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Abstract

In the second part of this study, we present the stochastic weighted particle

population balance framework used to solve the twin-screw granulation model

detailed in the first part of this study. Each stochastic jump process is presented

in detail, including a new nucleation jump event capable of capturing the im-

mersion nucleation processes in twin-screw granulation. A variable weighted

inception algorithm is presented and demonstrated to reduce the computational

cost of simulations by up to two orders of magnitude over traditional approaches.

The relationship between the performance of the simulation algorithm and key

numerical parameters within the nucleation jump process are explored and op-

timum are operating conditions identified. Finally, convergence studies on the

complete simulation algorithm demonstrate that the algorithm is very robust

against changes in the number of stochastic particles used, provided that the

number of particles exceeds a minimum required for numerical stability.
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1. Introduction

In the first part of this study we introduced, optimised and investigated the

qualitative behaviour of a four dimensional model for twin-screw granulation

under various operating conditions. In this part of the study we are primar-

ily concerned with presenting and investigating the properties of the numerical5

methods employed/developed to solve this high dimensional model and over-

come the numerical challenges inherent to the stochastic modelling of twin-screw

systems.

Granulation is the transformation of solid primary particles to agglomerate

form. These agglomerates may have a size, porosity and liquid distribution that10

allow them to be utilised within the pharmaceutical and food industries, among

others [1]. The granulation process is typically modelled mechanistically us-

ing population balance models (PBM) [2] (though non-mechanistic pure neural

network approaches have also been investigated [3, 4]). Using PBMs, the parti-

cle ensemble is transformed through processes such as nucleation, coagulation,15

breakage, consolidation, layering and wetting.

In general, granulation PBMs are numerically solved using variations of the

sectional method [5, 6, 7, 8]. Through the sectional method, each particle di-

mension (e.g. solid volume, liquid volume etc.) is mapped onto a discrete

grid. This allows the model to be represented as a system of ordinary differ-20

ential equations, which can be solved numerically. The dimensionality of these

sectional PBMs generally ranges from one [8] to three [9, 6] and a lumped pa-

rameter technique is often employed to estimate additional particle properties

(such as internal gas volume [5]). To capture spatial inhomegenities in pro-

cessing conditions within the equipment, granulation PBMs often represent the25

system as a network of well-mixed compartments [10, 8]. In recent years, PBMs

have been coupled (both unidirectionally and bidirectionally) with other sim-

ulation frameworks, such as the Discrete Element Method (DEM) [11]. DEM

is typically used to capture collision data and compartment residence times for

use in the PBM(s) [12, 9, 13]. However, the high computational cost of DEM30
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simulations has, in cases, incentivised their replacement with artificial neural

networks (ANN). Barrasso and co-workers [14, 15] demonstrated the use of an

ANN (trained on DEM data) in PBM-ANN couplings. The resulting couplings

have been shown to reduce the computational cost of solution by several or-

ders of magnitude (over PBM-DEM couplings), whilst maintaining the ability35

to predict key DEM data.

Though sectional models for granulation have been successfully applied to

numerous systems in the past [6, 8], the method itself has a number of key

limitations. The first of these limitations is the upper bound placed on the

dimensionality of the particle model. In sectional solvers, this limit arises as40

the number of equations to be solved rapidly increases with the addition of

each additional dimension. It is generally agreed that at most three dimensions

can be specified before the solution process becomes computationally unfeasi-

ble [5]. Though, four dimensional sectional models have been tested, they can

take several days or even weeks to solve [16]. This bound on dimensionality45

ultimately limits the number of ways that the modelled particles can be char-

acterised and therefore limits the complexity of the particle mechanisms that

can be employed. The second limitation of the sectional approach is that the

resolution of the model along any particular dimension is controlled by the grid

employed. All the particle mass within the same grid section is treated iden-50

tically, meaning that there is a finite number of particles types than can be

represented.

An alternative method of solving population balance models is the Monte

Carlo particle method (sometimes referred to as MC-PBM or stochastic PBM).

MC-PBMs have been successfully applied to the simulation of high-shear batch55

granulation [17, 18, 19, 20, 21, 22, 23, 24, 25]; silica nano-particle synthesis [26];

combustion engine modelling [27, 28]; soot formation [29, 30]; aerosol wet scav-

enging [31] and more general coagulation processes [32]. Under this framework,

a representative sample volume of the system is modelled using an ensemble

of computational particles. One such implementation of the stochastic particle60

method is Direct Simulation Monte Carlo, also know as the Direct Simulation
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Algorithm (DSA). In DSA, each computational particle represents a single phys-

ical particle in the ‘real’ system. Each computational particle has an associated

particle vector x that is used to characterise the physical particle it represents.

In the case of granulation, this particle description may include the solid volume,65

various states of liquid volume and internal gas volume.

MC-PBM ensembles are evolved in time through Markov jump events that

may act on/transform one or more particles at a time. These jump events repre-

sent the various particle mechanisms such as coagulation, breakage etc. These

processes can be numerically challenging under DSA since highly unbalanced70

coagulation-breakage rates can lead to the undesired depletion or accumulation

of computational particles [24]. Another disadvantage of the DSA method is

that a large number of computational particles and repetitions of the simula-

tion are often required to achieve an accurate sampling of the solution, both of

which come at the cost of increased CPU time and memory [33]. The stochas-75

tic weighted particle method (also called the Stochastic Weighted Algorithm

(SWA)), originally proposed by Rjasanow and Wagner [34], has been developed

to overcome a number of the limitations of the DSA method. In SWA each

computational particle has an associated statistical weight w. Using a number

based weighting scheme under SWA, the number of ‘real‘ particles represented80

by each computational particle x is proportional to w, and the ensemble is

represented as a collection of coordinates (x,w). SWA analogues of various

particle processes such as coagulation [35, 36, 37] and breakage [38, 25] have

been developed. Using SWA these processes can be formulated such that they

conserve the number of computational particles (through the transformations85

of weights). Examples of constant number SWA processes are the coagulation

jump processes presented by Patterson et al. [39] and the breakage processes

of Lee et al. [25]. Zhao and co-workers [40, 36, 41] have also presented a SWA

scheme to dynamically control the number of computational particles that fall

within predefined volume intervals. This is done through the periodic modifi-90

cation of the number of computational particles and statistical weights within

each volume interval. This “shift” action acts to maintain statistical precision
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across the full range of the distribution.

In this paper, we are primarily concerned with the solution of the twin-

screw granulation model presented in the first part of this study. Twin-screw95

granulation is a continuous method of wet granulation. The system consists

of two co-rotating screws which convey solid material along the screw barrel

(Figure 1). Liquid binder is injected at some point along the barrel length,

which combines with the solid material and, under the action of the screw

induced shear forces, leads to the formation of granules. For a comprehensive100

overview of twin-screw granulation as a process, the reader is referred to the

first part of this study.

Figure 1: The TSG system with designated compartments as used in the first part of this

study.

The modelling of TSG systems using SWA presents a number of inherent

numerical difficulties. The first of these is the realisation of the immersion nu-

cleation process that forms the preliminary agglomerates in the system. The105

liquid droplets that drive this nucleation process are much larger than the pri-

mary solid particles and their rate of inception is relatively low in comparison

to processes such as particle collision. Nevertheless, this process is known to

have a significant effect on the particle size distribution along length of the

screw [42], necessitating the effective sampling of this jump process. Another110

key challenge in TSG modelling (and continuous granulation modelling in gen-

eral) using stochastic PBMs is the continuous inception/removal of particles

from a primary size distribution, since these distributions may encompass a vol-

ume range that extends over several orders of magnitude. Together, the set of

algorithms used to address each of these particle process (and the other TSG115
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processes such as coagulation, breakage etc.) must be implemented in a manner

that guarantees the fast solution of the model. This is essential for parameter

estimation and large scale parametric sensitivity analysis, both of which can

require thousands of model evaluations.

In this paper, we present the numerical framework used to solve the four-120

dimensional MC-PBM for twin-screw granulation (presented in the first part of

this study) using the stochastic weighted particle method. The stochastic al-

gorithm presented in this paper includes nucleation, inception, coagulation and

fragmentation jump processes. A novel nucleation jump process is constructed,

which is capable of representing the multi-particle immersion nucleation pro-125

cesses in TSG systems. Further to this, we propose a new implementation of

the SWA for the efficient initialisation/inception of particles from wide primary

particle size distributions. A number of numerical studies are carried out to

assess:

1. the relative performance of the newly proposed inception scheme;130

2. the optimal choice of selected numerical parameters within the new nucle-

ation jump process;

3. the general convergence properties of the algorithm in the context of the

twin-screw granulation test case.

To the best of the authors’ knowledge, this is the first time that a stochastic135

PBM has been applied to twin-screw granulation.

The remainder of the paper is structured as follows: in Section 2 the twin-

screw granulation model is briefly detailed. The particle type-space and the

formulation of each stochastic jump process is then detailed in Section 3. In

Section 4 we investigate potential algorithms for particle inception, the optimi-140

sation of key numerical parameters of the nucleation jump process and, finally,

the convergence properties of the complete algorithm. The paper finishes with

the presentation of the main findings of the work in Section 5.
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2. Twin-screw granulation model

In this section we give a brief account of the twin-screw granulation model145

used in the numerical investigation. Only essential features are introduced for

the propose of aiding readability. For an in-depth discussion of the model for-

mulation the reader is directed to the first part of this study.

2.1. Particle type-space

In the twin-screw model, particles x are elements of the type-space X and150

are described by a four-dimensional particle vector x = (so, le, li, p) where: so is

the volume of original solid, le is the volume of external liquid, li is the volume

of internal liquid and p is the pore volume. The key derived particle properties

are summarised in Table 1. Particles may take position in a bounded sequence

Table 1: Summary of derived particle properties. ρs and ρl are the solid and liquid densities,

respectively.

Property Nomenclature Expression Unit

Volume v(x) so(x) + le(x) + p(x) m3

Diameter d(x) (6v(x)/π)1/3 m

Mass m(x) ρsso(x) + ρl(li(x) + le(x)) kg

Porosity ε(x) p(x)/v(x) -

of compartments L which forms a linear chain. Particles may flow between155

compartments and inter-particle processes are only permitted between particles

in the same compartment z ∈ L.

The possible particle processes (see Figure 2) are: nucleation, particle colli-

sion/compaction (which may or may not lead to coalescence), particle breakage,

particle transport (between compartments) and liquid penetration (where ex-160

ternal liquid becomes internal liquid). The individual models for each of these

processes is presented in the next section.

7



Figure 2: Particle processes in the TSG model presented in the first part of this study.

2.2. Inception/initialisation

In this model, particles with diameter d are incepted in the form of primary

solid particles with the form

xincept = (πd3/6, 0, 0, 0), (1)

This process occurs with rate

Isolid(z,dd) =
Ṁfeed1{1}(z)

ρsv̄inceptVreal(z)
q0,incept(d)dd, (2)

where Ṁfeed is the mass feed rate to the real TSG system, 1A is the indicator

function on set A, q0,incept(d) is the physical number distribution of particle

diameters used for inception, Vreal(z) is the physical volume of compartment z

and v̄incept is the arithmetic mean feed particle volume. This is given by

v̄incept =

∫ dmax

dmin

v(d)q0,incept(d)dd, (3)

where dmax and dmin are the maximum and minimum diameters of incepted

particles, respectively.165

In this paper, we assume that all real compartments have equal volume.

Thus, if we have ncomp compartments and a total real system volume of Vreal,T
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then

Vreal(z) =
Vreal,T

ncomp
. (4)

The feed distribution q0,incept used for inception and particle initialisation is

taken from the volume fraction distribution presented in [43] for the Lactose

Impalpable excipient grade. The diameter range in then split into 30 sections

(spaced logarithmically). The discretised data is then converted into number

distribution form q0,incept(d) using the relation [44]

q0,incept(d) =
q3(d)d−3∫∞

0
q3(d)d−3dd

. (5)

The total rate of inception events is then

Rincept(z, t) =

Ṁfeed/(ρsv̄inceptVreal(z)) if z = 1,

0 otherwise

. (6)

2.3. Liquid addition

Liquid droplets, consisting only of external liquid and with volume vdrop, are

incepted into the first compartment with the form

xdrop = (0, vdrop, 0, 0). (7)

Droplets are considered to be mono-disperse and the total rate of liquid addition

events is

Rdrop(z, t) =


(LSR)Ṁfeed

vdropρlVreal(z)
, if z = 1,

0, otherwise,

(8)

where LSR and ρl are the liquid-solid mass feed ratio and liquid density, respec-

tively.

2.4. Nuclei growth170

In this work, nuclei growth is defined as the addition of particles to a droplet

or semi-formed nuclei (a droplet which has acquired some degree of solid mass)
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Hence, it is similar to a coagulation event, with the caveat that it involves a

droplet/partially formed nucleus and and another particle, which is not a droplet

or partially formed nucleus. Further to this, immersion nucleation is defined as

the process by which a droplet is incepted into the system, undergoes growth

and produces as fully formed nucleus. The nuclei growth is described by the

following particle size transformation:

xnuc, xi 7→ Tnuc(xnuc, xi), (9)

where xnuc ∈ Xnuc, xi ∈ X \ Xnuc (Xnuc is the set of partially formed nuclei).

The nucleation type-space transformation Tnuc is characterised by the individual

property transformations:

so(Tnuc(xnuc, xi))=so(xnuc) + so(xi) (10)

le(Tnuc(xnuc, xi))=le(xnuc) (11)

−min
(
[φmax − φ(xi)]1{x|φ(xi)≤φmax}(xi)so(xi), le(xnuc)

)
,

li(Tnuc(xnuc, xi))=li(xnuc) + li(xi) + le(xi) (12)

+ min
(
[φmax − φ(xi)]1{x|φ(xi)≤φmax}(xi)so(xi), le(xnuc)

)
,

p(Tnuc(xnuc, xi)) =li(Tnuc(xnuc, xi))/s
∗, (13)

where φ(x) = (li+le)/(so) is the particle liquid saturation, φmax is the maximum

particle liquid saturation level permitted for the material of interest.

The nucleation kernel takes the form

Knuc(xnuc, xi, z, t) =

knuc(z) min(v(xnuc), v(xi)) if min(v(xnuc), v(xi)) < vdrop,

0 otherwise,

where knuc is the nucleation growth rate constant and since for the conditions

we wish to model v(xnuc) > v(xi) ∀ i ∈ {1, . . . , N(z, t)}, this can be simplified

to

Knuc(xnuc, xi, z, t) =

knuc(z)v(xi) if v(xi) < vdrop,

0 otherwise,

(14)
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The set of valid, completely formed nuclei is defined as E = {x | le(x) = 0}.
As noted by Hapgood et al. [45], with α-Lactose formulations and water

binders, the droplet penetration time can likely be considered to be negligible.175

Hence, it is assumed that particle addition to the nuclei is instantaneous (i.e.

knuc(z)→∞ ∀z ∈ L).

2.5. Coagulation

Particle collisions are modelled using a size-independent collision kernel given

as

Kcol(z, xi, xj) = nscrewkcol(z), (15)

where nscrew is the operating screw speed and kcol is the collision rate constant

in compartment z.180

The Stokes criterion, as detailed in Braumann et al. [23], is used to determine

whether or not a particular collision results in successful coalescence of the

collision partners. Under this criterion, the probability of successful collision

is dependent on the height of particle asperities Ha and particle coefficient of

restitution ecoag.185

2.6. Compaction

Each collision event leads to the compaction of the particles involved which

reduces their porosity and squeezes liquid to particle surface. The compaction

transform Tcomp(z, x) is characterised by the individual property transforms:

so ← so (16)

le ← le + (T pcomp(z, x)− p)li/p, (17)

li ← li − (T pcomp(z, x)− p)li/p, (18)

p← T pcomp(z, x), (19)

where

T pcomp(z, x) =
ε1(z, x)(so + le + li)

ε1(z, x)
(

1− li
p

)
− 1

(20)
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and

ε1(z, x) =

kcomp(z)[ε(x)− εmin] + ε(x), if ε(x) ≥ εmin,

ε(x), otherwise.

(21)

Here kcomp is the compaction rate constant, ε(x) is the particle porosity (as

defined in Table 1) and εmin is the minimum porosity permitted.

2.7. Breakage

In the TSG model, individual particles undergo binary breakage at rate

gbreak(z, x) =

katt(z)n
2
screwv(x), if v(x) ≥ vmin

parent and le(x) + li(x) + p(x) 6= 0,

0 otherwise,

(22)

where katt is the attrition rate constant and vmin
parent is the minimum agglomerate190

size that can undergo breakage. As in Braumann et al. [23], the daughter

distribution of each breakage event Bfrag(x) is described by a beta function

with skewness parameters αdaughter and βdaughter.

2.8. Compartmentalisation/transport

To reflect the variable processing environments along the length of the twin-195

screw, in both parts of this study the screw is modelled as three perfectly mixed

compartments arranged in series (see Figure 1).

2.9. Penetration

The transfer of external liquid to internal liquid is modelled as a continuous

process. The rate of liquid penetration for each computational particle is con-

trolled by a penetration rate constant kpen and liquid binder viscosity µbinder

as

rpen = kpenµ
−1/2
binderle(p− li), (23)

such that

dso

dt
= 0,

dle
dt

= −rpen,
dli
dt

= rpen,
dp

dt
= −rpen. (24)
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3. Stochastic particle methods for granulation

3.1. Particle type-space200

In the SWA, in each compartment z, a set of stochastic particles is simulated

in order to describe the population balance problem. The stochastic particles

take the form

(zi, xi, wi), i = 1, . . . , NT(t), (25)

where x ∈ X, wi ∈ (0, wmax] is the statistical weight of the particle with index

i and NT(t) is the total number of particles across all z at time t.

The statistical weights offer an additional level of freedom in the construction

of the simulation algorithm, whilst maintaining the property

1

Vsamp

N(z,t)∑
i=1

wiϕ(z, xj) −−−−−−→
Vsamp→∞

∫
X
ϕ(z, xj)P (t, z,dx). (26)

Here, Vsamp is the normalisation parameter or sample volume associated with

compartment z; N(z, t) is the number of stochastic particles in compartment

z; ϕ(z, xj) is some suitable test function which is continuous and with compact

support [39] and finally P (t, z,dx) is a concentration measure (i.e. a measure

valued quantity) that corresponds to the solution of the population balance

problem to be solved. As mentioned in Section 1, (26) may be interpreted as

saying that the physical concentration of particles represented by stochastic

particle xi(t) is approximately wi/Vsamp. In the same way, the total particle

concentration in compartment z is
∑
wi/Vsamp. As in Lee et al. [25], the sample

volume is initialised such that

1

Vsamp(z)

N(z,0)∑
i=1

wi ≈
∫
X
P (0, z,dx). (27)

The particle doubling/reduction method employed by Lee et al. [25] is used to

control the number of computational particles in the system. Each compartment

is initialised with N(0) = 0.75Nmax computational particles, where Nmax is the205

maximum number of particles permitted. For the purposes of error reduction,

the minimum number of particles permitted is (3/8)Nmax.
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The Markov jump process that evolves the system in time is defined by

the possible jumps and their associated rates. Each available jump and the

associated rate is a function of the state of the system. At each t there exists a

list of possible jumps which have independent, exponentially distributed waiting

times. In this way, the earliest jump is selected and carried out, generating a

modified system of particles with a new state and new rates. The solution then

steps forward in time and the process is repeated until some stopping condition

is met. The time step is described by the distribution:

P (t, twait ≥ θ) = exp(−RSWA
total (t)θ), θ ≥ 0, (28)

where RSWA
total is the total jump rate.

3.2. Stochastic weighted algorithm

The possible SWA jump processes and associated rates used in this work210

are:

3.2.1. Inception

The inception process is used to introduce purely solid particles into the

system, representing the continuous addition of feed powder to the first sim-

ulated compartment of the twin-screw system. In this jump process, a new

computational particle of the form

(z, xincept(d), wincept(d)) (29)

is added to compartment z at rate [# events/unit-time/unit-volume]

ISWA
solid (z,dd,dw) :=

Ṁfeed(z)1{1}(z)

Vreal(z)v̄inceptKw
δwincept(d)

(w)qSWA
0,incept(d)dddw, (30)

where wincept is the particle inception weight (which may have some dependence

on the inception particle diameter d), qSWA
0 (d) is the diameter distribution of

incepted (weighted) computational particles and Kw is a scaling factor.215

In order for the SWA inception jump to recover the dynamics of the un-

weighted, model inception process (and hence the physical inception distribution
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q0,incept(d)), it is required that the inception rate take the form [46]

ISWA
solid (z,dd,dw) =

δwincept(x)
(w)

wincept(x)
Isolid(z,dd)dw (31)

=
Ṁfeed1{1}(z)δwincept

(w)

ρsVreal(z)wincept(d)
q0,incept(d)dd dw. (32)

Equating (30) and (32) we see that

wincept(d) = Kw
q0,incept(d)

qSWA
0,incept(d)

. (33)

Rearranging Equation (33) and integrating both sides over the full set of

inception particle diameters, one sees that

Kw =

∫ dmax

dmin
wincept(d)qSWA

0,incept(d)dd∫ dmax

dmin
q0,incept(d)dd

(34)

= w̄incept, (35)

where w̄incept is the number mean weight of particles selected for (solid) incep-

tion. Thus,

wincept(d) = w̄incept
q0,incept(d)

qSWA
0,incept(d)

. (36)

Note that, by asserting that the weights of incepted particles have some de-

pendence on x, the distribution of computational particles on diameters space

can be selected freely, whilst still reproducing some physical particle distribu-

tion q0,incept(d). To the best of the author’s knowledge, this is the first time

that this weighting procedure has been formalised in the context of a stochastic220

population balance equation. In this paper, we investigate the performance of

the complete stochastic weighted algorithm for various forms of qSWA
0,incept(d) (and

hence wincept(d)) within the context of a twin-screw granulation model.

Finally, the total rate of inception jumps in the SWA ([# events/unit-time])

is

RSWA
incept(z, t) =

Rincept(z, t)Vsamp(z, t)

w̄incept
. (37)
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3.3. Liquid Addition225

In the SWA, the liquid addition jump event results in the addition of a

computational particle with the form

(z, xdrop, wdrop), (38)

where xdrop is given by (7) and wdrop in the statistical weight of the incepted

droplet particles. Unlike incepted solid particles, incepted droplet particles are

mono-disperse, hence wdrop is simply a constant. Given some sample volume

Vsamp(z, t), the jump rate associated with this process is then

RSWA
drop (z, t) =

Rdrop(z, t)Vsamp(z, t)

wdrop
. (39)

An important point to be taken from (39) is that the rate of droplet inception

jumps can be controlled through the selection of wdrop. This is critical when

sampling rare model events which have a high impact on the ensemble properties

of interest. In this paper, the effect of the choice of wdrop on the performance

of the complete simulation algorithm is investigated.230

3.3.1. Nuclei growth

Following the approach taken by Kotalczyk and Kruis [47] to carry out

coagulation processes, the addition of individual particles of the form (z, xi, wi)

to the partially formed nucleus (z, xnuc, wnuc) is carried out as

(z, xnuc, wnuc), (z, xi, wi) 7→ (z, Tnuc(xnuc, xi), γnuc(wnuc, wi)),(z, xnuc, wnuc − γnuc(wnuc, wi)),

(z, xi, wi−γnuc(wnuc, wi)).

(40)

. Here, γnuc is the nucleation weight transfer function which, again, follows the

approach of Kotalczyk and Kruis [47] such that

γnuc(wnuc, wi) = min(wnuc, wi). (41)

In order to achieve convergence, the jump process in (40) occurs with rate [47]

Knuc(xnuc, xi) max(wnuc, wi). (42)
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where Knuc is the nucleation kernel. Since it is computationally expensive to

compute the expression in (42) for all possible ensemble particles (xi, wi), a

majorant form of this kernel is used. This takes the form:

K̃nuc(xnuc, wnuc, xi, wi) = Knuc(xnuc, xi)(wnuc + wi). (43)

The procedure used to pick particle (xi, wi) to take part in the jump process (40)

is discussed later in this paper, since a number of simplifications may be made

after the introduction of the model nucleation kernel Knuc(x, y). In order to

ensure that the jump process (40) is performed at the correct rate, upon selection

of the ensemble particle (z, xi, wi) to be added to the partially formed nucleus,

the jump is performed with probability

max(wi, wnuc)

wi + wnuc
, (44)

otherwise the jump is fictitious and we move on to the selection of the next

ensemble particle. For a more detailed account of the majorant kernel technique

the reader is referred to Lee et al. [12].

3.4. Immersion nucleation235

When nuclei growth is rapid (knuc →∞) it becomes possible to combine the

droplet inception and successive nuclei growth jumps into a unified jump process,

which we will refer to as a immersion nucleation jump. The unified jump process

begins with the inception of a droplet particle of the form (38). Nucleation

growth jump events (40) are repeatedly applied to the droplet particle. This

occurs in an iterative manner i.e particle (z, Tnuc(xnuc, xi), γnuc(wnuc, wi)) is

passed back through the jump process (40) with a new ensemble particle xi.

This iterative process continues until

Tnuc(xnuc, xi) /∈ Xnuc. (45)

When (45) is satisfied, Tnuc(xnuc, xi) may no longer be passed through jump (40)

and a new computational particle is incepted into compartment z with the form

(z, Tnuc(xnuc, xi), γnuc(wnuc, wi)). (46)
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This marks the end of the unified immersion nucleation jump process.

In the event that the jump (40) creates two partially formed nuclei1, then

jump (40) must also be separately carried out on particle (z, xnuc, wnuc−min(wnuc, wi)

until the stopping condition (45) is satisfied for this particle.

Since the rate limiting step of the immersion nucleation jump is the droplet

inception, the total jump rate of this process is

RSWA
nuc (z, t) = RSWA

drop (z, t). (47)

The implementation of the immersion nucleation jump is discussed in detail in240

Section 4.3.

3.4.1. Coagulation/compaction

SWA coagulation jumps take different forms depending on whether or not the

particles can be successfully coalesced. Additionally, this jump process includes

a potential compaction transformation on the particles involved. For successful

coalescence, the jump takes the form

(z, xi, wi), (z, xj , wj) 7→ (z, Tcomp(xi + xj), γcoag(xi, wi, xj , wj)), (z, xj , wj),

(48)

and for unsuccessful coalescence (i.e. a compaction/rebound):

(z, xi, wi), (z, xj , wj) 7→ (z, Tcomp(xi), wi), (z, xj , wj). (49)

In the above, γcoag is the coagulation weight transfer function and Tcomp is the

compaction transformation. As in Lee et al. [25] we impose that

γcoag(xi, wi, xj , wj) = wi
m(xi)

m(xi + xj)
. (50)

The total collision jump rate in compartment z is

RSWA
col (z, t) =

1

Vsamp(z, t)

Ncomp(z,t)∑
i6=j

Kcol(z, xi, xj)wj . (51)

1Note that additional, partially formed nuclei particles can be formed by (40) if wnuc > wi.
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3.4.2. Breakage

In this paper, the breakage jumps take the form

(z, xi, wi) 7→ (z, y, γfrag(xi, wi, y)), (52)

which occurs at rate

gbreak(z, x). (53)

Here, γfrag is the breakage weight transfer function which takes the form [25]

γfrag(xi, wi, y) = wi
m(xi)

m(y)
. (54)

As in [25, 12], y is selected as:

y = xj , with probability =
m(xj)

m(xi)
, (55)

y = xi − xj , with probability = 1− m(xj)

m(xi)
, (56)

and xj is selected according to the probability measure Bbreak(xi).

The total breakage jump rate in compartment z is

RSWA
break(z, t) =

N(z,t)∑
i=1

gbreak(z, xi). (57)

3.4.3. Transport245

Particles are permitted to move between compartments according to the

jump

(z, xi, wi) 7→ (z + 1, xi, Fc(z)wi), (58)

at rate

1

τ(z)
. (59)

Here, τ(z) is the characteristic residence time of compartment z and Fc is the

transport weight scaling factor, which takes the form [26]

Fc(z) =
Vsamp(z + 1)

Vsamp(z)
(60)
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for a series of compartments with equal real volume.

The total transport jump rate in compartment z is

RSWA
outflow(z, t) =

N(z, t)

τ(z)
. (61)

3.4.4. Overall jump rate

The total jump rate of the stochastic weight algorithm RSWA
total is given by

RSWA
total (t) =

∑
z∈L

[
RSWA

col (z, t) +RSWA
break(z, t) +RSWA

nuc (z, t)

+RSWA
incept(z, t) +RSWA

outflow(z, t)

]
. (62)

Particle process p ∈ {col,break,nuc, incept, outflow} in compartment z is carried

out at time t with probability

RSWA
p (z, t)

RSWA
total (t)

. (63)

3.4.5. Continuous processes

Intra-particle processes (such as liquid penetration) may be modelled as

continuous processes. To minimise the computational cost of modelling such250

mechanisms, these are carried out using the linear process deferment algorithm

(LPDA) [48]. LPDA has been successfully employed in the solution of stochastic

population balance models for granulation [25], silica nanoparticle synthesis [26]

and soot particle formation [48, 39]. In the LPDA, each stochastic particle is

time stamped and the application of all linear processes is deferred until:255

1. The next occurrence of a non-linear event (.e.g. coagulation). At which

point linear processes are applied to the particles involved in the jump.

2. The compartmental system has been simulated to/beyond the next de-

ferment check point time (based on predefined list of deferment check

points). At which point linear processes are applied to all stochastic par-260

ticles, thereby updating each particle to the current simulation time. This

occurs between stochastic jumps events.
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4. Numerical studies

In this section we investigate the influence of key numerical factors such as

the choice of inception weighting scheme, the statistical weights/weight trans-265

fer function associated with the nucleation process and the general convergence

properties of complete stochastic weighting algorithm in the context of the twin-

screw model. To ensure that the results of this analysis are relevant to typical

model operating conditions (equipment operating conditions and rate constant

values), all numerical tests are carried out using the equipment operating con-270

ditions and optimised model rate constants used/optimised in the first part of

this study. These parameters are repeated in Table 2 and Table 3, respectively.

4.1. Simulation details

In this section we describe the simulation conditions used throughout the

numerical studies. These parameters are to be assumed in all cases unless275

explicitly stated otherwise.

4.1.1. Simulation stop time and repetitions

Since the twin-screw granulation system is a continuous system, we are

primarily interested in the steady state solution of the twin-screw PBM. As

such, dynamic results are not assessed in this study. Visual analysis of the re-280

sponses showed that the time at which simulation responses ceased to drift with

t was controlled by the total system residence time. The final simulation time

tstop = 5
∑
z∈Z τ(z) ≈ 40s proved to be an acceptable choice and is used across

all numerical studies in this paper.

Each simulation is carried out until t = tstop and this process is repeated285

nruns times, each time with a different seed to the pseudo-random number gen-

erator. In this study, each repetition will be referred to as a run.
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4.1.2. Quantification of errors

For the stochastic simulations in this work, temporal functionals M(t) are

reported as averages taken over all runs as

η(t) =
1

nruns

nruns∑
i=1

Mi(t), (64)

where the functional may be a particle ensemble property such as the mass

fraction of particles in a particular sieve class.290

The half-width of the confidence internals are

c(t) = 1.64

√∑nruns

i=1 (Mi(t)− η(t))2

n2
runs

, (65)

which corresponds to a confidence interval P = 0.9 [25]. In cases where the

statistical error is to be measured, the mean confidence interval c̄ of a measured

distribution is used. This is computed as

c̄ =
1

npoints

npoints∑
j=1

cj , (66)

where npoints is the number of discrete points in the responses distribution of

interest.

When a high precision solution (HPS) is used as a reference point, the sum

of squared errors of prediction (SSE) is used to represent the systematic error

and is given by2

SSE =

npoints∑
j=1

(ηHPS,j − ηj)2. (67)

All HPS’s were run with Nmax = 65536, nruns = 10 and wnuc = 0.001.

4.1.3. Binary tree

To ensure that the computational cost of solving the model is minimised,295

binary tree caches are employed to store key particle properties, thus enabling

fast computation of ensemble wide properties (e.g overall breakage rate) [39, 48,

49, 50].

2Note that (67) does not have any weighting factors since all η of interest are of the same

physical dimension and order of magnitude.
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4.1.4. Hardware set-up

All test simulations were are carried out using a single core of an Intel R©
300

Sandy Bridge
TM

E5-2670 3.30GHz Processor with 4GB of RAM per core.

4.2. Inception sampling methods

In this section, we investigate various forms of the inception function qSWA
0,incept(d)

and the resulting weight transfer functions wincept(d) (see (30) and (36)) in the

context of the twin-screw granulation model presented in Section 2. We are305

reminded that qSWA
0,incept(d) represents the frequency at which stochastic parti-

cles of the form (z, xincept(d), wincept(d)) with diameter d are selected within

an inception jump, such that some physical inception particle size distribution

q0,incept(d) is recovered.

In previous SWA studies [25, 12], the authors have employed

qSWA
0,incept(d) = q0,incept(d), w̄incept = 1, (68)

→wincept(d) = 1,

which we shall refer to as the equi-weighted inception scheme for SWA (EWI-310

SWA).

EWI-SWA is attractive due to it ease of implementation, however, in some

cases, it has been observed that significant reduction in computational cost

can be attained using more complex forms of wincept(d), depending upon the

ensemble property of interest.315

As an example, let us consider the case where we are interested in measuring

the mass distribution (as a function of d) within the steady state ensemble of

the twin-screw granulation simulation. It is often the case that the real density

distribution of particles q0,incept(d) covers a d range which is several orders of

magnitude in size (such is the case of that presented for Lactose Impalpable320

in Hagrasy et al. [43]). Given such a situation, we see from Figure 3(a) (blue

trace) that the particles which occur with the greatest frequency are those with

d much smaller than dmax. Consequently, most ‘real’ particles that are incepted

into the physical system will have a volume (and thus mass) which is several
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Table 2: Summary of simulation parameters.

Parameter Type Value Unit

ddrop Operating parameter 2×10−3 m

Ṁfeed Operating parameter 4.0 kg hr−1

nscrew Operating parameter 6.67 rev s−1

Vreal,T Equipment geometry 4.05×10−5 m3

ecoag Material property 0.2 -

ρl Material property 998 kg m−3

ρs Material property 1545 kg m−3

µbinder Material property 10−3 Pa s

dmax Model parameter 3.31×10−6 m

dmin Model parameter 8.26×10−4 m

Ha Model parameter 5×10−6 m

kreac Model parameter 3 -

vmin
parent Model parameter 1.80×10−11 m−3

vmax
nuc Model parameter vdrop m3

αdaughter Model parameter 5.0 -

βdaughter Model parameter 2.0 -

εmin Model parameter 0.5 -

νmax Model parameter 0.5 -

τ Model parameter 2.76 s

φmax Model parameter 1.08 -
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Table 3: Optimised model rate constants generated in first part of this study, used in numerical

tests.

Compartment

index z 1,3 2 1-3︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷
Parameter kcol katt kcomp kcol katt kcomp kpen

Unit m3 m−1s - m3 m−1s - kg
1
2m− 7

2 s−
3
2

Value 1.21×10−10 9.42×106 0.395 9.99×10−13 1.09×109 0.954 10.0

orders of magnitude less than that held by particles with d close to the upper325

limit of the inception range. Now, if one were to employ the EWI-SWA scheme

(i.e. qSWA
0,incept(d) = q0,incept(d)) in such a situation, then it follows that most of

the stochastic particles that are incepted will also carry very little volume (and

hence very low mass), and thus have a very limited effect on the compartment

mass distribution. However, occasionally stochastic particles with large d will330

be incepted into compartment 1, causing a temporary but significant change in

the system mass distribution. This results in a high degree of stochastic noise

within the measured product mass distribution. In order to mitigate this noise,

it is required that the maximum number of computational particles Nmax and/or

nruns be increased, both of which increase the computational cost of simulation.335

From the thought experiment above, we see that it would be advantageous

to spread the incepted mass over the incepted stochastic particles in a more

uniform manner, while still recovering q0,incept. This is not only true of the

inception process, but also the initialisation of the ensemble at t = 0. We

further note that the transport processes also have the ability to induce a high340

degree of noise in the mass distribution when the compartment particle mass is

poorly distributed across the ensemble of stochastic particles.

Methods to control the distribution of selected quantities, analogous to that

described above, have been employed by Zhao and co-workers [40, 36, 41] and

DeVille et al. [51] in the context of alternative particle models. In this paper

we adapt the size dependent particle weighting approach of Zhao and Zheng
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(a) equi-weighted inception scheme for SWA

(EWI-SWA)

(b) variable weighted inception scheme for

SWA (VWI-SWA)

Figure 3: An illustrative example of the various sampling methods studied. In VWI-SWA,

many small particles are grouped in a few computational particles, reducing the total number

required to accurately sample ‘mass-rich’ regions of the distribution closer to dmax.

[40] to the inception jump process (29) of the twin-screw model and also, to

the initialisation of the ensemble (outlined in Section 3). Specifically, in this

work, we investigate the case where qSWA
0,incept is a uniform distribution over d

with normalised form

qSWA
0,incept(d) = (dmax − dmin)−1. (69)

It follows from (36) that

wincept(d) = w̄incept(dmax − dmin)q0,incept(d). (70)

The use of (69) and (70) for inception will be referred to as the variable weighted

inception scheme for SWA (VWI-SWA). The use of VWI-SWA results in a

stochastic particle distribution analogous to that illustrated in Figure 3(b). Nu-345

merical tests were carried out to assess the performance of the EWI-SWA and

VWI-SWA inception algorithms described above. To ensure that the rates of

each process were matched between compared sets of simulations at t = 0, the

values of wdrop was modified in the EWI-SWA case. For VWI-SWA wdrop was

set to 16.38 in all simulations.350
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Figure 4: A comparison of the product mass fraction distributions (z=3) and CPU times

using the VWI-SWA and EWI-SWA algorithms with Nmax=8192. A high precision solution

using VWI-SWA is included but sits directly behind the blue trace.

The product ensembles of each simulation are sieved using a sieve set starting

from 32µm to 8064µm with a
√

2 geometric progression. Sieve mass fractions

are plotted against the mid-point of the corresponding sieve intervals.

The resulting sieved exit mass fraction distributions using both EWI-SWA

and VWI-SWA with Nmax = 8192 are presented in Figure 4. It is noted that,355

for the EWI-SWA scheme, most of the computational feed particles have been

utilised to form the lower end of the distribution between 10-100µm. As a

result, sampling of the primary particle distribution is much poorer for larger

particle diameters (where most of the ensemble mass resides). The error in these

larger sieve classes for the EWI-SWA scheme has carried over into the steady360

state solution. By contrast, the VWI-SWA scheme has sampled the initial

distribution with much higher precision in the larger sieve classes, resulting in

a steady state distribution with relatively small confidence intervals across the

complete diameter range. Since both simulations operated with the same bounds

on the number computational particles permitted, it is expected that both EWI365

and VWI-SWA schemes should result in CPU times which are if the same order
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of magnitude. This is confirmed by the inset CPU plot in Figure 4, where the

weighted inception algorithm has showed a similar but slightly reduced CPU

time over the EWI-SWA scheme. The variations in CPU time likely reflect the

interaction between the particle selection procedure of the nucleation algorithm370

and the ensemble weight distribution. This interaction may change the rate at

which particles are fully depleted (deleted from the ensemble) by the mechanism,

altering the equilibrium computational particle count and, hence, the CPU time.

Figure 5: A comparison of the total CPU time vs. associated inverse average confidence

interval half-width in the sieved exit mass fraction distribution for 40s of simulation with

nruns = 10. The number of computational particles (attached green blocks) is varied to yield

different CPU times and 1/c̄ values.

The scaling performance of each inception/initialisation algorithm was as-375

sessed by running a series of simulations with varying Nmax (and therefore the

minimum number of computational particles, as Nmin = 3Nmax/8). Simula-

tions were run with Nmax=1024 and increased by a factor of two to a final

Nmax=65536. Simulations using the EWI-SWA scheme proved to be numeri-

cally unstable for Nmax=[1024, 2048], and thus results for these operating points380

are not reported here. The resulting set of mean confidence interval half-widths
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c̄ across the resulting sieve exit mass fraction distribution and their associated

CPU times are presented in Figure 5. Here, 1/c̄ is used to quantify the precision

of each response.

It is clear from Figure 5 that the VWI-SWA scheme offers a much higher385

precision solution than the equivalent EWI-SWA (same CPU time). Specifically,

the VWI-SWA scheme can be seen to yield solutions in CPU times almost two

orders of magnitude lower than the EWI-SWA for the same level of precision.

4.3. Immersion nucleation parameters

In this section, we investigate the selection of the key parameter wdrop,390

the selection of ensemble particles xi and simplification of the iteration process

within the nucleation jump process (40) for the twin-screw granulation test case.

4.3.1. Selection of the droplet weight

We are reminded that the statistical weight of incepted droplets wdrop is a

free parameter within the context of the nucleation jump process. Furthermore,

we observe from (8) and (39) that the rate of immersion nucleation jumps in

compartment z = 1 has the characteristic

RSWA
nuc (1, t) ∝ (vdropwdrop)−1. (71)

In previous SWA efforts in the modelling of high shear batch granulation [24, 12],

alternative droplet particle inception jump processes with jump rates given by395

equations of the form (71) have been implemented with the equivalent of wnuc =

1. In these examples the value of vdrop was very small (on the order of 10−13m3)

to reflect the operation of the equipment being modelled. As a result, the rate

of this process was significant (relative to the total jump rate) allowing it to be

sampled with a high degree of accuracy.400

However, in the case of twin-screw granulation, operating values of vdrop

can be much larger (on the order of 10−8m3). Hence, if wdrop = 1, then the

nucleation jump rate can be exceptionally low relative to the total jump rate,

resulting in poor sampling of this jump process. In addition to this, it is noted
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that a single nucleation jump can have a significant impact on the particle mass405

distribution within the ensemble (particularly when wdrop is on the order of

w̄incept), and hence poor nucleation sampling results in a high degree of stochas-

tic noise in the product mass distribution. This ultimately places a limit on

the size of vdrop that can be modelled with an acceptable degree of error (with

wdrop=1). Again, like the case of poor solid particle inception sampling, this410

noise can be mitigated by increasing Nmax and nruns at an additional computa-

tional cost. In this study, we avoid the need to increase Nmax and/or nruns by

dynamically selecting wdrop according to the operating conditions to be mod-

elled. It will be demonstrated that, in doing so, we can ensure the effective

sampling of this important jump process within the context of the twin-screw415

granulation model.

4.3.2. Simplification of the jump

As mentioned in Section 3.3.1, the nucleation particle addition jump (40) has

the drawback of potentially creating more than a single partially formed nucleus

in the jump products (when wnuc < wi). This additional, partially formed nuclei

must also then be separately and repeatedly passed through jump (40) until the

condition (45) is satisfied. This is undesirable as these additional nuclei have the

potential to create yet more nuclei, so on and so forth, before (45) is satisfied.

Hence it is possible that this process may become computationally taxing and

flood the ensemble with particles which are physically very similar, and possesses

very low statistical weights. To avoid these issues we note that, in the context

of the twin-screw model, ensemble particles xi that are able to attached to the

partially formed (i.e. those for which Knuc(xnuc, xi) 6= 0) are generally much

smaller in volume than the corresponding nucleus xnuc. Hence, the addition of

a single xi to xnuc has relatively little effect on the state of xnuc i.e.

Tnuc(xnuc, xi) ≈ xnuc. (72)

Furthermore, we note that the statistical weight of the first partially formed

nucleus (in the case where two nuclei are formed) is min(wnuc, wi) = wi, which is
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generally much greater than the weight of the secondary nucleus (wnuc−wi). As

such, the product particles may be combined into a single representative particle

using a weighted average of the particles of (Tnuc(xnuc, xi), wi), (xnuc,min(wnuc−
wi)) with the form:

(w−1
nuc [wiTnuc(xnuc, xi) + (wnuc − wi)xnuc] , wnuc). (73)

It was observed that, for the systems modelled in this paper, this simplification

had no discernible effect on the model solution but offered modest reduction in

simulation times (5-10%) and code complexity, therefore this simplification is420

employed in all simulations within this study. An illustrative example of the

immersion nucleation jump process if presented in Figure 6.

4.3.3. Selection of ensemble particles

As alluded to in previous sections, the selection of computational particles

(xi, wi) for addition to partially formed nuclei by way of jump (40) can be

simplified based on the model nucleation kernel Knuc employed. Combining (43)

and (14) we see that the majorant form of the nucleation kernel for the twin-

screw model is

K̃nuc(xnuc, wnuc, xi, wi, z, t) = knuc(z, t)v(xi)(wnuc + wi)1{x|v(xi)<vdrop}(xi)

(74)

Since only a single nuclei particle is considered at a time, the total rate of

this process is

N(z,t)∑
i=1

K̃nuc(xnuc, wnuc, xi, wi, z, t) =

N(z,t)∑
i=1

knuc(z)v(xi)(wnuc + wi)1{x|v(xi)<vdrop}(xi)

= knuc(z)

N(z,t)∑
i=1

v(xi)1{x|v(xi)<vdrop}(xi)

+ knuc(z)

N(z,t)∑
i=1

v(xi)wi1{x|v(xi)<vdrop}(xi).

(75)

31



Thus, particle (xi, wi) is selected to take part in the jump (40) based on the

selection property v(xi) with probability

Pv(xi) =
wnuc

∑N(z,t)
i=1 v(xi)1{x|v(xi)<vdrop}(xi)

wnuc

∑N(z,t)
i=1 v(xi)1{x|v(xi)<vdrop}(xi) +

∑N(z,t)
i=1 v(xi)wi1{x|v(xi)<vdrop}(xi)

.

(76)

It follows that particle (xi, wi) is selected to take part in the jump (40) based

on the selection property v(xi)wi with probability

Pv(xi)wi
= 1− Pv(xi). (77)

Using a binary tree to store properties v(xi)1{x|v(xi)<vdrop}(xi) and v(xi)wi1{x|v(xi)<vdrop}(xi)425

for each computational particle allows for rapid evaluation of the the summa-

tions in (76) and hence the evaluation of Pv(xi) and the selection of particle xi

with the desired probability measure.

The complete nucleation algorithm (including the particle selection proce-

dure described above) is provided in Appendix Appendix A.430

4.3.4. Nucleation performance

To assess the affect of wdrop on the performance of twin-screw simulations,

several simulations were carried out using the VWI-SWA algorithm and Nmax =

1024 for various values of wdrop in the range 5×10−5 - 5×10−2. All errors

were constructed from the sieved mass fraction distribution in the final reactor435

(z = 3).

From Figure 7(a) we note that the mean confidence interval half-width c̄

varies relatively smoothly with wdrop and c̄ exhibits an increase towards the

limits of the wdrop range investigated. The picture painted by the SSE in the

same figure is less clear towards low wdrop, however, from PSD’s in Figure 7(b)440

we see that all simulation solutions lie in close proximity to the HPS, regardless

of wdrop and thus the SSE values are subject to a high degree of noise in this op-

erating range. The increase in c̄ and SSE towards the upper ranges of the tested

wdrop is indicative of the poor sampling of the nucleation jump, as discussed in

Section 4.3.1. Towards the lower range of wdrop, the nucleation jump rate is very445
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Figure 6: An illustration of the SWA immersion nucleation scheme. Each particle represents a

single computational particle. The angle of the unshaded region of each particle is constructed

such that it is proportional to the associated statistical weight of the particle. Each pathway

corresponds, respectively, to the first, intermediate (with particle removal) and final iteration

of the particle selection loop of Algorithm 1 (steps 3-12).

high and the absolute liquid mass carried by the stochastic nuclei particles at

the start of the jump is relatively low. Since the amount of solid particles that

interact with the droplet is roughly proportional to the absolute liquid mass of

the stochastic droplet particle, the number of solid particles acted on by each

nuclei jump becomes much lower. Hence we expect greater fluctuations in the450

primary particle mode at low wdrop, as observed in the left-most peak in the

PSD of Figure 7(b).

As expected, in Figure 7(c) we see that, in general, the CPU time is reduced

with increasing wdrop as the total jump rate in reduced. This trend diminishes

towards large wdrop as nucleation ceases to be the dominant jump process. For455

wdrop > 0.007, coagulation becomes the dominant jump process (in terms of

CPU-time) and so the computation time becomes independent of wdrop. In

Figure 7(d), the combination of error and CPU time data for various values of

wdrop shows that there exists a favourable range of wdrop approximately between
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10−2 - 5×10−4 where both the error and computation time are minimised.460
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Figure 7: The effect of varying wdrop on simulation performance. All results correspond to the

steady state sieved mass fraction distribution in z = 3. In (d) the value of wdrop corresponding

to each point is indicated within the attached blocks.

35



4.4. Convergence properties

It is useful to consider the convergence properties of the complete stochas-

tic algorithm for the twin-screw test case. This is done by assessing how the

systematic and statistical error in the final mass distribution depends on Nmax

and nruns. All convergence tests are carried out with the VWI-SWA algorithm465

and wnuc = 0.001.
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Figure 8: Convergence properties of the twin-screw SWA framework using VWI-SWA.

In Figure 8(a) and 8(b) we show the dependence of the final mass distribu-
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tion and its associated error on Nmax for an approximately fixed computational

budget by holding Nmax × nruns constant at 32768. In this region of operating

space, we see that there is no correlation between Nmax and the statistical or470

systematic error measures and that all measured mass distributions lie on top

of the HPS. Both of these observations indicate that the simulation algorithm is

extremely robust against changes in Nmax, provided that that the nruns is scaled

appropriately. Lower values of Nmax could not be explored as the algorithm be-

came numerically unstable for Nmax < 128. These instabilities are induced by475

the fact that the incepted nuclei particles can no longer gather sufficient solid

mass to complete the nucleation jump process.

Thus, in order to access regions of operating space where the systematic and

statistical error is more significant, it is required that lower values ofNmax×nruns

are used. In Figure 8(c) we show the variation in the final mass distribution480

and the associated confidence intervals with fixed Nmax=128 for varying values

of nruns. This figure shows that Nmax×nruns can be lowered to 8192 before the

mass distribution begins to significantly deviate from the HPS. It is also clear

that at even with nruns=4 the solution still lies in close proximity to the HPS,

though the confidence intervals have dramatically increased in size, as expected.485

This region of operating space is further explored in Figure 8(d), which shows

how the statistical and systematic error varies with nruns for low values of Nmax.

Here, if we compare simulations of equal Nmax × nruns (i.e. comparable CPU

times) then we observe that, in general, there is no clear dependence between

Nmax and statistical or systematic error for low values of Nmax. From this490

analysis we may conclude that, for a twin-screw test case investigated, if a

desired level of error in the final mass distribution is desired (either systematic

or statistical), then there is no significant benefit of increasing Nmax provided

that Nmax exceeds the value required for computational stability (128 in this

case).495
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5. Conclusions

In this paper, we have presented a stochastic weighted particle framework

that can be used to solve the four-dimensional twin-screw granulation PBM

introduced and optimised in the first part of this study. A new nucleation

jump process is outlined, which is compatible with an immersion nucleation500

model in the context of wet granulation. A variable weighting particle incep-

tion/initialisation algorithm was constructed to aid the efficient sampling of

wide primary particle size distributions. This inception algorithm was shown

to deliver performance increases of between one and two orders of magnitude

over the traditional equi-weighted inception scheme. The numerical properties505

of the new nucleation jump process were explored and it was observed that there

exists a specific range of droplet statistical weight that minimises both the error

in the final mass fraction distribution and the computational cost of simulation.

The convergence properties of the complete algorithm were assessed using the

twin-screw test case and it was shown that the algorithm is extremely robust510

against changes in the number of computational particles used.
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Abbreviations

ANN Artificial neural network

DSA Direct simulation algorithm

DEM Discrete element method

EWI-SWA Equally weighted inception for the stochastic weighted algorithm

HPS High precision solution

LPDA Linear process deferment algorithm

PBM Population balance model

MC-PBM Monte Carlo population balance model

SWA Stochastic weighted algorithm

TSG Twin-screw granulation

VWI-SWA Variable weighting inception for the stochastic weighted algorithm

Nomenclature

Roman symbols

Bbreak breakage daughter distribution probability measure -

c confidence interval half-width -

c̄ average confidence interval half-width (of a distribution) -

d particle diameter m

ddrop droplet diameter m

dmax maximum primary particle diameter m

dmin minimum primary particle diameter m

E set of valid nuclei particles -

Fc transport weight scaling factor -

gbreak particle breakage rate s−1

Ha height of surface asperities m

Isolid solid particle inception rate m−3s−1

ISWA
solid weighted solid particle inception rate m−3s−1

520
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katt breakage rate constant s m−1

kcol collision rate constant m3

kcomp compaction rate constant -

knuc nucleation rate constant s−1

kpen penetration rate constant kg1/2m−7/2s−3/2

kreac number of compartments -

Kcol size independent collision kernel m3s−1

kv shape factor -

Knuc nucleation kernel m3s−1

K̃nuc majorant nucleation kernel m3s−1

le external liquid volume m3

le,nuc nuclei external liquid volume m3

li internal liquid volume m3

L the set of compartment indices -

LSR operating liquid solid mass flowrate ratio -

m particle mass kg

M model functional -

Ṁfeed solid mass flowrate kg s−1

nruns number of simulation repetitions -

nscrew screw speed rev s−1

N number of stochastic particles -

ncomp number of compartments -

Nmax maximum number of stochastic particles/compartment -

Nmin maximum number of stochastic particles/compartment -

NT total number of stochastic particles in all compartments -

p pore volume m3

P density of the population distribution m−3
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q0,incept number based physical particle size distribution for inception m−1

qSWA
0,incept number based weighted particle size distribution for inception m−1

q3 number based particle size distribution m−1

rpen particle penetration rate m3s−1

Rincept model particle inception rate s−1m−3

RSWA
break SWA breakage jump rate s−1

RSWA
col SWA collision jump rate s−1

RSWA
incept SWA particle inception jump rate s−1

RSWA
nuc SWA nucleation jump rate s−1

Routflow model particle outflow rate s−1

RSWA
outflow SWA particle outflow jump rate s−1

RSWA
total SWA total jump rate s−1

so original solid volume m3

SSE sum of squared errors of prediction -

t time s

twait jump waiting time s

Tcomp compaction type transformation m3

T lecomp compaction external liquid transformation m3

T licomp compaction internal liquid transformation m3

T pcomp compaction pore volume transformation m3

Tnuc nucleation type transformation m3

v particle volume m3

v̄incept number average feed particle volume m3

vmin
parent minimum volume for breakage m3

vdrop droplet volume m3

vmax
nuc maximum particle volume involved in nucleation m3

vdrop droplet volume m3
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Vreal physical compartment volume m3

Vreal,T total physical volume of all compartments combined m3

Vsamp compartment sample volume m3

w particle statistical weight -

w̄incept mean inception particle statistical weight -

wincept inception particle statistical weight -

wdrop droplet particle statistical weight -

wnuc nuclei statistical weight -

x particle vector -

xdrop droplet particle vector -

xnuc nuclei particle vector -

xstart
nuc initial nuclei particle vector -

X particle type-space -

Xnuc nuclei particle type-space -

z compartment index -

Greek symbols

αdaughter breakage distribution parameter -

βdaughter breakage distribution parameter -

γcoag coagulation weight transfer function -

γfrag breakage weight transfer function -

γnuc nucleation weight transfer function -

ε particle porosity -

ε1 post-compaction particle porosity -

εmin minimum particle porosity -

η run averaged model measure -

µbinder binder viscosity Pa s

ρl binder density kg m−3
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ρs solid density kg m−3

φ liquid saturation -

φmax maximum liquid saturation -

τ compartment residence time s

Appendix A. SWA immersion nucleation algorithm525
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Algorithm 1: The SWA immersion nucleation algorithm.

Set the droplet volume vdrop and initial nucleus particle state1

(xnuc, wnuc) to that of a droplet particle:

vdrop ← πd3
drop/6,

xnuc ← xdrop = (0, vdrop, 0, 0),

wnuc ← wdrop.

while le(xnuc) > 0 do2

Choose particle selection procedure according to (76) and (77).3

Choose particle xi from compartment z according to selection4

procedure.

Generate a uniform random number U(0, 1).5

if U < max(wi, wnuc)/(wi + wnuc) then

Set γnuc ← min(wi, wnuc).6

Create particle (z, Tnuc(xnuc, xi), γnuc).7

Set wi ← wi − γnuc.8

Set wnuc ← wnuc − γnuc.9

if wi = 0 then

Remove particle xi from the ensemble10

if wnuc > 0 then

Product nuclei are to be combined11

xnuc ← (w−1
nuc(wiTnuc(xnuc, xi) + (wnuc − wi)xnuc, wnuc)

wnuc ← wnuc + γnuc

else
Jump is fictitious. Go to Step 3

Add newly formed nucleus (xnuc, wnuc) into compartment z.12

Move forward in time and select next jump event.13
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