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ABSTRACT 

This review aims to illustrate the diversity of measurements that can be made using magnetic 

resonance techniques and which have the potential to provide insights to chemical engineering 

systems that cannot readily be achieved using any other method. Perhaps the most notable 

advantage in using magnetic resonance methods is that both chemistry and transport can be 

followed in three dimensions, in optically opaque systems and without the need for tracers to be 

introduced into the system. Here we focus on hydrodynamics and, in particular, applications to  

rheology, pipe flow, and fixed-bed and gas-solid fluidised bed reactors. With increasing   

development of industrially-relevant sample environments and undersampling data acquisition 

strategies which can reduce acquisition times to <1 s, magnetic resonance is finding increasing 

application in chemical engineering research.  
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INTRODUCTION   

From a chemical engineering perspective, the main advantage of magnetic resonance (MR) 

over almost any other measurement technique is that it provides information on chemical 

composition and transport processes non-invasively and without need for tracer particles or 

isotopic substitution. The measurement can be made specific to a particular molecular species 

or to identify the different components in a multi-component mixture.  In its purest form MR 

methods do not rely on any model assumption to reconstruct image data; images are produced 

by Fourier transformation of the acquired data. Most importantly, the MR signal is directly 

proportional to the number of nuclear spins present; it is the quantitative nature of the MR 

measurement that makes it so valuable when acquiring data which can then be used to test 

theory or validate numerical simulation codes. This review will focus on the application of 

spatially-resolved magnetic resonance techniques, usually referred to as MR imaging (or MRI) 

and MR velocity imaging (or MR velocimetry), in the areas of rheology, pipe flows and reactor 

hydrodynamics, and use these to illustrate the diversity of information that MR can provide.  

 

Underlying Principles of MRI and MR Measurements of Transport (1,2) 

The intrinsic chemical-selectivity of the MR measurement arises because when a nucleus of 

non-zero nuclear spin quantum number is placed in an external magnetic field, 𝐵0, its nuclear 

spin energy levels become non-degenerate.  This energy level splitting is sensitive not only to 

the nucleus being studied (e.g. 1H, 19F) but also the chemical environment of that nucleus. By 

applying a radio-frequency (r.f.) pulse, a resonant absorption occurs between these nuclear spin 

energy levels.  The specific frequency at which this resonance occurs is called the resonance 

(or Larmor) frequency, 𝜔0; which is proportional to the strength of the external magnetic field, 

𝐵0, used in the experiment and corresponds to the precession frequency with which the 

resonant spins rotate around 𝐁𝟎: 

 

   𝜔0 = 𝛾𝐵0              (1) 

 

where 𝛾 is the gyromagnetic ratio of the nucleus being studied. Following the r.f. excitation, 

the return of the nuclear spin system to thermal equilibrium is characterised by various so-

called nuclear spin relaxation times; the most important of these relaxation times are the spin-

lattice, T1, and spin-spin, T2, relaxation times. These relaxations times are not only central to 

being able to implement quantitative measurements but also enable characterisation of 

molecular-surface interaction strength which is exploited in measurements of competitive 
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adsorption processes in catalysis and rock core wettability  (3-6) and differentiation of 

crystallisation and uncrystallised material (7).   

 

The acquisition of images and transport measurements both rely on the introduction of 

spatially-varying magnetic fields, or gradients, in addition to the large static magnetic field 𝐵0. 

The effect of introducing the spatially-varying field is that the total magnetic field now also 

varies with position, and hence so will the resonance frequency of the nuclear spins: 

 

    𝜔(𝐫) = 𝛾(𝐵0 + 𝐆 ∙ 𝐫)      (2) 

where 𝐫 is the position vector and 𝐆 is a vector describing the strength and direction of the 

applied gradient in the magnetic field. In the context of imaging, Eqn (2) leads to the Fourier 

pair: 

 

𝑆(𝐤) = ∭ 𝜌(𝐫) exp[i2π𝐤 ∙ 𝐫]  𝑑𝐫     (3) 

 

𝜌(𝐫) = ∭ 𝑆(𝐤) exp[−i2π𝐤 ∙ 𝐫]  𝑑𝐤    (4) 

 

where 𝑆(𝐤) is the acquired signal and 𝜌(𝐫) is the spin density as a function of position; these 

equations have been simplified by making the substitution 𝐤 = (
𝛾𝐆𝑡

2𝜋
), after Mansfield and 

Grannell (8) who introduced the concept of k-space upon which the development of all imaging 

pulse sequences is based. It follows that if we acquire data that samples all of the required k-

space raster, 𝑆(𝐤), followed by Fourier transformation of these acquired data, we will recover 

𝜌(𝐫), the spin density as a function of position, i.e. the image. 

 

When acquiring image data, a nucleus of high natural abundance and high sensitivity is ‘observed’, 

such as 1H. This means that any molecule containing a hydrogen atom can, in principle, be studied. 

Other particularly favourable nuclei for imaging are fluorine (19F), sodium (23Na) and phosphorus 

(31P); this makes MR especially useful for studying, for example, pharmaceutically active species 

even when these exist in much lower volume fraction than their surrounding polymer or oxide 

matrix (9). 13C imaging which is particularly useful in probing hydrocarbon conversions can be 

achieved whether through isotopic enrichment of the feed (which is expensive) or by  ‘boosting’ 

the 13C signal intensity by transfer of ‘polarisation’ from the adjacent 1H species to the 13C nucleus. 

The latter has been used to enable tracking of conversion in a fixed-bed reactor has (10,11). In 
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imaging gas flow fields in non-reacting systems, SF6 is often used as the gas because of its high 

sensitivity and favourable relaxation times (12).  

 

The use of spatial variations, or gradients, in the magnetic field to encode for position is 

exploited again in measurements of transport. However, instead of applying single magnetic 

field gradient pulses in the MR experiment (known as a ‘pulse sequence’), the gradients are 

typically applied in pairs of short pulses (typically 1-5 ms). The action of each pulsed magnetic 

field gradient is to label the position of the spins along the direction of the applied gradient, 

with a change in the phase of their precession around 𝐁𝟎. Following from Eqn (2), the rate of 

change of phase upon application of a pulsed gradient, 𝐆, is given, in the frame of reference of 

the spin system (i.e. removing the term due to 𝐵0), by: 

                                             
𝑑𝜙

𝑑𝑡
= 𝜔(𝐫) = 𝛾𝐆 ∙ 𝐫 .      (5)                                    

The phase offset, 𝜙, accrued after a short pulse of time duration 𝛿 will depend on the magnitude 

of the magnetic field gradient (let us assume it is applied in the z-direction) 𝐺𝑧, and the position, 

𝑧, and is given by:  

 

        𝜙 = ∫ 𝛾𝐺𝑧𝑧 𝑑𝑡 
𝛿

0
= 𝛾𝐺𝑧𝑧𝛿.     (6) 

 

In the simplest form of transport measurement, consider the application of a pair of pulsed 

gradients both of magnitude 𝐺 but applied in opposite directions separated by a time interval (the 

observation time), . If the nuclear spins (i.e. molecules) do not move along z during the 

observation time then the phase offsets introduced by the two equal and opposite gradients will 

have a net value of zero and the signal acquired at the beginning of the pulse sequence will equal 

that acquired at the end. However, any net translation during the time  will cause the signal to 

accrue a phase shift at the end of the pulse sequence where this phase shift is proportional to the 

distance moved in the z direction. Measurement of this phase shift leads to the quantitative 

measurement of coherent motion. If instead we consider incoherent diffusive motion, the range of 

displacements will lead to a range of phase shifts which, in turn, will lead to a loss of signal. This 

measurement of phase shift and signal attenuation, along with values of the experimental 

parameters, yields measurements of coherent motion (flow) and diffusion and dispersion 

(incoherent flow). Measurements of molecular diffusion coefficients >10-14 m2 s-1 are standard, as 

are measurements of flow velocities ranging from m s-1 to m s-1 (13).  For example, MR velocity 

imaging has been used to measure the velocities associated with both cytoplasmic streaming in 
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single plant cells (14) and maps of velocity vectors in the transition to turbulence (15) and at Re > 

105 (12). Figure 1 shows the result of combining an imaging pulse sequence with a flow 

measurement to give a velocity map. In this example the map of water flowing through a packing 

of non-porous spheres is shown (16). Another type of experiment commonly used when the goal 

is to characterise transport phenomena is the propagator measurement; this is widely used in 

petrophysics to characterise transport in porous media (17-19). The propagator is the probability 

density function of displacement after a fixed time and gives a statistical description of the 

evolution of displacement characterizing the system. It is equivalent to a tracer measurement in 

which the tracer is introduced into the flow and the average distribution of tracer from its initial 

location is determined in a completely non-invasive manner. Examples of propagators acquired 

over different observation times for flow through two different rock core plugs are shown in Figure 

2.  

 

Speeding up MR Data Acquisitions 

Figure 3 illustrates the different strategies for MR imaging data acquisitions.  In each of Fig. 3 

(a)-(d), the green dots identify points of the k-space raster, 𝑆(𝒌), which are sampled to provide 

the final image. In the most commonly implemented MR imaging experiments the full k-space 

raster is sampled fulfilling standard Fourier sampling requirements. In the most basic and most 

directly quantitative imaging experiment known as the spin warp pulse sequence (21), a single 

r.f. excitation of the system is followed by acquisition of a single horizontal line of k-space 

points. A second r.f. excitation, after a recovery time of order T1, is then used to acquire data 

from the second line of k-space, and so on until the full raster is sampled; this is shown in Fig. 

3a. Implementing pulse sequences which can acquire data faster has been central in enabling 

MR to characterize dynamic systems which has significantly widened applications in chemical 

engineering research. 

 

The speeding-up of data acquisition rates takes two approaches: 

 

(i) Faster Sampling involving novel gradient (sampling) trajectories through k-space: Fast 

sampling methods have been used in engineering since the early 2000s. Two 

approaches exist: (i) use of one r.f. excitation to sample multiple lines of k-space points; 

methods include  Rapid Acquisition with Relaxation Enhancement (RARE) (22) and 

Echo Planar Imaging (EPI) (23), and (ii)  rapid multiple r.f. excitations; the most 

common method of this type is known as Fast Low Angle Shot (FLASH) imaging (24). 
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Using these approaches image acquisition times can be reduced from timescales of tens 

of minutes down to seconds or even less (25). A sampling strategy which speeds 

acquisition up even further is ‘spiral’ imaging (26); the gradient trajectory is shown in 

Fig. 3b. In the spiral sequence the rate of change of strength (slew rate) made to the 

imaging gradients is typically significantly smaller than is used in ultra-fast rectilinear 

sampling strategies, with the result that the complete k-space raster can be sampled 

more quickly.  Implementation of a spiral sampling strategy can reduce image 

acquisition times by a factor of ~4 compared to conventional rectilinear sampling of 

the same system. This method is also more robust to fluid flow than rectilinear sampling 

techniques making it more suitable for engineering applications (27).  

 

(ii) Undersampling methods in which fewer k-space data points are acquired than are 

required from consideration of traditional ‘sampling theory’ (28,29): These concepts 

are certainly not restricted to MR and are long-established in, for example, radio 

astronomy (30,31). In MR, for a given pulse sequence, we can consider the data 

acquisition time to correlate with the number of data points acquired. Thus 

undersampling strategies can substantially reduce data acquisition times. Two such 

methods that are now becoming more widely used in MR are compressed sensing (CS) 

(32-34) and Bayesian analysis (35-38). These two approaches are illustrated in Figs. 3c 

and 3d, respectively.  

 

Compressed sensing methods allow us to ‘undersample’ the k-space raster and yet still 

recover the original image. Care needs to be taken when implementing CS MRI 

measurements in application to a particular system. The best result may require 

optimisation of both the data sampling strategy (i.e. which k-space data points are 

sampled and in what order) and the data regularisation method adopted (39). CS MRI 

enables image acquisitions of dynamics systems which could not be studied using 

traditional full-raster sampling.  

 

In Bayesian analysis the state of a system, 𝜃, is inferred from a set of observations, �̂�, 

from the posterior probability density function 𝑝(𝜃|�̂�): 

𝑝(𝜃|�̂�) ∝ 𝑝(�̂�|𝜃)𝑝(𝜃)      



 - 9 - 

where 𝑝(�̂�|𝜃) is the likelihood function and 𝑝(𝜃)incorporates any prior knowledge of 

the system. In the context of speeding up data acquisition Bayesian approaches might 

be considered as the limiting case of undersampling. In this case the concept of an image 

is dispensed with. Instead, a question is posed to which an answer is given based on the 

data acquired, with a statistical error associated with that answer. An example of using 

this approach to characterise the bubble-size distribution of a two-phase gas-liquid 

bubbly flows is discussed later (40). The experiment takes the form of acquiring 

individual data points in k-space and performing a statistical test to see if those data 

points are consistent with bubbles of a given diameter or distribution of diameters. 

Using this approach instead of acquiring image data on a k-space raster which may be 

of size 256 × 256, only ~10 points may be needed to characterise the distribution. 

 

 

 

RHEOLOGY AND PIPE FLOWS 

MR imaging of flow is used to gain insight to fluid rheology as well as to spatially-resolve flow 

velocities in simple and complex pipe geometries. In application to rheology, MR is often termed 

Rheo-NMR and this is addressed as a separate section below. The advantage of MR in studying 

rheology and pipe flows is that it discriminates chemical species and phases within the flow, as 

well as being able to probe optically opaque systems and those with multiple phase boundaries 

which scatter light, thereby making many optical/laser methods inappropriate for use. 

  

Rheology 

The term Rheo-NMR is, to some extent misleading, since the technique does not currently measure 

stress-strain data typical of laboratory rheological characterisation simultaneously with the MR 

data acquisition. However, Rheo-NMR measurements do identify ‘slip’, as well as providing 

measurements of meso- and macro-scale structural and velocity variations in the fluid under 

examination which help us to understand and interpret conventional rheological measurements 

(41). Rheo-NMR is now widely used to characterise and understand the behaviour of complex 

fluids and related materials of interest in home and personal care, foods and petrophysics (42-44). 

Typically, MR measurements are made in cone and plate, parallel plate and Couette geometry cells 

identical to those used in conventional laboratory rheological measurements. Figure 4 shows the 
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now ‘classic’ MR image of shear banding occurring in a wormlike micelle system within a cone 

and plate geometry (45,46).  

 

A more experimentally demanding Rheo-NMR measurement combines the velocity measurement 

with in situ NMR spectroscopy to investigate molecular ordering and to simultaneously compare 

such ordering with local strain rates during, for example, shear banding. In most cases deuterium 

(2H) NMR spectroscopy is employed, hence requiring deuteration of the fluid of interest. The use 

of deuterium labelling in this system is important because the 2H nucleus is quadrupolar (nuclear 

spin quantum number, I>½); such nuclei have spectral lineshapes which are particularly sensitive 

to motion, and hence can be used as fingerprint of molecular dynamics and orientation (41). 

Elegant demonstrations of the combined use of MR velocity imaging and 2H spectroscopy, include 

the investigation of flow and alignment properties of wormlike micelles as a function of 

temperature and applied shear rate (47), and of anomalous shear banding with sufficient 

spatiotemporal resolution to resolve fluctuations in the flow structure along the vorticity axis and 

instability of the high shear band (48).  

 

From the mid-2000s, a number of approaches to speeding up data acquisitions to study dynamic 

systems have been reported. For example, Brown and Callaghan  (49)  used rapid 2D RARE MR 

velocity images, with acquisition time of 3 s, and 2H spectroscopy to investigate the spatio-

temporal flow dynamics and, in particular, the onset of shear banding in a wormlike micelle system 

in a cylindrical Couette device. RARE MR velocity measurements have also been used to study 

the time-dependent velocity field on startup of a fluid-filled cylinder and hence measure the 

diffusion of vorticity (50). Another example of a time-dependent measurement (51), used a variant 

of the EPI technique to record the temporal evolution of the velocity field following a step change 

in rotation rate in a wide-gap Couette cell geometry. 

 

Rheological characterisation using MR is not limited to the more traditional Couette, cone and 

plate and parallel plate measurements configurations. For example, Seymour and co-workers (52) 

used triggered MR velocity imaging to study a range of Newtonian and non-Newtonian fluids 

under conditions of oscillatory flow.  The concept of triggering is now routinely used in both 

medical and non-medical MR, and it enables signal averaging in data acquisition in periodically 

varying systems. The spectrometer is triggered to acquire data at the same point in each cycle 

thereby avoiding temporal blurring. A quite different example, is that of Blythe et al. (53) who 

proposed a method to enable rheological characterisation in situ during pipe flow.  The approach 
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used is based on the acquisition of MR propagators but there are two novel aspects of the 

implementation which make the process application possible. First, the raw data are analysed (i.e., 

no Fourier transformation to the propagator is performed); and second, undersampling is employed 

such that the number of data points acquired is reduced by a factor of 32 relative to a fully-sampled 

acquisition. This approach enables data acquisition times 3% of those than would be required using 

traditional MR measurements.  

 

The applications of MR to emulsion characterisation extends beyond rheological characterisation 

of the fluid (42). MR also provides an elegant, non-invasive method of measuring the emulsion 

droplet size distribution in macroemulsions. Emulsion droplet sizing using MR employs pulsed 

field gradient measurements of molecular diffusion and ‘tunes’ the measurement to the chemical 

species comprising the droplet phase. The principle of the measurement is that the root-mean-

square (rms) displacement of the molecules contained within the droplet is measured, usually as a 

function of increasing observation time; the rms and therefore signal attenuation increases as 

observation time increases and then becomes constant as the rms displacement approaches that of 

the droplet dimension.  Packer and Rees (54) were the first to demonstrate this technique and it is 

now widely used. The MR method of droplet sizing is particularly useful because it is both non-

invasive and in situ; in this regard it has clear advantages over measurements in which a sample 

of the emulsion has to be extracted from the process line and introduced to a new measurement 

environment. Further, it can equally easily be applied to systems such as concentrated emulsions, 

freezing emulsions, multiple emulsions and suspo-emulsions; many of which cannot be studied 

using light scattering techniques (55). Droplet-size characterisation of emulsions is a measurement 

which has now been demonstrated on low magnetic field hardware; in particular, a 1.1 T bench-

top NMR magnet (56), which is the type of low-cost hardware that could be used in a process 

application.   

 

Rheological characterisation of particular suspensions (including high solids fractions approaching 

what are thought of as granular systems) is an area of increasing interest. Examples include studies 

of model yield stress fluids of relevance to the characterisation of mortars and concretes (57).  At 

a more fundamental level, conventional rheometry and spatially-resolved MR measurements of 

solids concentration across the gap of a Couette cell have been used to follow the emergence of 

discontinuous shear thickening in cornstarch (58); the flow of dry and wet granular media in a 

Couette geometry to test the applicability of the “fluidity model” for nonlocality in these materials 

(59); pressure-driven suspension flow near jamming (60); and the stability of colloidal gels (61). 
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Pipe Flows  

In most studies of pipe flows reported to date, in-plane spatial resolutions of 100-400 m are 

typical within pipes of several cm in diameter; 6 cm is the largest diameter pipe that can be used 

inside standard commercial superconducting magnets. However, by reducing the field-of-view, 

which is defined by the diameter of the receiver coil, spatial resolution of ~20 m can be achieved 

which enable flow fields in microchannels to be imaged. MR can be directly applied to channels 

of any cross-section. Examples include tracking mixing and flow velocity downstream of a Y-

junction microchannel with a spatial resolution of 23 m × 23 m, obtained for a channel of 

rectangular cross section 250 m × 250 m (62), and chemically-resolved imaging with a spatial 

resolution of 32 m × 32m within a channel of circular cross-section of internal radius 400 m 

(63).  

 

Expansion during pipe flow provides a number of examples of how MR can be used. Xia et al. 

(64) first used MR velocimetry to image velocity profiles and instabilities downstream of an abrupt 

expansion as Reynolds number (Re) was increased. The inlet pipe was 8 mm in diameter and 1.23 

m in length. Radial profiles with a spatial resolution of 20 m were acquired across the channel 

diameters. A more recent example employs a bespoke MR pulse sequence implementation to 

identify asymmetries in the flow that develop downstream of an expansion (65). The inlet pipe 

was 8 mm in diameter, with a sudden expansion into a second pipe of 16 mm diameter. To do this 

an MR technique was developed which identified only the spatial location of stagnant (and near-

stagnant molecules) across the pipe.  Figure 5 shows examples of the type of data that were 

obtained; these data provided evidence for a steady symmetry breaking bifurcation at a critical 

value of Re.  

 

The use of MR to study flow though expansions or contractions is, of course, equally applicable 

to multi-phase systems. The added value of using MR in these applications is that we can, in 

principle, often obtain spatially-resolved maps of the distribution of each phase and their velocity. 

Early work in studying the effect of flow through an expansion includes: the structuring of gelled 

suspensions as a result of flowing through a sudden expansion (66), and the effect of inlet 

conditions on the neutrally-buoyant solids distribution and velocity fields in concentrated 
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suspension flows (67). More recently, McCarthy and Powell and co-workers recorded MR velocity 

profiles of cellulosic suspensions flowing in a  horizontal pipe and reported how the flow profiles 

changed as a function of fibre concentration, flow rate and fibre type (68). Recognition of MR as 

a technique for flow metering has long been recognised (69), and is currently of particular interest 

to the oil and gas sector engaging both academic and industrial research laboratories (70,71), as 

evidenced by an increasing patent literature in this space. Whilst the principles are well-established 

it is the advent of easy-to-use low-field MR hardware and the increased confidence in using under-

sampling methods that have generated renewed activity on this space.  

 

Gas-liquid bubbly flows provide an example of a multi-phase system in which a wealth of different 

types of MR experiment have been applied. Two methods have recently been reported to determine 

gas bubble-size distributions in gas-liquid bubbly flows; these form an excellent example of 

undersampling approaches (see Fig. 3). The experiments were performed in a vertical column of 

internal diameter 31 mm and at gas voidages up to ~40%.  The first used ultra-fast spiral imaging 

to acquire 2D images in the transverse direction at a rate of 55 frames per second and a spatial 

resolution of 578 m × 578 m (72). From these data, bubble size distribution, and bubble shape 

and interfacial area were calculated. The second approach (73) exploits the Bayesian 

undersampling approach, having recognised that if it is the bubble-size distribution that is required 

we do not actually need all the information that is contained in an image; we are only interested in 

the dimension of the bubbles. Given that a bubble of a specific dimension will have a unique 

‘fingerprint’ in k-space; it is possible to extract the bubble-size distribution consistent with the 

acquired k-space data. The main assumption made in the analysis is the bubble shape. Bubble-size 

distribution measurements were recorded every 3.2 s thereby enabling time-resolved 

measurements. To demonstrate this, a surfactant stream was injected into the air-water flow and 

the change in bubble shape as well as the bubble-size distribution tracked as the surfactant stream 

was switched on and then off.  

  

On a somewhat more academic note undersampled, ultra-fast spiral acquisition combined with 

compressed sensing reconstructions have been used to image the liquid velocity field around a 

rising bubble (74). By recording velocity images at a rate of 63 frames per second it was possible 

to observe the flow field around the rising bubble; potential flow about the nose of the bubble and 

periodic vortex shedding in the bubble wake are seen (Figure 6). Further, by recording 2D velocity 

maps in the transverse plane as well, it was possible to gain insight into why a bubble changes 
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direction (i.e., ‘wobbles’) as it rises through a column of water; this is a good example of new MR 

measurements giving insight to long-standing questions in fluid mechanics (75,76).  

 

IMAGING HYDRODYNAMICS IN REACTORS 

To date, the majority of MR studies applied to chemical reactors have focussed on imaging flow 

fields; gas, liquid and solids flow fields have been imaged (77,78). The majority of studies have 

focussed on fixed bed and gas-solid fluidised bed systems, although single-phase gas and gas-

liquid flow in ceramic monoliths have been reported (79-84). The ability to map chemical 

conversion within a working reactor is possible and studies have focused on reactions occurring 

in fixed beds. Early experiments include the spatial mapping of the esterification of methanol and 

acetic acid over a bed of acidic ion exchange resin (85), and the tracking of conversion along a 

fixed bed during the hydrogenation of -methylsytrene over a fixed bed of Pd/Al2O3 catalyst (86) 

and associated liquid distribution effects (87).  To achieve discrimination between reactants, 

intermediates and products, it is advantageous, and sometimes essential, to exploit the large 

spectral frequency range associated with 13C observation compared to 1H observation. Extension 

of MRI spatial mapping of conversion using 13C MRI has been demonstrated in application to the 

competitive etherification and hydration reactions of 2-methyl-2-butene within a fixed bed of ion 

exchange resin (10), and then applied to the spatial mapping of alkene isomerisation and 

hydrogenation during the hydrogenation of 1-octene occurring in a fixed-bed of Pd/Al2O3 catalyst 

(11). The use of in situ temperature measurement by spectroscopic analysis of ethylene glycol 

contained with small bulbs placed within the reactor has also been demonstrated with respect to 1-

octene hydrogenation (88) and ethene hydrogenation (89).  

 

The implementation of spatially-resolved mapping of conversion within reactors has lagged 

relative to imaging of hydrodynamics for two main reasons; in both, advances are currently being 

made. First, reactors that operate at industrially-relevant conditions and are compatible with 

operation inside a large superconducting magnetic field (i.e., no ferromagnetic materials can be 

present) are required. These challenges have now been overcome and the use of MR to study the 

product distribution of the ethene oligomerisation conversion occurring in a fixed-bed reactor 

operating at 110 °C and 28 barg has been reported (90).  Second, the development and 

implementation of quantitative, spatially-resolved spectroscopy techniques are required that 

provide sufficient chemical discrimination that real chemical conversions can be studied over 

sufficiently short timescales for the reaction of interest. One approach to overcoming this challenge 
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is to use 2D NMR spectroscopy but reduce the intrinsically long data acquisition times by 

undersampling with compressed sensing reconstruction (91). 

 

MR imaging of flow in reactors follows two main themes. First, direct observation of gas, liquid 

and solids distributions within the reactor and the velocity with which these phases are moving 

can give useful insight to reactor behaviour, even when the reaction itself is not occurring inside 

the magnet.  Second, the level of temporal and spatial resolution that can now be achieved using 

MR techniques provides a level of detail that can discriminate between assumptions and theoretical 

models used in modelling hydrodynamics and reaction, as well as providing data that can be used 

to critically evaluate mathematical closures, selection of boundary conditions and direct validation 

of the predictions of numerical simulations.  

 

Fixed Beds 

High-resolution MRI investigations of fluid flow in fixed beds with column-to-particle 

diameter ratios that are typical of narrow fixed-bed reactors were first reported in the mid-

1990s.  Such measurements give insight to how flow within fixed beds should be modelled, as 

well as how particle sizes, shape and packing method influence hydrodynamics. Figure 1, 

shown earlier as a general example of MR velocity imaging in chemical engineering shows 2D 

sections through 3D volume images of the x and z components of flow within a fixed bed of 

non-porous spherical particles. The most striking characteristic of these images is the extent of 

heterogeneity in the flow field; a relatively small fraction of the inter-particle space carries a 

high percentage of the liquid flow (16,92,93).  Such regions of the bed are associated with high 

fluid velocities, and inertial effects influence the flow profile (94). There are now numerous 

examples of MR being used in this application, sometimes alongside traditional reaction 

engineering characterisation such as residence time distribution analysis (95-98). In application 

to the benchmarking and validation of the predictions of flow simulators, MR is particularly 

valuable because it can provide data at high spatial resolution (20-300 m, depending on the 

system) (99,100). Examples include the comparisons of MR flow images and propagators with 

the predictions of the same using a lattice-Boltzmann code (99). The advantage of using the 

lattice-Boltzmann simulation was that the MRI image of the packed bed is used directly as the 

3D structure on which the numerical simulation is performed; there is no requirement for 

meshing. In comparing to the predictions of CFD codes (100), MR flow images also aid in the 
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selection of meshing algorithm and boundary conditions imposed in the implementation of the 

simulation.  

 

Considering two-phase flow in fixed beds, gas-liquid distribution and velocity maps, the 

hydrodynamic transition from trickle to pulsing flow, and periodic operation of the bed have 

all been studied.  Under conditions of trickle flow in which the spatial distribution of gas and 

liquid are constant, it has been shown that both holdup and wetting characteristics can be 

acquired (101), as can the gas and liquid velocity fields (102). A direct in situ measurement 

of solid wetting is particularly valuable since it cannot be obtained using any other technique 

and is often an explicit variable or included in a lumped parameter when modelling reactor 

behaviour. Whilst studies have focussed on co-current downflow, other modes of operation 

have been studied. In particular, gas phase dynamics has been studied during co-current up-

flow. MR measurements of gas hold-up, bubble-size distribution, and bubble-rise velocities 

have been made as a function of gas and liquid flow rate and packing size (103). The gas 

hold-up was separated into a dynamic gas hold-up, only weakly dependent on packing size 

and associated with bubbles rising up the bed, and a ‘static’ hold-up associated with 

temporally-invariant gas hold-up associated either with gas trapped within the void structure 

of the bed or with gas channels within the bed. 

 

MR has also been used to gain insight into reactor behaviour even if a reaction is not occurring 

within the bed on which the hydrodynamic measurements are made. For example, MR images 

have been acquired at a rate of 5 images per second so that the time evolution of liquid-solid 

(i.e. catalyst) contacting during periodic operation of a bed (104) can be studied. The MR 

images provide the bed characteristics in terms of the percentage of the bed associated with 

different liquid-solid contacting profiles which can then be used to model bed performance 

more accurately. These data were then used to show how different catalyst contacting profiles 

would influence catalyst effectiveness with reference to the hydrogenation of -methylstyrene.  

More recently, MR has been used to image the gas-liquid distribution in a fixed bed as a 

function of temperature and suggest how these data may be used to gain greater understanding 

of the influence of hydrodynamics on desulfurization in bench-scale reactors (105). 

 

MR has also been demonstrated to provide insights into the physical mechanism upon which 

the trickle-to-pulse transition in fixed beds should be based. As described by Larachi et al. 
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(106), there are two conceptually different approaches for describing the onset of the pulsing 

regime, these being the microscopic and macroscopic models.  Microscopic models or single-

pore models analyze pore-scale hydrodynamics and are based on the postulate that the 

macroscopic onset to pulsing flow is an outcome of a statistically large number of local 

pulsatile occurrences.  In contrast, the macroscopic models are used to analyze the onset of 

pulsing at the reactor scale from a stability analysis of first-principle volume-averaged Navier-

Stokes equations. Results determined by MR to characterize these phenomena suggest that the 

mechanism for this hydrodynamic transition is best described by local pulsatile events. The 

ultra-fast FLASH pulse sequence was used to acquire 3D images of liquid distribution within 

the bed as superficial liquid velocity was increased at constant gas superficial velocity 

(107,108).  Each 3D image was acquired in 280 ms; in these images, signal intensity is 

associated only with the liquid phase. The variation in liquid content within each image pixel 

(voxel) over the complete time-series of images was then determined by calculating the 

standard deviation in pixel (voxel) intensity on a pixel-by-pixel basis.  Regions characterized 

by low values of standard deviation identify stable gas-liquid distribution, whereas values of 

high standard deviation identify spatial locations in which the liquid content (gas-liquid 

distribution) is changing with time.  Typical results of these experiments are shown in Figure 

7.  The data provided strong experimental evidence that isolated local pulsing events of order 

the size-scale of the packing elements are first formed. For constant gas flow rate, more local 

pulses are formed as liquid flow rate is increased. As liquid flow rate is increased further, the 

isolated local pulses join up until all the void space comprising the bed contains a time-varying 

liquid content. These data strongly supported the predictions of the theoretical model of the 

hydrodynamic transition proposed by Ng (109), thereby providing strong evidence that the 

origin of the hydrodynamic transition was the formation of liquid bridges across neighbouring 

packing elements, which then form isolated pulsing events which coalesce to create the fully 

pulsing state.  

 

Gas-Solid Fluidised Beds 

Using MR to study gas-solid fluidisation needs to be done in recognition of the limitations of 

MR in this application. First, imaging of the real solids used in a typical chemical engineering 

process is, in nearly all cases, not possible. This is because the nuclear spin relaxation times of 

the solid are usually so short that the resulting signal-to-noise of the resulting image is too low 

for a useful measurement. Ways of overcoming this are to study solids that contain a liquid-

like centre; this might be a polymer shell filled with a liquid-like core (110), liquid saturate a 
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porous solid (111) (beware that it might dry during the data acquisition making the solid 

increasingly invisible to the MR experiment), or use a solid which has a naturally liquid-

containing inner region. This is why seeds such as poppy seeds and mustard seeds are so widely 

used in studies of gas-solid fluidisation. All results discussed in this section use this approach. 

Second, the typical constraint on bed diameter being ~6 cm limits the ability of MR to study 

realistic column-scale hydrodynamics. It is important to recognise that it is not the MR 

experiment which cannot address larger column diameter but the diameter of commercially-

available MR magnet hardware with large magnet bore diameters in a vertical configuration. 

However, as long as these limitations are acknowledged MR can, and has, contributed to our 

understanding of the fundamental aspects of gas-solid fluidisation. It is therefore important to 

design experiments in which column wall effects are minimised. Also, if MR is being used to 

aid the development of numerical codes of gas-solid hydrodynamics it is advisable to 

implement the simulation code such that it represents as closely as possible the environment in 

which the MR experiment is performed. Thus if wall effects are significantly present in the 

experiment, it is important to reflect that in the simulation.  

 

Early works demonstrating the capability of MR to study various aspects of gas-solid 

fluidisation include the aforementioned work of Savelsberg et al. (111) who reported non-

spatially resolved measurements of the solids flow field using fluidised beds of poppy seeds 

and acetone-filled catalyst particles to measure time-averaged density variations and also 

characterised the motion of the granular particles using pulsed field gradient measurements; 

the characterisation of mixing processes during fluidisation (112); and the distribution of 

solids  just above a perforated plate distributor and imaging of the particle velocity field (113). 

Recently, imaging of the gas velocity field has been reported (114). Thus, analogous to the 

developments in fixed beds, it is now possible to image not only the distribution of gas and 

liquid but also the velocity fields of both. Again as with fixed beds SF6 has been the gas 

imaged.  

 

The introduction of fast MR techniques, as in the other fields discussed earlier in this review, 

opened up new opportunities in the study of gas-solid fluidisation. In particular, it became 

possible to track bubble and slug rise velocities. Most notably this was used by Müller et al.  

(115) who used a 1D imaging experiment to track bubble rise and slug velocities as well as 

the evolution of bubble size and velocity resulting from coalescence events. These MR 

experiments provided information on the dynamics of the granular flows with a temporal 
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resolution of ~1 ms, and were used in comparison with existing correlations for the prediction 

of bubble and slug rise velocities. Since then 2D and 3D imaging of solids distribution and 

associated velocity fields have been reported (116,117), with many studies focusing on jet 

shape and interactions between jets as a function of distributor design and gas flow rates (118-

120). More challenging experiments have been reported which exploited the flexibility of MR 

to measure properties of particular relevance to a specific discipline. A good example of this 

is the use of MR to spatially-resolve measurements of granular temperature (121). In that work 

granular temperature provided an additional parameter with which to compare the prediction 

of Discrete Element Model (DEM) simulations; the dimensions of the bed in which the MR 

experiment was performed were replicated in the DEM simulation. The predictions of the 

DEM code were compared with the MR measurements of solids distribution, solids velocity 

and granular temperature as a function of the drag-force correlation used, as well as studying 

the effects of the value of coefficient of restitution and the thickness of the bed used in the 

simulation.  Müller et al. (122) have summarised much of the work that has used MR to 

validate DEM simulation codes.   

 

There has also been interest in comparing the data obtained from MR, ECT, X-ray and 

positron emission particle tracking methods to study gas-solid fluidisation (123-125). The take 

home message from these comparisons is not: ‘which method is best?’ Different tomographies 

and sensors are sensitive to different phenomena and are optimised for use at different 

sizescales of apparatus and at different spatial and temporal resolutions. Instead the value is 

in recognising the synergies between methods.  There are also opportunities for measurements 

at high spatial resolution to aid in the image reconstruction algorithms used in intrinsically 

lower spatial resolution measurements; an example of this is when MR and Electrical 

Capacitance Volume Tomography (ECVT) are brought together to study the same system 

(123). In that work the two techniques were shown to provide quantitatively comparable time-

averaged measurements of voidage and bubble frequencies.  

 

 

 

CONCLUSIONS AND FUTURE OUTLOOK 

Magnetic resonance is a highly flexible technique which has the great advantage of being able 

to probe both chemistry and transport. It is an intrinsically quantitative measurement, but the 

techniques have to be implemented with extreme care if that quantitative nature is to be 
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retained and the full value of the measurement achieved. In the context of chemical 

engineering the range of applications is now considerable. Areas of particular current interest, 

including those not covered in this review include: 

 Use of images of gas-liquid distribution and species-specific diffusion, dispersion and 

flow for development and validation of theoretical models and numerical flow 

simulators. 

 Increasing our ability to study multi-component catalytic processes within a reactor 

and discrimination of intra- and inter-(catalyst) pellet compositions. These 

measurements will not only test the design rules used in heterogeneous catalytic 

reactor design but will also directly aid catalyst development.  

 Design of experiments which are directly relevant to industrial processes. This is not 

just about recreating the conditions of the industrial process but identifying the correct 

questions to be answered to aid the design and operation of the process. 

 Increased use of undersampling methods in data acquisition and associated image 

reconstruction algorithms, alongside signal-enhancement techniques (126,127), to 

increase spatial and temporal resolution and our ability to track specific chemical 

species which may be present in low concentration.  

 The translation of high magnetic field measurements to low cost, portable low 

magnetic field measurements which may be used as process sensors and for on-line 

analytics (128). This approach is well-established in the petrophysics area. So-called 

zero- to ultralow-field NMR (ZULF NMR) measurements (129) are in the very early 

stages of development and, in the longer term, might present opportunities for use as 

process sensors when high spectral resolution is required.  

 

Magnetic resonance techniques and in particular MR imaging and velocity imaging can now 

be implemented with a level of robustness that they are making, and will continue to make, 

an increasing contribution to chemical engineering research.  
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Figure Captions 

 

Figure 1 

MR visualisation of water flowing within a fixed bed of spherical glass beads (16); the beads 

have no MR signal intensity associated with them and are identified as black voxels. Flow 

velocities in the (a) z- and (b) x-directions are shown with slices taken in the xy, yz and xz  

planes for each of the velocity components; z is the direction of superficial flow. For each image 

the positions at which the slices in the other two directions have been taken are identified. 

Isotropic voxel resolution is 195 m. The glass beads are of diameter 5 mm and are packed 

within a column of internal diameter 46 mm.  

 

Figure 2 

Example of MR propagators as used to characterise molecular transport in porous rock core 

plugs: (a) Bentheimer sandstone, and (b) Portland carbonate. Here the data are shown 

normalised to the nominal mean displacement for the particular observation time, . In this 

example,  ranges from 106-2000 ms. The Portland core exhibits a larger stagnant population 

than is observed for the Bentheimer core, along with flow in a relatively high velocity channel 

consistent with the differences in pores structure shown by the scanning electron microscopy 

images. The width of the images shown corresponds to 3.0 mm and 7.1 mm for the Bentheimer 

and Portland samples, respectively (18,20).   

 

 

Figure 3 

Different k-space sampling patterns. The k-space rasters are shown by the green dots in each 

case. a) Rectilinear sampling of every line in k-space typical of spin warp imaging; b) a spiral 

sampling pattern; c) undersampling of the spin warp imaging scheme in a) as would be 

typically used for compressed sensing reconstruction and; d) where a Bayesian model is 

employed, a very small sub-section of k-space may be acquired. d) shows a sampling pattern 

that might be used to extract information about a particular length-scale, 𝐿, of interest in the 

sample where 𝑘′ =
1

𝐿
=

𝛾𝐺𝑡

2𝜋
. 
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Figure 4  

Velocity images (a, c) and shear-rate maps (b,d) for a wormlike surfactant solution in a 

4˚ cone and plate rheometer acquired at  shear rates of 1.5 s-1 (a,b) and 16 s-1 (c,d).  The 

vertical axis in these images has been expanded so that the flow field can be seen more 

easily. The colour scale represents velocities and shear rates ranging between ±0.9 mm 

s-1 and ±0.05 s-1, respectively (a,b); and ±12 mm s-1 and  ±57 s-1, respectively (c,d). 

Adapted from (46). 

 

 

Figure 5  

Measuring different information about flow downstream of an abrupt expansion (65). a) 

velocity image at Re = 946; b) a RARE intensity image at the same Re as in a). Signal intensity 

in the RARE image identifies zero flow regions at the wall and in a bright ring between the 

backflow region close to the walls and the forward flowing jet. c) A RARE intensity image at 

Re = 1567 showing the asymmetry of the jet that develops as Re increases. Data are recorded 

36 cm downstream of the expansion. 

 

Figure 6  

Velocity maps about a single bubble rising freely through stagnant solution. The location of the 

bubble is identified by the filled white ellipses. The acquisition rate was 63 fps. The spatial 

resolution is 390 m × 586 m for a field of view of 20 mm × 30 mm. Adapted from (74).  

 

 

Figure 7  

Imaging the evolution of the trickle-to-pulse transition in a fixed bed of porous cylindrical 

alumina pellets of height and length 3 mm (108). 3D standard deviation maps of a vertical 

section of height 4 cm. The bed is operating at a constant gas velocity of 300 mm s-1, at liquid 

velocities a) 3.9, b) 6.1, c) 8.1 and d) 12.2 mm s-1.  Red on the colour bar indicates a high value 

of standard deviation and therefore identifies unstable liquid content as a function of time. 

Under conditions of trickle flow (a), the liquid distribution within the bed is stable. The 

highlighted regions in (b) identify local pulsing regions. 
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