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Abstract 
Associative learning requires mapping between complex stimuli and behavioural responses. When 

multiple stimuli are involved, conditional associative learning is a gradual process with learning based on 

trial and error. It is established that a distributed network of regions track associative learning, however 

the role of neural oscillations in human learning remains less clear. Here we used scalp EEG to test how 

neural oscillations change during learning of arbitrary visuo-motor associations. Participants learned to 

associative 48 different abstract shapes to one of four button responses through trial and error over 

repetitions of the shapes. To quantify how well the associations were learned for each trial, we used a 

state-space computational model of learning that provided a probability of each trial being correct given 

past performance for that stimulus, that we take as a measure of the strength of the association. We 

used linear modelling to relate single-trial neural oscillations to single-trial measures of association 

strength. We found frontal midline theta oscillations during the delay period tracked learning, where 

theta activity was strongest during the early stages of learning and declined as the associations were 

formed. Further, posterior alpha and low-beta oscillations in the cue period showed strong 

desynchronised activity early in learning, while stronger alpha activity during the delay period was seen 

as associations became well learned. Moreover, the magnitude of these effects during early learning, 

before the associations were learned, related to improvements in memory seen on the next 

presentation of the stimulus. The current study provides clear evidence that frontal theta and posterior 

alpha/beta oscillations play a key role during associative memory formation. 
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1. Introduction 
In our daily lives, we must learn arbitrary associations between initially unrelated items, such as when 

we meet a specific person, in a certain place to give them a specific object. In studies using animal 

models, neuroscientists have used conditional associative learning paradigms as a way to study how 

arbitrary associations are learned (for review see Suzuki, 2008). In conditional associative learning, one 

must learn mappings between complex stimuli and behavioural responses, based on trial and error. 

Conditional associative learning is dependent on the hippocampus (HPC; Murray & Wise, 1996; Stark, 

Bayley, & Squire, 2002), striatum (Brasted & Wise, 2004), and regions in frontal and parietal cortex 

(Asaad, Rainer, & Miller, 1998; Law et al., 2005; Petrides, 1997) that are believed to interact with the 

HPC during learning (Brincat & Miller, 2015; Siapas, Lubenov, & Wilson, 2005). What has received much 

less focus is the role of neural oscillations in associative memory formation within this distributed set of 

regions. Neural oscillations are believed to play a critical role in human cognition (Buzsáki & Draguhn, 

2004; Kahana, 2006; Siegel, Donner, & Engel, 2012), and are modulated by memory performance 

(Hanslmayr, Staudigl, & Fellner, 2012; Hsieh & Ranganath, 2014). Here, we track how oscillatory activity 

changes during associative learning.  

 

Learning multiple associations is a gradual process, and requires an approach where the strength of the 

association can be estimated on a trial-by-trial basis. Suzuki and colleagues have used a dynamic state-

space model to estimate such learning and investigated changes in neurophysiological activity during 

conditional associative learning (Hargreaves, Mattfeld, Stark, & Suzuki, 2012; Law et al., 2005; Wirth et 

al., 2003). Such dynamic models of learning provide a probability that a particular association has been 

learned on a given trial, based on past behaviour, thus providing a continuous measure of association 

strength (Smith et al., 2004). By tracking how activity for single trials related to a single trial measure of 

learning, Wirth et al. (2003) found that spiking activity in the primate hippocampus showed a linear 

relationship with association strength, where cells either showed an increased spike rate as the 

association was learned, or showed a high spike rate during initial learning that reduced back to baseline 

levels with learning. A linear relationship between association strength and human fMRI was further 

observed in the MTL, frontal, temporal and parietal regions (Law et al., 2005), while beta oscillations in 

the monkey entorhinal cortex were shown to increase in a similar linear fashion as memories became 

stronger (Hargreaves et al., 2012). In addition to beta oscillations, gamma activity in the HPC is also 

found to underlie associative memory formation (Trimper, Galloway, Jones, Mandi, & Manns, 2017). 

Outside the MTL, prefrontal oscillations in beta (Brincat & Miller, 2016) and theta frequencies (Loonis, 

Brincat, Antzoulatos, & Miller, 2017; Paz, Bauer, & Paré, 2008) also increase as memories are 

established. Together, the extant evidence suggests that a distributed set of regions tracks conditional 

associative learning, and recordings from nonhuman primates further indicates that theta, beta and 

gamma oscillations might provide a key signature of memory formation. 

 

The role of neural oscillations in human learning, however, remains less clear. Electroencephalography 

(EEG) can be used to monitor oscillations generated in the human neocortex to test whether neural 

oscillations modulate the gradual learning of new associations across the human cortex. Much of what 

we know about the role of neural oscillations during memory formation comes from research where 
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memories are formed from a single exposure to a stimulus, where successful memory formation is 

defined by whether a participant can accurately retrieve the item or not. Scalp EEG in humans has 

shown that theta oscillations over frontal sites increase with successful memory encoding (Hsieh & 

Ranganath, 2014; W. Klimesch, Doppelmayr, Schimke, & Ripper, 1997; Mölle, Marshall, Fehm, & Born, 

2002; Summerfield & Mangels, 2005; White et al., 2013), while other research highlights the role of 

alpha and beta oscillations during memory formation (Hanslmayr, Spitzer, & Bäuml, 2009; W. Klimesch 

et al., 1996, 1997; Mölle et al., 2002). In addition to changes in activity in particular frequency bands, 

other research in human learning suggests that the relationship between low-frequency oscillations and 

gamma activity plays a key role in forming and recalling memories (Perfetti et al., 2011; Tzvi, Verleger, 

Münte, & Krämer, 2016; Wessel, Haider, & Rose, 2012). Together, this shows a wide range of 

frequencies is linked to memory formation while suggesting the coordination between activity at 

different frequencies is further important (Lisman & Jensen, 2013; Tort, Komorowski, Manns, Kopell, & 

Eichenbaum, 2009). 

 

In the present study, we examined how neural oscillations change during learning of arbitrary visuo-

motor associations. Specifically, we investigated: (1) how oscillations change as associations are learnt 

and get stronger (similar to previous approaches, e.g. Hargreaves et al., 2012; Law et al., 2005; Wirth et 

al., 2003), and (2) how oscillations signify how much learning is taking place (subsequent learning 

effects). We recorded human scalp EEG as participants learned to associate each of 48 abstract shapes 

with one of 4 button responses. By fitting a state-space model to participant behaviour, we estimated 

trial-by-trial estimates of association strength and related these measures to oscillations, providing a 

powerful and sensitive approach to understanding the role of neural oscillations during memory 

formation. Although evidence for how oscillations track gradual learning is limited, we can predict linear 

changes in activity with learning, with frontal and parietal sites supporting learning across theta, alpha 

and gamma (Addante, Watrous, Yonelinas, Ekstrom, & Ranganath, 2011; Hanslmayr et al., 2012; Hsieh, 

Ekstrom, & Ranganath, 2011; Roberts, Hsieh, & Ranganath, 2013). 

 

2. Methods 

2.1 Participants, Stimuli and Procedure 

Eighteen right-handed subjects took part in the study (range 18-25 years). All subjects had normal, or 

corrected to normal, vision and gave written informed consent prior to the study. The study was 

approved by the Institutional Review Board at the University of California, Davis. Two subjects 

performed poorly on the final test (<65% correct, which is 1.5 times below the mean group 

performance) and were excluded from all analyses. One of these subjects was also excluded as they 

consistently responded during the delay period. We note that the results of the study were unchanged if 

these poorer-performing subjects were included in the analysis. 

Subjects performed an associative learning task where they learned to associate one of 4 button presses 

with an abstract shape over many repetitions of the item (Figure 1A). The items were 48 abstract shapes 

that were colored red, green, blue or yellow. The color of the items did not have any experimental 

purpose other than aiding in the differentiation between items. All items were centrally positioned on a 
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black background. Each trial began with a blank screen for 2 seconds, followed by a cue item for 1.5 

seconds. A 3 seconds delay period followed, after which was a 3 second response period where the 

response options were displayed on screen (1, 2, 3, 4). Finally, a feedback screen informed the subject if 

the response they made was correct or incorrect. Each shape was repeated 12 times within a block, and 

each block contained 12 different shapes (all shapes within a block were the same color). All shapes 

were shown across the 4 different blocks. There was no association between the colors and the correct 

responses. After the 4 blocks, a final test block was conducted where all 48 shapes were shown. 

2.2 EEG recording 

EEG was recorded using a BioSemi (http://www.biosemi.com) Active Two system at a sampling rate of 

2048 Hz in a sound-attenuated chamber. Recordings were made from 64 active Ag/AgCl scalp electrodes 

embedded in an elastic cap, with electrode locations corresponding to an extended version of the 

international 10/20 system. Additional recordings were made from electrodes placed on the left and 

right mastoids, and around the eyes (lateral to each eye, and above and below the left eye). EEG was 

recorded with respect to a common mode sense active electrode located on the scalp near electrode 

site Cz. Subjects were instructed to minimize muscle tension, eye movements and blinking during the 

study. 

 

 
Figure 1: Experimental Approach. A. Example of a trial showing the task timings. B. Hierarchical clustering was used 

to group of electrodes into bilateral frontal, frontal midline, fronto-central, centro-parietal and bilateral parietal 

clusters. Unfilled circles show electrodes that did not cluster into this scheme or were their own cluster. C.  

Learning data for a representative subject. Individual learning curves for each stimulus-response association (n=48) 

are shown in grey, plotting the estimated association strength across repetitions. Red curve shows the average 

learning curve over trials and the standard error. 
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2.3 EEG analysis 

Preprocessing of the EEG used the EEGLAB toolbox (Delorme & Makeig, 2004) in Matlab. Data were 

referenced to the average of the left and right mastoids, highpass filtered at 0.5 Hz using an FIR filter of 

length 12288 points, and resampled to 500 Hz. In addition, a notch filter was applied between 58 and 62 

Hz. Bad channels were identified by visual inspection and reconstructed using spherical interpolation. 

Data were epoched between -2 seconds and 8.5 seconds after the onset of the shape image to allow for 

enough time to extract time-frequency representations in the baseline, cue, delay and response periods. 

The epoched data was baseline corrected using the -200 to 0 ms period (although this has no impact on 

the time-frequency calculation). Independent component analysis (ICA) was performed using runica 

(Delorme, Sejnowski, & Makeig, 2007). SASICA and ADJUST (Chaumon, Bishop, & Busch, 2015; Mognon, 

Jovicich, Bruzzone, & Buiatti, 2011) were used for the detection of artifactual components to reject, 

which were validated through visual inspection (as recommended Chaumon et al., 2015). The data were 

transformed to a scalp surface Laplacian, or current source density estimate using the CSD toolbox 

(Kayser & Tenke, 2006). This is a reference-free estimate of the scalp current density, that minimises the 

effect of volume conduction to increase the spatial localisation relative to electrical scalp potentials 

(Nunez & Srinivasan, 2006). The current source density information was calculated using a smoothing 

constant of lambda = 1.0-5, head radius of 10 cm, and spline interpolation constant of m = 4. Time-

frequency representations (TFRs) of oscillatory power between 4 and 60 Hz (in 30 log-spaced steps) 

were calculated for each trial using Morlet wavelets with a minimum 5-cycles increasing to a maximum 

of 15-cycles at 60 Hz (Addante et al., 2011; Cohen, 2014; Hsieh et al., 2011; Roberts et al., 2013). 

Oscillatory power was calculated between -1.25 seconds to 7.5 seconds in 50 ms steps (181 time points) 

from the longer epoch to avoid edge artifacts. Baseline correction was applied to each trial using a 

prestimulus period between -1.25 and -0.75 seconds, and was chosen to provide a baseline period free 

from influence of the cue period. 

2.4 Electrode regions 

Our analysis was performed across electrode regions of interest focused at midline frontal, fronto-

central, and centro-parietal regions, and bilateral frontal and parietal regions. Rather than arbitrarily 

grouping electrodes into regions, we used data-driven hierarchical clustering analysis to group together 

electrodes that showed similar patterns of oscillatory activity. This approach allowed us to reduce the 

number of statistical comparisons and increase signal-to-noise ratios by capitalizing on shared variance 

across electrodes within a region. 

 

To determine electrode regions, TFRs were averaged across all trials and subjects to produce a grand-

average for each electrode. Data for each electrode were vectorised (including all time-points and 

frequencies), before hierarchical clustering of electrodes using Pearson correlation as the distance 

measure. Therefore, clusters are defined as electrodes with similar temporal and spectral profiles. The 

resulting distances were visualised as a dendrogram to define the initial state of the electrode regions 

(Supp. Figure 1). As shown in Figure 1B, 7 clusters met our a priori scheme creating electrode regions in 

lateral frontal, parietal, central, and mid-frontal regions. Electrodes and clusters that did not fit into this 

scheme were excluded (e.g. AF4 was in a cluster separate to all other electrodes). Once the electrode 
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regions were defined, single trial TFRs were averaged across electrodes within each region, to give seven 

TFRs for each trial. Although we did not have equal numbers of electrodes in each region, this did not 

confound our analyses, because our hypotheses of interest were not based on differentiating between 

electrode clusters (i.e., we were not specifically interested in identifying site x condition interactions). 

Instead, the clustering analysis was done as a data reduction step.  

2.5 Defining association strength 

To test the relationship between learning and oscillatory power we need to define a quantitative 

measure of how much the association has been learned for any given trial. Following Smith et al., 

(2004), a state-space smoothing algorithm was used to convert the binary responses on each trial 

(correct/incorrect) into a dynamic learning curve (software at: 

http://www.ucdmc.ucdavis.edu/anesthesiology/research/bayes), where for each trial we obtained a 

probability of correct response based on the previous responses to that trial type. Trial-specific learning 

curves were calculated (n = 48) for each subject, providing a quantitative measure of how strongly the 

association had been learned (Figure 1C). Following Law et al., (2005), the continuous probability values 

from the learning curves were binned where association strength index 1 trials had an estimated 

probability of a correct response between 0.2-0.4, association strength 2 index trials had a probability 

between 0.4-0.6, association strength index 3 trials had an estimated probability of a correct response 

between 0.6-0.8, association strength index 4 trials had an estimated probability of a correct response 

between 0.8-1. Given that guessing relates to a probability of 0.25 (as there are four response options), 

trials with an estimated probability of a correct response less than 0.2 were discarded from all analyses. 

There could be a number of reasons the model gives such a low probability of a correct response, such 

as consistent incorrect responses on previous trials, leading us to exclude them. This constituted 11% of 

all trials (range 0-28%), leaving on average 440 trials (range 372-489). 

2.6 Linear modelling 

To test the relationship between EEG oscillations and association strength, linear fixed effects models 

were calculated for each subject, time, frequency point, and electrode region separately. Trials were 

excluded where the response was made prior to the response cue, and we excluded the first repetition 

of each item so that our effects could not be driven by a novelty effect. We also excluded individual 

time/frequency data-points from the linear modelling to ensure the analysis was not driven by outliers. 

At a given electrode, time, and frequency point, EEG data points that were more than 2 standard 

deviations away from the mean EEG response were excluded. The remaining EEG signals were the 

dependent variable, and predictor variables were trial number (a proxy for experimental time), the 

response time, previous trial response time, and the association strength index for that trial.  This 

resulted in a beta-coefficient TFR for each subject, region and predictor variable that captured linear 

changes between association strength and EEG. Random effects analysis testing for positive or negative 

coefficients was conducted for each time-frequency point using one-sample t-tests against zero (alpha 

0.05, two-tailed). Cluster-mass permutation testing was used to assign p-values to clusters of significant 

tests (Maris & Oostenveld, 2007), and a maximum cluster approach was used to control for multiple 

comparisons across time, frequency and electrode regions (Nichols & Holmes, 2002). For each 

http://www.ucdmc.ucdavis.edu/anesthesiology/research/bayes
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permutation, the sign of the beta-coefficient was randomly flipped for each subject before one-sample 

t-tests of the permuted data. The same permutation was applied to all electrode regions, and the cluster 

with the largest mass across all regions (sum of t-values) was retained. The p-value for each cluster in 

the original data was defined as the proportion of the 10,000 permutation cluster-masses (plus the 

observed cluster-mass) that is greater than or equal to the observed cluster-mass. 

3. Results 

3.1 Behaviour 

Participants were highly successful at learning each association. On average, 90% of stimulus-response 

associations were correct on the final repetition (min 71%, max 100%). In the final testing session, 

conducted after the final block, an average of 84% of stimulus response associations were correctly 

answered (min 67%, max 100%).  

 

Conditional associative learning is often characterized as a gradual process, but as noted by Gallistel 

(2004), this impression can be an artefact of averaging learning rates across individual associations. In 

fact, as shown in Figure 1C, learning curves for individual associations within a subject are highly 

variable, often showing abrupt transitions resembling a sigmoidal function. Accordingly, to characterize 

learning in this task, it is essential to quantify memory for individual associations rather than average 

learning curves. To obtain learning curves for individual associations, we used the state-space model 

introduced by Smith et al. (2004). This modelling approach allowed us to group trials into four 

association strength bins (Law et al., 2005; see methods for details). Using this approach, for each 

presentation of a stimulus, we obtained measures of association strength that could be tested against 

single-trial data. 

  

A linear mixed effects model tested the relationship between association strength and reaction time. 

Results showed that association strength was inversely related to reaction times (β = -38 ms, t(6775) = -

2.26, p = 0.024). We further included nuisance variables in the model to account for effects of fatigue, 

attention/arousal and experience with the task. Reaction time was significantly related to trial number 

(β = -0.11 ms, t(6775) = -5.96, p < 0.0001), and reaction time on the previous trial (β = 0.01 ms, t(6775) = 

2.84, p = 0.005). These results show that stronger visuo-motor associations have faster reaction times, 

an effect that is over and above the impact of nuisance factors such as trial number. The relationship 

between reaction time and association strength highlights the importance of taking into account 

reaction time, and other nuisance measures, in our EEG analysis, to ensure the results are not 

confounded. 

3.2 EEG 

3.2.1 Association strength 

To test how oscillations change in relation to memory performance, we tested for a linear relationship 
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between association strength and oscillatory power, while controlling for nuisance effects of overall 

reaction time and time within the experimental session. As shown in Figure 2, this analysis revealed 

significant effects in theta at frontal midline sites during the delay period, and posterior alpha and beta 

effects during the cue, delay and response periods. We further see a right frontal effect in alpha and 

beta around the onset of the response period.  

 

 

Figure 2. Overview of the results. Frontal midline theta shows a negative relationship with increasing association 

strength, while posterior alpha/beta, and right frontal, show positive relationships with increasing association 

strength. Time-frequency spectograms show the regression coefficients from a linear model between oscillatory 

power and association strength, while controlling for nuisance variables. Vertical lines show the divisions between 

the cue, delay and response periods. Significant effects are outlined in black. 

 

We first concentrate on effects of association strength on theta power (Figure 3). Frontal midline 

electrode sites showed a significant negative linear effect of association strength that largely overlapped 

with the delay period (5-8 Hz, 1350 to 5050 ms; cluster p = 0.004). By examining the overall mean 

oscillatory activity across trials (Figure 3A, left), we can see that there is overall theta synchronisation 

during the delay period (compared to a pre-stimulus baseline period), and our finding of a negative 

effect of association strength shows that the amount of theta synchronisation reduces as the 

associations are learned. Plotting the mean theta activity for each association strength bin illustrates this 

linear reduction in theta activity as associations are learned (Figure 3A, right), which is also evidenced by 

plotting the oscillatory activity for each association strength bin (Figure 3B). These changes in theta 

activity suggest that frontal midline sites support associative learning, with theta rhythms important 

during the delay period when stimulus information and decisions are maintained, and that as 

associations are learned theta activity decreases. 
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Figure 3. Frontal midline theta decreases with increasing association strength. A) Left, time-frequency spectogram 

showing the mean power over all trials compared to a pre-stimulus baseline period. Vertical lines show the 

divisions between the cue, delay and response periods. Middle, regression coefficients from a linear model 

between power and association strength showing negative effects during the delay period. Significant effects are 

outlined in black. Right, plot showing the relationship between association strength bin and power from the 

significant cluster. Trend line shows the linear relationship between association strength and power, while 

boxplots show the distribution of individual participant data (outliers shown as dots). B) Time-frequency 

spectograms for each association strength bin to show how power is greatest for association strength bin 1 and 2 

and decreases towards baseline levels as the associations are learned. 

 

We next focused on the significant relationships between associative strength and alpha and beta 

power. We found a positive relationship between association strength and oscillatory activity spread 

across alpha and beta frequencies in left, right and centro parietal electrode sites (Figure 4), and in the 

right frontal region. In the left parietal region, significant linear effects were found in two clusters, 

between 7-24 Hz and 750 to 4450 ms (p = 0.002), and between 8-22 Hz and 6050 to 7500 ms (p = 0.026). 

The centro-parietal region showed a significant linear effect between 6-31 Hz and 1050 to 5500 ms (p = 

0.001) although the focus of this effect is within alpha frequencies during the delay period. Three 

significant linear clusters were found in the right parietal region; one focussed on the cue-delay period 

between 4-22 Hz and 500 to 2800 ms (p = 0.001), one on the delay-response period between 7-16 Hz 

and 2900 to 5550 ms (p = 0.016), and one during the response period between 7-22 Hz and 5950 to 

7500 ms (p = 0.014). 
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Figure 4. Increases in alpha and beta power with increasing association strength. A) Time-frequency spectograms 

showing the mean power over all trials compared to a pre-stimulus baseline period. Vertical lines show the 

divisions between the cue, delay and response periods. B) Regression coefficients from the linear model between 

oscillatory power and association strength showing positive effects. Significant effects are outlined in black. C) 

Plots showing the relationship between association strength bin and power from the individual significant clusters, 

separated into the cue and delay period. Trend lines show the linear relationship between association strength and 

power, while boxplots show the distribution of individual participant data. D) Time-frequency spectograms from 

the right parietal sites for each association strength bin to show how cue period alpha/beta desynchronisation is 

greatest for association strength bin 1 and 2 and decreases as the associations are learned, which delay period 

alpha synchrony increases with association strength. 

 

When considering overall oscillatory activity over all trials, bilateral parietal and centro-parietal 

electrode sites exhibit alpha and low beta desynchronisations in the cue and response period, and alpha 

synchronisations during the delay period (Figure 4A,D). Plotting the oscillatory activity from each 

significant cluster, in the cue and delay periods separately, shows that as association strength increases, 

there is less cue period desynchronization (less negative power compared to a prestimulus baseline; 

Figure 4C) while there is more delay period alpha synchronisation (i.e. overall alpha power is positive 

and gets more positive as the associations are learned). This shows that cue period desynchronisations 

are greatest during early phases of learning and reduce as the associations become well learned, while 

delay period alpha synchronisations increase as the associations are learned (Figure 4D). Right frontal 

electrode sites also showed a significant positive linear effect of association strength (8-24 Hz, 3350 to 

5800 ms; p = 0.020) that is spread across the delay-response period (Sup Figure 2). We also conducted 
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exploratory analyses to test for effects of association strength at occipital electrodes (a cluster formed 

of Oz, O1, O2 and POz). No significant effects were seen, though there was a trend for a positive effect 

of association strength (7-20 Hz, 500 to 1250 ms; p = 0.09; Sup Figure 3). 

3.2.2 Subsequent learning effects 

The above analyses demonstrate that theta power is high early in the associative learning process and 

decreases during learning. In addition, cue period alpha and beta oscillations show large 

desynchronisations early in learning that reduce as the associations are formed, and delay period alpha 

synchronisations increase with learning. This relationship between association strength and oscillatory 

activity could reflect learning processes, or processes that are likely to be differentially engaged during 

the learning process (e.g. cognitive control processes such as working memory demands and response 

uncertainty). Accordingly, we ran a second analysis to test whether oscillations during trials were 

predictive of how much learning will take place on that trial. Specifically, we tested for a “subsequent 

learning effect,” operationalized as a linear relationship between oscillatory power on the current trial 

and the change in association strength from the current trial to the next presentation. This analysis can 

be seen as analogous to the kinds of “difference due to memory (Dm)” or “subsequent memory effect” 

analyses that are used in studies of single-trial learning. 

  

Subsequent learning effects were defined as the difference in association strength between a trial and 

its next presentation. We chose to limit our analysis to trials where the correct association had yet to be 

formed - those in association strength bin 1, as they provide the maximal opportunity for, and variability 

in, learning. Further, these trials should require similar cognitive control processes such as working 

memory demands and response uncertainty. Because we controlled for association strength in this 

analysis, subsequent learning effects are independent from the analysis of association strength effects 

described above. Our measure of subsequent learning was defined as the difference in association 

strength based on the original continuous measure from the state-space model of learning. In this 

manner, we obtain a measure for each association strength bin 1 trial, that signifies the change in 

association strength on the next occurrence of that association. These measures were then divided into 

5 bins, with 2 bins capturing when learning effects were negative (i.e. when the difference in association 

strength was less than 0; bins -2 and -1), and 3 bins capturing when learning effects were positive (i.e. 

when the difference in association strength was greater than 0; bins 1, 2 and 3). The range of association 

strength values in each bin was 0.2. 

 

Subsequent learning effects were tested for data averaged across the significant time-frequency points 

reported for the association strength analysis above. As in the analyses described above, we used linear 

fixed effects models and controlled for nuisance effects of experimental time and overall reaction time. 

Frontal midline theta showed a significant positive relationship where power was greater for items 

showing larger learning effects (β = 0.20, t(15) = 2.22, p = 0.042; Figure 5). Significant negative 

relationships between power and learning effects were observed for right parietal and right frontal, 

where greater learning was associated with increasing desynchronisations in alpha and low beta 

frequencies (Right parietal: cue/delay β = -0.15, t(15) = -2.22, p = 0.042; delay/response β = -0.24, t(15) = 
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-2.53, p = 0.023; late response β = -0.27, t(15) = -4.77, p = 0.0002. Right frontal: delay/response β = -

0.14, t(15) = -2.61, p = 0.020). Follow-up analysis of the right parietal cluster, showed significant effects 

were present when the analysis was restricted to the cue period (β = -0.17, t(15) = -2.32, p = 0.035) but 

only trended in the delay period (β = -0.21, t(15) = -1.9, p = 0.072). These results show that the 

oscillatory responses that were modulated by association strength, were further predictive of the 

amount of learning that will occur (early in learning, within the association strength bin 1 trials), showing 

that these low-frequency oscillations are important for memory formation. 

 

 
Figure 5. Relationship between oscillatory power and learning effects. Learning effects are shown on the x-axis 

where negative values show a decrease in association strength on the subsequent trial, and positive values show 

increasing changes in association strength for the subsequent trial. Trend lines show the linear relationship 

between learning effects and oscillatory power, while boxplots show the distribution of individual participant data. 

 

4. Discussion 
The goal of the present study was to examine how neural oscillations change during the learning of 

arbitrary visuo-motor associations in terms of (1) how oscillations change as memories get stronger, and 

(2) whether oscillations are directly related to learning. By differentially relating single-trial measures of 

association strength to neural oscillations – while controlling for other factors that coincide with 

learning such as time, we showed that theta, alpha and beta oscillations track associative memory 

formation, and that these effects predicted increments in associative memory strength on the next 

occurrence. We show that cue period alpha and beta desynchronisations are greatest early in learning, 

coupled with delay period frontal midline theta. Both alpha/beta desynchronisations and theta 

synchronisations reduced as the associations became well learned. These early alpha/beta 

desynchronisations and theta synchronisations further correlated with how much learning would occur 

on a given trial, as shown by our analysis of subsequent learning effects. In addition, we show that as 

associations become well learned, delay period alpha synchronisations increased. 

Our finding that neural oscillations show a linear relationship with association strength mirrors other 

research that used state-space models to characterise conditional associative learning (Hargreaves et al., 

2012; Law et al., 2005; Wirth et al., 2003). For example, using fMRI, Law et al., (2005) found that activity 

in the medial temporal lobes and medial frontal regions was positively related to association strength, 

whereas activity in parietal and frontal regions was negatively related to association strength. In the 

present study, frontal theta power showed a negative relationship with association strength which may 
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seem at odds with the increased frontal activity in the fMRI study. This can be reconciled by considering 

the observed inverse relationship between theta activity and BOLD measured in other studies, 

specifically in the medial PFC and ACC (Scheeringa et al., 2008) - regions thought to generate frontal 

midline theta oscillations (Hsieh & Ranganath, 2014; Onton, Delorme, & Makeig, 2005; Raghavachari et 

al., 2001; Tsujimoto, Shimazu, & Isomura, 2006), and regions that show connectivity with the HPC during 

memory tasks (Brincat & Miller, 2015; Fuentemilla, Barnes, Düzel, & Levine, 2014; Garrido, Barnes, 

Kumaran, Maguire, & Dolan, 2015). This suggests that both our results, and those found in fMRI, might 

capture the same underlying process during memory formation, with the additional temporal and 

spectral resolution here across the cue and delay periods. However, due to the limited spatial resolution 

of EEG we can not draw direct conclusions between specific brain regions seen in fMRI and EEG scalp 

effects. 

Our results show that delay period frontal midline theta plays a prominent role during associative 

memory formation. This was shown across two analyses that tested the relationship between 

oscillations and estimates of associative memory strength. We found maximal frontal midline theta 

power was observed during poorer association strength trials, during the early learning of the 

association, which decreased as association strength increased. Further, during trials that had chance 

memory performance, the degree of theta activity related to memory improvements when the item was 

next seen (an analysis similar in nature to a subsequent memory, or difference memory effect), where 

more theta power signalled a greater improvement in memory. These results are consistent with results 

from another EEG study, in which we found that theta activity was stronger during the initial learning of 

temporal sequences, theta activity declined over the course of learning (Crivelli-Decker, Hsieh, Clarke, & 

Ranganath, under review). Together, these results show that frontal theta activity could play an 

important role in enhancing learning. 

Theta oscillations in humans have been linked to a wide range of memory phenomena including 

memory encoding (Greenberg, Burke, Haque, Kahana, & Zaghloul, 2015; W. Klimesch et al., 1997; Mölle 

et al., 2002; Olsen, Rondina, Riggs, Meltzer, & Ryan, 2013; Rutishauser, Ross, Mamelak, & Schuman, 

2010; Sederberg, Kahana, Howard, Donner, & Madsen, 2003; Staudigl & Hanslmayr, 2013; Summerfield 

& Mangels, 2005), retrieval (Addante et al., 2011; Burgess & Gruzelier, 1997; Gruber, Tsivilis, Giabbiconi, 

& Müller, 2008; Guderian & Düzel, 2005; Jacobs, Hwang, Curran, & Kahana, 2006; W. Klimesch et al., 

2001) and working memory maintenance (Gevins, Smith, McEvoy, & Yu, 1997; Hsieh et al., 2011; Jensen 

& Tesche, 2002; Olsen et al., 2013; Roberts et al., 2013), underlining its central role in long term 

memory. Our theta effects of association strength were found during the delay period, although overall 

theta power increased during the cue period and remained elevated throughout the delay until a 

response was made (Figure 3B). This sustained theta activity could reflect the maintenance of 

information in working memory, and echoes recordings from the human middle frontal gyrus where 

theta power increases during working memory maintenance (Raghavachari et al., 2001).  

If theta activity early in learning reflects better maintenance of cue information, that, in turn, might 

support better learning of the cue-response association. Consistent with this idea, Khader et al., (2010) 

showed that theta oscillations during active maintenance of objects was predictive of subsequent 

memory for those objects at a long delay. Here, we found that delay period theta activity was greatest 

during early learning and reduced as the association was learned. In addition, our analysis of subsequent 

learning effects showed that theta activity early in learning was higher for trials that showed the largest 

improvements in association strength on the subsequent learning trial. Putting these findings together, 
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we suggest that theta oscillations supported the maintenance of cue information and learning of the 

association between the cue and the associated response. This would be especially important during 

early learning. Late in learning, delay period theta activity decreases to near baseline levels as the 

associations are well learned. 

We further saw a modulation of alpha and beta activity as associations were formed in both the cue and 

delay periods over posterior electrodes. During the cue period, alpha and beta desynchronisations 

(defined as lower power compared to a pre-stimulus period) were greatest for low association strength 

trials and tended back towards a baseline level as associations became well learned. Posterior alpha and 

beta desynchronisations are thought to reflect the active engagement of regions, in contrast to 

posterior alpha synchronisations thought to reflect the inhibition of task-irrelevant regions (Jensen & 

Mazaheri, 2010). Alpha and beta desynchronisations are claimed to play an active role in memory 

formation (Hanslmayr et al., 2012), although this has largely been reported in relation to the encoding of 

single items. Greater alpha desynchronization during stimulus presentation has been reported to predict 

better encoding of items (Hanslmayr et al., 2009; W. Klimesch et al., 1996, 1997; Mölle et al., 2002), and 

here we show the role of alpha and beta power decreases in memory formation extends to associative 

memory. Cue period alpha and beta desynchronisations were greatest during early learning, and further 

related to memory improvements when the item was next seen. This active engagement of posterior 

sites during the cue period likely reflects the active encoding and processing of stimulus information 

that supports memory formation, which would further support the maintenance of stimulus information 

through theta activity in the delay period. 

The combination of theta synchronisation and alpha desynchronization may be a salient feature of 

successful memory formation (Hanslmayr et al., 2012; Parish, Hanslmayr, & Bowman, 2017). Frontal 

theta has been reported to show an inverse relationship to posterior alpha during the maintenance of 

temporal order information in working memory (Hsieh et al., 2011), while other research has shown 

that conjoint theta synchronisations and alpha desynchronisations support the successful encoding of 

items (Mölle et al., 2002). Together, we suggest that early in learning, alpha and theta oscillations 

together play a crucial role in the processing and maintenance of stimulus information that leads to 

better encoding of the stimulus and learning of the cue-response association. 

We also observed a positive relationship between alpha synchronisation and association strength during 

the delay period, in that alpha activity increased with learning. According to the gating-by-inhibition 

hypothesis, alpha synchronisation over posterior sites reflects the inhibition of task-irrelevant regions 

(Jensen & Mazaheri, 2010; Wolfgang Klimesch, Sauseng, & Hanslmayr, 2007), suggesting that as the 

associations become well learned, posterior sites are increasingly inhibited during the delay period. 

Previous research has found that greater alpha activity during a maintenance period predicts the 

successful encoding of item information (Khader et al., 2010; Meeuwissen, Takashima, Fernández, & 

Jensen, 2011). This is interpreted within a framework where alpha activity during the maintenance of 

information in working memory reflects the inhibition of sensory, or bottom up areas, leading to better 

internal cognitive processing and memory encoding (Jensen, Gelfand, Kounios, & Lisman, 2002; Jensen 

& Mazaheri, 2010; Wolfgang Klimesch et al., 2007). Our results show that delay period alpha activity 

increases as the associations are learned, and so could reflect the increasing inhibition of task-irrelevant 

posterior sites to enhance memory retrieval of the correct cue-response associations. 



 

15 
 

This also highlights two dissociable functions of alpha oscillations at different timeframes. Early in 

learning, alpha desynchronisations during the cue period are important for the active encoding of the 

stimulus and successful learning. Late in learning, alpha synchronisations during the delay period could 

aid successful retrieval by inhibiting posterior sites related to sensory processing. Previously, both alpha 

synchronisations and desynchroniations have been shown to relate to memory performance across 

different studies (Hanslmayr et al., 2009; Khader et al., 2010; W. Klimesch et al., 1996, 1997; 

Meeuwissen et al., 2011; Mölle et al., 2002). These differences have been attributed to either active 

encoding of stimulus information through desynchronisations or inhibition of task-irrelevant areas 

during maintenance (Hanslmayr et al., 2012), and the present results provide evidence for both of these 

explanations within a single study. 

Finally, the analyses we have performed related within-subject variability in learning to within-subject 

variability in EEG. We would also like to note that we tested for a relationship across subjects between 

variability in overall learning behaviour and EEG power changes, but these analyses failed to show 

significant correlations. However, there are two relevant considerations. First, many participants scored 

highly in overall learning behaviour, and because overall performance was consistently high, and the 

effects of learning on brain activity were consistent across subjects, across-subject variability was 

relatively low. This restricted range of performance could lead to difficulties in establishing across-

subject effects in the relationship of learning and EEG. A second consideration is that, although we did 

not see relationships between EEG power and across-subject variability, we do see strong within-subject 

effects - variability in oscillatory power was directly linked with variability in learning behaviour at an 

individual level. 

5. Conclusions 

Learning is a dynamic process where neural representations are refined and change with experience. 

Our results highlight a central role of frontal theta and posterior alpha/beta oscillations in forming new 

associative memories. Our results suggest differential roles of alpha and theta during early learning, 

relating to stimulus encoding and maintenance, and different roles for alpha oscillations over the course 

of learning – moving from encoding of stimulus properties to inhibition of sensory regions when they are 

no longer task-relevant. These results provide direction for future studies, that can manipulate frontal 

theta and posterior alpha/beta oscillations to enhance learning efficacy and speed using non-invasive 

brain stimulation techniques. 
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