
Deep Tree Models for ‘Big’ Biological Data
(Invited Paper)

Lambros Mertzanis
Department of Informatics

Athens University of Economics & Business, Greece
la.mertzanis@gmail.com

Athina Panotopoulou
Department of Computer Science

Dartmouth College, USA
athina@cs.dartmouth.edu

Maria Skoularidou
MRC-Biostatistics Unit

University of Cambridge, UK
maria@mrc-bsu.cam.ac.uk

Ioannis Kontoyiannis
Department of Engineering

University of Cambridge, UK
i.kontoyiannis@eng.cam.ac.uk

Abstract—The identification of useful temporal dependence
structure in discrete time series data is an important component
of algorithms applied to many tasks in statistical inference and
machine learning, and used in a wide variety of problems across
the spectrum of biological studies. Most of the early statistical
approaches were ineffective in practice, because the amount of
data required for reliable modelling grew exponentially with
memory length. On the other hand, many of the more modern
methodological approaches that make use of more flexible and
parsimonious models result in algorithms that do not scale
well and are computationally ineffective for larger data sets.
In this paper we describe a class of novel methodological tools
for effective Bayesian inference for general discrete time series,
motivated primarily by questions regarding data originating from
studies in genetics and neuroscience.

Our starting point is the development of a rich class of Bay-
esian hierarchical models for variable-memory Markov chains.
The particular prior structure we adopt makes it possible to
design effective, linear-time algorithms that can compute most of
the important features of the relevant posterior and predictive
distributions without resorting to Markov chain Monte Carlo
simulation. The origin of some of these algorithms can be traced
to the family of Context Tree Weighting (CTW) algorithms develo-
ped for data compression since the mid-1990s. We have used the
resulting methodological tools in numerous application-specific
tasks (including prediction, segmentation, classification, anomaly
detection, entropy estimation, and causality testing) on data from
different areas of application. The results obtained compare quite
favourably with those obtained using earlier approaches, such as
Probabilistic Suffix Trees (PST), Variable-Length Markov Chains
(VLMC), and the class of Markov Transition Distributions (MTD).

I. INTRODUCTION

The starting point of many biological studies is the examina-
tion and analysis of discrete sequence data; and an important
first step is often the identification of patterns of statistical
structure in the data. Perhaps the most well studied examples
of such problems arise from questions in bioinformatics,
statistical genetics, and neuroscience.

Identifying and quantifying dependence is not only crucial
in performing application-specific tasks (such as segmentation,
compression, classification, and so on), but it is also of great
intrinsic interest, as it reveals important features of the under-
lying biological data-generating mechanisms. It is in part for

this purpose that the need for higher-memory Markov models
in a variety of applications has been noted many times in the
past; see, e.g., [18, 16, 5]. But higher-order Markov models
are typically impossible to estimate and use in practice, as
the number of parameters involved grows exponentially with
memory length. In order to overcome this obstacle, numerous
approaches have been developed, using more effective, lower-
dimensional model classes; see, e.g., the broad discussions in
[4, 2, 10, 7].

The class of variable-memory Markov chain models we
consider here were first introduced in Rissanen’s celebrated
work [22, 19], and have also been employed (in some ca-
ses with minor variations) in the Probabilistic Suffix Tree
(PST) [23, 1, 7] and Variable-Length Markov Chain (VLMC)
[4, 3, 17] literature. A different class of parsimonious models
for higher-order memory modelling, the Markov Transition
Distribution (MTD) model, was introduced by Raftery in
1985 [18] and explored further in [2].

The main contribution of this work is the development of a
Bayesian framework for inference within the class of variable-
memory Markov models. The main result we present is an
algorithm which can be employed to determine exactly the
maximum a posteriori probability (MAP) model. In fact, the
k-MAPT algorithm allows us to find not only the model with
the highest posterior probability, but also the k ≥ 1 a poste-
riori most likely models. The complexity of the algorithm is
only linear in the sample size, but grows rapidly with k.

The prior structure we use is motivated, in part, by consi-
derations related to Rissanen’s Minimum Description Length
(MDL) principle [21]. The starting point of our development is
the family of Context Tree Weighting (CTW) [29] and Context
Tree Maximizing (CTM) [30, 31, 27] algorithms.

Since its introduction and application to data compression,
the CTW algorithm and its many variants have also been
applied to numerous different statistical tasks, including pre-
diction [32], segmentation [11]. reinforcement learning [25],
network traffic analysis [12], turbo decoding [13], spam de-
tection [24], and finance [6]. Biological applications can be
found in several of the references cited above, as well as in
[8, 9, 15].

In Section II we describe the hierarchical Bayesian model
we consider, and Section III contains a description of the
model selection algorithm k-MAPT. Finally, in Section IV we
present brief experimental results illustrating the algorithm’s
performance on simulated data. Our results build on earlier
work described in [14]. Theoretical results are stated without
proofs; these will be given in a subsequent publication.

II. TREE MODELS AND PRIOR SPECIFICATION

Consider the class of dth order, homogeneous Markov
chains, with values in the alphabet A = {0, 1, . . . ,m − 1}.
The distribution of such a process {Xn} will be described in
terms of the conditional distribution of each Xi, i ≥ 1, given
the previous d symbols Xi−1

i−d = (Xi−d, Xi−d+1, . . . , Xi−1),
where we write Xj

i for a vector of random variables
(Xi, Xi+1, . . . , Xj) and similarly xji ∈ Aj−i+1 for a string
(xi, xi+1, . . . , xj) representing a realization of the random
variables Xj

i . The key element in specifying these distributions
is a context function C : Ad → T , which maps each
length-d context xi−1i−d to a (typically strictly) shorter suffix
C(xi−1i−d) = xi−1i−j of itself, for some 0 ≤ j ≤ d. Then the
Markov property for {Xn} takes the form:

P (xn1 |x0−d+1) =

n∏
i=1

P (xi|xi−1i−d) =

n∏
i=1

P (xi|C(xi−1i−d)).

The range T of C is a subset of ∪di=0A
i, where we adopt the

convention that the set A0 contains only the empty string λ.
We assume that the set T is proper, namely, that no element
in T is a proper suffix of any other, and that if some xji =
(xi, xi+1, . . . , xj) is in the range of C, then so is every string
of the form (y, xi+1, . . . , xj), for all y ∈ A. Observe that,
under these assumptions, the context function C is completely
determined by its range T , since, for any string xi−1i−d there is
exactly one element of T which is a suffix xi−1i−j of xi−1i−d.

To complete the specification of the distribution of {Xn},
in addition to the context set T , with every element s ∈ T we
associate a vector θs := (θs(0), θs(1), . . . , θs(m− 1)), where
the θs(j) are nonnegative and sum to one. Then,

P (xn1 |x0−d+1) =

n∏
i=1

θC(xi−1
i−d)

(xi),=
∏
s∈T

∏
j∈A

θs(j)
as(j), (1)

where, in the last expression, instead of taking the product
sequentially in time, we took the product over all possible
contexts s ∈ T , and where the elements of each vector as =
(as(0), as(1), . . . , as(m− 1)) are,

as(j) = # times j ∈ A follows context s in xn1 . (2)

We refer to the context set T as the model of {Xn} and
observe that it may be represented as a tree, where the context
corresponding to the empty string λ is the root of the tree. We
also refer to θ = {θs ; s ∈ T} as the parameters of {Xn}.
Example. Consider a 5th order Markov chain on the alphabet
A = {0, 1, 2}, defined by the context tree T shown below,
and by a collection of (known) parameters θ = {θs ; s ∈ T},
where θs is a probability vector corresponding to leaf s in T .

The likelihood of an arbitrary string is easily computable
explicitly via (1). For example, with d = 5 and n = 12, the
string,

1, 0, 2, 1, 1︸ ︷︷ ︸
x0
−4

, 0, 0, 1, 2, 1, 0, 2, 0, 0, 2, 0, 1︸ ︷︷ ︸
x12
1

has probability given by (1) as:

θ1(0)2 · θ1(2) · θ2(0)2 · θ2(1) · θ01(0) · θ01(2)

·θ00(1) · θ00(2) · θ0201(0) · θ02002(1).

Model prior. Given a fixed depth D and an arbitrary
β ∈ (0, 1), we define a prior distribution on models T (proper
context sets, or the corresponding trees) of maximal depth no
more than D, as,

π(T) := πD(T) := πD(T ;β) := α|T |−1β|T |−LD(T),

where α := (1−β)1/(m−1), |T | denotes the number of leaves
of T , and LD(T) denotes the number of leaves T has at
depth D. It is not hard to show that πD(T, β) indeed defines
a probability probability distribution on the set T (D) of all
proper context trees of depth no greater than D.

Prior on θ. Given a model T , we define a prior distri-
bution on the probability vectors θ = {θs ; s ∈ T} on
the leaves s of the context tree T : We place an indepen-
dent Dirichlet(1/2, . . . , 1/2) distribution on each θs so that,
π(θ|T) =

∏
s∈T π(θs), where,

π(θs) =
Γ(m/2)

πm/2

m−1∏
j=0

θs(j)
− 1

2 .

Finally, given T and the associated parameters θ, the like-
lihood of the observations is given as in (1),

P (xn1 |x0−d+1, θ, T) =
∏
s∈T

m−1∏
j=0

θs(j)
as(j),

where, the as(j) are defined in (2) and, by convention, when
we write

∑
s∈T or

∏
s∈T , we take the corresponding sum or

product over all the leaves s of the tree, not all its nodes.
Also, in order to avoid cumbersome notation, in what follows
we often write x for the string xn1 and suppress the dependence
on its initial context x0−d+1, so that, for example, we denote,

P (x, θ|T) = P (xn1 , θ|x0−d+1, T).

Choice of β. In order to maintain an “exponential penali-
zation” of large models, the value of β needs to be adjusted
for different alphabet sizes m. A simple calculation suggests
the following practical rule: When m is significantly larger
than 2, then β should be chosen to be close to 1− 2−m+1 so
that α ≈ 1/2; and when m is equal to 2 or is not much larger
(so that 2−1/(m−1) is not close to 1), then β should either be
taken β ≈ 1− 2−m+1 as before, or β = 1/2 for simplicity.

Marginal likelihood. An important and useful property of
this prior specification is that the parameters θ can easily be
integrated out: With the vectors as as in (2):

Lemma 2.1: The marginal likelihood P (x|T) of the obser-
vations x given a model T is,

P (x|T) =

∫
P (x|θ, T)π(θ|T)dθ =

∏
s∈T

Pe(as),

with,

Pe(as) :=

∏m−1
j=0 [(1/2)(3/2) · · · (as(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 +Ms − 1)
, (3)

where Ms := as(0) + as(1) + · · ·+ as(m− 1).

In terms of inference, the more interesting quantity is the
model posterior distribution,

π(T |x) =
P (x|T)π(T)

P (x)
.

As usual, the main obstacle in the computation of π(T |x) is the
appearance of P (x), which can be expressed as the weighted
mean of the marginal likelihoods P (x|T). We refer to P (x)
as the mean marginal likelihood of x, and denote it:

P ∗D(x) :=
∑

T∈T (D)

πD(T)P (x|T).

The difficulty in computing the mean marginal likelihood
P ∗D(x) comes from the fact that the class of variable-memory
models is enormously rich, even for moderate (or even small)
alphabet sizes m and tree depths D: The number |T (D)| of
models in the collection T (D) of all proper context trees of
depth no greater that D grows doubly exponentially in D.

Nevertheless, a modification of the CTW algorithm (not
discussed further here) makes it possible to compute the
mean marginal likelihood P ∗D(x) precisely, without resorting
to simulation. Moreover, the k-Maximum A Posteriori Proba-
bility Tree (k-MAPT) algorithm (described next) allows us to
compute the k a posteriori most likely tree models.

III. THE k-MAPT ALGORITHM

The k-MAPT algorithm takes as input: Observations
xn−D+1; the size of the alphabet m; the maximum context
depth D; the value of the prior parameter β; and the number
k of the k a posteriori most likely models to be determined.

For the sake of clarity of exposition, we describe the k-
MAPT algorithm in three stages.

Stage I. Preliminary steps.
(a) Build an m-ary tree TMMLA, whose leaves are all the
contexts xi−1i−D, 1 ≤ i ≤ n, that appear in the observations
xn−D+1. If some node s of TMMLA is at depth d < D and
some but not all of its children are in TMMLA, then add all its
remaining children as well, so that TMMLA is a proper tree.
(b) Compute the count vector as as in (2), at each node s of
the tree TMMLA (not only at the leaves), and note that as will
be the all-zero vector for the additional leaves included in the
last step of (a).
(c) Compute the probability Pe,s := Pe(as) given by (3),
at each node s of the tree TMMLA, with the convention that
Pe(as) = 1 when as is the all-zero count vector.

Stage II. Idealized k-MAPT algorithm.
(i) Let TMMLA be the complete m-ary tree at depth D;
compute the count vectors as and probabilities Pe,s = Pe(as)
at all nodes s of TMMLA as in the preliminary steps (b), (c).
(ii) Starting at the leaves and proceeding towards the root, at
each node s we compute a list of k maximal probabilities P (i)

m,s

and k position vectors c(i)s = (c
(i)
s (0), c

(i)
s (1), . . . , c

(i)
s (m−1)),

for i = 1, 2, . . . , k, where each c
(i)
s (j) is an integer between

0 and k, recursively as follows.
(iia) At each leaf s, we let P (1)

m,s = Pe,s and c
(1)
s =

(0, 0, . . . , 0), where the all-zero vector c(i)s indicates that P (1)
m,s

corresponds to the value of Pe,s and does not depend on the
children of s (since there are none). For i = 2, 3, . . . , k, we
leave P (i) and c(i)s undefined.

(iib) At each node s having only m descendants (which
are necessarily leaves), we compute the probability-position
vector pairs βPe,s, (0, 0, . . . , 0) and (1 − β)

∏m−1
j=0 P

(1)
m,sj ,

(1, 1, . . . , 1) (where the all-1 vector indicates that the latter
probability only depends on the first maximal probability of
each of the children), and sort them as P (1)

m,s, c
(1)
s and P

(2)
m,s,

c
(2)
s in order of decreasing probability. For i = 3, 4, . . . , k, we

leave P (i) and c(i)s undefined.
(iic) A general internal node s has m children, where each

child sj has a list of kj (for some 1 ≤ kj ≤ k) probability-
vector pairs P

(i)
m,sj , c

(i)
sj , 1 ≤ i ≤ kj . We compute the

probability βPe,s with associated position vector (0, 0, . . . , 0),
and all possible probability-position vector pairs,

(1− β)

m−1∏
j=0

P
(ij)
m,sj , (i0, i1, . . . , im−1),

for all possible combinations of indices 1 ≤ ij ≤ kj for 0 ≤
j ≤ m− 1. We then sort these k′ = 1 + k0× k1× · · ·× km−1
probabilities in order of decreasing probability, and rename
the top k of them as P (i)

m,s, for i = 1, 2, . . . , k, together with
their associated position vectors c(i)s . [Of course, if k′ < k,
after sorting we leave the remaining k−k′ probability-position
vector pairs undefined.]
(iii) Having determined all maximal probabilities P (i)

m,s for all
nodes s and 1 ≤ i ≤ k, we now determine the “top k” trees
T ∗1 , T

∗
2 , . . . , T

∗
k from the corresponding position vectors c(i)s .

For each i we repeat the following process, starting at the root

and proceeding until all available nodes of the tree TMMLA

have been exhausted.
(iiia) Depth d = 0. At the root node λ, we examine c(i)λ .

If it is the all-zero vector, then T ∗i is the tree consisting of
the root node only. Otherwise, we add to T ∗i the branch of m
children starting at the root, and proceed to examine each of
the nodes corresponding to the m children recursively.

(iiib) Depth d = 1. Reaching node s = j corresponding to
the jth child of the root, means that t = c

(i)
λ (j) is nonzero.

We examine c
(t)
s : If it is the all-zero vector, then we prune

from T ∗i all the descendants of s and move to the next
unexamined node; otherwise, we add to T ∗i the branch of m
children starting at s, and proceed to examine each of the
nodes corresponding to the m children recursively.

(iiic) General depth 1 ≤ d ≤ D−1. Reaching a node sj at
depth d from its parent node s means that we decided to visit
sj because t = c

(u)
s (j) is nonzero for the appropriate index u

(corresponding to the position vector c(u)s that was examined
at node s). We examine c(t)sj : If it is the all-zero vector, then
we prune from T ∗i all the descendants of sj and move to the
next unexamined node; otherwise, we add to T ∗i the branch
of m children starting at sj, and proceed to examine each of
the nodes corresponding to the m children recursively.

(iiid) Depth d = D. Reaching a node s at depth D means
we have reached a leaf of TMMLA, so we simply add s to T ∗i
and proceed to the next unexamined node.
(iv) Output the k resulting trees T ∗i and the k maximal
probabilities at the root, P (i)

m,λ, i = 1, 2, . . . , k.

Stage III. Actual k-MAPT algorithm
(i) Initially, perform two preprocessing steps:

(ia) Execute the first two steps (i) and (ii) of the idealized
k-MAPT algorithm on the complete m-ary tree of depth D,
with all the count vectors as assumed to be equal to zero,
as = (0, 0, . . . , 0) for all s. Since all nodes at the same depth
are identical, this process can be carried out effectively, by
performing the relevant computations only at a single node
(instead of all md nodes) for each depth 0 ≤ d ≤ D.

(ib) Build the tree TMMLA and compute the count vectors as
and the probabilities Pe,s = Pe(as) at all nodes s of TMMLA,
as in preliminary steps (a)–(c).
(ii) Starting at the leaves and proceeding towards the root, at
each node s we compute a list of k maximal probabilities P (i)

m,s

and k position vectors c(i)s = (c
(i)
s (0), c

(i)
s (1), . . . , c

(i)
s (m−1)),

for i = 1, 2, . . . , k, recursively as follows.
(iia) At each leaf s at depth D, with a nonzero count

vector as, let P (1)
m,s = Pe,s and c

(1)
s = (0, 0, . . . , 0). For

i = 2, 3, . . . , k, we leave P (i) and c(i)s undefined.
(iib) Similarly, at each leaf s at depth D, with an all-zero

count vector as, let P (1)
m,s = Pe,s = 1, c(1)s = (0, 0, . . . , 0), and

for i = 2, 3, . . . , k, leave P (i) and c(i)s undefined.
(iic) At each leaf s at depth d < D, we let the list of

the maximal probabilities P (i)
m,s and position vectors c(i)s of

s be those that are computed for a node at depth d in the
preprocessing stage (ia).

(iid) Continue with steps (iib) and (iic) as in the idealized
version of k-MAPT.
(iii) We perform the same steps as described in (iiia)–(iiid)
of the idealized version, with the following addition:

(iiie) While examining a node s at depth 0 < d < D
in step (iiib) or (iiic) of the idealized algorithm, we may
reach a point where the algorithm dictates that we examine
its m children, when these children are not included in the
tree TMMLA. In that case, we add them to TMMLA, and we
define their corresponding maximal probabilities and position
vectors according to the initialization described in step (iib)
or (iic) above, depending on whether d = D−1 or d < D−1,
respectively.
(iv) As in the idealized version, output the k resulting trees
T ∗i and the k maximal probabilities at the root, P (i)

m,λ, i =
1, 2, . . . , k.

Theorem 3.1: For any β ≥ 1/2, the trees T ∗1 , T
∗
2 , . . . , T

∗
k

produced by the k-MAPT algorithm are indeed the k a
posteriori most likely trees.

Moreover, the ith maximal probability at the root satisfies:

P
(i)
m,λ = P (x|T ∗i)πD(T ∗1) = P (x, T ∗i), i = 1, 2, . . . , k.

Remarks.
1. It is not hard to show that the time-complexity of the

k-MAPT algorithm is O(nmkmD). Hence, the complexity
increases dramatically as we require more information about
the “top” of the posterior π(T |x) in model space. Also, note
the memory required by the k-MAPT algorithm is O(nmDk).

2. As mentioned earlier, in addition to identifying the k a
posteriori most likely models, it is also possible to compute the
mean marginal likelihood P ∗D(x) of the observations, which
makes it possible to then compute the Bayes factors and
posterior odds for different models T . This is illustrated in
the example presented in the next section.

3. Finally, some bibliographical comments are in order. The
origin of some of the ideas behind the k-MAPT algorithm can
be traced to the CTW algorithm as described in the unpublis-
hed manuscript [28]. A special case of the k = 1 version of
the k-MAPT algorithm was introduced in [28, 30, 31]. The
k-MAPT algorithm and the result of Theorem 3.1 are both
new, although they were, in part, motivated by some remarks
in [27].

As mentioned earlier, Rissanen’s early results in [19, 20] and
their extensions in [26] form the real foundation of the present
development. There, in addition to variable-memory Markov
models, Rissanen also introduced the CONTEXT algorithm for
fitting such a model to data. A different asymptotic analysis of
CONTEXT was later carried out in the VLMC paper [4], and
a more detailed examination of the algorithm in connection
with model selection was given in [3]. In all these works,
no Bayesian or other finite-sample interpretation is given for
the resulting model. Finally, we mention that in the first PST
paper [23], a different procedure called Learn-PSA, similar in
spirit to CONTEXT, was described for estimating a variable-
memory Markov model; see also the relevant results in [1].

IV. A SIMULATION EXAMPLE

We revisit the variable-memory chain {Xi} on the alphabet
A = {0, 1, 2} discussed in the Introduction. The top k = 3
a posteriori most likely models were obtained by the k-MAPT
algorithm from n = 10000 simulated samples. The algorithm’s
parameters were m = 3, β = 3/4, and maximum depth
D = 10.

The most likely model was found to be the true underlying
model T ∗1 , shown in the Introduction; its posterior probability
π(T ∗1 |x) ≈ 0.368 while its prior π(T ∗1) ≈ 5.8 × 10−6. For
the second and third most likely models T ∗2 , T

∗
3 shown below,

we have the posterior odds, π(T ∗1 |x)/π(T ∗2 |x) ≈ 6.2903 and
π(T ∗1 |x)/π(T ∗3 |x) ≈ 8.822.

It is worth perhaps noting that the correct model is identi-
fied, based on only n = 104 samples, among well over 1013000

possible models of maximum depth at most 10.

REFERENCES

[1] G. Bejerano and G. Yona. Variations on probabilistic suffix
trees: Statistical modelling and prediction of protein families.
Bioinformatics, 17(1):23–43, 2001.

[2] A. Berchtold and A.E. Raftery. The mixture transition distri-
bution model for high-order Markov chains and non-Gaussian
time series. Statistical Science, 17(3):328–356, 2002.

[3] P. Bühlmann. Model selection for variable length Markov chains
and tuning the context algorithm. Annals of the Institute of
Statistical Mathematics, 52(2):287–315, 2000.

[4] P. Bühlmann and A.J. Wyner. Variable length Markov chains.
Ann. Stat., 27(2):480–513, 1999.

[5] W.K. Ching, E.S. Fung, and M.K. Ng. Higher-order Markov
chain models for categorical data sequences. Naval Research
Logistics (NRL), 51(4):557–574, 2004.

[6] P. Fiedor. Frequency effects on predictability of stock returns.
In Computational Intelligence for Financial Engineering &
Economics, 2104 IEEE Conference on, pages 247–254, 2014.

[7] A. Gabadinho and G. Ritschard. Analyzing state sequences
with probabilistic suffix trees: The PST R package. Journal of
Statistical Software, 72(3):1–39, 2016.

[8] Y. Gao, I. Kontoyiannis, and E. Bienenstock. Entropy estima-
tion: Simulation, theory, and a case study. In IEEE Inform.
Theory Workshop, Punta del Este, Uruguay, March 2006.

[9] Y. Gao, I. Kontoyiannis, and E. Bienenstock. From the entropy
to the statistical structure of spike trains. In IEEE Int. Symp.
on Inform. Theory, Seattle, WA, July 2006.

[10] A. Garivier and F. Leonardi. Context tree selection: A
unifying view. Stochastic Processes and their Applications,
121(11):2488–2506, 2011.

[11] R. Gwadera, A. Gionis, and H. Mannila. Optimal segmentation
using tree models. Knowl. Inf. Syst., 15(3):259–283, May 2008.

[12] B. Hullár, S. Laki, and A. Gyorgy. Early identification of
peer-to-peer traffic. In Communications (ICC), 2011 IEEE
International Conference on, pages 1–6. IEEE, 2011.

[13] K. Kim, N. Kalantarova, S.S. Kozat, and A.C. Singer. Linear
MMSE-optimal turbo equalization using context trees. IEEE
Transactions on Signal Processing, 61(12):3041–3055, 2013.

[14] I. Kontoyiannis, A. Panotopoulou, and M. Skoularidou. Baye-
sian inference for discrete time series via tree weighting. IEEE
Inform. Theory Workshop, Lausanne, Sept. 2012.

[15] C.J. Kusters and T. Ignatenko. DNA sequence modelling based
on context trees. In Proc. 5th Jt. WIC/IEEE Symp. Inf. Theory
Signal Process. Benelux, pages 96–103, 2015.

[16] R. Langeheine and F. Van de Pol. Fitting higher order Markov
chains. Methods of Psychological Research Online, 5(1):32–55,
2000.

[17] M. Mächler. VLMC: Variable length Markov chains. R package
version 1.4-1, October 2015.

[18] A.E. Raftery. A model for high-order Markov chains. Journal
of the Royal Statistical Society. Series B (Methodological),
47(3):528–539, 1985.

[19] J. Rissanen. A universal prior for integers and estimation
by minimum description length. Ann. Statist., 11(2):416–431,
1983.

[20] J. Rissanen. Complexity of strings in the class of Markov
sources. Information Theory, IEEE Transactions on, 32(4):526–
532, July 1986.

[21] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World
Scientific, Singapore, 1989.

[22] J. Rissanen and G. Langdon. Universal modelling and coding.
IEEE Transactions on Information Theory, 27(1):12–23, 1981.

[23] D. Ron, Y. Singer, and N. Tishby. The power of amnesia:
Learning probabilistic automata with variable memory length.
Machine Learning, 25:117–149, 1996.

[24] I. Santos, I. Minambres-Marcos, C. Laorden, P. Galán-Garcı́a,
A. Santamarı́a-Ibirika, and P.G. Bringas. Twitter content-based
spam filtering. In International Joint Conference SOCO13-
CISIS13-ICEUTE13, pages 449–458, 2014.

[25] J. Veness, K.S. Ng, M. Hutter, and D. Silver. Reinfor-
cement learning via AIXI approximation. arXiv preprint
arXiv:1007.2049, July 2010.

[26] M.J. Weinberger, J. Rissanen, and M. Feder. A universal finite
memory source. Information Theory, IEEE Transactions on,
41(3):643–652, May 1995.

[27] F.M.J. Willems, A. Nowbahkt-Irani, and P.A.J. Volf. Maximum
a-posteriori probability tree models. In 4th International ITG
Conference on Source and Channel Coding, Berlin, Germany,
February 2002.

[28] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. Context tree
weighting: Basic properties. Unpublished manuscript, summer
1993. Available online at:
www.sps.ele.tue.nl/members/F.M.J.Willems/.

[29] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. Context
tree weighting: Basic properties. IEEE Trans. Inform. Theory,
41(3):653–664, 1995.

[30] F.M.J. Willems and P.A.J. Volf. Context maximizing: Finding
MDL decision trees. In 15th Symposium on Information Theory
in the Benelux, Louvain-la-Neuve, Belgium, May 1995.

[31] F.M.J. Willems and P.A.J. Volf. A study of the context tree
maximizing method. In 16th Symposium on Information Theory
in the Benelux, Nieuwerkerk Ijsel, The Netherlands, May 1995.

[32] J. Ziv and N. Merhav. On context-tree prediction of individual
sequences. IEEE Trans. Inform. Th., 53(5):1860–1866, 2007.

