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This paper presents an analytic solution for the sound generated by an unsteady gust

interacting with a semi-in�nite �at plate with a piecewise linear periodic leading edge. The

Wiener-Hopf method is used in conjunction with a non-orthogonal coordinate transforma-

tion and separation of variables to allow analytical progress. A fully analytic solution is

obtained in terms of a modal expansion for the far-�eld noise which is obtained by summing

only a �nite number of cuton modes, allowing very quick evaluation. The analytic solution

is compared to experimental results for �ve test case leading-edge geometries. Good agree-

ment is seen indicating the analytic model is capturing the key features of the interaction

such as the destructive interference from the tip and root. In four of the �ve test cases

the serrated edges show large reductions of noise compared to the straight edge at mid

and high frequencies, however the square wave geometry is seen to be ine�ective at noise

reduction for high frequencies.

I. Introduction

Leading-edge noise is a common and unavoidable source of noise generated by aeroengines when the wakes
from forward rotor rows interact with rearward stator rows. Noise generated in this way can be reduced
by altering the geometry of the blades, typically blade thickness, camber and angle of attack)1�3 however
within the con�nes of an aeroengine this adaptation is not always practical. Therefore it is important to
develop di�erent alterations to the blades which will reduce noise but that are appropriate for use within an
aeroengine.

A popular adaptation to reduce leading-edge noise is to alter the spanwise straight leading edge of a
blade to be serrated, which mimics the leading edges of owls' wings.4,5 A single-frequency serration is
the most common adaptation investigated numerically,6�8 experimentally,9�12 and analytically.13�16 Whilst
these analytical solutions use very simpli�ed models of convective gusts scattering o� of semi-in�nite �at
plates with leading-edge serrations, they can highlight key noise-reduction mechanisms that can only be
speculated on from experimental and numerical results.

The single-frequency serration is believed to be e�ective in reducing leading-edge noise due to a destructive
interference of scattered acoustics in the far �eld, and a redistribution of acoustic energy from cuton modes
to cuto� modes with increasing serration tip-to-root heights.13 With this understood the task is now to
determine if di�erent leading-edge geometries will result in better noise reductions through either an increased
destructive interference, or greater ability to redistribute energy to the cuto� modes.

This paper therefore presents an analytic solution for the noise generated by a convective gust interacting
with a semi-in�nite �at plate with an arbitrary piecewise linear leading edge. To do so, we generalise the
method used in Ayton & Kim13 which considered speci�cally the case of a single-frequency serration, to a
more general leading-edge geometry. We compare the analytic predictions against experimental results.

II. Formulation of the problem

We consider the interaction of a convective unsteady gust in uniform �ow of Mach numberM over a semi-
in�nite �at plate with a spanwise periodic leading edge. We non-dimensionalise lengths by the wavelength of
the periodic leading-edge geometry, λ∗, and velocities by the upstream mean �ow velocity, U∗. We consider
the spanwise region 0 ≤ z ≤ 1, and impose periodic boundary conditions across z = 0, 1. The blade lies in
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region x > c̃F (z), y = 0, with x denoting the streamwise direction, and c̃ permitting a variable 'tip-to-root'
ratio, i.e. a varying di�erence of the height of the leading-edge geometry.

We restrict the leading-edge geometry such that F (z) is a piecewise linear function, therefore we can
investigate most commonly used geometries such as the serration, triangular wave, and slitted root serration
easily. Here we consider the �ve leading-edge geometries depicted in Figure 1, although the results will be
applicable to any piecewise linear geometry (including piecewise linear approximations of any continuous
periodic leading edge geometry such as a sinusoid), and dual-frequency serrations.

(a) Sawtooth (b) Slitted v-root (c) Slitted u-root (d) Chopped peak (e) Square wave

Figure 1: Leading-edge geometries over one wavelength.

Note in all geometry cases, the z = 0, 1 boundaries of the periodic function are chosen to be away from
any regions of discontinuities of the leading edge. This ensures the solution correctly captures any in�uence
of the discontinuities.

The unsteady gust incident from far upstream takes the form

vg = Aeik1x+ik2y+ik3z−iωt, (1)

where the amplitude, A = (A1, A2, A3)T , is constant. For simplicity we shall take A = (0, 1, 0).
As for the speci�c serration case in Ayton & Kim13 we decompose the unsteady �ow �eld into a convective

gust part and an acoustic response part, v = vg + va, and write the response as va = ∇G. We suppose G
is harmonic in time ∼ e−iωt therefore spatially satis�es the convected Helmholtz equation,

β2 ∂
2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
+ 2ikM

∂G

∂x
+ k2G = 0, (2)

where β2 = 1−M2 and k = ω/c0 with c0 the speed of sound of the background steady �ow. Since the gust
convects with the background �ow, we require k = k1M . The zero normal velocity boundary condition on
the aerofoil surface requires

∂G

∂y

∣∣∣∣
y=0

= −eik1x+ik3z x > c̃F (z). (3a)

We also impose continuity of the potential upstream

∆G|y=0 = 0 x < c̃F (z), (3b)

and a periodic condition across z = 0, 1,

G|z=1 = G|z=0e
ik3 ,

∂G

∂z

∣∣∣∣
z=1

=
∂G

∂z

∣∣∣∣
z=0

eik3 , (3c)

To simplify the governing equation, (2), we apply a convective transform,

h = G(x, y, z)eik1M
2x/β2

, (4)

to eliminate the convective terms. The resulting governing equation and boundary conditions for h(x, y, z)
are

β2 ∂
2h

∂x2
+
∂2h

∂y2
+
∂2h

∂z2
+

(
k1M

β

)2

h = 0, (5a)

∂h

∂y

∣∣∣∣
y=0

= −ei
k1
β2
x+ik3z x > c̃F (z), (5b)

∆h|y=0 = 0 x < c̃F (z), (5c)
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h|z=1 = h|z=0e
ik3 ,

∂h

∂z

∣∣∣∣
z=1

=
∂h

∂z

∣∣∣∣
z=0

eik3 , (5d)

This system of equations, (5), is identical to that in Ayton & Kim13 however now as we are considering
a much broader range of leading edge geometries we must employ a di�erent change of variables in order to
solve it.

We choose the following variables similar to that by Roger et al. (2013)17

ξ =
x

β
− cF (z), (6a)

η = y, (6b)

ζ = z, (6c)

where c = c̃/β. This transformation converts the governing equation and boundary conditions, (5) to

(
1 + c2F ′(ζ)2

) ∂2h
∂ξ2

+
∂2h

∂η2
+
∂2h

∂ζ2
− 2cF ′(ζ)

∂2h

∂ξ∂ζ
− cF ′′(ζ)

∂h

∂ξ
+ (δM)2h = 0, (7a)

∂h

∂η

∣∣∣∣
η=0

= −eiδξ+ik1cF (ζ)+ik3ζ ξ > 0, (7b)

∆h|η=0 = 0 ξ < 0, (7c)

h|ζ=1 = h|ζ=0e
ik3 , (7d)

∂h

∂z

∣∣∣∣
z=1

=
∂h

∂z

∣∣∣∣
z=0

eik3 , (7e)

where δ = k1/β, and derivatives of F are taken in the weak sense at discontinuities.
This completes the formulation of the mathematical model.

III. Analytic solution

We proceed to solve (7) by following a similar set of steps as Ayton & Kim,13 inspired by Envia (1988),18

however take care over the new terms in the governing equations which were not present when F (z) is
restricted to a simple serration.

We �rst apply a Fourier transform in the ξ variable,

H(λ, η, ζ) =

∫ ∞
−∞

h(ξ, η, ζ)eiλξdξ, (8)

then separate the solution into η and ζ dependencies, H(λ, η, ζ) = Y (λ, η)Z(λ, ζ), with separation constant
χ. This results in governing equations

Y ′′ +
(
(δM)2 − λ2 − χ2

)
Y = 0, (9)

and
Z ′′ + 2iλcF ′Z ′ +

(
iλcF ′′ − λ2c2(F ′)2 + χ2

)
Z = 0. (10)

Eq (9) has solutions

Y (λ, η) = sgn(η)e−|η|
√
λ2−w2

, (11)

where
w2 = (δM)2 − χ2. (12)

Eq (10) has solutions

Z(λ, ζ) = e−iλcF (ζ) (A(λ) cos(χζ) +B(λ) sin(χζ)) . (13)

We impose the periodicity boundary conditions to Z to solve for χ and eliminate one of A,B. This yields a
spanwise orthogonal basis by

Zn(λ, ζ) = e−iλcF (ζ)eik3ζ+2nπiζ , (14)
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and a general solution given by

H(λ, η, ζ) =

∞∑
n=−∞

An(λ)sgn(η)e−|η|
√
λ2−w2

nZn(λ, ζ), (15)

where
w2
n = (δM)2 − χ2

n, χn = ±k3 + 2nπ. (16)

Now that we have the necessary orthogonal spanwise basis which is a generalisation of the basis used in
Ayton & Kim13 we proceed to solve for the An following a similar Wiener-Hopf analysis to yield

Ã+
n (λ) =

G+
n (λ)√
λ+ wn

, (17)

with

G+
n (λ) =

i

λ+ δ

1√
−δ − wn

, (18)

hence

H(λ, η, ζ) = sgn(η)

∞∑
n=−∞

G+
n (λ)En(λ)e−|η|

√
λ2−w2

n

√
λ+ wn

Zn(λ, ζ), (19)

where the En are de�ned via

eik1cF (ζ)+ik3ζ =

∞∑
n=−∞

En(λ)Zn(λ, ζ). (20)

The functions En(λ) are known and dependent on the speci�c leading-edge geometry. For the serrated
edge is is found that the En are the key functions determining the overall magnitude of the far-�eld acoustic
pressure and its level of modulation (i.e. how oscillatory it is in the far �eld).13

We invert the Fourier transform and obtain the far-�eld acoustics by applying the method of steepest
descents to give

h(r, θ, z) ∼
∞∑

n=−∞

eπi/4√
π
G+
n (−wn cos θ)En(−wn cos θ) cos

(
θ

2

)
eiwnr√
r
Zn(−wn cos θ, z)e−iwn cos θ cF (ζ), (21)

where (r, θ, z) are cylindrical polar coordinates with origin corresponding to Cartesian origin x = y = z = 0.
Acoustic pressure is determined from the modi�ed potential via

p = −
(
∂h

∂x
− ik1
β2
h

)
e−ik1M

2x/β2

. (22)

This solution is identical to the solution presented in Ayton & Kim13 when F (z) is a sawtooth serration,
however now is generalised for F (z) de�ned by any piecewise linear function.

This completes our analytic solution of the scattered �eld.

IV. Experimental setup and instrumentation

A. Flat plates leading edge serrations

For economy and ease of manufacture, a comparative study on noise reductions of di�erent leading edge
pro�les was performed on �at plates situated within a turbulent �ow. The �at plate with a mean chord
(b) of 150 mm and span of 450 mm was constructed by joining together two 1 mm thick metallic sheets to
allow serrated �at plate inserts 2 mm thick to be inserted between them. All corners were rounded and the
trailing edge sharpened to eliminate vortex shedding noise. Further details of this �at plate construction can
be found in.10

A total of 15 �at plate serrations, which includes 5 di�erent serrations of varying c of 1,2 and 4 were
investigated to explore the sensitivity on noise reductions. For each case the serration wavelength, λ, is kept
constant. Note that in this paper values of λ are presented as quantities normalized on the mean chord b
although there is no evidence to suggest that this is a meaningful normalization parameter in determining
noise reductions.
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B. Open-jet test facility and instrumentation

Far-�eld noise measurements were carried out at the Institute of Sound and Vibration Research's open-jet
wind tunnel facility. The wind tunnel is located within the anechoic chamber, of dimension 8m x 8m x 8m
as shown in �gure 2. The walls are acoustically treated with glass wool wedges and the cut-o� frequency
is 80 Hz. The nozzle has dimensions of 150 mm and 450 mm and provides a maximum �ow speed of 100
m/s. A detailed description of the wind tunnel, including its characteristics, is presented by.19 To maintain
two-dimensional �ow around the �at plate, side plates are mounted to the nozzle exits which will also support
the �at plate and aerofoil in the �ow. The mean leading edge of the �at plate is located 150 mm downstream
from the nozzle exit.

Figure 2: Photograph of jet nozzle and test setup inside the ISVR anechoic chamber.

In order to prevent tonal noise generation due to Tollmien-Schlichting waves convecting in the laminar
boundary layer, and to ensure complete consistency between the di�erent cases, the �ow near the leading
edge of the aerofoil was tripped to force transition to turbulence using a rough band of tape of width 1.25 cm
located 16.6% of chord from the leading edge, on both suction and pressure sides. The tape has roughness
of SS 100, corresponding to a surface roughness of 140 µm. Transition is forced by the use of the trip tape,
which is many orders of magnitude rougher than the aerofoil surface, and is therefore highly unlikely to
a�ect transition. Previous noise measurements in our facility have indicated that self-noise is insensitive to
the method of tripping.

C. Far-�eld noise measurements

Far-�eld noise measurements from the �at plate were made using 11, half-inch condenser microphones (B&K
type 4189) located at a constant radial distance of 1.2 m from the mid span of the �at plate leading
edge. These microphones are placed at emission angles of between 40o and 140o measured relative to the
downstream jet axis. Measurements were carried for 10 s duration at a sampling frequency of 50 kHz, and the
noise spectra was calculated with a window size of 1024 data points corresponding to a frequency resolution
of 48.83 Hz and a BT product of about 500, which is su�cient to ensure negligible variance in the spectral
estimate at this frequency resolution.
The acoustic pressure at the microphone was recorded at the mean �ow velocities (U) of 20, 40, 60 and
80 m/s. Noise reductions are presented in terms of the Sound Power Level spectra PWL(f) calculated by
integrating the pressure spectra over the polar array of 11 microphones using the procedure described in.10

Sound power level reductions are determined by subtracting the sound power level spectra due to the serrated
�at plate from that due to the baseline straight edge pro�le.

D. Turbulence characterisation

A bi-planar rectangular grid with overall dimensions of 630 x 690 mm2 located in the contraction section
75cm upstream of the nozzle exit was used to generate turbulent �ow that provides a velocity spectrum that
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is a close approximation to homogeneous and isotropic turbulence at the aerofoil leading edge. However, we
emphasize that the condition of isotropy is not a key requirement for predicting the noise radiation but only
that the velocity spectrum at the aerofoil leading edge is known. A comparison of the streamwise velocity
spectra measured at 145 mm from the nozzle exit (Suu/U) plotted against f/U is compared in �gure 3 to
the theoretical Liepmann velocity spectrum, where the mean square velocity and integral length scale are
chosen to give best �t to the measured data. Close agreement is observed for 2.5% turbulence intensity and
a 7.5 mm streamwise integral length-scale.

Figure 3: Comparison between the measured axial velocity spectra and theoretical Liepmann spectra.

E. E�ect of trailing-edge self noise

The experimental setup cannot avoid the generation of trailing-edge self noise. This will become increasingly
dominant at high frequencies k1 & 6, as illustrated by Figure 4, moreso when the leading-edge geometry
permits a signi�cant reduction of leading-edge noise (therefore also a�ecting lower frequencies). As these
frequencies are within the range we wish to consider for our experimental and analytical comparison, we
must include a simple trailing-edge noise contribution to the analytical model.
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Figure 4: Far-�eld power spectra as a function of non-dimensionalised frequency k = k1 for two di�erent
aerofoils. Self-noise measurements are obtained when the grid is not placed over the �ow nozzle.

We use Amiet's trailing-edge noise model20 with Howe's approximation21 to Chase's wall-normal turbu-
lent spectrum,22 as detailed in Glegg & Devenport (2017) �9-10.23 This provides us with a far-�eld spectrum
directly above the trailing edge, in the mid-span, of

SPLTE = 10 log10 (Spp(0, rt, 0, ωt)) , (23)
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where

Spp(xt, yt, 0, ωt) ≈ πb
(
ωtchyt
4πc∞r2t

)2

φpp(ωt) |L|2 . (24)

Here (xt, yt, zt) are standard Cartesian coordinates centred on the trailing edge, rt is the radial distance
from the trailing edge, b is the chord span, and ch is the chord length. The frequency, ωt, is assumed to
satisfy k1 = ωt/Uc where Uc is the convection velocity within the boundary layer, Uc ≈ 0.7U . L is Amiet's
generalised lift function [23, Eq (15.2.11)], and φpp is the expected wall pressure spectrum [23, Eq (9.2.37)
denoted as Gpp]

V. Results

A. Analytic directivity

We �rst investigate the leading-edge far-�eld span-averaged directivity, de�ned as

Da(r, θ) =

∫ 1

0

|p(r, θ, z)|2dz, (25)

for our �ve test-case leading-edge geometries.
In Figure 5 we plot Da(10, θ) for k3 = 0, k1 = 5 and varying tip-to-root ratio c, for all �ve test cases. We

consider a moderate k1 value, as it is known that for low-frequency interactions (k1 . 1) serrations are not
very e�ective in reducing far-�eld noise.13 It is clear the square wave does not follow the same trend as the
other four geometries, which consistently show a decrease of far-�eld noise as c is increased. This implies
one of the key mechanisms reducing noise as c increases is not in e�ect for the square wave. It has been
determined in Ayton & Kim13 the two key mechanisms are a destructive interference, and a redistribution
of energy to higher (non-propagating) modes. The interference is still present for the square wave, thus
we expect it is the redistribution of modes which is less e�ective for the square wave than for the other
leading-edge geometries.

Figure 5 also shows that di�erent geometries are more e�ective at di�erent values of c. For example, the
v-root produces more noise than the u-root at c = 2, but the u-root produces more noise than the v-root at
c = 5. Clearly the dual-mechanism of noise reduction (increased interference and redistribution of energy)
leads to complicated situations where di�erent designs a optimal for di�erent incident frequencies, since as
frequency varies there is a shift in which mechanism is most prominent. Also clear is that there must be
a strong dependency on the spanwise component of the incident turbulence given the edge has spanwise
variation. Therefore to assess the noise reduction e�ects over a range of frequencies and to include a reliable
spanwise dependency of the incident �eld we consider the far-�eld SPL and compare to experimental results.

B. Comparison to Experimental Results

The experimental results include a contribution from both leading-edge noise and trailing-edge noise, with
the latter becoming increasingly important at higher frequencies and in situations where the leading-edge
geometry signi�cantly reduces the leading-edge contribution.

We therefore consider a combined leading-edge and trailing-edge SPL de�ned (for the analytic results)
as

SPL(k1) =

∫ ∞
−∞
|p(r, θ, z)|2Φ(∞)(k1, k3)dk3 + SPLTE, (26)

where Φ(∞) is an upstream turbulent spectra given by

Φ(∞)(k1, k3) =
L2(k21 + k23)

(1 + L2(k21 + k23))
5/2

, (27)

with L the integral lengthscale of turbulence.
In each experimental case the wavelength of the leading-edge geometry is λ∗ = 25mm and the total chord

length is b∗ = 150mm. The �ow speed is �xed at u∗ = 60ms−1. The tip-to-root ratios corresponding to
c = 1, 2, 4 are considered. At the lowest frequencies f∗ < 1, 000Hz it is expected the experimental results
contain signi�cant amounts of unavoidable jet noise.
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(a) Serration (b) V-root

(c) U-root (d) Chopped peak

(e) Square wave

Figure 5: Average directivity over the channel span, Da(r, θ) as given by (25), for r = 10, M = 0.5, k3 = 0.
Large dashed c = 0; dashed c = 0.5; dot-dashed c = 1; dotted c = 2, solid c = 5.
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In Figures 6, 7, and 8 we plot the analytic results against the experimental measurements for c =
1, 2, 4 respectively, and for each leading edge geometry. The straight edge result is identical in all �gures
and provides a reference point for considering the noise reduction. The dashed lines are the experimental
measurements whilst the solid lines are the analytic results. Overall we see good agreement between the
analytic predictions and the experimental measurements for all edges therefore this mathematical model is
accurately capturing the key physics of the �uid-structure interaction.

The comparison is particularly good for the sawtooth (a), chopped peak (d), and square wave (e) geome-
tries over all tip-to-root ratios. The very small slitted root regions in the v-root (b) and u-root (c) could allow
non-linear or viscous e�ects to be more prominent in the experimental results than for the other geometries
(where there are no narrow regions); these e�ects are not accounted for in the mathematical model.

C. Isolated leading-edge noise

The results in the previous subsection include the e�ects of (straight) trailing-edge noise as this is unavoidable
during experimental testing. The analytic results however allow us to isolate just the leading-edge noise. We
wish to do this because simultaneous to the development of quieter leading-edge designs, is the development
of quieter trailing-edge designs.24�28 If the trailing-edge noise is signi�cantly reduced from its straight-edge
level at a given (high) frequency, understanding how a leading-edge adaptation a�ects the leading-edge noise
at that frequency becomes important.

We use the analytic results to plot the SPL due only to the leading edge in Figure 9 compared to the SPL
when trailing-edge noise is included. We calculate the isolated leading-edge SPL from (26) by neglecting
the contribution from SPLTE. We see the key di�erence as expected is at the high-frequency end where
trailing-edge noise is most dominant. Without the inclusion of trailing-edge noise, the leading-edge designs
continue to increase noise reduction as frequency increases, except the square wave (e) which is ine�ective
at high-frequencies. When trailing-edge noise is included each leading-edge geometry performs identically
at high frequencies, however when trailing-edge noise is neglected we see clearly the sawtooth out-performs
the other geometries at high frequencies, despite being less e�ective than the other geometries at mid-range
frequencies (e.g. at k1 ∼ 2.5 the square wave (e) is much better at reducing noise than the other geometries).

VI. Conclusions

This paper has presented an analytic solution for the leading-edge noise generated by a semi-in�nite
�at plate with arbitrary piecewise-linear leading-edge geometry. For comparison with experimental results,
a simple model of trailing-edge noise20 is added to the leading-edge noise results. The trailing-edge noise
model does not account for the backscattering of the acoustic �eld29 by the leading edge, similarly the
leading-edge noise model does not account for any rescattering by the straight trailing edge. These smaller
e�ects would be expected to introduce oscillations into the SPL where interference between rescattered �elds
could occur. Overall there is good agreement between the analytical results and experimental measurements
for all geometries at a variety of tip-to-root ratios.

Key to this model is the separation of spanwise and normal variables after applying a Fourier transform
in the streamwise direction. Because of this, the new mathematical formulation is simpler to implement than
the previous (spanwise) Fourier decomposition model of Lyu et al15 which involves an iterative numerical
procedure to obtain far-�eld results.

The analytic results have been used to isolate just the leading-edge noise at high-frequencies, which
can't be done easily experimentally. Di�erent behaviour has been identi�ed between the di�erent test case
geometries at high-frequencies when only the leading-edge noise is considered. In particular, the sawtooth
is most e�ective at high frequencies despite not being the most e�ective at mid-range frequencies.

These results provide groundwork for optimising leading-edge geometries for reducing aerofoil-turbulence
interaction noise.
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Figure 6: SPL from analytic results (solid) and experimental measurements (dashed) for each of the �ve
test case geometries: red (a), orange (b), purple (c), green (d), cyan (e). The straight-edge results are blue
throughout. In each case M = 0.17, c = 1.
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Figure 7: SPL from analytic results (solid) and experimental measurements (dashed) for each of the �ve
test case geometries: red (a), orange (b), purple (c), green (d), cyan (e). The straight-edge results are blue
throughout. In each case M = 0.17, c = 2.
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Figure 8: SPL from analytic results (solid) and experimental measurements (dashed) for each of the �ve
test case geometries: red (a), orange (b), purple (c), green (d), cyan (e). The straight-edge results are blue
throughout. In each case M = 0.17, c = 4.
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Figure 9: SPL from analytic results for each of the �ve test case geometries: red (a), orange (b), purple (c),
green (d), cyan (e). The straight-edge result in blue is provided for comparison. In each case M = 0.17,
c = 2.
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