
Nζ(q

2)

(1− q2)n

∮
C
dµ[W ; q2]

∮
C
dµ[W̃ ; q2] Ψζ−(kn)(W ) Ψη(W̃

−1)Q[W̃ ,W ] ,

and the trace is over the vector space of finite symmetric Laurent polynomials, which is

spanned by {Ψζ(W ; q2)|ζ ∈ M}. Note once again that the sums over M are outside the

integrals. The partition function can then be written in the simple form

Z(k) = trH
[
O(k)M(x1)M(x2) . . .M(xN )

]
.

The problem has been reduced to evaluating Mζη(x) and Oζη(k). We start with Mζη(x)

and use the trick in equation (4.13) to restrict to the case where all the elements of ζ and

η are negative so that we can write

Mζη(x) = Nζ(q
2)

∮
C
dµ[W ; q2] Ψζ(W ; q2)πf̄ (W )

∑
χ∈Pn

∮
C
dµ[W̃ ; q2]

1

(1− q2)n
Pχ(W ; q2)Qχ(W̃−1; q2) Ψη(W̃

−1; q2)πf (W̃ ) .

The set Pn is the set of all partitions of length 6 n.

Next, we swap the sum with the integral, use the Cauchy identity (4.14) and expand

Ψζ and Ψη as a sum over permutations so that the integrand in the summand is a rational

function. This gives

Mζη(x) =
1

Nη(q2)(1− q2)n

n∏
l=1

(∮
C

dwl
2πiwl

∮
C̃

dw̃l
2πiw̃l

wζll
1− q/wlx

w̃−ηll

1− qw̃lx

)
(4.15)

×
n∏

l,m=1

1− q2wl/w̃m
1− wl/w̃m

∏
l<m

(
1− w̃m/w̃l

1− q2w̃m/w̃l

1− wl/wm
1− q2wl/wm

)
.

An important subtlety to note here is that the contour for W̃ has changed to C̃ := (1+ε)C

for some sufficiently small ε > 0, so that it doesn’t interfere with the rest of the pole

structure. This is because the denominator, 1 − wl/w̃m, that arises from the Cauchy
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identity after swapping the sum of partitions with the integral over W̃ means that the

form we integrate is not defined on any contour for wl and w̃m such that these contours

intersect. The justification for this choice of contour comes from noting that, if we evaluate

the poles for w̃l in the order w̃n, w̃n−1, . . . , w̃1, and choose poles within the contour, then

we find that the only poles are parameterised by a permutation σ ∈ Sn with w̃l = wσ(l).

(Recall that ηl < 0 so there are no poles at 0.) Upon evaluating the residue we then find

exactly the original expression for Mζη(x).

Considering the relative ordering of the decreasing sequences ζ, η ∈M, we redefine the

labels as follows

ζl ≡ ζi,αi for i = 1, . . . , imax, αi = 1, . . . , ni ,

ηl ≡ ηi,α̃i for i = 1, . . . , imax, α̃i = 1, . . . , ñi ,

such that (n1, . . . , nimax) and (ñ1, . . . , ñimax) are compositions of n (with n1 and ñimax

possibly zero, but all other values strictly positive integers) and ζi,αi 6 ζi,βi ∀ αi > βi, and

ηi,α̃i 6 ηi,β̃i ∀ α̃i > β̃i and, finally, ζi,α > ηi,α̃ > ζi+1,α′ ∀α, α̃, α′. With these definitions,

we can now evaluate the matrix elements. We need the following lemmas:

Lemma 1: the value of Mζη(x) is saturated by the pole located at

wl =
q2sl

x
and w̃l =

q2s̃l

x
,

where

sl = si,α =

i−1∑
j=1

(nj − ñj) + α− 1

2
,

s̃l = s̃i,α̃ =

i∑
j=1

nj −
i−1∑
j=1

ñj +
1

2
− α̃ .

So if ζ1 > η1, s1 = 1
2 and if η1 > ζ1, s̃1 = −1

2 . Furthermore the residue of this pole is such

that we have

Mζη(x) =
1∏

a∈Z ϕma(η)(q2)
x|η|−|ζ|q∆1[ζ,η] ,

where ∆1[ζ, η] is defined in equation (B.3). This is the topic of appendix B.

Note that this expression for Mζη(x) is invariant under shifts of the form (ζ, η) 7→
(ζ + (cn), η + (cn)) for all c ∈ Z. This is what we would expect as we could see this

symmetry already when we used equation (4.13).

For the other term Oζη(k), we have that

Lemma 2:

Oζη(k) = δζ−(kn) ηz
|η|q||η||

where ||η|| :=
∑n

l=1 |ηl| and |η| :=
∑n

l=1 ηl. We prove this in appendix C.
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Given these lemmas we can write the Hilbert series as

Z(k) =
∑
~ζ∈MN

z|ζ
(1)|q||ζ

(1)||Mζ(1)ζ(2)(x1)Mζ(2)ζ(3)(x2) . . .Mζ(N)ζ(1)+(kn)(xN ) .

To see that this does indeed agree with (4.7) we shall expand out the M ′s. First we consider

the bare dimension, written in equation (4.6). Our expression for the bare dimension is

(defining ζ(N+1) ≡ ζ(1))

∆[{ζ}; k] =

N∑
i=1

∆1[ζ(i), ζ(i+1) + δiN (kn)] + ||ζ(1)||

=

N∑
i=1

n∑
l,m=1

(
|ζ(i)
l − ζ

(i+1)
m + δiNk| −

1

2
|ζ(i)
l − ζ

(i)
m | −

1

2
|ζ(i+1)
l − ζ(i+1)

m |
)

+ ||ζ(1)||

=
N∑
i=1

n∑
l,m=1

(
|ζ(i)
l − ζ

(i+1)
m + δiNk| − |ζ(i)

l − ζ
(i)
m |
)

+ ||ζ(1)||

We then redefine our variables via ζ(i) = ζN+1−i and write

∆[{ζ}; k] =

N∑
i=1

n∑
l,m=1

(
|ζil − ζi−1

m + δi1k| − |ζil − ζim|
)

+ ||ζN ||

=
N∑
i=1

n∑
l,m=1

(
|ζil − ζi−1

m + δi1k| − |ζil − ζim|
)

+ ||ζN ||

=

N∑
i,j=1

n∑
l,m=1

(
δi j+1|ζil − ζjm + δjNk| − δi j |ζil − ζjm|

)
+ ||ζN ||

This exactly the expression in equation (4.6). We have

Z(k) =
∑
~ζ∈MN

z|ζ
N |q∆[{ζ};k]

N∏
i=1

x
|ζN−i+1−ζN−i+kδiN |
i

N∏
i=1

∏
a∈Z

1

ϕma(ζi)(q
2)
.

Upon acting with an element of the Weyl group of U(N) such that xi 7→ xN−i+1 we find

we exactly reproduce equation (4.7),

Z(k) =
∑
~ζ∈MN

z|ζ
N |q∆[{ζ};k]

N∏
i=1

x
|ζi−ζi−1+kδi1|
i

N∏
i=1

∏
a∈Z

1

ϕma(ζi)(q
2)
.

A Classical matrix model solutions

It is possible to see the structure of the baryons in the quantum theory, presented in (2.15),

from some solutions to the classical matrix model. Recall these baryons look like this:

B = εa1...anϕa1(Zϕ)a2(Z̃ϕ)a3(Z2ϕ)a4 . . . . . . (Z
lnZ̃mnϕ)an
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A simple set of operators which carry information about this state is given by

Omn =
1

m!n!
Tr Z†mZ̃†nZmZ̃n (A.1)

Essentially, because of the minimal nature of the ground state baryon, Omn counts only

the number of ways of choosing m Z terms and n Z̃ operators from a single term in the

above baryon.

Using this, one can now calculate Ômn, the number of terms in the baryon which are

exactly ZmZ̃nϕ. (Clearly, for a single baryon, this could be taken to be either 0 or 1.) One

does this by subtracting off the contributions from terms with m′ > m or n′ > n which also

contribute to Omn. This is easy to work out; the Zm+iZ̃n+jϕ terms contribute an extra(
m+i
m

)(
n+j
n

)
Ôm+i n+j to Omn. Therefore, one knows that the largest (m,n) (with respect

to the obvious partial ordering) with a non-vanishing Omn is correct and so Ômn = Omn,

and then one can calculate the next-largest Ô using the above observation, and so on.

Now translate this to the classical ground state. For example, for n = 3 particles, we

have (setting k = 1)

Z =

 0 0 0

0 0 1

0 0 0

 and W =

 0 0 1

0 0 0

0 0 0

 with ϕ =

 0

0√
3


setting ϕ̃ = 0. One immediately finds that

Omn =

(
3 1

1 0

)
and so, subtracting off the excess contributions,

Ômn =

(
1 1

1 0

)
This indeed matches with the “ϕZϕZ̃ϕ” structure of the quantum ground state.

Moreover, if one applies a simple SU(2) rotation to (Z,W ), one finds that Ômn is

invariant, as one would expect, since the quantum state is an SU(2) singlet.

Let us now choose a more interesting state, at n = 5. A classical, minimal energy

configuration is now

Z =


0

0 1

0

0
√

2

0

 and W =


0 1

0

0
√

2

0

0

 with ϕ =


0

0

0

0√
5


Now we find

Omn =

 5 3 1

3 0 0

1 0 0

 ⇒ Ômn =

 1 1 1

1 0 0

1 0 0


This corresponds to the “ϕZϕZ̃ϕZ2ϕZ̃2ϕ” choice of quantum state.
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However, this is no longer invariant under the action of SU(2). Indeed, acting with a

rotation by θ from the natural SO(2) ⊂ SU(2) upon Z,W leads to the solution

Z =


0 − sin θ

0 cos θ

0 −
√

2 sin θ

0
√

2 cos θ

0

 and W =


0 cos θ

0 sin θ

0
√

2 cos θ

0
√

2 sin θ

0


with a corresponding

Ômn =

 1 1 1+cos2 2θ
2

1 sin2 2θ 0
1+cos2 2θ

2 0 0


This shows that, indeed, the SU(2) triplet of states rotates amongst itself.

B Mζη(x)

The integral of a meromorphic (m, 0) form ω on an oriented m real dimensional submanifold

D of Cm is defined by the homology class of D. The manifold we compute the homology

of is that of Cm minus complex codimension 1 hyperplanes defined by the poles of ω. Thus

with our choice of homology C and C̃ we have a well-defined integral.

For the practical evaluation of our integral we can evaluate each variable in turn

choosing to sum either inside or outside the contour. This leads to many different ways of

evaluating the integral, but the answer at the end of the calculation is always defined and

independent of these choices as our homology class is well-defined.

For the evaluation of this integral we have been unable to prove that the residue has

the value we claim it does for general n, ζ and η, but we have extensive numerical evidence

for small values of n.

Numerical evidence seems to imply that if we change the homology class to a homology

class defined by the interleaving of ζ and η then there is a unique pole contributing to the

value of the integral given by the values

wl = q2sl/x , w̃l = q2s̃l/x . (B.1)

This homology class is defined as follows: the interleaving of ζ and η allows us to

define an ordering on the variables W, W̃ via wiα 6 wjβ and w̃iα 6 w̃jβ if i < j or i = j

and α < β and wiα 6 w̃jβ if i 6 j and w̃iα 6 wjβ if i < j. More than this we have

the sets P ⊆ {w1, . . . , wn} and Q ⊆ {w̃1, . . . , w̃n} as the elements where the respective

corresponding sl and s̃l are positive and their respective complements P̄ and Q̄ the elements

where the respective corresponding sl and s̃l are negative. The contour is then defined by

the elements of P ∪Q size ordered by the ordering defined above with the smallest element

having the smallest contour and the largest element having the largest contour, while for

the elements of P̄ ∪ Q̄ we do the opposite ordering with the smallest element having the

largest contour and so on. For evaluating the integral we sum all the poles of P and Q on

the inside of the contour and outside the contour for P̄ and Q̄.
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With this choice of contour one finds that upon splitting the form we integrate into

two parts, namely

Mζ η(x) =
1

Nη(q2)(1− q2)n

∏
l

wζll w̃
−ηl
l × (?) . (B.2)

The left over part represented by ? contains all the relevant pole structure and evaluates

to one on the pole, while the term to the left of ? evaluates to exactly the answer required

on the pole.

Indeed on this pole we have that

n∏
l=1

wζll w̃
−ηl
l = x|η|−|ζ|q∆1[ζ,η] ,

where

∆1[ζ, η] := ∆H [ζ, η]− 1

2
∆V [η]− 1

2
∆V [η] , (B.3)

with

∆H [ζ, η] :=

n∑
l,m=1

|ζl − ηm| ,

∆V [ζ] :=
n∑

l,m=1

|ζl − ζm| .

This is because

∆1[ζ, η] =
1

2

n∑
l,m=1

(
2|ζl − ηm| − |ζl − ζm| − |ηl − ηm|

)

=
∑
i6j

ni∑
αi=1

ñj∑
α̃j=1

(ζi,αi − ηj,α̃j ) +
∑
j<i

ni∑
αi=1

ñj∑
α̃j=1

(ηj,α̃j − ζi,αi)

−
∑
i<j

ni∑
αi=1

nj∑
αj=1

(ζi,αi − ζj,αj )−
imax∑
i=1

∑
αi<α′i

(ζi,αi − ζi,α′i)

−
∑
i<j

ñi∑
α̃i=1

ñj∑
α̃j=1

(ηi,α̃i − ηj,α̃j )−
imax∑
i=1

∑
α̃i<α̃′i

(ηi,α̃i − ηi,α̃′i)

=

imax∑
i=1

ni∑
αi=1

2si,αiζi,αi −
imax∑
i=1

ñi∑
α̃i=1

2s̃i,α̃iηi,α̃i .

This is exactly the contribution from the pole to the exponent of q.

However for the original homology choice it is more complicated. For example if we

take n = 2 and (ζ; η) = (−1,−3;−2,−4) but with the original contour then there no

longer is a non-zero residue at the point (w1, w2; w̃1, w̃2) = (q/x, q/x, q/x, q/x) and instead

one finds the value of the matrix element is given by the sum of the residue of the pole
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at (q/x, q3/x; q3/x, q/x) and (q/x, 0; 0, q/x). However the final value of Mζη(x) remains

the same.

A case where the two homology choices are the same is when ζl > ηm for all l and m.

We prove the value of Mζη(x) is indeed what we want in this simpler case. Mζη(x) is

Mζη(x) =
n∏
l=1

∮
C

dwl
2πi

∮
C̃

dw̃l
2πiw̃l

wζll
wl − q/x

w̃−ηl−1
l

1− qxw̃l∏
l,m

w̃m − q2wl
w̃m − wl

∏
l<m

(
1− w̃m/w̃l

1− q2w̃m/w̃l

1− wl/wm
1− q2wl/wm

)
.

First we need to argue that taking the poles at zero for the wl will lead to zero residue

and so we can ignore these poles. We see this by considering evaluating the poles of the

w̃l’s before the wl’s. w̃n only has poles at wl, which then leads to w̃n−1 only having poles

at wl′ for l′ 6= l. This gives w̃l = wσ(l) for some σ ∈ Sn, undoing our splitting into two

integrals and giving us our original integral as in equation (4.4.1). The important point to

note is that now each wl has lowest power in its Taylor expansion ζl − ησ−1(l) > 0 (the −1

exponent goes away because of the numerator w̃σ−1(l) − q2wl 7→ (1 − q2)wl) and so there

can’t be a pole with any coordinate at zero.

With this in mind we can now proceed to evaluating our integral. For w1 there is a

pole at 0 and a pole at q/x. Since we are ignoring the pole at 0 we need only consider the

pole at q/x, the residue of which is

Mζη(x) = qζ1x−ζ1
n∏
l=2

∮
dwl
2πi

wζll
wl − q3/x

∏
l

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l
n∏
l=2

∏
m

w̃m − q2wl
w̃m − wl

∏
l

w̃l − q3/x

w̃l − q/x
∏
l<m

1− w̃m/w̃l
1− q2w̃m/w̃l

n∏
l<m,2

1− wl/wm
1− q2wl/wm

.

Note that this is an equality as we know the pole at zero will have no contribution. For

w2 there is a pole at 0 and at q3/x. The pole at q3/x has residue

Mζη(x) = qζ1+3ζ2x−ζ1−ζ2
n∏
l=3

∮
dwl
2πi

wζll
wl − q5/x

∏
l

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l
n∏
l=3

∏
m

w̃m − q2wl
w̃m − wl

∏
l

w̃l − q5/x

w̃l − q/x
∏
l<m

1− w̃m/w̃l
1− q2w̃m/w̃l

n∏
l<m,3

1− wl/wm
1− q2wl/wm

.

This continues with wr having a pole at q2r−1/x and at 0, with us choosing the non-zero

pole giving residue

Mζη(x) = qζ1+···+(2r−1)ζrx−ζ1−···−ζr
n∏

l=r+1

∮
dwl
2πi

wζll
wl − q2r+1/x

∏
l

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l
n∏

l=r+1

∏
m

w̃m − q2wl
w̃m − wl

∏
l

w̃l − q2r+1/x

w̃l − q/x
∏
l<m

1− w̃m/w̃l
1− q2w̃m/w̃l

n∏
l<m,r+1

1− wl/wm
1− q2wl/wm

.
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Finally we evaluate wn at q2n−1/x, ignoring the pole at 0 to get

Mζη(x) = qζ1+···+(2n−1)ζnx−ζ1−···−ζn
∏
l

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1−qxw̃l

∏
l

w̃l−q2n+1/x

w̃l−q/x
∏
l<m

1−w̃m/w̃l
1−q2w̃m/w̃l

.

The only pole for w̃n is then q/x. Ignoring the factors of q and x at the front from the

previous line this gives

Mζη(x) ∝ q−ηn−1xηn+1
n−1∏
l=1

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l
1

1− q2

n−1∏
l=1

w̃l − q2n+1/x

w̃l − q3/x
(q/x− q2n+1/x)

n−1∏
l<m,1

1− w̃m/w̃l
1− q2w̃m/w̃l

where ∝ is used instead of an equals sign because we are ignoring the powers of q and x

arising from the w integrals. The only pole for w̃n−1 is q3/x with residue

Mζη(x) ∝ q−ηn−3ηn−1−3xηn+ηn−1+1
n−2∏
l=1

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l
1

1− q2

1

1− q4

n−2∏
l=1

w̃l − q2n+1/x

w̃l − q5/x

(q3/x− q2n+1/x)(1− q2n)

n−2∏
l<m,1

1− w̃m/w̃l
1− q2w̃m/w̃l

.

This continues with the only contributing pole for w̃n−r+1 being q2r−1/x with residue

Mζη(x) ∝ q−
∑n
l=n−r+1(2n−2l+1)ηlx

∑n
l=n−r+1 ηl

n−r∏
l=1

∮
dw̃l

2πiw̃l

w̃−ηl−1
l

1− qxw̃l

r∏
l=1

1

1− q2l

n−r∏
l=1

w̃l − q2n+1/x

w̃l − q2r+1/x

n∏
l=n−r+1

(1− q2l)
n−r∏
l<m,1

1− w̃m/w̃l
1− q2w̃m/w̃l

.

Taking w̃1 = q2n−1/x gives our expected result.

C Evaluating Oζη(k)

We note that Oζη(k) = Oζ−(kn),η(0), so it is sufficient to evaluate Oζη(0) ≡ Oζη. Using the

permutation invariance of the integrand we can rewrite Oζη as

Oζη =
(1− q2)n

Nη(q2)

n∏
l=1

(∮
C

dwl
2πi

∮
C

dw̃l
2πi

) n∏
l=1

wζll w̃
−ηl
l

∏
l<m

(wm − wl)(w̃m − q2w̃l)

∏
l>m

(w̃m − w̃l)(wm − q2wl)
∏
l,m

1

(wm − qzw̃l)(w̃m − q
zwl)

.

We define n+, ñ+ such that ηn+ , ζñ+ > 0 and ηn++1, ζñ++1 < 0. Note that w1, . . . , wn+

only have poles within the unit circle at qzw̃l while w̃ñ++1, . . . , w̃n only have poles within

the unit circle at q
zwl. We do these integrals defining σ : {1, . . . , n+} → {1, . . . , n} and
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τ : {ñ+ + 1, . . . , n} → {1, . . . , n} so wl = wzw̃σ(l) for l = 1, . . . , n+ and w̃l = q
zwτ(l) for

l = ñ+ + 1, . . . , n. Note that the factor
∏
l<m(wm−wl)(w̃l − w̃m) guarantees that σ and τ

are injective.

Now we show that

σ{1, . . . , n+} ⊆ {1, . . . , ñ+} ,
τ{ñ+ + 1, . . . , n} ⊆ {n+ + 1, . . . , n} ,

otherwise the integral is zero. We prove this for σ and note that a very similar proof will

work for τ . Suppose ∃ l ∈ {1, . . . , n+} such that σ(l) > ñ+ then wl = qzw̃σ(l) = q2wτσ(l).

Either τσ(l) > l so the factor in the integrand (1 − q2wτσ(l)/wl) evaluates to zero or

τσ(l) < l 6 n+ ⇒ wτσ(l) = qzw̃στσ(l) ⇒ w̃σ(l) = q2w̃στσ(l), now either σ(l) > στσ(l) so the

factor (w̃σ(l) − q2w̃στσ(l)) evaluates to zero or w̃στσ(l) = q
zwτστσ(l). This process carries on,

either we hit a zero, or we hit a fixed point of τσ (as it is a permutation of a finite set),

however this would lead to wm = q2wm for some m with wm 6= 0, a clear contradiction.

Now we show that if ñ+ > n+ then we get zero. Suppose that this is true, we extend

our definition of τ to {n+ + 1, . . . , n} in order that τ{n+ + 1, . . . , n} = {n+ + 1, . . . , n}
and then extend our definition of σ such that {σ(1), . . . , σ(n+), στ(n+ + 1), . . . , στ (ñ+)} =

{1, . . . , ñ+}. After doing these integrals we consider wτ(n++1), . . . , wτ(ñ+). As mτ(l) < 0

we consider the poles outside the unit circle, there is only one and it is at wτ(l) = z
q w̃m

for m = 1, . . . , ñ+. The factor
∏n+

l=1

∏n
n++1(w̃σ(l) − q

zwm) guarantees that the pole is

wτ(l) = z
q w̃στ(l) for l = n+ + 1, . . . , ñ+.

Upon doing this integral one finds the integrand

Oζη =
(−)#z#q#

Nη(q2)

n∏
l=ñ++1

∮
dwτ(l)

2πiwτ(l)

ñ+∏
l=1

∮
dw̃l

2πiw̃l

n∏
l=ñ++1

w
ζτ(l)−ηl
τ(l)

n+∏
l=1

w̃
ζl−ησ(l)
σ(l)

ñ+∏
l=n++1

w̃
ζτ(l)−ηστ(l)
στ(l)

This means that w̃1, . . . , w̃ñ+ can only receive poles within the unit circle from the

monomial at zero, and will have a non-zero residue only if it is a simple pole. However we

have that ζτ(l) − ηστ(l) − 1 6 −2 for l = n+ + 1, . . . , ñ+ because ζτ(l) < 0 and ηστ(l) > 0

for such l. Hence this cannot be a simple pole. Thus we may conclude that the inte-

gral will evaluate to zero unless ñ+ 6 n+. We now do the integral for w1, . . . , wn+ =

qzwσ(1), . . . , qzwσ(n+) and w̃n++1, . . . , w̃n = q
zwτ(n++1), . . . ,

q
zwτ(n). By our earlier argu-

ment we have that σ{1, . . . , n+} = {1, . . . , n+} and τ{n+ + 1, . . . , n} = {n+ + 1, . . . , n}, so

we may combine σ and τ together to form σ ∈ Sn+ × Sn−n+ ⊆ Sn. Upon performing the

integral we obtain that all the cross terms cancel out. We define the dot product of the

Hall-Littlewood polynomials for r 6 n variables to be

〈Ψθ,Ψθ′〉(r) :=
1

NθNθ′

r∏
i=1

∮
dwi

2πiwi

∑
σ∈Sr

r∏
i=1

w
θi−θ′σ−1(i)

i

∏
i<j

(1− q2wj/wi)(1− wσ(j)/wσ(i))∏
i>j

(1− q2wσ(j)/wσ(i))(1− wj/wi)
∏
i 6=j

1

(1− q2wj/wi)(1− wj/wi)

= δθθ′
1

N
(r)
θ (q2)

,
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where N (r) has an r to indicate it is for partitions of size r and not n. We find that the

integral becomes, defining ζ(n+) := (ζ1, . . . , ζn+) and ζ(n+) := (ζn++1, . . . , ζn) (and similarly

for η),

Oζη = Nζq
∑n+

1 ζl−
∑n
n++1 ηlz

∑n+
1 ζl+

∑n
n++1 ηl〈Ψζ(n+)

,Ψη(n+)
〉(n+)〈Ψ

ζ(n+) ,Ψη(n+)〉(n−n+)

= δζηz
|η|q||η||

as required.
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