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We consider a passive zero-mean scalar field organised into two layers of different
concentrations in a three-dimensional plane channel flow subjected to a constant along-
stream pressure gradient. We employ a nonlinear direct-adjoint-looping method to iden-
tify the optimal initial perturbation of the velocity field with given initial energy which
yields ‘maximal’ mixing by a target time horizon, where maximal mixing is defined here
as the minimisation of the spatially-integrated variance of the concentration field. We
verify in three-dimensional flows the conjecture by Foures et al. (J. Fluid Mech., vol.
748, 2014, pp. 241–277) that the initial perturbation which maximizes the time-averaged
energy gain of the flow leads to relatively weak mixing, and is qualitatively different from
the optimal initial ‘mixing’ perturbation which exploits classical Taylor dispersion. We
carry out the analysis for two different Reynolds numbers (Re = Umh/ν = 500, and
Re = 3000, where Um is the maximum flow speed of the unperturbed flow, h is the chan-
nel half-depth and ν is the kinematic viscosity of the fluid) demonstrating that this key
finding is robust with respect to the transition to turbulence. We also identify the initial
perturbations that minimise, at chosen target times, the ‘mix-norm’ of the concentration
field, i.e. a Sobolev norm of negative index in the class introduced by Mathew et al.
(Physica D, vol. 211, pp. 23-46, 2005). We show that the ‘true’ variance-based mixing
strategy can be successfully and practically approximated by the mix-norm minimisa-
tion since we find that the mix-norm optimal initial perturbations are far less sensitive to
changes in the target time horizon than their optimal variance-minimising counterparts.

1. Introduction

Understanding the process of fluid mixing is a long-standing challenge in fluid dynamics
research. One of the problems that lies at the heart of the study of mixing is the broad
concept of ‘efficiency’. For example, what is an optimal mixing strategy that produces,
at a given time, the best possible mixture, subject perhaps to some constraints? Here, we
wish to address certain aspects of this question by considering a canonical problem: the
mixing of a passive scalar with finite diffusivity in plane Poiseuille flow, i.e. the (in general
three-dimensional) flow of a fluid with finite viscosity driven by a constant imposed
pressure gradient in a finite depth channel between two horizontal plane boundaries.

The classical picture of scalar mixing of a fluid dates back at least to Eckart (1948)
and Welander (1955). Homogenisation of two initially separated, miscible substances is
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achieved in two stages. Firstly, the interface between the substances is stretched and
folded by an advection field, i.e. the substances are ‘stirred’, resulting in a filamentary
structure which both increases the surface area of the interfaces between the two mis-
cible substances, and also increases the concentration gradients in the vicinity of those
interfaces. Secondly, these interfaces are smeared out due to the action of molecular dif-
fusion, which causes the gradients to decrease and ultimately vanish. However, due to the
wide range of contexts in which such irreversible mixing is actually encountered, there
is no general theory available to describe all aspects of the phenomenon. Indeed, even
the definition of what constitutes ‘mixing’ is not universally accepted. Analogously to
the problem of turbulence, in different contexts, different mathematical descriptions are
used as quantitative measures for ‘mixing’.

A commonly used, systematic approach to modelling mixing combines the kinematical
foundations of fluid mechanics with the theory of dynamical systems, particularly the
concept of chaos (Ottino 1989; Wiggins 1992). Mixing is thus characterised by some
stretching function that measures the ability of the flow to stretch and fold the interfacial
area between two initially segregated substances. Starting with Aref’s blinking vortex flow
(Aref 1984), mixing characteristics of a large number of flows (Ottino 1990) have been
assessed using various concepts from the theory of dynamical systems, Such concepts
undoubtedly provide valuable insights. Stretching and folding is certainly characteristic
of chaos, and efficient mixing is guaranteed if the flow exhibits ‘streamlines crossing’,
i.e. (loosely) the streamlines of the flow in a bounded domain at two different times
must, when projected onto each other, show intersecting streamlines (Wiggins & Ottino
2004). A mathematically precise description of such efficient mixing is captured in the
framework of linked twist maps (Sturman et al. 2006). However, such a description relies
on time-periodicity of the underlying flows with small perturbations from integrability,
and is, by its very nature, principally suited to the study of the long-time behaviour of
the system. Therefore, different descriptions and approaches may well be better suited
to flows where mixing over finite time horizons is of interest.

For optimisation and control problems, it is practical (and natural) to measure mixing
using the time evolution of various appropriate norms of the scalar miscible quantity’s
concentration field, in particular the difference of this concentration from its mean value.
A natural candidate is the class of Lp norms (p ≥ 1), especially the L2 norm, as it
measures the variance of concentration from a completely uniform distribution (Betz
2001; Rothstein et al. 1999; Thiffeault & Childress 2003)). However, in the absence of
molecular diffusion, for example for the important case of immiscible substances, it is
possible to establish that Lp norms are conserved by the action of an arbitrary incom-
pressible (volume-preserving) flow and so they are, at least in this sense, not suitable for
the description of mixing.

To overcome this problem Mathew et al. (2005) introduced the concept of a particular
‘mix-norm’. Unlike the L2 norm, which is the square of the (zero-mean) concentration
field integrated over the whole space, the mix-norm is constructed as an integral of
squared mean concentration taken over a dense set of subsets contained in the whole
space. They showed that this particular mix-norm is equivalent to H−1/2, i.e. the Sobolev
norm with a negative, fractional index of a half, that it is linked to weak convergence
and hence to mixing in an ergodic sense. In Mathew et al. (2007) the authors used this
particular mix-norm to optimise mixing in Stokes flow. Later, Lin et al. (2011) generalised
the concept by showing that all ‘mix-norms’ in the class H−s, s ∈ R+ share desirable
mixing properties and found theoretical bounds on optimal mixing times for various
constraints. In particular, the mix-norm with index −1 was successfully used for stirring
optimisation and Thiffeault (2012) applied it to a source-sink transport problem. As we
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discuss further below, this particular choice of index has specific computational benefits,
and will be the one we consider in this paper.

However, in all these studies, the mixing flow field considered was externally imposed,
and did not freely evolve as a solution to the full set of governing equations. Further-
more, in practice, the technical challenge of mixing optimisation is commonly approached
through exploiting the inevitable connections between mixing and turbulence (Dimo-
takis & Catrakis 1999; Hinch 1999). As turbulence is fundamentally a chaotic process
and chaotic advection is key for mixing, it has become an accepted paradigm that ‘better’
(in some sense) mixing will inevitably follow the underlying flow undergoing a transition
to, or remaining in, a turbulent regime. Experimentally, this paradigm has been widely
studied and verified (Dimotakis 2000). Consequently, in many practical applications,
mixing is achieved using techniques that are based on pumping energy into the flow,
through mechanisms such as mechanical stirring or jet injections (Aamo & Krstić 2003).
Such energy injection implicitly relies on triggering turbulence, which is then assumed
to accomplish the desired mixing.

However, the required energy injection may be quite large, which inevitably has a
cost which may not always be desirable. For example, (Aamo et al. 2003) designed an
active boundary feedback control to stabilise plane Poiseuille flow, i.e. the flow of a
fluid of finite viscosity driven by a constant pressure gradient in a finite depth channel
between two horizontal boundaries. The authors applied the same structure of input
but with the opposite sign. Using this approach, with a relatively small control effort
realised through wall blowing and suction, they demonstrated that the flow could be
destabilised, which triggered complex turbulent flow patterns and consequently resulted
in considerable enhancement of mixing. They then conjectured that flow destabilisation is
a good proxy for an ‘optimal’ mixing strategy, and then applied this strategy to several
other flows such as three-dimensional pipe flow (Balogh et al. 2005), two-dimensional
flow past a cylinder (Aamo & Krstić 2004) and the magneto-hydrodynamic channel flow
known as ‘Hartmann’ flow (Luo & Schuster 2009).

However, it was not established directly by (Aamo et al. 2003) whether triggering
energetic perturbations actually is an optimal mixing strategy. Foures et al. (2014) in-
vestigated this issue in the context of a particularly idealised flow: two-dimensional plane
Poiseuille flow. As a demonstration of their theoretical and computational approach,
they considered the mixing of zero-mean passive scalar field with diffusivity κ initially
organised into two horizontal layers of different concentration, separated by a relatively
thin (diffusive) interface. They considered the flow at a relatively low Reynolds number
Re = Umh/ν = 500, where Um is the maximum speed of the induced parabolic back-
ground velocity, ν is the kinematic viscosity of the fluid (chosen to be equal to κ for
simplicity) and 2h is the depth of the channel. At this Reynolds number, the flow did
not undergo a transition to turbulence. They used a variational constrained optimisation
technique, which we refer to herein as the ‘direct-adjoint-looping’ (DAL) method (see
Kerswell et al. (2014); Luchini & Bottaro (2014); Schmid (2007) for reviews) to identify
three different classes of optimal initial perturbations of fixed (finite) kinetic energy. The
three classes are optimal in the sense that at various target times, they minimised either
the variance or the H−1 mix-norm of the scalar concentration field, or maximised the
time-averaged kinetic energy of the perturbation.

Their analysis yielded three main results. First, they found that the perturbations that
experience the highest energy growth do not effectively homogenise the distribution of
the passive scalar, in particular for relatively long optimisation time horizons. Second,
based on direct minimisation of the variance of the concentration field, the authors found
that the most mixing-efficient strategy is based on exploiting classical ‘Taylor’ shear
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dispersion. Taylor (1953) studied the spreading of a solvent in a pipe flow and showed
that the radial diffusion of the tracer is enhanced by the cross-stream variation of the
velocity field and that the effect grows stronger in the turbulent regime (Taylor 1954). (It
is the strength of the shear stresses within the flow and their favourable orientation with
respect to the concentration gradients (Rhines & Young 1983) which controls the rate of
mixing and every efficient mixing strategy needs to exploit it.) Third, they found that
the perturbations which minimise the mix-norm over short target times proved to be a
better (and more computationally efficient) proxy for the perturbations which minimise
the variance over long target times (i.e. the best mixing strategy) than perturbations
which minimise the variance over short target times. This last result demonstrates the
utility of mix-norm-based analyses for identifying optimal mixing strategies, at least in
this highly idealised flow.

It is important to appreciate that the results of Foures et al. (2014) were obtained in an
inherently two-dimensional flow at a substantially smaller Reynolds number (Re = 500
as opposed to Re = 6000) compared to the results of Aamo et al. (2003). Hence, it
is at least plausible that these two differences could explain the qualitatively different
conclusions of the two studies, in particular since the flows considered by Foures et al.
(2014) were always highly ordered. Therefore the purpose of the research presented here
is to generalise the study done by Foures et al. (2014) to fully three-dimensional flow and
to higher Reynolds number, where more complex behaviour may conceivably occur. This
generalisation is carried out in two stages. We first consider three-dimensional flow at the
same Reynolds number Re = 500, and then we consider three-dimensional flow at Re =
3000, where transition to turbulence is possible, particularly for the chosen amplitude
of initial perturbation. Fundamentally, we address the following questions for these two
stages (i.e. the potential importance of three-dimensionalisation and transition).

Stage 1. When considering three-dimensional flow at Re = 500:

(a) Does the mixing strategy based on maximisation of the energetic growth of per-
turbations remain significantly sub-optimal in three-dimensional flow? Yes. While the
strategy which uses energy growth is more efficient in three-dimensional flow than in
the previously considered two-dimensional flow of (Foures et al. 2014), it is still signif-
icantly outperformed by a mixing strategy which principally takes advantage of Taylor
dispersion (Taylor 1953).

(b) Are the optimal perturbations more effective at mixing in three-dimensional flow?
Yes, not least because the extra spatial dimension allows an additional shear to be pro-
duced by advection in the spanwise direction which consequently accelerates the mix-
ing, although somewhat surprisingly the differences are relatively small between two-
dimensional and three-dimensional flows.

(c) Is there a structural difference between the optimal mixing strategies in two and
three dimensions at Re = 500? No. The optimal mixing process in three dimensions is
really rather similar to that described by Foures et al. (2014), with the mixing actually
passing through three stages: ‘transport’, ‘dispersion’ and ‘relaxation’. Initially, the inter-
face between the two layers of different scalar concentration is perturbed and transported
from the centre of channel towards the walls, (forming a characteristic vertical ‘stripe’
structure) where the shear stress is strong. Later, the interface is ‘dispersed’ due both
to perturbation advection and the shear associated with the underlying pressure-driven
flow via Taylor dispersion, forming a characteristic ‘chevron’ structure. Finally, the dis-
tribution of passive scalar ‘relaxes’ to homogeneity by molecular diffusion. Compared to
the previously reported flows restricted to two dimensions, the only difference is that
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during the second dispersion stage the perturbation advection is fully three-dimensional,
which allows extra dynamics to take place in the spanwise direction of the flow.

(d) Is the mixing strategy based on mix-norm minimisation a good proxy for optimal
mixing in three-dimensional flows? Yes. Once again in three-dimensional flow, for short
optimisation times the mixing strategy based on minimising the mix-norm yields only
mildly sub-optimal results. However, the mix-norm optimal perturbations are, unlike
variance optimal perturbations, weakly sensitive to the variation of the target optimi-
sation time. Hence, for short optimisation times the mix-norm based strategy produces
better mixtures in the long-time than the variance-based strategy. For long optimisation
times we observe, entirely in agreement with Foures et al. (2014), that the two strategies
become highly consistent.

Stage 2. When considering three-dimensional flow at Re = 3000:

(a) Does the mixing strategy based on energy growth remain sub-optimal in the transi-
tional flows at Re = 3000? Yes. Regardless of the fact that the amplitude of the energy
gain is almost doubled compared to the flow at Re = 500, the most energetic perturba-
tions fail to mix the passive scalar trapped in the boundary layers.

(b) Is there a structural difference in the optimal mixing strategy between flows with
Re = 500 and Re = 3000? No. The fundamental structure of the optimal mixing process
is the same at both Reynolds numbers. It still consists of three stages: transport, disper-
sion and (diffusive) relaxation. Compared to the Re = 500 flow, the only difference in the
flow at Re = 3000 is that the relative impact on mixing of the perturbation advection
compared to Taylor dispersion associated with the background pressure-driven parabolic
flow is increased due to the large shear stresses available for mixing in the near-boundary
region.

(c) Does the mix-norm minimisation remain a good proxy for optimal mixing in flows
with Re = 3000? Yes. The time evolution of the mix-norm closely follows the time
evolution of the variance and the mix-norm optimal initial perturbations remain weakly
dependent (relative to the variance optimal initial perturbations) on the target time in
transitional flows with Re = 3000. Thus, the perturbations that minimise the mix-norm
over short time horizons result in higher levels of homogeneity at long times compared
to the initial perturbations that minimise variance over short time horizons.

(d) Does transition to turbulence enhance mixing? Unsurprisingly yes. In either sense
of concentration variance minimisation or mix-norm minimisation, flows with Re = 3000
lead to smaller values (and thus more homogeneous mixtures) in shorter times than flows
with Re = 500.

(e) Is turbulent mixing more ‘efficient’ than laminar mixing? The answer to this criti-
cal question depends on the precise definition of ‘efficiency’. When quantified in terms of
the relative head loss of the flow, mixing at Re = 3000 is more efficient than at Re = 500.
However, relative to the total mechanical work done by the pressure gradient which drives
the fluid through the channel the turbulent mixing at Re = 3000 is significantly less ef-
ficient than the essentially laminar mixing at Re = 500, which has non-trivial real-world
implications.

To justify and explain the above answers to these key questions, the rest of this paper
is organised as follows. In section 2 we define precisely the relevant mixing measures
and the governing equations for the flow system we are considering. We also formulate
mathematically the problem statement and describe our numerical methodology. In sec-
tion 3.1 we present our results for the three-dimensional flows with Re = 500, while
in section 3.2 we describe the physical processes underlying three-dimensional ‘optimal’
mixing at Re = 500. These two sections essentially answer the first ‘stage’ of questions
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above, i.e. the potential importance of inherently three-dimensional flow. In section 3.3
we discuss the mixing results for the transitional flows with Re = 3000, while in sec-
tion 3.4 we assess the various measures of mixing efficiency for the flows at Re = 500
and Re = 3000, thus answering the second ‘stage’ of questions above i.e. the potential
importance of transitional flow. Finally, we draw our conclusions in section 4.

2. Mathematical formulation

2.1. Mixing measures

Let θ(x, t) be the concentration of a passive scalar distributed in a bounded domain Ω.
We assume that the total amount of the scalar in Ω is conserved, and so we assume
that there are no sources or sinks and that the net flux through the boundary ∂Ω is
zero. Furthermore, we assume that ∂Ω is sufficiently smooth for all the arguments below
to hold true. We wish to quantify mixing, i.e. the level of homogeneity of a mixture
represented by θ(x, t). The natural way to do so is to compute the variance

Var θ =
1

|Ω|
‖θ‖2L2 − 〈θ〉2, (2.1)

where

‖θ‖2L2(Ω) =

∫
Ω

θ2 dx, 〈θ〉 =
1

|Ω|

∫
Ω

θ dx, (2.2)

are the L2-norm and mean value of θ respectively and |Ω| is the measure of the domain Ω.
We consider the case where the passive scalar is transported from its initial distri-

bution θ(x, 0) = θ0(x) by an incompressible flow field U ( i.e. ∇ · U = 0), such that
the spatio-temporal distribution of θ satisfies an advection-diffusion equation, which in
non-dimensional form is

∂θ

∂t
+ U · ∇θ = Pe−1∇2θ. (2.3)

The dimensionless parameter Pe = U0L0/κ is the Péclet number, where U0 and L0 are
characteristic velocity and length scales of the flow and κ is the diffusion coefficient of the
passive scalar in the flow. Without loss of generality we restrict ourselves to zero-mean
fields 〈θ0〉 = 0. Application of Stokes’ theorem, along with boundary conditions which
impose zero net flux from the domain of interest, yields

d

dt
〈θ〉 = 0 and

1

2

d

dt
‖θ‖2L2 = −Pe−1‖∇θ‖2L2 . (2.4)

As is well known, the right hand side in (2.4) is strictly negative unless θ is constant,
and so the concentration decays with a rate dictated by Pe−1‖∇θ‖22 towards the state
with Var θ = ‖θ‖2L2 = 0 i.e. the state with uniform distribution of θ ≡ 0. Of course,
variance measures the fluctuations of the scalar field from its mean and in a finite Péclet
number flow it decays under the action of diffusion until a homogeneous state is reached.
The decay rate of variance is proportional to the square of the norm of the concentration
gradient and the velocity field does not appear directly in (2.4). Furthermore, the decay
rate is proportional to the inverse of Pe, thus suggesting at least the possibility that the
rate of change of variance may be small in flows at high Péclet number.

The behaviour of flows at high (yet finite) Pe is not immediately clear however, as the
velocity field only influences the evolution of Var θ through the concentration gradients.
Multiplying (2.3) by ∇2θ and integrating over Ω we obtain the evolution equation for
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the norm of the concentration gradient

1

2

d

dt
‖∇θ‖2L2 = −

∫
Ω

∇θ · e · ∇θ dx− Pe−1‖∇2θ‖2L2 , (2.5)

where e is the symmetric part of ∇U usually referred to as the rate-of-strain tensor.
The equation (2.5) implies that concentration gradients decrease or increase according
to their alignment with the principal axes of e. The alignment with the negative strain
direction increases the concentration gradients and consequently the rate of mixing while
alignment with the positive strain direction has the opposite effect.

Thus, an effective mixing strategy will be one that exploits this fact through promoting
the generation and growth of interleaved fluid filaments with high and low concentra-
tion. Interfaces between filaments naturally have high concentration gradient and so the
growth of such filaments increases mixing transport as diffusion acts on a larger area. If
such filamentation is caused by shear in some background flow, such shear-enhanced dis-
persion is referred to as Taylor dispersion (Taylor 1953), and can substantially increase
the ensuing diffusion of the scalar. Crucially, finite Pe flow is fundamentally different from
the limiting, yet very important case when Pe → ∞, since in the absence of diffusion,
the variance is conserved and Var θ(x, t) = Var θ0 for any time t and any flow field U.
Hence, in such an idealised flow, variance fails to distinguish between scalar distributions
induced by different flows and so it is not a suitable measure for mixing.

To overcome this disadvantage of variance in the Pe→∞ limit, various authors have
proposed so-called ‘mix-norms’ as measures of mixing. Originally, Mathew et al. (2005)
proposed to use a norm that is equivalent to the norm associated with a Sobolev space
of a negative fractional index H−1/2. Subsequently, Thiffeault (2012) showed that a
whole class of norms associated with H−s, s > 0 can be used to measure mixing. One
mathematical advantage of mix-norms is in their relationship to the ergodic definition of
mixing. Here, similarly to Foures et al. (2014), we introduce a mix-norm (with negative
index −1) in the following way, which has certain computational advantages. Consider a
function Θ which is a solution to

−∇2Θ = θ in Ω
∇Θ · n = 0 on ∂Ω,

(2.6)

with the extra condition ∫
Ω

Θdx = 0, (2.7)

which guarantees the uniqueness of Θ. Then, we define our particular mix-norm as

Mix θ =
1

|Ω|
‖∇−1θ‖L2(Ω) ≡

1

|Ω|
‖∇Θ‖L2(Ω). (2.8)

As we discuss in more detail below, this choice of mix-norm, and the associated choice
of the homogeneous Neumann boundary condition in (2.6) naturally arises in our mixing
optimisation problem formulation.

In the case when the domain of interest Ω is a torus the operator ∇−1 can be simply
expressed in terms of Fourier series. In such a situation, the mix-norm becomes

‖∇−1θ‖L2(Ω) =

∑
k6=0

k−2|θ̂k|2
1/2

. (2.9)

where k is the wave vector with magnitude k and θ̂k are the Fourier coefficients of θ. The
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pre-factor k−2 in (2.9) emphasises large-scale structures (with small k) in the flow over
small-scale structures (large k). Therefore, minimisation of this mix-norm will deprecate
large-scale structures, a procedure which is at least intuitively suggestive of encouraging
diffusive mixing. Analogously to the derivation of (2.5), multiplying (2.3) by Θ and
integrating over Ω yields the evolution equation for the mix-norm of the concentration:

1

2

d

dt
‖∇−1θ‖2L2 =

∫
Ω

∇−1θ · e · ∇−1θ dx− Pe−1‖θ‖2L2 . (2.10)

Comparing this equation with (2.5) shows that the velocity gradients affect ‖∇−1θ‖L2

exactly in the opposite way to the way they affect ‖∇θ‖L2 . Crucially, advection which
promotes filamentation and hence increases concentration gradients actually generates
smaller and smaller-scale structures which inevitably imply decay in the mix-norm.
Therefore, minimisation of the mix-norm encourages the same stirring strategy as min-
imisation of the variance yet, crucially, it does not exhibit the same singular behaviour
as Pe→∞. Indeed, as already observed for two-dimensional flow by Foures et al. (2014),
and as we demonstrate for three-dimensional flow below, even for large Pe-flow, it is pos-
sible for the mix-norm to decrease relatively rapidly for flows particularly conducive to
mixing. This rapid decrease is particularly helpful within an iterative procedure designed
to identify an ‘optimal’ mixing strategy, and so we believe it is appropriate to consider the
mix-norm to be both a mathematically sound and a computationally attractive measure
for mixing.

2.2. Governing equations and problem statement

We consider the model problem of mixing a passive scalar by an incompressible flow in
a three-dimensional channel, where the flow is driven by a (constant) pressure gradient.
The channel is modelled as a three-dimensional domain of streamwise length L∗ = 4πh∗,
spanwise width W ∗ = πh∗ and height H∗ = 2h∗. For computational convenience, peri-
odicity is imposed in the streamwise and spanwise directions. Although the associated
re-entrant flow of the scalar field at the streamwise and spanwise boundaries is not phys-
ical, we are principally interested in demonstrating the utility of the combination of the
direct-adjoint-looping method and minimisation of the mix-norm as a procedure to iden-
tify initial conditions which encourage subsequent efficient scalar mixing, for which this
model problem formulation is appropriate.

The divergence-free flow velocity U(x, t) is governed by the Navier-Stokes equations
and the continuity equation, with (total) pressure P (x, t) imposing incompressibility. As
already discussed, the concentration θ(x, t) of the passive scalar field satisfies an the
advection-diffusion equation, and so the nondimensional evolution is governed by

∂U

∂t
+ U · ∇U = −∇P + Re−1∇2U, (2.11)

∇ ·U = 0, (2.12)

∂θ

∂t
+ U · ∇θ = Pe−1∇2U, (2.13)

where all lengths are scaled by the channel half-depth h∗, velocities are scaled by the
(dimensional) maximum centre-line velocity U∗m and times are scaled by τ∗ = h∗/U∗m.
(Hence the non-dimensional domain size is [0, 4π]×[−1, 1]×[0, π].) The system is naturally
characterised by two non-dimensional numbers, the Reynolds number Re and the Péclet
number Pe defined as

Re =
U∗mh

∗

ν∗
, Pe =

U∗mh
∗

κ∗
, (2.14)
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where ν∗ is the kinematic viscosity and κ∗ is the scalar field diffusivity respectively. Here,
for simplicity we set Re = Pe, and so the Schmidt number Sc = ν∗/κ∗ = 1. It is important
to remember that we consider a passive scalar field – in the system (2.11)-(2.13) the flow
is independent of the concentration field θ(x, t). Therefore, we can solve (2.11)-(2.12)
separately and let the concentration field evolve from its initial distribution θ0 = θ(x, 0)
under the action of U in (2.13).

Assuming that the flow is driven by a constant pressure gradient dp̄∗/dx∗, the system
(2.11)-(2.12) admits a steady base flow solution

ū = (1− y2)ex, (2.15)

where y is the wall normal coordinate and ex is the unit vector in the (streamwise)
x−direction. Hence, the characteristic velocity u∗c and the pressure gradient are related
by

U∗m = − h∗2

2ρ∗ν∗
dP̄ ∗

dx∗
, (2.16)

where ρ∗ is the (constant) fluid density. Therefore, the non-dimensional pressure gradient
is given by 2/Re = −dp̄/dx.

Generalising the approach of Foures et al. (2014) to three-dimensional flow, we consider
a perturbation velocity u with associated perturbation pressure p to the base flow ū. This
perturbation, in general allowed to be finite amplitude, then evolves in time satisfying

∂u

∂t
+ U · ∇u + u · ∇ū = −∇p+ Re−1∇2u, (2.17)

∇ · u = 0, (2.18)

∂θ

∂t
+ U · ∇θ = Pe−1∇2θ, (2.19)

where the total velocity field U = ū+u and the total pressure P = p̄+p. As already noted,
we impose periodic boundary conditions in the streamwise x−direction and spanwise
z−direction. We also impose

u = 0,
∂p

∂y
= 0,

∂θ

∂y
= 0 on Γ, (2.20)

where Γ denotes the plane channel walls at y = ±1. Finally, we prescribe the initial
conditions

u(x, 0) = u0(x) and θ(x, 0) = θ0(x). (2.21)

In our problems of interest, u0 is our control variable. The scalar field is initially or-
ganised into two layers, one of high and one of low concentration, as shown schematically
in figure 1. We assume that there is an approximately diffusive interface between these
two layers, such that

θ0(x) =
1

2
tanh(Cy), (2.22)

where the parameter C is chosen so that the interface is both ‘sharp’, and yet adequately
resolved numerically. By resolution tests, we find that C = 30 is an appropriate choice,
although the particular choice of this parameter does not have a significant effect on our
results.

We consider such a streamwise-independent and spanwise-independent initial distri-
bution as it is not modified by the steady base flow solution (2.15), varying only due
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to diffusion. We choose this initial distribution as we are interested in identifying initial
perturbations in the velocity field that lead to enhanced mixing by some target time.
This is qualitatively different from the class of problems that seek to identify initial den-
sity distributions, in general non-trivially varying in all spatial directions, which lead
to enhanced mixing by some target time (see for example Farazmand (2017) and refer-
ences therein). In principle such a class of problems could also be formulated using the
direct-adjoint-looping (DAL) method discussed below, but we do not consider this class
further here for clarity, as we wish to focus on the mixing effectiveness of initial velocity
perturbations with a certain (constrained) kinetic energy.

We denote by NSdiv
u0

the family of solutions to the incompressible Navier-Stokes equa-
tions (2.17)-(2.18) with boundary conditions defined in (2.20) and initial condition u0.
Analogously, we denote by ADθ0 the family of solutions to (2.19), (2.20) with initial
scalar distribution (2.22). Our objective is then to identify an initial perturbation u0 to
the base flow ū which leads, through flow evolution as a solution to the system (2.17)
- (2.22), to an ‘optimal’ measure (for example the variance or mix-norm as introduced
above in (2.8)) of mixing when evaluated at some time horizon T .

It is natural to expect that the magnitude of this initial perturbation is significant,
and so we constrain the kinetic energy of the initial condition

‖u0(x)‖2L2(Ω) = 2e0|Ω|, (2.23)

where e0 is the energy density and |Ω| is the volume of our flow domain. It seems highly
plausible that growth in the energy of the perturbation to the base flow will lead to mix-
ing, and so Aamo & Krstić (2003) proposed to use the perturbations that most strongly
destabilise the base flow to enhance mixing. However, in the two-dimensional analogue
of the flow considered here, Foures et al. (2014) did not find that such perturbations led
to the most mixing (as measured by small values of the variance at the time horizon),
although they only considered a flow with Re = 500, which did not exhibit vigorous
disordered motion, presumably both because the Reynolds number was too low, and also
because of the restriction to two dimensions. We wish to test this conjecture in more
realistic three-dimensional (and higher Reynolds number) flows through quantifying the
amount of mixing caused by a perturbation that maximises the energy growth in the
perturbation. Therefore, as well as considering values of the variance and the mix-norm
at the target time, we consider also the time-integrated (perturbation kinetic) energy
growth over the entire time interval [0, T ] of a perturbation u, defined as

GE(T ) =
1

2

∫ T

0

‖u(x, τ)‖2L2(Ω) dτ. (2.24)

As discussed in more detail in Foures et al. (2014), we examine the time-integrated energy
growth, rather than only the energy of the perturbation at the target time T because such
time integration captures perturbations which exhibit transient growth during the time
interval of interest. Such perturbations may not necessarily have maximum amplitude
precisely at the target time T , yet may have substantially larger peak amplitude (occur-
ing at tp < T ) and potentially substantially more mixing than the transiently growing
perturbation with peak amplitude occuring at T .

Defining our problem(s) of interest formally, we adopt a slight modification of the
notation used by Foures et al. (2014). We define the objective functional

J (u(T ), θ(T )) = −1− α
2

∫ T

0

‖u(x, t)‖2L2(Ω) dt+
α

2
‖∇−βθ(x, T )‖2L2(Ω) (2.25)

where the parameters α ∈ {0, 1}, β ∈ {0, 1}. Choosing α = 0 corresponds to considering
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Figure 1. Schematic representation of the initial distribution and boundary conditions imposed
on the scalar concentration field shown in: a) side view on the midplane z = π/2; b) top view
on the midplane y = 0.

the time-averaged energy, choosing α = 1, β = 0 corresponds to considering the variance
and choosing α = 1, β = 1 corresponds to considering the mix-norm. For these various
choices of these parameters, we then solve the minimisation problem

argmin
‖u0‖2

L2=2e0|Ω|
{J (u(T ), θ(T )| (u, θ) ∈ NSdiv

u0
×ADθ0}. (2.26)

2.3. Direct–Adjoint Looping Method

The central challenge of the problem (2.26) is due to the fact that the objective func-
tional J does not dependent explicitly on the control variable u0. Instead, the control
affects J through the effect the choice of this initial condition has on the spatially and
temporally varying velocity fields and concentration fields, which are constrained to sat-
isfy their evolution equations (2.17)-(2.19), and associated boundary conditions (2.20).
These constraints need to be included in the objective functional using additional spa-
tially and temporally varying ‘adjoint’ variables. Then, the variation of J with respect
to the control variable u0 may be derived and a classical gradient-based optimisation
approach can be employed. Such a strategy to tackle the minimisation problem (2.26)
is sometimes referred to as a (nonlinear) Direct–Adjoint Looping (DAL) method (Ker-
swell et al. 2014; Luchini & Bottaro 2014). As discussed in detail in these reviews, this
method has become increasingly popular recently, particularly in terms of identifying fi-
nite amplitude perturbations, and the associated hierarchy of growth mechanisms, which
optimise energy gain over finite time horizons, and indeed may trigger the transition to
turbulence (see for example Cherubini et al. (2010); Duguet et al. (2013); Juniper (2011);
Monokrousos et al. (2011); Pringle & Kerswell (2010); Pringle et al. (2012); Rabin et al.
(2012)).

However, the method is quite general, and Foures et al. (2014) demonstrated that
it could be applied to the identification of initial perturbations, (and indeed forcing
strategies) which lead to ‘optimal’ mixing, in various (well-defined) mathematical senses.
Following the implementation of this method presented in Foures et al. (2014), repeated

briefly here for completeness, we introduce ‘adjoint’ variables u†0, u†, θ†, p† and consider
the augmented functional

L(u0,u, θ, p,u
†
0,u
†, θ†, p†, ) = J (u(T ), θ(T ))

−JNS(u, p,u†)− JAD(θ†, θ,u)− JC(p†,u)− JIC(u0,u,u
†
0), (2.27)
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where

JNS =

∫ T

0

∫
Ω

u† ·
(
∂u

∂t
+ U · ∇u + u · ∇ū +∇p− Re−1∇2u

)
dxdt, (2.28)

JAD =

∫ T

0

∫
Ω

θ†
(
∂θ

∂t
+ U · ∇θ − Pe−1∇2θ

)
dxdt, (2.29)

JC =

∫ T

0

∫
Ω

p†∇ ·Udxdt, (2.30)

JIC =

∫
Ω

u†0 · (u(x, 0)− u0) dx. (2.31)

The minimisers of (2.27) are characterised by vanishing Gateaux derivatives, δGL = 0.
Naturally, variation of L with respect to the adjoint variables enforce that u, θ, p satisfy
the governing equations (2.17) - (2.19) for t ∈ [0 , T ] and so the adjoint variables can be
regarded as Lagrange multipliers.

Conversely, zero variation of L with respect to the ‘forward’ or ‘direct’ variables u, p, θ
implies dynamical constraints which the adjoint variables satisfy at the minimum of L. We
present the full computation in the appendix A, leading to the following set of (adjoint)
evolution equations satisfied by the adjoint variables:

∂u†

∂t
+ U · ∇u† − u† · (∇U)T +∇p† + Re−1∇2u† = θ†∇θ − (1− α)u, (2.32)

∇ · u† = 0, (2.33)

∂θ†

∂t
+ U · ∇θ† + Pe−1∇2θ† = 0, (2.34)

subject to the boundary conditions

u† = 0,
∂p†

∂y
= 0,

∂θ†

∂y
= 0 at Γ (2.35)

and terminal conditions

u†(x, T ) = 0 θ†(x, T ) = (−1)βα∇−2βθ(x, T ). (2.36)

Finally, for t = 0 we obtain the compatibility conditions

u†0(x) = u†(x, 0) and ∇u0L = u†0. (2.37)

We can thus set up an iterative ‘looping’ scheme that at each iteration computes the
variation of the objective function with respect to u0 consistently with the imposed
constraints, which integrates the direct equations forward in time from 0 to the target
time T , imposes the terminal conditions on the adjoint variables, and then integrates
those variables backwards in time from T to 0. Remembering that U = ū+u, the direct
disturbance velocity field u explicitly appears in the adjoint equation (2.32). Therefore
the velocity field must be saved during the direct time integration so that it can be input
into the adjoint evolution equation during the backwards-in-time integration from T to
0. Due to memory constraints, we adopt a classical check-pointing approach in order to
avoid saving the direct velocity field at every iteration.

At the first iteration, we start with random (incompressible) noise as an initial guess
of the initial perturbation u0. The perturbation is evolved forwards in time using the
direct governing equations (2.17)-(2.19) until t = T . At the time horizon T the adjoint
variables are initialised using the terminal conditions (2.36) and the equations (2.32)-
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(2.34) are integrated backwards in time to t = 0, as the equation (2.32) is only well-
posed when integrating backwards in time. Finally, the gradient of L is found and the
initial perturbation is updated such that the energy constraint (2.23) is satisfied. We
present schematically this Direct–Adjoint Looping method in figure 2. The numerical
solver is based upon the well-validated pseudo-spectral code Diablo (see Taylor (2008) for
more details), which uses a combination of the explicit third-order Runge–Kutta–Wray
and the implicit Crank–Nicolson schemes for time-stepping of the evolution equation.
The fractional step method is used to accommodate the incompressibility condition. All
derivatives in the periodic directions are computed in Fourier space while the derivatives
in the wall normal direction are computed via second-order finite differences. We use
256 × 209 × 64 grid points for the spatial discretisation. The time step is chosen to
satisfy the classical CFL condition which in practice yields ∆t ∼ 10−3. With the chosen
grid density, we observe that the obtained results are not sensitive to the increase of
the resolution in either space or time. More details on resolution sensitivity and the
convergence properties are given in Appendix B.

As discussed in detail in Foures et al. (2013), the update of the initial perturbation
that respects the energy constraint (2.23) is numerically delicate, and it is convenient to
impose this energy constraint directly, rather than using a Lagrange multiplier approach.
Imposing this constraint is carried out in two steps. First, once ∇u0

L is computed,
the gradient is projected onto a hyperplane tangent to the energy hypersurface given
by (2.23). This is achieved via removal of the hypersurface-normal component

⊥u†0 = u†0 −
(
u0,u

†)
(u0,u0)

u0, (2.38)

where ( . , . ) represents the standard scalar product in L2 and the symbol ⊥u†0 denotes
the projection. The update of the initial perturbation is then chosen as

unew
0 = u0 cosα+ v sinα, with v = 2e0|Ω|

⊥u†0

‖⊥u†0‖L2

. (2.39)

The energy constraint is imposed directly, via the form of v, to restrict the initial per-
turbation to a hypersphere of given radius, consistently with the direction implied by the
projection onto the tangent hyperplane. Geometrically, the update can be interpreted as
a rotation of the initial condition in an optimal direction, computed from ∇u0

L (Dou-
glas et al. 1998). The angle of the rotation α is an unrestricted parameter and it is
determined using classical backtracking line search (Dennis & Schnabel 1996). It is ad-
vantageous to use the projection and rotation along with more advanced gradient based
minimisation algorithm such as conjugate-gradient decent method (Polak 1971), which
forms the second stage of the update process.

From the compatibility condition (2.37), convergence to an optimal solution corre-

sponds to u†0 being computed to be parallel to u0, as then ∇u0
L = u†0 can only vary by

changing the magnitude of u0 and hence the energy of the initial perturbation, which is
not allowed by construction. This ensures that an (at least local) solution to the minimi-
sation problem (2.26) has been determined.

Following Rabin et al. (2012) and Foures et al. (2013), we consider the convergence of
our minimisation scheme through monitoring the scaled residual r defined as

r =
‖∇u0

L⊥‖2L2

‖∇u0L‖2L2

. (2.40)

The expression ∇u0
L⊥ denotes the projection of the gradient ∇u0

L onto the hyper-
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Initial guess of u0

Integrate forwards in time
∂u
∂t

+ U · ∇u + u · ∇ū = −∇p+ Re−1∇2u
∇ · u = 0

∂θ
∂t

+ U · ∇θ = Pe−1∇2θ

update u0 s.t.
‖u0(x, t)‖2L2 = 2e0|Ω|

u†(x, T ) = 0
θ†(x, T ) = (−1)βα∇−2βθ(x, T )

Integrate backwards in time
∂u†

∂t
+ U · ∇u† − u† · (∇U)T +∇p†

+Re−1∇2u† = θ†∇θ − (1− α)u,

∇ · u† = 0, ∂θ†

∂t
+ U · ∇θ† + Pe−1∇2θ† = 0

t = T

u†0(x) = u†(x, 0)

∇u0L = u†0

t = 0

Figure 2. Schematic of the (nonlinear) Direct–Adjoint Looping method for solving the con-
strained optimisation problem (2.26). At each iteration, the ‘direct’ system (2.17)-(2.19) is in-
tegrated forwards in time to the time horizon T , where the adjoint variables are initialised and
the adjoint system (2.32)-(2.34) is then integrated backwards in time to t = 0 in order to obtain
∇u0L. The initial condition is then updated via the conjugate gradient method combined with
a projection step ensuring (2.23) (as described in Foures et al. (2013)) until convergence.

plane tangential to the energy hyper-surface (2.23). We consider a sufficient criterion for
adequate convergence to a local minimum to be r ' O(10−3).

3. Results

We solve the optimisation problem (2.26) using the DAL method as described in the
previous section. We consider five different target times T = 2, 5, 10, 20, 30 and two values
of Reynolds number. First, in order to generalise the analysis of Foures et al. (2014)
to three dimensions we investigate flows with the same, moderate Reynolds number
Re = 500. Secondly, we consider a larger value of Re = 3000. Although such pressure-
driven channel flows are linearly stable to normal modes for Re ≤ Rec ≈ 5772.22 (Orszag
1971), it has been observed that turbulence transition can occur in the form of turbulent
spots at subcritical Reynolds numbers as low as ReT ≈ 1300 (Carlson et al. 1982;
Klingmann 1992; Lemoult et al. 2012). Since we are allowing finite amplitude initial
perturbations, we believe that Re = 3000 is a natural choice, as it is an integer multiple
of the value used by Foures et al. (2014), clearly in the range of Re where subcritical
transition is possible, and yet still significantly lower than the critical Rec for linear
instability.

Following Foures et al. (2014), we solve the problem (2.26) for three different specific
optimisations – maximisation of the (in general finite amplitude) time-integrated pertur-
bation energy gain, minimisation of the mix-norm and minimisation of the variance of
the concentration over various time horizons. The DAL method identifies the (at least
locally) optimal initial perturbations associated with each of these optimisations. Fol-
lowing the evolutions in time of these perturbations as solutions to (2.17) –(2.19) allows
us to identify the key physical mechanisms that control such ‘optimal’ mixing. In order
to capture the enhanced effect of advection on the homogenisation of the scalar concen-
tration field over and above purely diffusive effects, we define the following quantitative
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measures

M(t) =
‖∇−1θ(t)‖2L2

‖∇−1θd(t)‖2L2

(3.1)

V (t) =
‖θ(t)‖2L2

‖θd(t)‖2L2

, . (3.2)

Here, θd is the concentration of the scalar field evolving in the absence of any advection,
i.e. it is a solution of

∂θd
∂t

= Pe−1∆θd, θd(x, 0) = θ0(x) (3.3)

with periodic boundary conditions in the horizontal directions and

∂θd
∂y

= 0 on Γ. (3.4)

Under the scaling (3.1)-(3.2) such purely diffusive processes correspond to time-independent
quantities of M(t) and V (t). Additionally, we introduce the appropriately scaled energy
gain

G(t) =
1

t

GE(t)

GE(0)
. (3.5)

which quantifies the time-averaged kinetic energy growth of the perturbation. The two-
dimensional version of the problem (2.26) was already investigated at Re = 500 by Foures
et al. (2014), using an energy density of the initial perturbation e0 = 10−2. For ease of
comparison, we also use this value for both choices of Reynolds number, which proves to
be large enough to allow the nonlinear effects to be significant.

3.1. Laminar regime: Re = 500

3.1.1. Time-averaged energy growth maximisation

We first consider optimisation of time-averaged energy growth. In figure 3 we present
the optimal initial flow perturbations for different time horizons. The panels show iso-
surfaces of the streamwise velocity component u. In addition, in figure 4 we plot slices
of the resulting concentration fields at the corresponding time horizons. On the left we
plot the z = π/2 vertical plane, and on the right we plot the y = 0 horizontal plane. It is
apparent that, initially, the optimal perturbations take the form of vortices tilted against
the direction of the mean shear. As time progresses, these vortices get rearranged and
reoriented resulting in transient, and relatively rapid energy transfer from the base flow
to the perturbation through the well-known process now known as the ‘Orr mechanism’
(Orr 1907).

Figure 5(a) shows the time evolution of the time-averaged energy growth G(T ) (as
defined in (3.5)) for the various time horizons. On each line the associated optimisation
time horizon is marked with a black circle. The dashed line represents the optimal en-
velope Gopt obtained by cubic interpolation of the optimal values G(T ). (To capture the
global maximum of Gopt across all time horizons T an extra optimisation for time horizon
T = 15 is needed in order to capture the correct shape of the envelope.) For comparison,
we also plot (with a dot-dashed line) the optimal envelope from the equivalent two-
dimensional calculations in figure 5(a). Perhaps unsurprisingly, the energy growth in the
three-dimensional flow is significantly larger than in the flow restricted to evolve purely
in two dimensions. It is apparent from the structures of the initial perturbations shown
in figure 3 that the perturbations have non-trivial spanwise structure, taking the form of
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Figure 3. Optimal initial conditions for maximising the time-average of energy growth for a
flow with Re = 500 over time horizons: (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20. Isosurfaces
of 40% of the maximum (yellow) and minimum (blue) of the streamwise velocity component u.

(a) T =2

(b) T =5

(c) T =10

(d) T =20

Figure 4. Spatial distribution of the scalar concentration field at the terminal time horizon for
a flow initialised by perturbations which maximise the time-average of energy growth for: (a)
T = 2; (b) T = 5; (c) T = 10; and (d) T = 20 on the vertical midplane at z = π/2 (left column)
and the horizontal midplane y = 0 (right column).
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Figure 5. Time evolution of the three studied measures for the three optimisation problems
contained in (2.26) at Re = 500. For each of the initial perturbations, the rows show: (top) the
time-averaged energy growthG(t) (top); (middle) the mix-normM(t); and (bottom) the variance
V (t) of the concentration field, while perturbations associated with the different optimisation
problems are shown in the columns: (left) maximisation of the time-averaged energy growth;
(middle) minimisation of the mix-norm; and (right) variance, where the quantities G(t), M(t),
V (t) are defined in (3.5), (3.1) and (3.2) respectively. Thus, the time evolution of the optimal
perturbations which actually optimise the specific quantities are shown in the panels located
on the diagonal. Each panel contains five plots corresponding to the five chosen time horizons
T = 2, 5, 10, 20, 30. The associated time horizon for each plot is indicated by a circle. The
optimal envelopes GLopt(T ), ML

opt(T ), V Lopt(T ) (plotted with dashed lines) are obtained via cubic
interpolation of the optimal values at the time horizons and the envelopes are plotted in all the
panels of each row to allow better comparison between the various optimisation problems. In
panels (a), (b) and (c) the dashed-dotted lines represent the optimal envelopes G2D

opt(T ), M2D
opt(T )

and V 2D
opt (T ) obtained by Foures et al. (2014) from flows restricted to evolve in two dimensions.

The squares in panel (c) indicate the values of the scaled variance produced by energy-growth
maximising perturbations in two dimensions at the specific target times as reported by Foures
et al. (2014). The black dash-dotted line in panel (c) corresponds to the cubic interpolation of
these data points.

obliquely-aligned ‘streaks’. Such structures are also able to extract energy from the base
flow via the ‘lift-up’ mechanism (see Landahl (1980) and Brandt (2014) for a detailed
discussion), a mechanism which is only accessible to such inherently three-dimensional
flows, and is also consistent with linear stability analyses, see Schmid & Henningson
(2001) for more details.

Furthermore, Foures et al. (2014) demonstrated that when the flow was restricted to be
two-dimensional, initial perturbations which optimise the energy amplification proved not
to be effective mixers. Particularly, for larger target times (e.g. T = 20, 30) enhancements
in mixing associated with advection above pure diffusion was very weak, when measured
either in terms of reduction in the variance or the mix-norm. In figure 5(c), we plot
the time evolution of the variance of the scalar concentration field associated with the
flow initialised by the perturbations which maximise time-averaged energy growth. The
circles on each of the curves once again mark the terminal time of the interval over
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Figure 6. Optimal initial conditions for minimising the variance for a flow with Re = 500 over
time horizons: (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20. Isosurfaces of 40% of the maximum
(yellow) and minimum (blue) of the streamwise velocity component u .

which the optimisation takes place. The black squares show the value of concentration
variance at the terminal time of the optimisation interval for the equivalent inherently
two-dimensional flows initialised by perturbations which optimise time-averaged energy
growth. The three-dimensional perturbations associated with energy-growth optimisation
lead to more (though still not thorough) mixing than the equivalent two-dimensional
perturbations.

Indeed there appears to be three different characteristic behaviours. First, for the
shortest time interval of optimisation T = 2, little reduction in variance ensues. The
highly organised perturbations plotted in figure 3(a) are localised near the walls, and so
their growth does not induce significant filamentation, and hence little mixing occurs.

Conversely, for the two longer time horizons T = 20 and T = 30, the initial perturba-
tion is really rather unstructured. (This structure is suggestive of the method only having
identified a local maximum, as it is plausible that another similarly unstructured per-
turbation would have very similar, and perhaps even higher, time-averaged perturbation
growth.) As is apparent in figure 4, these unstructured perturbations remain unstruc-
tured throughout flow evolution, leaving patchiness (and thus nontrivial variance) in the
concentration field throughout its evolution. Finally, the intermediate time horizons (of
T = 5 and T = 10) are interestingly better at reducing variance by t = 30, as the more
structured initial perturbation, combined crucially with an earlier peak in perturbation
energy, appears to be able to exploit filamentation and hence transport at intermediate
times to ensure a superior performance in mixing. Of course, this does violate the opti-
misation procedure, as there is no a priori reason why these perturbations should lead to
‘good’ variance reduction, as already noted by Foures et al. (2014) for two-dimensional
flow.
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(a) T =2

(b) T =5

(c) T =10

(d) T =20

Figure 7. Spatial distribution of the scalar concentration field at the terminal time horizon for
a flow initialised by perturbations which minimise the variance for: (a) T = 2; (b) T = 5; (c)
T = 10; and (d) T = 20 on the vertical midplane at z = π/2 (left column) and the horizontal
midplane y = 0 (right column).

3.1.2. Variance minimisation

To explore further which initial perturbations are actually optimal in three-dimensional
flow at these Reynolds numbers, we consider initial perturbations that minimise the
variance of the passive scalar at the selected time horizons. We plot these perturbations
in figure 6, while we plot the resulting distribution of the passive scalar at the time
horizon in figure 7. In contrast to the perturbations associated with maximum time-
averaged energy growth, for short time horizons the variance optimal perturbations take
the form of small-scale vortices localised near the interface between the two different
concentrations. These vortices perturb the interface and the passive scalar is transported
through small scale ‘wrinkles’. In particular, the top view plots reveal that for the shorter
time horizons the wrinkles are densely woven into each other such that the contact
interface between the two layers is highly extended. Consequently, large regions of strong
concentration gradients are created, which allows diffusion to occur in a central mixing
layer. The scale of the inital vortices increases such that the wrinkles penetrate further
across the channel as the target time is increased, as is apparent in figure 6. Figure 5(i)
shows the optimal variance evolution in time V (t) for the selected time horizons. We see
that after reaching the chosen time horizon the variance reaches a plateau and so mixing
proceeds at rate corresponding to the advection-free system (3.3).

To understand how the ultimate amount of mixing triggered by these various pertur-
bations varies with time horizon, we plot with a dashed line in figure 5(i) the optimal
envelope V Lopt obtained by cubic interpolation of the variances at the target times. We also
plot the time evolution of the variances for the different individual target time horizons
(marked with a circle on each curve). It is clear that the optimisations over short time
horizons (i.e. with T = 2 and T = 5) do not fully mix the passive scalar, and it is only
the longer-time-horizons which approach close to full mixing. Furthermore, figure 5(c)
shows the two-dimensional counterpart of V Lopt (represented by dash-dotted line). We see
that the mixing behaviour of the variance-optimal strategy does not change dramati-
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Figure 8. Optimal initial conditions for minimising the variance for a flow with Re = 500 over
time horizons: (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20. Isosurfaces of 40% of the maximum
(yellow) and minimum (blue) of the streamwise velocity component u.

cally when moving from two-dimensional flow to three-dimensional flows at this Re. For
instance, for the target time T = 30 the three-dimensional optimal perturbation yields
mixing that is only 3% more effective (in the sense of reduction in variance)

than the optimal perturbation in a flow restricted to two dimensions. Following the
analysis of Foures et al. (2014), we also consider the energy gain of the variance-optimising
perturbations in figure 5(g). Once again we find that these perturbations undergo a
much smaller energy gain than the energy-gain optimising perturbations, reinforcing the
conclusion of Foures et al. (2014) that energy gain can actually be counter-productive to
extensive mixing, at least at these Reynolds numbers.

3.1.3. Mix-norm minimisation

Finally, in figure 8, we present the initial perturbations that minimise the mix-norm
of the passive scalar at the selected target times while in figure 9 we show the resulting
concentration fields. Although the mix-norm optimal perturbations have some points
of similarity with the variance optimal perturbations (i.e. as the target time increases
the characteristic scales become larger, and the perturbations become more streamwise-
aligned), there are still some substantial differences, particularly at early times. Perhaps
unsurprisingly, since the mix-norm strongly penalises small scales, the mix-norm optimal
perturbations consist of coherent structures that disturb the interface of the two layers,
forming quasi-wall-normal bands in which the passive scalar is periodically transported
into the regions of opposite concentration in a way that proves effective in ultimately
mixing the concentration field. Indeed, as is clear from figures 5(f) and (g), for all except
the shortest target time T = 2, all the mix-norm optimal perturbations lead to excellent
mixing, in the sense that the variance at T = 30 is small.
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(a) T =2

(b) T =5

(c) T =10

(d) T =20

Figure 9. Spatial distribution of the scalar concentration field at the terminal time horizon for
a flow initialised by perturbations which minimise the mix-norm for: (a) T = 2; (b) T = 5; (c)
T = 10; and (d) T = 20 on the vertical midplane at z = π/2 (left column) and the horizontal
midplane y = 0 (right column).

This suggests a particular utility of the mix-norm optimisation problem. Shorter tar-
get times are computationally cheaper, and is as apparent from consideration of the
isosurface structures, the optimal perturbations identified over longer target times have
some disorder, suggesting, as already noted, that they might correspond to a specific
local maximum from a class of similar initial perturbations. However, when minimising
variance, the short time horizon optimal perturbations do not approach closely to the
solution trajectory associated with thorough mixing identified by the long-time horizon
optimal perturbations, possibly due to the (already discussed) issue that the rate of decay
of the variance is constrained by the small value of 1/Pe.

There is no such constraint on the mix-norm optimisation problem, and indeed the time
evolution of the optimal perturbation which minimises the mix-norm at T = 5 effectively
traces close to the time evolution of the ‘true’ optimal perturbation to minimise variance
for T = 30. Therefore, algorithmically, it seems wise to use mix-norm optimisations over
short target times as proxies for substantially more computationally demanding variance
optimisations over longer target times, as mix-norm optimisation is far less sensitive to
the choice of target time than the strategy that focuses on variance.

3.2. Time evolution of the optimal perturbations

Before considering the effect of variations in Re on this observed usefulness of the mix-
norm optimisation problem, we consider the evolution of the various optimal perturba-
tions in more detail. Firstly, for energy-growth optimisation, we choose the time horizon
T = 5 to allow comparison with the two-dimensional analyses presented in Foures et al.
(2014). Figure 10 displays the evolution of the concentration variance under the action of
the optimal perturbation at several times t ∈ [0, 30]. Initially, at t = 0 the perturbation
flow field (shown in figure 3(b)) creates vortices tilted against the mean shear direction.
The rearrangement and reorientation of the vortices generate transient energy-growth
that the perturbation experiences before it starts to decay exponentially, essentially ex-
ploiting the Orr mechanism.
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(a) t =2

(b) t =7

(c) t =12

(d) t =18

(e) t =30

Figure 10. Time evolution of the scalar field distribution produced by the energy-growth opti-
mal perturbation (with time horizon T = 5) at: (a) t = 2; (b) t = 7; (c) t = 12; (d) t = 18; and
(e) t = 30, on the vertical midplane at z = π/2 (left column) and the horizontal midplane y = 0
(right column).

The vortices distort the interface into a wave and effectively give rise to stripe-like
regions in which the passive scalar is transported up and down in alternate fashion
(figure 10(a)). Consequently, the interface is extended, which allows the diffusion over a
larger surface area. It is worth noting that at this stage the flow field is almost invariant
with respect to a shift in the third spanwise direction. Spectral analysis shows that
the observed structure is effectively a superposition of two waves which have the same
spanwise frequency but different streamwise frequency. Therefore, these waves travel at
different phase velocity along the channel and in particular as time progresses, the wave
crests and wave troughs are pushed towards the channel walls - to the regions of strong
shear, which enhances the mixing, as the stripes are distorted into angled chevrons.
Moreover, stretching the interface across the channel allows the constant shear of the
base flow to contribute to mixing of the passive scalar (Figure 10, panels (b)).

In the study of purely two-dimensional flow, Foures et al. (2014) state that the advec-
tion eventually starts to act against the tendency of the flow to mix, and indeed eventually
resegregates the scalar layers. Interestingly, this does not occur in the inherently three-
dimensional flow because the three-dimensional vorticity dynamics allows for an extra
transport of the passive scalar in the spanwise direction, as can be seen in figure 10,
panels (c)-(d). The resulting shear enhancement intensifies the mixing and eventually
leads to a comparatively more homogeneous distribution of the passive scalar field, as
shown in figure 10, panels (e).

To quantify our observations, we study the production term in (2.5), i.e. the term
through which the perturbation flow field acts on the concentration gradient and influ-
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Figure 11. Time and wall-normal variation of the various production terms (as defined
in (3.6)-(3.9)) for the optimal flow for energy-growth over a time horizon of T = 5: (a) the
base flow term Pū; (b) the (total) perturbation term Pu; (c) the perturbation term in the x− y
plane P2D; and (d) the three-dimensional deviation term P3D.

ences the rate of mixing. Let us define

Pū(y, t) =
1

4π2

∫ 4π

0

∫ π

0

∇θ · ∇ū · ∇θ dz dx = − y

2π2

∫ 4π

0

∫ π

0

∂xθ∂yθ dz dx, (3.6)

Pu(y, t) =
1

4π2

∫ 4π

0

∫ π

0

∇θ · ∇u · ∇θ dz dx, (3.7)

Pd(y, t) =
1

4π2

∫ 4π

0

∫ π

0

|∇θ|2 dz dx. (3.8)

The quantities Pū(y, t) and Pu(y, t) represent the evolution of the horizontally-averaged
reduction of the concentration gradient due to the actions of the base flow ū and the per-
turbation (not necessarily ‘small’) flow u respectively, while Pd(y, t) denotes the evolution
of the horizontally-averaged concentration gradient. Furthermore, we split Pu into two
terms to distinguish the action in the x− y plane and the effects inherently linked to the
three-dimensional nature of the problem, defining

P2D(y, t) =
1

4π2

∫ 4π

0

∫ π

0

2∑
i,j=1

∂iθ∂iuj∂jθ dz dx, P3D = Pu − P2D. (3.9)

Figure 11 shows the time evolution of the various production terms defined in (3.6)-
(3.9). From panel (b) showing Pu(y, t), it is apparent that the perturbation velocity field
initially accelerates mixing on the interface between the two layers of the passive scalar,
while later for t & 5, it exploits strong shear in the wall regions. The plot of Pū(y, t)
in panel (a) confirms that the vertical transport of the passive scalar is additionally
accompanied by a shear due to the base flow. The final stirring action takes place at
an intermediate distance between the walls and the centre of the channel. In panels (c)
and (d) we plot P2D and P3D respectively. We see that the shear-enhanced mixing in the
regions close to the walls is linked purely with the action in x − y plane while the later
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stirring is inherently based on the shear associated with the (third spanwise) z−direction,
thus differentiating the three-dimensional dynamics from the two-dimensional dynamics.

Naturally, a similar analysis can be applied to the variance-optimal perturbation, Here,
once again for the sake of comparison with the previously published two-dimensional
analysis we consider the flow as it evolves with an optimisation time horizon T = 30.
In figure 12 we plot snapshots of the scalar field concentration at five indicative times
while in figure 13, similarly to figure 11, we plot the spatio-temporal variation of the
production terms defined in (3.6)-(3.9).

Figures 12 and 13 show that the mixing is also driven by the same mechanisms which
occur in the evolution of the energy-optimal perturbation. However, for this flow they
are organised in such a way that the mixing impact at the chosen target time is maximal.
Fundamentally, the three-dimensional mixing process as a whole passes through the three
stages described for two dimensional flow by Foures et al. (2014), i.e. transport, then
dispersion, then relaxation.

Firstly, the initial two-layer distribution of the passive scalar is perturbed so that large
amounts of the scalar field are ‘transported’ into the region of opposite concentration.
This upwards and downwards transport organises the concentration into (vertical) ‘stripe’
regions. This has two effects. First, the interface where the concentration gradients are
large is extended, which leads to an initial drop in the concentration variance. Secondly,
once the interface comes close to the channel walls at t ∼ 3.5, the mixing is enhanced
through ‘dispersion’ by the constant shear due to the base flow closely followed by the
shear due to the perturbation field in the boundary region. Moreover, due to the in-
herently three-dimensional nature of the flow, extra spanwise transport occurs, with the
stripe-like regions being effectively distorted such that the associated inherently spanwise
z−dependent shear further supports mixing. As is apparent from figure 13, the maximal
contributions to mixing caused by these three shear production terms are comparable,
and so we think it is appropriate to consider them of comparable importance. Finally,
as time progresses, the production terms become so small such that by t ∼ 18 neither
the perturbation field nor the base flow are significantly affecting the distribution of the
passive scalar. This is the final ‘relaxation’ stage of the mixing process when all inhomo-
geneities are smeared out by molecular diffusion. It is important to appreciate that even
though the time horizon for the optimisation is changed between the two cases shown in
figures 10-11 (for energy-growth maximisation with T = 5) and figures 12-13 (for variance
minimisation with T = 30), the optimal mixing process remains conceptually the same –
it is still comprised of the three aforementioned stages: transport, dispersion and relax-
ation, with the dispersion stage being composed of the three contributing mechanisms of
similar strength.

3.3. Transitional mixing: Re = 3000

In the previous section we studied the properties of the three different optimisation
problems in flows with Re = 500. In this section we wish to explore the effect of variation
of Reynolds number, in particular when the Reynolds number is sufficiently large for
the flow to behave in a qualitatively different fashion. We choose Re = 3000, as this is
a sufficiently large value for the flow to undergo turbulence transition. We carry out a
similar analysis of the problem (2.26) as in the previous sections. We solve the same three
optimisation problems, corresponding to maximisation of the time-integrated energy-
growth, mix-norm minimisation and variance minimisation. As simulating flows at this
Reynolds number is computationally demanding, and we expect mixing to be more rapid,
we consider only three time horizons, i.e. T = 2, 5 and 10.

Firstly, we confirm that the flow is indeed transitional. In the top row of figure 14, we
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(a) t =2

(b) t =6

(c) t =10

(d) t =15

(e) t =30

Figure 12. Time evolution of the scalar field distribution produced by the variance-optimal
perturbation (with time horizon T = 30) at: (a) t = 2; (b) t = 6; (c) t = 10; (d) t = 15; and (e)
t = 30, on the vertical midplane at z = π/2 (left column) and the horizontal midplane y = 0
(right column).
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Figure 13. Time and wall-normal variation of the various production terms (as defined
in (3.6)-(3.9)) for the variance-optimal flow over a time horizon of T = 30 for a flow with
Re = 500: (a) the base flow term Pū; (b) the (total) perturbation term Pu; (c) the perturbation
term in the x− y plane P2D; and (d) the three-dimensional deviation term P3D.
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Figure 14. Top row: Variation with y and t of mean profiles 〈U〉xz as defined in 3.10 for the
transitional flows at Re = 3000 (solid lines) and the parabolic base flow ū (dashed-lines) ; bottom
row: Flow rateQ(t) as defined in 3.11 for flows with Re = 500 (dashed lines) and Re = 3000 (solid
lines) for time horizons T = 5 with optimal initial perturbation for: (left column) time-integrated
energy-growth; (centre column) mix-norm minimisation; (right column) variance minimisation
(right) for T = 5.

plot the x− z-averaged mean velocity profiles

〈U〉xz =
1

4π2

∫ 4π

0

∫ π

0

(ū + u) dz dx (3.10)

at t = 0, 3, 10, 20 and 30 for Re = 3000. The left column is for the flow maximising
time-integrated energy-growth, the middle column is for the mix-norm-minimising flow,
and the right column is for the variance-minimising flow. For comparison, we also plot
(with a dashed line) the magnitude of the parabolic base flow ū defined in (2.15). Since
the initial perturbation has a finite energy, it is entirely possible that the perturbation
accelerates the flow so that the initial mean velocity profile 〈U〉xz > 1 at the midpoint
of the channel, as is apparent in each case.

Also, remembering that the problem formulation imposes a constant pressure gradient,
it is natural that the flux is reduced at later time by the nontrivial modification of the
mean flow from its laminar parabolic form, with the clear development of a boundary-
layer structure near the channel walls. To quantify this reduction in flow, in the bottom
row of the figure we plot the mean flow rate through the channel

Q(t) =

∫ 1

−1

〈U〉xz dy, (3.11)

for the two considered Reynolds numbers in this study, i.e. Re = 500 (plotted with a
dashed line) and Re = 3000 (solid line) for the problem with time horizon T = 5, which
exhibits typical behaviour for all the problems considered.

We present the overall results in figure 15, which is organised in the same way as figure 5
for the flows with Re = 500, i.e. the rows show the time evolution of the key scaled
quantities G(t), M(t) and V (t) as defined in (3.5), (3.1) and (3.2) while the columns
correspond to flows determined by solving the three different optimisation problems.
Furthermore, the two figures use the same colour coding, in that G(t) is plotted in black,
M(t) is plotted in blue, and V (t) is plotted in red respectively. The solid lines with circles
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Figure 15. Time evolution of the three studied measures for the three optimisation problems
contained in (2.26) at Re = 3000. For each of the initial perturbations, the rows show: (top) the
time-integrated energy growth G(t); (middle) the mix-norm M(t); and (bottom) the variance
V (t) of the concentration field, while perturbations associated with the different optimisation
problems are shown in the columns: (left) maximisation of the time-integrated energy growth;
(middle) minimisation of the mix-norm; and (right) variance, where the quantities G(t), M(t),
V (t) are defined in (3.5), (3.1) and (3.2) respectively. Thus, the time evolution of the optimal
perturbations which actually optimise the specific quantities are shown in the panels located on
the diagonal. Each panel contains three plots corresponding to the three chosen time horizons
T = 2, 5, 10. The associated time horizon for each plot is indicated by a circle. The optimal
envelopes GTopt(T ), MT

opt(T ), V Topt(T ) (plotted with dashed lines) are obtained via cubic inter-
polation of the optimal values at the time horizons and the values computed at t = 30 using
time horizon T = 10. The envelopes are plotted in all the panels of each row to allow better
comparison between the various optimisation problems. In panels (b) and (c) the dashed-dotted
lines represent the optimal envelopes G2D

opt(T ), M2D
opt(T ) and V 2D

opt (T ) obtained by Foures et al.
(2014) from flows restricted to evolve in two dimensions. For comparison, the optimal envelopes
GLopt(T ), ML

opt(T ), V Lopt(T ) for flows with Re = 500 are plotted with dashed lines.

mark the different optimal envelopes GTopt, M
T
opt and V Topt. In order to allow comparison

between the flows at the two different Reynolds numbers, we also plot the equivalent
optimal envelopes GLopt, M

L
opt and V Lopt (using dashed lines) obtained from flows with

Re = 500. Unsurprisingly, the optimal flows with Re = 3000 reach more extreme values
than the equivalent flows with Re = 500. For example, the maximum energy growth
reaches twice the value in the flow with Re = 3000 compared to the flow with Re = 500.
Analogously, mixing, relative to both mix-norm and variance minimisation is more rapid
and complete for Re = 3000. In particular, the optimal envelopes MT

opt and V Topt become
essentially horizontal, corresponding to a state where mixing is occuring at a purely
diffusive (asymptotic) rate by t = 10, thus justifying the chosen time horizons.

3.3.1. Time-averaged energy growth maximisation

Similarly to the behaviour for the flows with Re = 500, the initial perturbations which
maximise energy growth form spanwise vortices tilted against the direction of the mean
shear allowing energy harvesting via the Orr mechanism. We illustrate the energy-growth
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Figure 16. Optimal initial conditions for (a) maximising the time-integrated energy growth,
(b) minimising the concentration variance and (c) mix-norm for a flow with Re = 3000 over a
time horizon T = 5 represented via isosurfaces of 40% of the maximum (yellow) and minimum
(blue) of the streamwise velocity component u.

optimal perturbation in figure 16(a) by plotting the streamwise velocity component for
the perturbation with time horizon T = 5. Indeed, the initial circulation within the
vortices is such that the flux in the central region of the channel is actually increased,
which is also shown in the structure of the mean flow profile shown in figure 14(a).
As time progresses, with the perturbation vortices being redistributed and reoriented,
the mean flow is decelerated in the channel centre while being accelerated closer to the
walls giving rise to the boundary layers, leading to a relatively large (transient) energy
gain. Consequently, the interface between the two different scalar field concentrations
is distorted, with the passive scalar being transported in the wall-normal direction. In
figure 17 we plot the time evolution of the concentration field θ for the flow with this initial
perturbation. Transition leads to significant mixing in the flow interior at later times,
although it is apparent that the passive scalar still remains unmixed in the boundary
layers near the walls. Indeed, a quantitative measure of the energy-growth-based mixing
is shown in figure 15(c), where the time evolution of V (t) for perturbations maximising
energy growth can be compared with the (actual) optimal envelope for perturbations
which minimise variance, i.e. V Topt. Specifically, at time t = 30 (for optimal perturbations
with time horizon T = 5) the energy-growth perturbation has variance three times higher
than the equivalent perturbation chosen to minimise variance, demonstrating that even
for such ‘turbulent’ flows, triggering an energetic perturbation is not the ‘best’ way to
mix passive scalars in such a shear flow.

3.3.2. Variance minimisation

The time evolution of the flow induced by the variance-minimising optimal pertur-
bation for Re = 3000 exhibits the same three stage behaviour (of transport, dispersion
and relaxation) as the flow with Re = 500. Once again, the variance-minimising opti-
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(a) t =5

(b) t =10

Figure 17. Time evolution of the scalar field distribution produced by the energy growth
optimal perturbation (for a flow with Re = 3000 with time horizon T = 5) plotted in figure
16(a) at: (a) t = 5; (b) t = 10; and (c) t = 30, on the vertical midplane at z = π/2 (left column)
and the horizontal midplane y = 0 (right column).

(a) t =5

(b) t =10

(c) t =30

Figure 18. Time evolution of the scalar field distribution produced by the variance-minimising
optimal perturbation (for a flow with Re = 3000 with time horizon T = 5) plotted in figure
16(b) at: (a) t = 5; (b) t = 10; and (c) t = 30, on the vertical midplane at z = π/2 (left column)
and the horizontal midplane y = 0 (right column).

mal perturbation comprises small scale vortices located near the passive scalar interface,
as shown in figure 16(b) (for a time horizon T = 5). It is clear that the characteris-
tic length scales (in both the streamwise and spanwise directions) of the perturbation
flow structures are significantly smaller for the variance-minimising optimal perturbation
than for the energy-growth optimal perturbation or for the mix-norm-minimising optimal
perturbation over this time horizon. As is typical, the perturbation vortices perturb the
interface, extending it towards the channel walls, generating a fine-scale vertically-striped
pattern in the scalar concentration field. Mixing is then enhanced by the underlying base
flow shear, the (intensified) shear in the boundary layers and the spanwise shear, leading
to the stripes being smeared out, as shown in figure 18.

Comparing the envelopes V Lopt and V Topt in figure 15(c), it is apparent that the mixing
measures decay only slightly faster for the transitional flow with Re = 3000 than for
the flow with Re = 500. This relatively small difference can be attributed to the growth
of the shear in the boundary layers near the channel walls due to the transition to
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Figure 19. Time and wall-normal variation of the various production terms (as defined
in (3.6)-(3.9)) for the variance-optimal flow over a time horizon of T = 10 for a flow with
Re = 3000: (a) the base flow term Pū; (b) the (total) perturbation term Pu; (c) the perturba-
tion term in the x− y plane P2D; and (d) the three-dimensional deviation term P3D.

disorder. This is particularly apparent in figure 19, which plots the time evolution of the
product terms (3.6)-(3.9) for the optimal variance-minimising perturbation with target
time horizon T = 10 in a flow with Re = 3000. It is apparent that the key qualitative
characteristics of the optimal mixing are the same as in the flow with Re = 500. However,
comparing figure 13 with figure 19, it is apparent that the structures have substantially
higher amplitude in the flow with Re = 3000, with in particular the boundary layer shear
contributing much more intensively to the mixing. As is apparent from consideration of
figure 19, the term Pū plays a substantially smaller role, while the term P2D dominates.
This is in contrast to the behaviour of the flow where Re = 500, where the various terms
are much closer in magnitude, as is apparent in figure 13.

3.3.3. Mix-norm minimisation

Finally, the mix-norm-optimal flow with Re = 3000 largely exhibits the same prop-
erties as the equivalent flow with Re = 500. Similarly to the variance-optimal flow, the
perturbations which minimise the mix-norm form vortices tilted against the mean shear
direction. As the mix-norm penalizes small scale structures, the characteristic length
scale of the mix-norm minimising vortices is larger than the characteristic length scale
of the variance-minimising vortices with the same time horizon for flows with the same
Re = 3000.

However, it is also apparent that the characteristic length scale of these vortices is
considerably smaller than the characteristic length scale of the equivalent vortices in
the equivalent flow with the same time horizon minimising the mix-norm for flows with
Re = 500. The physical evolution is the same as discussed above, in that the interface
between the two initial concentrations is transported towards the channel walls forming
characteristic vertical stripes, where are then dispersed by the enhanced shear, before a
final relaxation phase where the concentration field is completely homogenised by molec-
ular diffusion. This time evolution is illustrated in figure 20, where we plot the time
evolution of the concentration field under the action of the mix-norm optimal initial con-
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(a) t =5

(b) t =10

(c) t =30

Figure 20. Time evolution of the scalar field distribution produced by the mix-norm optimal
perturbation (for a flow with Re = 3000 with time horizon T = 5) plotted in figure 16(a) at:
(a) t = 5; (b) t = 10 and (c) t = 30, on the vertical midplane at z = π/2 (left column) and the
horizontal midplane y = 0 (right column).

dition for time horizon T = 5. The associated optimal flow field is presented in figure
16(c).

As in the case of the variance-optimal flows, the increased shear in the near-wall
boundary layers at higher Re = 3000 leads to slightly better mixing (in the specific sense
of mix-norm minimisation) compared to the equivalent flow at Re = 500. Unsurprisingly,
strong shear is located much closer to the channel walls in the higher Re flow, and so the
impact of the wall induced shear on the reduction in the concentration variance (and mix-
norm) is somewhat delayed at higher Re. This phenomenon can be observed by comparing
the time evolutions of V (t) in the mix-norm-optimisation flows with target time T = 10
at the two different Reynolds numbers. Figure 15(f) confirms the usefulness of the mix-
norm as a good proxy for the variance. Moreover, we see that at Re = 3000, identifying
the perturbation which minimises the mix-norm over a relatively short time horizon
continues to be better at mixing (i.e. reducing the concentration variance) at late times
than the variance-optimal perturbation over the same short time horizon. Considering
a specific illustrative example, the optimal perturbation which minimises variance over
the time horizon T = 5 has lower variance at the target time T = 5 than the optimal
perturbation which minimises the mix-norm at T = 5. This is unsurprising, since the
optimal perturbation which minimises variance is, by construction, designed to minimise
variance at the target time, whereas the optimal perturbation which minimises the mix-
norm at the target time is not constructed to minimise variance at the target time.
However, as time increases beyond the target time, the decay of variance driven by the
variance-optimal perturbation slows down considerably, while for the mix-norm optimal
initial perturbation the variance continues to decay rapidly until its value approaches the
optimal envelope.

In summary, unsurprisingly the solutions of the optimisation problem (2.26) for flows
with Re = 3000 differ in detail from those for flows with Re = 500, although our analysis
shows that the key conclusions drawn from the properties of the flows with Re = 500 carry
over to the flows with Re = 3000. We now turn our attention to attempting to quantify
some appropriate measure of the ‘efficiency’ of the mixing induced by the various optimal
perturbations.
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3.4. Mixing performance

In simple terms, the ‘performance’ of a process may be defined as the ratio between
the quantity of some required outcome to some appropriate measure of the ‘cost’ of the
process. Here, we choose to define the ‘performance’ of the mixing through some desirable
measure of the mixing (capturing both the quality and quantity of mixing) scaled by the
energy consumption of the mixing process, i.e.

Mixing performance =
Mixing measure

Energy consumed
=
MP
EC

. (3.12)

As the flows which we consider are inherently time-dependent, it is natural to define
the mixing performance of a given flow as the ratio of the amount of fluid mixed (as
measured in terms of an appropriately defined mixing measure over a time interval [0, t]
relative to the energy consumed over the same period of time.

The mixing measure quantity MP in the numerator of (3.12) should be defined as a
function which monotonically increases with some appropriate measure of the quality of
the resulting mixture as well as the amount of fluid mixed. From a physical perspective,
the concentration variance is the most natural description of mixture quality and so for
the purpose of this section we regard it as the mixing measure. We thus defineMP over
a given time interval [0, t] as

MP(t) =

∫ t

0

[Q(s) (1− V (s))] ds, (3.13)

where the variable Q is the mean flow rate through the channel as defined in (3.11) and
V is the variance of the concentration field, scaled by the purely diffusive variance θd(t),
as defined in (3.2).

In theory (Paul et al. 2004), in an equilibrium state the power delivered to the system
is equivalent to that lost or dissipated in the fluid. Naturally, in transitional flows, energy
dissipation increases, which is manifest by an increase in the friction factor (Bergman
et al. 2011), leading inevitably to a decrease in the mean flow rate for a constant imposed
pressure gradient. Therefore, dQ(t)/dt can be used as an appropriate measure of the
energy consumption EC by the mixing processes in (3.11). However, for the flows which
we are considering here, the picture is complicated by the fact that Q(t) varies non-
monotonically, as is apparent in figure 14. Therefore, it is mathematically convenient to
capture the change of the mean flow rate relative to a reference flow rate Qref via an
integral measure

EC =

∫ t

0

[Qref −Q(s)] ds (3.14)

which avoids the denominator of the expression for the mixing ‘performance’ being zero.
It is important to remember that the initial perturbation actually injects a fixed amount
of energy into the flow, and so the appropriate reference flow rate Qref is the maximal
initial flow rate associated with a flow perturbation that satisfies the energy constraint
(2.23), i.e.

Qref = max
‖u0(x)‖2

L2(Ω)
=2e0|Ω|

∫ 1

−1

〈ū + u0〉xz dy. (3.15)

Since the flow rate is maximised when the perturbation is purely in the streamwise
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direction, we find that u0 =
√

3
8 (1− y2)ex and so

Qref =
4

3

(
1 +

√
3

8

)
. (3.16)

Therefore, we define an appropriate mixing ‘performance’ as

PTRe(t) =

∫ t
0

[Q(s) (1− V (s))] ds∫ t
0

[Qref −Q(s)] ds
, (3.17)

where the superscript T denotes the target time horizon.
Figure 21 shows the time evolution of this mixing performance PTRe for the two con-

sidered flow regimes. We see that, consistently with the above discussion, the mixing
strategy based on maximising the time-integrated energy growth is outperformed by
the other strategies because it both uses more energy (suppressing the flow rate) while
for all target times it produces comparatively poorer decay of concentration variance.
In fact, except for the variance minimisation on the shortest target time T = 2, both
minimisation strategies are more efficient than the energy-growth amplification for all
tested target times irrespective of the choice of Reynolds number. Indeed, using this
particular measure PTRe, the perturbations which minimise either the concentration vari-
ance or the mix-norm for flows with Re = 500 have better mixing performance than the
energy-growth-optimising perturbations for flows with Re = 3000.

For the variance-minimising mixing strategies, increasing the Reynolds number (and
hence triggering transition) increases the mixing performance, in that PT500(t) < PT3000(t)
for all times t and for any chosen target time T . This is also the case for the mix-norm-
minimising strategy when the target time is short (e.g. T = 2, 5). For longer target times,
the flows with smaller Reynolds number actually exhibit superior performance at early
times since the wall-induced shear is less localized near the walls and thus earlier reached
by the interface between the two concentrations being transported from the centre of the
channel. An example of this phenomenon occurs for the flows with target time T = 10,
for which P10

500(t) ≥ P10
3000(t) up to t . 15.

Contrasting the two minimisation strategies, it is apparent that the variance-minimising
strategy has higher performance for short times. This is because, for a given target time,
the optimal variance-minimising perturbations both mix more thoroughly and dissipate
less energy, as is apparent through comparison of panels (d) and (g) in figures 5 and 15.
However, for longer times, despite dissipating more energy, the optimal mix-norm min-
imising perturbations prove to have higher performance, essentially because they continue
to drive mixing even beyond the chosen optimisation horizon. This is particularly notice-
able in the transitional flows with Re = 3000, where the mix-norm-based strategy for a
target time T = 5 delivers almost the same performance as the variance-based strategy
with T = 10. This behaviour, which is also superior to the mix-norm-based strategy with
longer target time T = 10, can be understood by consideration of figure 15(f). As shown
in that figure, the later time behaviour of the variance for the mix-norm minimising flow
with T = 5 very closely approaches the optimal envelope V Topt of the time evolution of the
various variance-minimising flows, demonstrating that the two flows should be expected
to be very similar in their mixing performance. However, the variance for the mix-norm
minimising flow with T = 10 actually does not approach this envelope as closely, sug-
gesting strongly that the ensuing mixing is not ultimately as thorough, consistently with
the inferior mixing performance shown in figure 21(b).

Of course, the flows at higher Reynolds number inevitably have a much higher imposed
pressure gradient. Therefore, at least from an engineering point of view, it is extremely
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Figure 21. Time evolution of the mixing performance PTRe as defined in (3.17) for flows with:
(a) Re = 500; (b) Re = 3000 and which maximise integrated energy growth (black dotted lines),
minimise mix-norm (blue dashed lines) and minimise variance (red lines). Flows associated with
different target times are distinguished by different markers.

important to investigate whether the improvement in mixing performance at higher flow
rates outweighs the actual (dimensional) extra power needed to drive the flow. To address
this issue, it is more appropriate to base the mixing performance on the total energy
utilised to drive the flow and the total amount of fluid mixed. Therefore, the definition
of the appropriate mixing performance (3.12) needs to be modified, as it is necessary
to consider dimensional quantities, essentially because the time scale embedded in the
non-dimensionalisation is scaled with the (dimensional) characteristic flow velocity.

Hence, we consider the dimensional work done by the constant base pressure gradient
on the flow U∗, i.e.

EC∗(t∗) =

∫ t∗

0

∫
Ω

U∗
∂p̄∗

∂x∗
dx ds∗. (3.18)

In addition, to measure the mixing performance we use the total amount of fluid mixed
during the time interval [0, t∗]

MP∗(t∗) = πh∗ρ∗
∫ t∗

0

[Q∗(s∗) (1− V (s∗))] ds∗, (3.19)

where the the mean flow rate Q∗ is defined in (3.11). Altogether, we introduce an alter-
native (dimensional) mixing performance

P∗(t∗) =
MP∗(t∗)
EC∗(t∗)

, (3.20)

remembering that the asterisks in equations (3.18)-(3.20) denote dimensional variables.

The mixing performances in Re = 500 and Re = 3000 then need to be assessed with
consideration to the scaling introduced in section 2 since the key time scale τ∗ = h∗/U∗m
differs in the two studied flow regimes. The true comparison of the mixing performance
P∗(t∗) can only be done with respect to the same time units. Taking advantage of the
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scaling introduced in subsection 2.2 we can thus repose the mixing performance as

P∗ =
πh∗ρ∗

∫ t∗
0

[Q∗ (1− V )] ds∗

4π2h∗2
∫ t∗

0

∫ h∗
−h∗ U

∗ ∂p̄∗
∂x∗ dy

∗ds∗
(3.21)

=
πh∗2ρ∗U∗mτ

∗

4π2h∗2
ρ∗U∗m

2

h∗ U∗mh
∗τ∗

∫ t∗/τ∗
0

[Q (1− V )] ds∫ t∗/τ∗
0

∫ 1

−1
U∗ ∂p̄∂x dy ds

(3.22)

=
Re

U∗m
2

∫ t∗/τ∗
0

[Q (1− V )] ds∫ t∗/τ∗
0

Qds
. (3.23)

We see that mixing performances in the two flow classes are thus determined by the
time evolution of V and Q, as well as the factor Re/U∗m

2, where U∗m is the (maximum)
centre-line velocity as used in subsection 2.2.

In order to compare the mixing performances at Re = 500 and Re = 3000, let us
select the time scale τ∗ to be the one implied for the flow with Re = 500. Thus, for the
most-relevant-to-engineering case where the Reynolds number is controlled by the flow
velocity, we can introduce two scaled mixing performances as

E500 =
U∗m

2

500
P∗ =

∫ t
0

[Q(s) (1− V (s))] ds∫ t
0
Q(s) ds

, (3.24)

E3000 =
1

6

∫ 6t

0
[Q(s/6) (1− V (s/6))] ds∫ 6t

0
Q(s/6) ds

. (3.25)

Note that in (3.24) the non-dimensional functions V and Q denote scaled variance and
mean flow rate computed for flows with Re = 500 whereas in (3.25) they represent the
same variables obtained from simulations for flows with Re = 3000.

We plot the time evolution of E500 and E3000 in figure 22 for the various mixing strate-
gies and time horizons. Consistently with all other results, the performance of the energy-
growth based mixing strategy is least effective when assessed with these measures of
mixing performance. For short time intervals the variance-based mixing strategy uses
the energy input more effectively than the mix-norm-based strategy. However, for longer
time intervals, the mix-norm based strategy has a higher mixing performance. Notably,
for flows with Re = 3000, the perturbation which minimises the mix-norm at the target
time T = 5 has the best mixing performance out of all the studied strategies. Direct com-
parisons of mixing performances are shown in figure 22 where E500 and E3000 are plotted
for the various time horizons and mixing strategies. From the initial rate of change of
the mixing performance measures, it is clear that mixing for flows with Re = 3000 oc-
curs significantly faster than for flows with Re = 500. From the fact that ML

opt < MT
opt

and V Lopt < V Topt, mixing changes with Re faster than at a purely linear rate. However,
this faster mixing requires a larger amount of energy than is needed to drive the flow
down the channel. In particular, comparing the end values of E500 and E3000 shows that
the (dimensional) mixing performance is approximately five times higher for flows with
Re = 500 compared to flows with Re = 3000.

4. Conclusions

We have studied mixing of a passive scalar in pressure-driven plane Poiseuille flow.
Our objective was to identify optimal initial perturbations (of a fixed, nontrivial energy)
to the laminar parabolic flow that result, at some chosen time horizon, in maximal
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Figure 22. Time evolution of scaled mixing performances: (a) E500; and (b) E3000 as defined
in (3.24) and (3.25) for flows which maximise integrated energy growth (black dotted lines),
minimise mix-norm (blue dashed lines) and minimise variance (red lines). Flows associated with
different target times are distinguished by different markers.

mixing of the passive scalar. We consider physically realistic, incompressible flows so
that the velocity field and pressure satisfy the Navier–Stokes equations and the continuity
equation while the concentration field of the passive scalar is governed by an advection–
diffusion equation. We have restricted attention to flows with Pr = ν/κ = 1 and two
qualitatively different Reynolds numbers: Re = 500 and Re = 3000. Three different
optimization problems have been considered: the maximization of the time-integrated
energy growth; minimization of the mix-norm (Mathew et al. 2005; Thiffeault 2012);
and minimization of the concentration variance. The mathematical formulation of these
problems yields constrained minimization problems, which we solve numerically using a
nonlinear direct-adjoint-looping (DAL) method.

We have revisited and reassessed pre-existing hypotheses presented in the literature
regarding the best strategy for mixing. A classic hypothesis due to Aamo & Krstić (2003)
is that the development of the complex flow patterns which accompany turbulence tran-
sition leads to highly effective and thorough mixing. On the other hand, Foures et al.
(2014) showed, through a sequence of two-dimensional numerical simulations for flows
with relatively modest Re = 500, that the perturbations which experience the largest
transient energy growth, and which might be considered to be the ones which would
trigger turbulence ultimately, lead to relatively poor mixing. Instead, a different mixing
strategy was indentified using the direct-adjoint-looping (DAL) method. This strategy
exploits so-called Taylor dispersion as the key (intermediate) stirring mechanism. Our
reassessment generalises the approach of Foures et al. (2014) to three-dimensional flows
both at the same modest Reynolds number Re = 500, and at a significantly larger
Re = 3000, where the perturbed flow actually exhibits transition to highly disordered,
turbulent flow.

Using the DAL method, we consider the three different optimization problems at var-
ious target times. For flows with Re = 500 we find that the time-integrated energy-
growth maximising perturbations lead to a larger decrease in the concentration variance
than was found by Foures et al. (2014), a difference we attribute to the inherent three-
dimensionality of the problem. Nevertheless, the key observation of Foures et al. (2014)
remains: the most unstable perturbations are suboptimal if the objective is to homog-
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enize the initially layered scalar concentration distribution. Furthermore, and perhaps
more significantly, this observation continues to apply to the flows with Re = 3000. Al-
though the complicated nonlinear flow structures associated with transition to turbulence
reduce the concentration variance in the bulk flow, the passive scalar still remains largely
unmixed in the near-wall boundary layers of the channel. For energy-growth maximisa-
tion within the time interval t ∈ [0, 30] (scaled with advective units) considered here,
the best mixing (defined in terms of the variance at t = 30) is actually achieved in the
flow with Re = 500 with the optimal energy-growth perturbation for T = 10. For this
particular flow, the variance of the concentration field decays to ∼ 5% of its initial value
at t = 30.

The sub-optimality of this mixing can be put into context by consideration of the
optimisation problems that determine the initial perturbations leading to minimisation
of the variance at the target time. We find that, within the same time interval t ∈ [0, 30],
the variance can be reduced by appropriate optimal perturbations to ∼ 0.02% of its
initial value. Moreover, high levels of homogeneity are produced for times t & 10, and
increasing Re leads to only a relatively slight improvement in the mixing.

Furthermore, similarly to the two-dimensional flows considered by Foures et al. (2014),
the mixing strategy associated with the optimal variance-minimising perturbations dy-
namically evolves through the three stages described by Foures et al. (2014), in that the
concentration field, is ‘transported’, ‘dispersed’ and then ‘relaxed’ towards homogeneity.
The interface between the two regions of initially different concentration is first stretched
and transported from the centreline of the channel towards the walls where the shear
is stronger. Since the flow has a finite Péclet number, irreversible mixing via molecular
diffusion still acts on a progressively larger interface. The interface is then dispersed and
mixing is further enhanced due to the action of the velocity shear. As we demonstrate,
there are three contributions to this shear dispersion: shear due to the base parabolic
flow; shear due to wall-normal variation of the (perturbed) streamwise velocity, and an in-
herently three-dimensional component associated with spatial variability of the spanwise
velocity.

As previously identified by Foures et al. (2014), in two-dimensional flows, the significant
shear is predominantly associated with the (laminar) base flow, and so Taylor dispersion
represents the key physical mechanism driving the (optimal) mixing. Significantly, when
the flow is allowed to evolve in three dimensions at Re = 500 these three contributions
are of approximately the same magnitude, and the temporal evolution of the optimal
perturbation exploits all three contributions in suitable combination. Finally, the last
‘relaxation’ stage is characterised by decay of both perturbation energy and concentration
variance due to the molecular diffusion.

For Re = 3000 this three-stage picture of the optimal mixing strategy is conceptually
very similar. The principal difference associated with the increase in the Reynolds number
of the flow appears to arise in the intermediate ‘dispersion’ phase, as the (perturbed)
shear available for mixing enhancement in the boundary layers is much stronger in this
transitional flow, and so this contribution dominates the mixing during this intermediate
phase. It appears that this is the principal reason why mixing at higher Re is more rapid.

Moreover, we study the evolution of flows initialised with perturbations optimised to
minimise the value of the ‘mix-norm’ at the target time. We find that the time evolution
of the variance for such flows actually closely follows the behaviour of flows initialised
with perturbations optimised to minimise the variance at relatively long target times,
to the extent that the mix-norm and variance optimal envelopes coincide for late times.
For flows with Re = 500, we find, consistently with the two-dimensional results of Foures
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et al. (2014), that for sufficiently long target times, such as T = 20, the mix-norm optimal
perturbations converge in structure to the perturbations minimising the variance.

Crucially, and particularly usefully for computational reasons, we find that the mix–
norm optimal perturbations are less sensitive to the choice of the target horizon then the
variance optimal perturbations. This observation has two important consequences. First,
optimal perturbations which minimise the mix–norm for short time horizons results in
better mixing (i.e. lower concentration variance) at late times than optimal perturbations
which minimise the variance for the same (short) time horizon. Secondly, such short time
horizon mix-norm minimising perturbations can lead to thorough mixing close to that
achieved by long time horizon variance-minimising perturbations, which are substantially
more expensive to compute, both because the time ‘loop’ is longer, and because the rate of
decay of variance is typically slower than the decay of the mix-norm, particularly at early
times. These highly useful computational properties are particularly prominent for flows
with Re = 500 but are also manifest in the flows with higher Re = 3000. Altogether,
we conclude that, the mix–norm is a practical yet mathematically consistent measure
of mixing and its minimisation represents a computationally convenient algorithm to
identify a robust mixing strategy.

Finally, we considered appropriate measures of the ‘mixing performance’ at the two
studied Reynolds numbers. Unsurprisingly, the transitional flows with Re = 3000 reached
more homogeneous concentration distributions (measured either with the mix-norm or
the variance) more quickly than the flows with Re = 500. In terms of the relative energy
loss of the flow, the higher Reynolds number flow exhibits better performance. However,
relative to the total mechanical work done by the pressure gradient which drives the fluid
through the channel, the higher Re flow requires much more energy input than the lower
Re flow to mix the same quantity of fluid to the same level. Therefore, at least in terms
of total energy consumption, the higher Re flow exhibits a poorer mixing performance.

This observation, allied to the clear evidence that perturbations which maximise energy
growth are actually strongly sub-optimal for mixing, calls into question conventional
wisdom concerning the best way to mix fluids of different composition effectively. The
DAL method is clearly well-suited to explore this issue further, and to identify optimal
mixing strategies in more realistic situations, with for example time-dependent forcing
and finite residence time flows with natural inflow-outflow conditions, as it naturally
allows the algorithmic identification of ‘optimal’ mixing strategies.
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Appendix A. Necessary conditions for optimality

In Section 2 we introduced the optimal initial value problem for mixing

argmin
‖u0‖2

L2=2e0|Ω|
{J (u(T ), θ(T )| (u, θ) ∈ NSdiv

u0
×ADθ0}. (A 1)

The iterative scheme for solving (A 1), which is formulated in section 2.3, is based on
finding a local minimum of the augmented functional

L(u0,u, θ, p,u
†
0,u
†, θ†, p†, )

=J (u, θ)− JNS(u, p,u†)− JAD(θ†, θ,u)− JC(p†,u)− JIC(u0,u,u
†
0), (A 2)

where the summands written in the component notation are

J =− 1− α
2

∫ T

0

∫
Ω

uiui dx +
α

2

∫
Ω

∂−βi θ(x, T )∂−βi θ(x, T )dx (A 3)

JNS =

∫ T

0

∫
Ω

u†i
(
∂tui + Uj∂jui + uj∂j ūi + ∂ip− Re−1∂2

jjui
)
dx, (A 4)

JAD =

∫ T

0

∫
Ω

θ†
(
∂tθ + Uj∂jθ − Pe−1∂2

jjθ
)
dx dt, (A 5)

JC =

∫ T

0

∫
Ω

p†∂iUi dx dt, (A 6)

JIC =

∫
Ω

u†0,i (ui(x, 0)− u0,i) dx. (A 7)

For clarity, we abbreviate the partial derivatives and use the Einstein summation conven-
tion with i = 1, 2, 3. As described in section 2, the switches α, β take values α ∈ {0, 1},
β ∈ {−1, 0, 1} and the symbol ∂−1

i is defined in (2.8). The arguments of L are assumed
to be periodic in the horizontal directions and the direct variables u0,u, θ, p satisfy the
boundary conditions (2.20). In this appendix we derive the set of partial differential
equations which are used in the Direct–Adjoint Looping (DAL) method.

The DAL method relies on the use of Euler’s necessary condition for optimality which
requires that the (first) variations of L with respect to all variables vanish at local ex-
trema. We compute the various differentials with respect to the direct variables. Starting
with u, we obtain

δJ
δu

:= lim
ε→∞

J (u + εδu, θ)− J (u, θ)

ε
=(1− α)

∫ T

0

∫
Ω

uiδui dx, (A 8)
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where the direction δu satisfies the same boundary conditions as u. Similarly,

δJNS
δu

=

∫
Ω

u†i (x, T )δui(x, T )− u†i (x, 0)δui(x, 0)dx (A 9)

−
∫ T

0

∫
Ω

(
∂tu
†
i + Uj∂ju

†
i − u

†
j∂iUj + Re−1∂2

jju
†
i

)
δui dx (A 10)

+

∫ T

0

∫
∂Ω

(
u†iUj + Re−1∂ju

†
i

)
δuinj − Re−1u†i∂jδuinj dSdt, (A 11)

δJAD
δu

=

∫ T

0

∫
Ω

θ†∂iθδui dx, (A 12)

δJC
δu

=

∫ T

0

∫
∂Ω

p†δuini dS dt −
∫ T

0

∫
Ω

∂ip
†δui dx, (A 13)

δJIC
δu

=

∫
Ω

u†0,iδui(x, 0)dx. (A 14)

The requirement that δL/δu = 0 for all δu thus yields the governing equation which the
adjoint velocity must satisfy:

∂tu
†
i + Uj∂ju

†
i − u

†
j∂iUj + Re−1∂jju

†
i + ∂ip

† = θ†∂iθ − (1− α)ui, (A 15)

and the initial and terminal conditions

u†0,i = u†(x, 0), u†i (x, T ) = 0. (A 16)

Moreover, from the boundary term (A 11) we obtain that u†i satisfies no-slip boundary
conditions on the walls.

The variation δJ /δθ depends on the value of the switch β. For β = −1 we obtain

δJ
δθ

= α

∫
∂Ω

∂iθδθni dSdt− α
∫

Ω

∂2
iiθδθ dx, (A 17)

while for β = 0

δJ
δθ

= α

∫
Ω

θδθ dx. (A 18)

Finally, for β = 1 we obtain

δJ
δθ

= α

∫
∂Ω

Θ∂iΘδni dSdt− α
∫

Ω

Θ∂2
iiδΘdx (A 19)

= α

∫
∂Ω

Θ∂iΘδni dSdt− α
∫

Ω

∂−2
ii θδθ dx. (A 20)

(A 21)

The remaining term in the variation of L with respect to θ is

δJAD
δθ

=

∫
Ω

θ†(T )δθ(T )− θ†(0)δθ(0)dx (A 22)

−
∫ T

0

∫
Ω

(
∂tθ
† + Ui∂iθ

† + Pe−1∂2
iiθ
†) δθ dx (A 23)

+

∫ T

0

∫
∂Ω

(
θ†Uj + Pe−1∂jθ

†) δθnj − Pe−1θ†∂jδθnj dSdt. (A 24)
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Therefore, the governing equation for the adjoint variable θ† is

θ† + Ui∂iθ
† + Pe−1∂2

iiθ
† = 0, (A 25)

with the second terminal condition

θ†(x, T ) = (−1)βα∇−2βθ(x, T ). (A 26)

and from the boundary term (A 24), θ† satisfies homogeneous Neumann boundary con-
ditions on the walls.

Additionally, the variation with respect to the pressure

δJNS
δp

=

∫ T

0

∫
∂Ω

u†i δpni dS dt−
∫ T

0

∫
Ω

∂iu
†
i δpdx (A 27)

yields the incompressibility condition

∇ · u† = 0. (A 28)

Naturally (by construction) variations with respect to the adjoint variables result in the
condition that the (direct) governing equations (2.17)-(2.19) are satisfied.

Finally, noting that the variation of L with respect to u0 is

δL
δu0

=
δJIC
δu0

=

∫ T

0

∫
Ω

u†i δu0,i dx, (A 29)

the system of equations used by the DAL method is closed with

∇u0
L = u†0. (A 30)

Appendix B. Resolution sensitivity and convergence properties of
the results

The results presented in this paper arise from solutions of the constrained optimisation
problem (2.26), obtained using the Direct–Adjoint Looping (DAL) method as described
briefly in subsection 2.3. This gradient-based minimisation method relies on numerical
integration of the two systems of partial differential equations (2.17)-(2.19) and (2.32)-
(2.34) which in turn relies on a discretisation of the problem in hand. The purpose of
this appendix is to present supporting evidence for the choice of the resolution used
herein and to provide detailed information on the convergence properties of the solutions
generated by the DAL method.

The computational domain, a cuboid box 4π × 2 × π, is discretised using Nx = 256
uniformly distributed grid points in the streamwise direction, Nz = 64 uniformly dis-
tributed grid points in the spanwise direction and Ny = 209 grid points in the wall–
normal direction. In order to resolve the near–wall high shear regions the grid points
in the wall-normal direction are non-uniformly distributed according to the stretching
formula (Vinokur 1983)

yj = tanh

(
C

(
2 (j − 1)

N
− 1

))
, j = 0, . . . , N + 2 (B 1)

where the stretching parameter C = 1.75. The points yj form, when scaled and mapped
onto the interval [−1, 1], the vertical base grid. In addition, the fractional grid

yj+1/2 =
1

2

(
yj + yj+1/2

)
j = 0, . . . , N + 1 (B 2)
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Figure 23. Time-evolution of the energy dissipation rate ε(t) for the optimal flow fields for
optimisation time horizon T = 5, i.e. for the flow fields visualised in figures 17, 18 and 20.

is used to discretise the (v) y-velocity component. Here, the scaling is chosen in such a
way that the fractional grid points y3/2 and yNy+3/2 coincide with the walls (see Bewley
(2008) for more details).

For the considered Ny, the introduced stretching function yields y-grid size between
∆ymax = 0.0185 and ∆ymin = 0.0021. Spatial derivatives are calculated using second-
order finite differences in the wall-normal direction, and in Fourier space in the other
two directions. Therefore, it is to be expected that the key resolution constraints are
in the wall-normal direction. The grid resolution is uniform in both the streamwise and
spanwise directions π/64 = 0.0491.

The resolution used in our simulations is similar to those used in various direct numer-
ical simulation studies on turbulent channel flows, e.g. Kim et al. (1987); Moser et al.
(1999); Tsukahara et al. (2005). However, the literature focuses mostly on fully-developed
flows, which is not the case for the problem in hand because we largely consider inher-
ently time-dependent transition to turbulence. The non-dimensional Kolmogorov length
scale

η = 4

√
1

εRe2 , (B 3)

where ε denotes the non-dimensional energy dissipation rate, can be used as a rule of
thumb for the necessary grid size ∆min, with a common assumption being that ∆min . 2η.

However, here, due to the transient nature of the studied problem, ε needs to be
regarded as a time-dependent scalar instead of a constant. For illustration, figure 23
plots the time-evolution of the energy dissipation rate for the optimal flow fields for
optimisation time horizon T = 5, i.e. for the flow field visualised in figures 17, 18 and 20.
It is apparent that ε peaks near the optimisation horizon and that the implied minimal
(instantaneous) Kolmogorov length scale is smaller than the proposed grid size. For
instance, the mixing strategy which is based on the mix-norm minimisation produces
ε ∼ 10 which implies η ∼ 0.0103. Thus, it is natural to ask whether the used resolution
is sufficient, although it does appear to be satisfactory in the wall-normal direction.

To answer this question we carry out a series of tests to examine the sufficiency of
the chosen mesh as well as the precision of results produced using the DAL method.
For five different resolutions, listed in table 1, we solve the problem (2.26) with α = 1,
β = 1 and T = 2, i.e. we minimise the mix-norm. We choose the mix-norm minimisation
solution because this particular flow produces, as illustrated in figure 23, the highest
energy dissipation rate. We choose the time horizon T = 2 because we observe that the
shortest considered optimisation horizons give rise to the smallest vortices in the optimal
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Description Re Nx Ny Nz NT Label in figure 24

Used resolution 3000 256 201 64 2000 STD
Low vertical 3000 256 101 64 2000 LRY
High vertical 3000 256 301 64 2000 HRY
High horizontal res. 3000 324 177 96 2000 HRXZ
High temporal res. 3000 256 201 64 4000 HRT

Table 1. Five resolutions used to test the DAL method. The resolution labelled ‘STD’ is the
one used throughout the main body of the paper.

flow field. Thus, we expect that mix-norm minimisation with T = 2 will lead to the most
challenging test of resolution.

We plot the key flow characteristics in figure 24. We consider the value of the mix-norm
scaled by the diffusive process defined in (3.3), i.e.

M(t) =
‖∇−1θ(t)‖2L2

‖∇−1θd(t)‖2L2

. (B 4)

Figure 24(a) shows the variation of M(T ) at the target time, i.e. M(2), with the number
of iteration ‘loops’ of the DAL method, while figure 24(b) plots the relative change of
the same value

∆M(T ) =
Mn(T )−Mn−1(T )

Mn(T )
. (B 5)

We observe that ∆M(T ) decreases to O(10−5) for all considered resolutions, which
indicates good convergence of the iterative ‘looping’ algorithm. From Figure 24(a), it is
apparent that the ‘standard’ resolution (labelled STD) yields M(2) ≈ 0.5499. Using the
higher resolution grids HRXZ and HRY, the DAL method yields values of M(2) ≈ 0.5504
and M(2) ≈ 0.5496 respectively, corresponding to variation from the STD result of less
than 0.09%. Using higher temporal resolution (labelled HRT), the DAL method yields
M(2) ≈ 0.5483, a variation of 0.29% from the STD result. Finally, we note that the
lower vertical resolution simulation (labelled LRY) also yields a good approximation
M(2) = 0.5514.

Th relative change ∆M(T ) approaching very small values is primarily an indication
of convergence of the algorithm. To build confidence that the resulting initial flow field
u0 is a minimiser of the cost functional (2.26), or at least its discrete approximation,
it is necessary to examine the gradient of the cost functional with respect to u0. Thus,
following Rabin et al. (2012) and Foures et al. (2014), we consider the scaled ‘residual’

r =
‖∇u0

L⊥‖2L2

‖∇u0
L‖2L2

. (B 6)

The residual r represents the norm of the projection of the gradient ∇u0
L onto the hy-

perplane tangent to the energy hyper-surface (2.23), scaled by the norm of that gradient.
For the five test grid resolutions, we plot the evolution of r as a function of the number of
iterations in figure 24(c). For each resolution, r decays to less than 10−3 before apparently
asymptoting to a non-zero value. Unsurprisingly, this asymptotic value decreases with
increasing resolution, and in particular it appears to depend upon the wall-normal and
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temporal resolutions. For all resolutions, the asymptotic value is far larger than machine
precision and so our results should only be regarded as approximations.

The fact that the residual does not approach zero is a consequence of the finite precision
of the solutions to the partial differential equations (2.17)-(2.19) and (2.32)-(2.34). In each
iteration of the DAL method, which involves integration of both the direct and adjoint
equations, the gradient of the cost-functional ∇u0

L is computed. This gradient inevitably
has limited precision due to both the discretisation and the integration scheme itself.
This error then propagates through the conjugate-gradient method used for updating
the initial flow field at the beginning of each iteration. As the iterations progress and
the algorithm approaches an extremal value of the cost-functional, the precision of the
gradient becomes progressively more important. Eventually, the method reaches a point
when a better approximation cannot be reached without a better approximation of the
gradient. However, we believe that the associated initial perturbation is ‘close’ to the
desired initial perturbation associated with the true extremal value of the cost-functional.

It is natural to assume that any error introduced via optimisation (to the target horizon
T ) is further propagated when the flow is integrated for times t� T . Figure 24(d) shows
time evolutions of M(t) for flows which start from the optimal initial conditions obtained
using the five different test grids as introduced in table 1 after 150 iterations of the DAL
method. As is apparent from the figure, the evolutions of the various simulations at
different resolutions are initially indistinguishable. However, when the flow enters the
third and final ‘diffusive’ stage, as discussed in section 3.2, which corresponds to the final
flatter part of the lines shown in figure 24(d), the various flow evolutions start to separate
slightly.

This separation is evident in the figure for times t & 5. In particular, the scaled values
of the mix-norm M(30) computed using the grids with higher spatial resolution, HRY
and HRXZ, differ from the one produced with the standard ‘STD’ grid resolution by
approximately 2.9% and 0.8% respectively, while the relative difference between M(30)
calculated in the higher time resolution HRT simulation and M(30) calculated in the
STD simulation is approximately 0.9%. Such differences strongly suggest that the STD
grid does not fully resolve the very smallest scales where diffusive effects occur. In partic-
ular, during the final diffusion-dominated stage of mixing, higher resolution apparently
marginally increases the effectiveness of mixing, which results in a fractionally faster de-
cay of M(t). Nevertheless, this (perhaps unsurprising) effect is small, and does not modify
the central fluid dynamical observations we have made concerning the initial structure
of the various ‘optimal’ perturbations, and the subsequent leading-order flow dynamics.

Taken all together, this resolution sensitivity analysis demonstrates that the numerical
precision of our results is indeed bounded. Nevertheless, it is important to appreciate
that the task in hand, with ∼ 107 variables to optimise, can be regarded a large-scale
optimisation problem (Benson et al. 2003) and the criterion r → 0 with r defined in (B 6)
represents a relatively strong condition (Foures et al. 2013). The primary objective here is
to compare and contrast mixing strategies which are based on different physical phenom-
ena, and for this objective it appears that the chosen resolution is more than sufficient.
Hence, although the simulations are marginally under–resolved near short time optimi-
sation horizons, we are confident that the central conclusions drawn from the various
computed integral quantities are robust.
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Aamo, O. M. & Krstić, M. 2004 Feedback control of particle dispersion in bluff body wakes.
Int. J. Control 77, 1001–1018.
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Mathew, G., Mezić, I., Grivopoulos, S., Vaidya, U. & Petzold, L. 2007 Optimal control
of mixing in Stokes fluid flows. J. Fluid Mech. 580, 261–281.

Mathew, George, Mezi, Igor & Petzold, Linda 2005 A multiscale measure for mixing.
Physica D 211, 23–46.

Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D. S. 2011
Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys.
Rev. Lett. 106, 134502.

Moser, R. D., Kim, J. & Mansour, Nagi N. 1999 Direct numerical simulation of turbulent
channel flow up to re = 590. Phys. Fluids 11, 943–945.

Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and
of a viscous liquid. Part I: a perfect liquid, Part II: a viscous liquid. Proc. R. Irish Acad.
A 27, 69–138.

Orszag, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech.
50, 689–703.

Ottino, J. M. 1989 The kinematics of mixing: stretching, chaos, and transport . Cambridge
University Press.

Ottino, J. M. 1990 Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech. 22,
207–254.



Optimal mixing in plane Poiseuille flow 47

Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M. 2004 Handbook of industrial mixing:
science and practice. John Wiley & Sons.

Polak, E. 1971 Computational methods in optimization : a unified approach, Mathematics in
science and engineering , vol. 77. Academic Press.

Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct
the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.

Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow
turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech.
702, 415–443.

Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2012 Triggering turbulence efficiently
in plane Couette flow. J. Fluid Mech. 712, 244–272.

Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed
streamlines? J. Fluid Mech. 133, 133–145.

Rothstein, D., Henry, E. & Gollub, J. P. 1999 Persistent patterns in transient chaotic fluid
mixing. Nature 401 (6755), 770–772.

Schmid, P. J. 2007 Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied

Mathematical Sciences, vol. 142. Springer-Verlag.
Sturman, R., Ottino, J. M. & Wiggins, S. 2006 The mathematical foundations of mixing: the

linked twist map as a paradigm in applications: micro to macro, fluids to solids. Cambridge
University Press.

Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc.
R. Soc. Lond. A 219, 186–203.

Taylor, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc.
Lond. A 223 (1155), 446–468.

Taylor, J. R. 2008 Numerical simulations of the stratified oceanic bottom boundary layer.
PhD thesis, U. C. San Diego.

Thiffeault, J.-L. 2012 Using multiscale norms to quantify mixing and transport. Nonlinearity
25 (2).

Thiffeault, J.-L. & Childress, S. 2003 Chaotic mixing in a torus map. Chaos 13, 502–507.
Tsukahara, T., Seki, Y., Kawamura, H. & Tochio, D. 2005 DNS of turbulent channel flow

at very low Reynolds numbers. In TSFP DIGITAL LIBRARY ONLINE . Begel House Inc.
Vinokur, M. 1983 On one-dimensional stretching functions for finite-difference calculations. J.

Comp. Phys. 50, 215–234.
Welander, P. 1955 Studies on the general development of motion in a two-dimensional, ideal

fluid. Tellus 7, 141–156.
Wiggins, Stephen 1992 Chaotic transport in dynamical systems. NASA STI/Recon Technical

Report A 92, 28228.
Wiggins, S. & Ottino, J. M. 2004 Foundations of chaotic mixing. Phil. Trans. R. Soc. London

A 362, 937–970.


