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Abstract 

Background 

Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive 

mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone 

for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 

results in the accumulation of misshaped proteins. This accumulation likely damages and 

destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar 

myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is 

affected in MSS has not been conclusively shown.  

Methods 

To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from 

SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from 

these mice have been investigated via transmission electron microscopic and 

immunofluorescence studies accompanied by transcript studies and unbiased proteomic 

profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in 

an MSS-zebrafish model which has been generated for that purpose.  

Results 

Electron microscopy revealed morphological changes indicative of impaired autophagy and 

mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the 

morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were 

detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs 

in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy 
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mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the 

activation of compensatory mechanisms.  

Conclusion 

Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and 

suggest that impaired neuromuscular transmission might be part of MSS pathophysiology. 

 

Keywords 

SIL1, Marinesco-Sjögren syndrome, woozy, PNS pathology, neuromuscular junction 
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Background 

Marinesco-Sjögren syndrome (MSS; MIM:248800) is a rare autosomal recessive disorder that 

affects multiple organ systems. Common symptoms of MSS are congenital cataracts, cerebellar 

ataxia, hypotonia, progressive muscle weakness, and delayed psychomotor development [1-4]. 

The disease affects males and females equally; however, the exact incidence of the disorder in 

the general population is unknown. MSS is often caused by mutations of the SIL1 gene which 

locates on the long arm of chromosome 5 (5q31.2) [5, 6]. SIL1, an adenine nucleotide exchange 

factor, binds to the 78 kDa glucose-regulated protein (GRP78; BiP) and thereby regulates its 

ATPase cycle. BiP belongs to the heat shock protein (HSP) 70 chaperone family and plays a 

key role in protein quality control within the endoplasmic reticulum (ER) [7, 8]. Loss of functional 

SIL1 results in the build-up of misfolded proteins in the ER and thus to activation of the unfolded 

protein response (UPR) and likely damages cells in many tissues, leading to congenital or 

infantile cataracts, Purkinje cell degeneration and ataxia, progressive vacuolar myopathy and 

other phenotypes such as MSS complicated by Dandy-Walker syndrome [9], by spastic 

paraplegia [10] or by motor neuronopathy and bradykinetic movement disorder [11]. Overall, this 

phenotype highlights an important role of SIL1 in neuronal function and maintenance. In woozy 

mice, loss of functional SIL1 results in ER-stress, UPR activation and Purkinje cell degeneration 

and vacuolar myopathy with signs of altered autophagy and typical alterations of the 

myonuclear envelope, indicating that the woozy mouse is a suitable phenocopy of the human 

disease [12-15].  

In the nervous system, ER stress has been identified as a key process in multiple 

neurodegenerative conditions such as Alzheimer's and Parkinson's disease, Amyotrophic 
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Lateral Sclerosis (ALS) and prion diseases [16, 17]. In this context, it is important to note that 

apart from the above described MSS phenotype, a prominent role of SIL1 in maintaining 

integrity and function of the nervous system is suggested by the following observations: (i) SIL1 

has been described as a disease-modifying protein in ALS and Alzheimer's disease, 

respectively [18, 19], (ii) in vitro overexpression of SIL1 resulted in elevation of a variety of 

proteins with neuroprotective functions [20], (iii) in vitro depletion of SIL1 affects several proteins 

important for neuronal function [21] and (iv) morphological studies of Sil1-mutant mice revealed 

pathological alterations of nerve terminals and neuromuscular junctions along with signs of 

neurogenic muscular atrophy [18]. Although Horvers and co-workers found no clear evidence of 

peripheral neuropathy in their cohort of four Dutch MSS patients with proven SIL1 mutations 

[22]; still, the evidence discussed above suggests a vulnerability of the PNS against loss of 

functional SIL1. However, so far there is no dedicated study focusing on the effect of SIL1 

deficiency on peripheral nerves and neuromuscular junctions (NMJs). To systematically address 

this question, we investigated intramuscular nerve fascicles in MSS-patients and woozy mice as 

well as the sciatic nerves of these mice by transmission electron microscopy. Moreover, 

proteomic profiling of the murine sciatic nerve was performed to obtain insights into the 

biochemical consequences of loss of the SIL1 protein in the PNS. Finally, NMJs were 

systematically studied by immunofluorescence in Sil1-mutant and wildtype mice as well as in an 

MSS-zebrafish model.  

 

Materials and Methods 

Electron microscopy 

Ultrathin sections of archived glutaraldehyde-fixed, resin-embedded M. quadriceps biopsies 

obtained from two MSS-patients with proven SIL1 mutations [6, 23] were examined. In addition, 

sciatic nerve specimens derived from woozy [15] (3 animals aged 16 weeks and 3 animals aged 
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26 weeks) and wildtype mice (3 animals aged 16 weeks and 3 animals aged 26 weeks) were 

fixed in 3.9 % buffered glutaraldehyde. Samples were osmicated in 1 % phosphate-buffered 

osmium tetroxide, dehydrated and embedded in epoxy resin. Ultrathin sections (100 nm) of 

transversely and longitudinally embedded nerve fascicles were contrasted with uranyl acetate 

and lead citrate. EM images were obtained using a CM10 transmission electron microscope 

(Philips, Amsterdam, The Netherlands). 

 

Proteomic profiling 

Tissue lysis and carbamidomethylation 

Sciatic nerves derived from three woozy and three wild-type animals were used for comparative 

proteome profiling utilizing a label-free approach. Each sample was ground and lysed in 0.5 mL 

of 50 mM Tris-HCl (pH 7.8) buffer containing 150 mM NaCl, 1 % SDS and Complete Mini. 

Afterwards, extracts were centrifuged at 13,500 x g for 30 min at 4 °C and protein lysate was 

collected. The protein concentration of each sample was determined by BCA assay according to 

the manufacturer’s protocol. Then, cysteines of the proteins were reduced by addition of 10 mM 

DTT at 56°C for 30 min, followed by alkylation of free thiol groups with 30 mM IAA at room 

temperature (RT) in the dark for 30 min. 

Sample preparation and trypsin digestion 

Sample preparation and proteolysis were performed using filter-aided sample preparation 

(FASP). Briefly, 100 µg of protein was diluted 10-fold with freshly prepared 8 M urea/100 mM 

Tris-HCl (pH 8.5) buffer and placed on a centrifugal device Nanosep 30 KDa Omega (Life 

Science). The device was centrifuged at 13,800 g at RT for 20 min for all centrifugation steps. 

First, to eliminate residual SDS, three washing steps were carried out with 100 µL of 8 M 

urea/100 mM Tris-HCl (pH 8.5). Then, for buffer exchange, the device was washed thrice with 

100 µL of 50 mM NH4HCO3 (pH 7.8). Next, 100 µL of proteolysis buffer comprising of trypsin 
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(Promega) (1:25 w/w, protease to substrate), 0.2 M GuHCl and 2 mM CaCl2 in 50 mM NH4HCO3 

(pH 7.8), was added to the device and incubated at 37°C for 14 h. Afterwards, the generated 

tryptic peptides were recovered by centrifugation with 50 µL of 50 mM NH4HCO3 followed by 50 

µL of ultra-pure water. Finally, peptides were acidified by addition of 10 % TFA (v/v) and digests 

were quality-controlled in a reversed-phase HPLC. 

LC-MS/MS analysis  

Replicates were measured using an UltiMate 3000 nano RSLC System coupled to a Lumos 

Dionex Mass Spectrometer (both from Thermo Scientific). Peptides were preconcentrated on a 

100 µm x 2 cm, C18, 5 µm, 100 Å trapping column for 10 min using 0.1 % TFA (v/v) at a flow 

rate of 20 µL/min followed by separation on 75 µm x 50 cm, C18, 2 µm, 100 Å main column 

(both from Acclaim Pepmap, Thermo Scientific) with a 120 min LC gradient ranging from 3-35 % 

of 84 % ACN, 0.1 % FA (v/v) at a flow rate of 250 nL/min. MS survey scans were acquired in the 

Orbitrap from m/z 300 to 1500 at a resolution of 120,000 using the ambient air (protonated 

(Si(CH3)2O))6) ion at m/z 445.12002 as lock mass [24]. The most intense signals were 

subjected to high collision induced dissociation (HCD), and the detection was archived in the ion 

trap, taking into account a dynamic exclusion of 30 s. HCD spectra were acquired with a 

normalized collision energy of 30 % and an activation time of 10 ms. AGC target values were 

set to 2 x 106 for Orbitrap MS and 2 x 104 for ion trap MSn scans. Maximum injection times were 

set to 50 ms and 300 ms for both full MS and MSn scans, respectively. 

Label free data analysis 

Data analysis of the acquired label free quantitative MS data was performed using the 

Progenesis Qi software from Nonlinear Dynamics (Newcastle upon Tyne, U.K.) in which 

alignment of MS raw data was conducted by automatically selecting one of the LC-MS files as 

reference. After peak picking, only features within retention time and m/z windows from 0-120 
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min and 300-1500 m/z, with charge states +2, +3, and +4 were considered for peptide statistics 

and analysis of variance (ANOVA). MS/MS spectra were exported in an mgf file as peak lists. 

The mgf peak lists were searched against a concatenated target/decoy version of the mouse 

Uniprot database, (downloaded in July 2015, containing 16,716 target sequences) using Mascot 

2.4.0 (Matrix Science), X! TANDEM Vengeance (2015.12.15.2) and MS-GF+ Beta (v10282) 

(12/19/2014) with the help of searchGUI 2.8.4. Trypsin with a maximum of two missed 

cleavages was selected as enzyme. Carbamidomethylation of cysteine was set as fixed and 

oxidation of methionine was selected as variable modification. MS and MS/MS tolerances were 

set to 10 ppm and 0.5 Da, respectively. 

PeptideShaker software 1.10.2 was used for interpretation of peptide and protein identifications 

from searchGUI and Mascot. Combined search results were filtered at a false discovery rate 

(FDR) of 1 % on the protein level and exported using the advanced PeptideShaker features that 

allow direct re-import of the quality-controlled data into Progenesis Qi. Peptide sequences 

containing oxidized methionines were excluded for further analysis. Only proteins that were 

quantified with unique peptides were exported. Then, for each protein, the average of the 

normalized abundances (obtained from Progenesis Qi) from the replicate analyses was 

calculated to determine the ratios between the woozy and the wildtype mice. Only proteins 

which were (i) commonly quantified in all the replicates with (ii) at least a unique peptide, (iii) an 

ANOVA p-value of <0.05 (Progenesis Qi) and (iv) an average log2 ratio of which protein that 

was either higher than the up-regulated cut-off or lower than the down-regulated cut-off was 

considered as regulated. The cut-off values were determined based on the 2x standard 

deviation and the normal distribution from all identified protein’s log2 ratio in which the bell curve 

is symmetric around the mean. Therefore, an average log2 ratio of a protein which < -1.02 or > 

1.05 (corresponding to ~2.09-fold regulation; log2 ratios of 1.01) for comparative global profile 

were considered as regulated. 
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Morphological studies of neuromuscular junctions in woozy mice 

Immunofluorescence staining of 100 µm-thick free-floating longitudinal sections of Extensor 

Digitorum Longus muscles were done as previously described [25]. Briefly, muscles were 

incubated in 1x PBS/0.5 % Tween-20 with 10 µg/mL Heparin (1x PTwH) for 24 h at room 

temperature. Then, muscles were transferred to 1x PBS/1x PTwH/0.5 % Triton X-100/10 % 

(vol/vol) DMSO/6 % (vol/vol) BSA (1x BnP) at room temperature for 5 days. Followed by 

incubation with Bungarotoxin 647 (Invitrogen/B35450) in 1 × BnP solution for 5 d at 37 °C. After 

the staining, muscles were washed with PTwH solution for 5d at RT before imaging. Muscles 

were placed in a 35mm glass bottom dish and imaged with an inverted Leica SP2 (Leica 

Microsystems, Mannheim, Germany) confocal microscope equipped with a HC PL APO 

20x/0.75 IMM CORR UV objective. 3D stacks were taken at 8-bit, 1024x1024 pixel resolution, 

and 400 Hz scan frequency. Images were electronically processed using ImageJ software (NIH, 

Bethesda, MD). NMJ area was determined using the region of interest (ROI) upon thresholding 

at 30 – 255 greyscale values. 

 

Transcript studies in Sil1-mutant and wildtype mice 

To further examine the integrity of the NMJ gene expression investigations were performed for 

targets previously shown to be involved in NMJ structure [26]. RNA was extracted from the 

muscle of 26-week-old mice. TRIzol Reagent (Ambion), 0.1 mL per 50-100 mg of muscle 

weight, was added to each sample. The samples were homogenised on ice using a 

TissueRuptor (Qiagen) and incubated for 5 min at room temperature before centrifuging for 10 

min at 12,000g (4°C). 0.2 mL of Chloroform per 1 mL of Trizol was added to the cleared 
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homogenate solution and the sample vigorously shaken by hand for 15 sec. Samples were 

incubated for 3 min at room temperature, centrifuged for 15 min at 12,000g (4°C), and the RNA 

in the aqueous phase transferred to a new tube. 0.5 mL per 1mL of Trizol of isopropyl alcohol 

was added to each sample which was again shaken by hand before incubation at room 

temperature for 10 min. Samples were centrifuged for 15 min to obtain the RNA pellet, which 

was then washed in 75% ETOH and centrifuged for 5 min. The supernatant was removed, and 

the pellet dried in a heat block at 55-60°C.The RNA was re-suspended in RNAase-free-water 

(Ambion)and incubated at 55-60°C for 10 min. Sample purity (A260/A280 ratio) and concentration 

(µg/µl) were assessed using a Nanodrop2000 (ThermoFisher). 

DNAase treatment and reverse transcription was performed according to manufacturer’s 

instructions using the DNA-free™ DNA Removal Kit (ThermoFisher) and the High-Capacity 

cDNA Reverse Transcription Kit (ThermoFisher) respectively. Samples were stored at -20°C 

until use. 

Real-time PCR (qPCR) was performed on a BioRad CFX96 using Power SYBR Green Master 

Mix (ThermoFisher). For each gene examined, a temperature gradient and dilution calibration 

curve were performed to determine optimum conditions for the primer pair (Table 1) and check 

the reaction efficiency. A master mix composed of 10µL of SYBR Green, 6µL of DEPC-H2O, 

1µL of forward and reverse primer (Table 1) was added to 2µL of cDNA. Samples were run in 

triplicate along with a no-template control (NTC), with only wells that were at least 3 Cq cycles 

away from the NTC being used for analysis. Data was analysed using the ΔΔCq method. 

Gene Forward Sequence Reverse Sequence Annealing 
temp (°C) 

NCBI Ref 

AChRγ 

[26] 

GACCAACCTCATCTCCCTGA GAGAGCCACCTCGAAGACAC 60 NM_009604.3 

NCAM 
[26] 

AAGGGGAAGGCACTGAATTT TCTCCTGCCACTTGACACAG 60 NM_001081445.1 

AchRα 
[26] 

TCCCTTCGATGAGCAGAACT GGGCAGCAGGAGTAGAACAC 60 NM_007389.5 

NGF 

[26] 

GCAGTGAGGTGCATAGCGTA CTGTGTCAAGGGAATGCTGA 60 NM_001112698.2 

TATA TGCCCAGCATCACTATTTCA CCGTAAGGCATCATTGGACT 60 NM_013684.3 
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BOX BP 
[26] 

AchRε 
[26] 

GCAGCTTTTACCGAGAATGG CGTCAGTTTCTCCAGGACC 60 NC_000077.6 

MuSK 

[26] 

TTCAGCGGGACTGAGAAACT TGTCTTCCACGCTCAGAATG 61.5 NM_001037127.2 

BDNF 
[26] 

TAATGCAGCATGATGGGAAA TCACAGTGAAAGCACCTTGC 60 NM_001048139.1 

NGF 
[26] 

GCAGTGAGGTGCATAGCGTA CTGTGTCAAGGGAATGCTGA 60 NM_001112698.2 

NTRK2 

[27] 

CGGCACATAAATTTCACACG GTGAGGTTAGGAGCAGCCAG 63.9 NM 008745.2   

NTRK3 
[27] 

AAGTAACCGGCTCACCACAC GATGCAGTAAAGGCTCTGGC 63.9 NM_182809.2 

P75 [27] CAACCAGACCGTGTGTGAAC GAGAACACGAGTCCTGAGCC 63.9 NM 033217.3 

Table 1: Oligonucleotides used for the transcription studies 

 

Generation of a MSS-zebrafish model and studies of NMJ integrity and myelination 

To examine NMJ integrity and myelination, knockdowns were performed in zygotes of the 

Golden (slc24a5b1/+) Danio rerio strain (ZIRC, OR, USA). Zebrafish embryos and larvae were 

raised and staged according to standard procedures [28].  

Antisense morpholino oligonucleotides (MOs) were purchased from Gene Tools (Pilomath, OR). 

We obtained a previously published [33] Sil1 splice-blocking MO directed against the splice 

acceptor site of exon 2 (5’- GGTGACTGTGTAAACAGAACAAATC-3’). The Gene Tools 

standard control-MO targeting a human β-hemoglobin gene (5′-

CCTCTTACCTCAGTTACAATTTATA-3′) was used as a negative control for the effects of MO 

injection. Zygotes were injected with 6ng of either Sil1 MO or control-MO following standard 

protocols. 

Bright field microscopy images of larvae were captured using a Leica dissection 

stereomicroscope equipped with a Leica digital camera (model DFC 420C). For 

immunofluorescent staining of whole mount zebrafish, 5-day post fertilization zebrafish embryos 

were dechorionated using Pronase E (Sigma Aldrich) and euthanized by anesthetic overdose. 

Whole mount staining was performed as described previously [29], utilizing a mouse anti-SV2 
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antibody to visualize the motor neurons (1:200, Developmental Studies Hybridoma Bank) and 

Alexa Fluor 594-α-bungarotoxin conjugate to visualize acetylcholine receptors (1:1000, Thermo 

Fisher). A Claudin K antibody (1:200) was used for myelin-staining. Z-stack images 

encompassing the entire zebrafish tail were obtained using a 20x air objective on a Nikon A1R 

confocal microscope.  

 

Results 

Electron microscopy  

EM of intramuscular nerves found in quadriceps muscles of MSS patients revealed 

accumulations of membranous autophagic/mitophagic material as well as spheroid-like 

accumulations of cytoskeletal elements and of organelles associated with a thinning of the 

myelin sheaths in axons; a similar buildup of autophagic material was also present in Schwann 

cells of myelinated and unmyelinated nerve fibers (Fig. 1).  
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Figure 1: EM of intramuscular nerve fibres in MSS patient skeletal muscle. (A, B) Membranous material and 
swollen/degenerated mitochondria (white arrows) and nuclear envelope widening combined with chromatin 

condensation in Schwann cells (grey arrows). (C, D) Spheroid-like accumulation of cytoskeletal elements and of 
organelles associated with a thinning of the myelin sheaths. The nerve fibre depicted in (D) is surrounded by a 
surplus Schwann cell process. (E) Autophagic material (black arrow) in an unmyelinated axon. (F) Autophagic 
material (black arrows) in the cytoplasm of a Schwann cell; swollen mitochondria in unmyelinated axons (white 
arrows).  

 

Similar alterations were found in quadriceps intramuscular nerves of 26-week-old (Fig. 2) and in 

sciatic nerves of 16 and 26-week-old woozy mice (Figs. 3, 4) but not in nerves derived from 

respective wildtype littermates (data not shown). In addition, prominent widenings of the space 

between the inner and the outer leaflets of the nuclear envelope in Schwann cells was observed 

in MSS-patients and these mice; these vacuolar structures often contained granular or 

membranous electron-dense material (Figs. 1, 2). Aberrant, often widened endoplasmic 

reticulum structures were observed in both human patient and woozy mouse Schwann cells 

(Figs. 1-4). Axons with disproportionately thin myelin sheaths could be occasionally found in 
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both, MSS-patients and woozy mice (Figs. 1-3). Notably, even though the deposits of electron 

dense autophagic material became more prominent in myelinated and non-myelinated axons 

(11% in 16-week-old and 21% in 26-week-old mutant animals on average) as well as in 

Schwann cells in 26-week-old animals (10% in 16-week-old and 16% in 26-week-old mutant 

animals on average) (Figs. 3, 4), the mild perturbations of myelination did not increase with age. 

Perturbations of the nuclear envelope are detectable in 7% of Schwann cell nuclei on average. 

The mitochondrial changes occurred with 12% on average in the PNS of 16-week-old mutant 

mice and with 26% on average in the PNS of 26-week-old woozy animals. 

 

Figure 2: Ultrastructural alterations in 26-week-old woozy mouse intramuscular (quadriceps muscle) nerve 
fascicles. (A, B) Focal widening (grey arrows) of the nuclear envelope of Schwann cells. (C) Spheroid-like swelling 
of a myelinated nerve fiber due to intraaxonal accumulation of cytoskeletal elements and organelles. (D) Swollen 
intraaxonal mitochondria (white arrows). (E, F) Large accumulations of granular and membranous autophagic 
material in the axons and/or in the adaxonal Schwann cell cytoplasm (black arrows). 
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Figure 3: EM of 16-week-old control and woozy mouse sciatic nerves. (A, B) Normal control nerve fibres. (C, D) 

Membranous cytoplasmic bodies (black arrows) in woozy mouse nerve fibres. (E, F) Prominent ER/Golgi structures in 
the cytoplasms of Schwann cells of myelinated fibres (grey arrows) and degenerating mitochondrion (white arrow). G 
Autophagic vacuole in a Schwann cell (black arrow). (H) Disproportional thin myelinated axons and (H, I) prominent, 
swollen intraaxonal mitochondria (white arrows). 
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Figure 4: Ultrastructural findings in sciatic nerves of 26-week-old woozy mice. (A) and inset in (A) degenerating 
unmyelinated axon in Remak bundle. (B, C) Accumulations of autophagic material in axons of myelinated nerve 

fibres. (D, E, F) Invaginations of the axolemma associated with accumulated autophagic material within the axons 
and in the adaxonal Schwann cell cytoplasm. (G) Autophagic vacuoles containing membranous material in the 
cytoplasm of a Schwann cell of a myelinated nerve fibre (black arrows). (H-J) Prominent ER structures (grey arrows) 
merging with membranous autophagic material (black arrows) in the cytoplasm of Schwann cells. 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

17 

 

SIL1 deficiency perturbs integrity of neuromuscular junctions in woozy mice and MSS 

zebrafish 

Prompted by our previous observation that in woozy  mice, integrity of the NMJs is disturbed 

and that this is associated with signs of neurogenic atrophy of muscle fibers [18], we 

investigated NMJs in extensor digitorum longus muscles from 26-week-old woozy and wild-type 

mice and in a MSS-zebrafish model. Morphological investigation of a total of 100 NMJs stained 

with bungarotoxin revealed a statistically significant reduction in the size of NMJs in the woozy 

animals (Fig. 5A, B). Moreover, in mutant mice, the fluorescence intensity of α-bungarotoxin 

appeared weaker thus suggesting reduced presence of AChR compared to wildtype NMJs (Fig. 

5A). Immunofluorescence of NMJs in zebrafish Sil1 morphants illustrated a disruption of 

synapse formation along the vertical myosepta with a striking disorganization of presynaptic 

branching across the muscle fibres of the myotomes compared to those observed in control fish 

(Fig. 6A). Further studies of myelinating Schwann cells using a Claudin K antibody did not show 

significant differences between control-morpholino and Sil1-morpholino injected fish (Fig. 6B). 
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Figure 5: NMJ-analysis of Sil1-mutant and wild-type mice (26 weeks of age). (A) Visualization of NMJs via 
fluorescence-dye conjugated α-bungarotoxin binding to acetelycholine receptors revealed an overall reduced 
fluorescence intensity in the mutant animals compared to control suggesting reduced level of the receptor upon SIL1-
deficiency. (B) Analysis of the size of wildtype and SIL1-mutant NMJs. (C) Studies of abundances of transcripts 

encoding for de-innervation (AChRα, AChRε, AChRγ, Musk, NCAM) and re-innervation markers (BDNF, NGF, 
NTRK2, NTRK3, p75) revealed significantly increased abundances of AChRγ and NCAM transcripts in Sil1-mutant 
animals compared to wildtype littermate controls. AChR = acetelycholine receptors; Musk = muscle, skeletal receptor 
tyrosine-protein kinase; NCAM = neural cell adhesion molecule; brain-derived neurotrophic factor; NGF = β-nerve 
growth factor; NTRK = high affinity nerve growth factor receptor; p75 = low affinity neurotrophin receptor p75NTR. 
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Figure 6: Immunofluorescence studies in 48 hpf MSS-zebrafish. (A) Immunofluorescent studies of NMJs in 
control-MO (6A) & Sil1-MO (6B) injected embryos (6ng of MO-injection respectively). SV2 stains presynaptic motor 
neurons and α-bungarotoxin detects the postsynaptic AChRs. Sil1-MO injected fish display disorganised branching of 
nerves and of synapses along the vertical myosepta. MO=morpholino, hpf = hours post fertilisation, AChRs = 

acetelycholine receptors, SV2 = synaptic vesicle protein 2. (B) Staining of myelinating Schwann cells utilizing an anti-
Claudin K antibody did not show significant differences between wildtype, control-morpholino (CMO) and Sil1-
morpholino-injected fish (6C). Scale bar = 20 µm. 
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Gene expression analysis of de-innervation and re-innervation 

The gene expression analysis of de-innervation and re-innervation markers, performed on Sil1 

mutant and wildtype mice, revealed significant changes supporting the concept of perturbed 

NMJ integrity and function: among the investigated de-innervation markers, transcripts of 

AChRγ and N-CAM were respectively 36.05-fold and 3.58-fold higher in mutant than in wildtype 

animals whereas the other transcript marker (AChRα, AChRε, MuSK) values were not 

statistically significant changed in abundances. Re-innervation transcript markers (BDNF, NGF, 

NTRK2, NTRK, p75) did not show significant changes in transcript abundances (Fig. 5D).  

 

SIL1-mutant sciatic nerves display changes in protein abundances 

Proteomics is a powerful tool for the unbiased investigation of pathophysiological processes [30, 

31]. Here, we compared Sil1-mutant and wildtype sciatic nerves using quantitative mass 

spectrometry. We found that 1.22% of the quantified proteins (20 out of 1632) were differentially 

expressed upon loss of functional SIL1 in this tissue: 15 (0.92%) of these proteins were 

upregulated and 5 (0.3%) downregulated (Fig. 7A-C). The affected proteins are located to the 

cytoplasm, cellular membranes and the extracellular space (Fig. 7D). For an overview on the 

regulated proteins and proposed functions, see supplemental table 1. To provide insight into 

SIL1 neuronal cytopathology, the spectrum of affected proteins was analyzed for enriched gene 

ontology (GO) terms using STRING [32] (Suppl. Fig. 1).  
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Figure 7: Proteomic profiling of Sil1-mutant nerves. (A) Applied workflow. (B) Volcano plot of obtained proteomic 
results. (C) Diagram presenting the fold of protein-dysregulation and the function of the affected proteins. (D) 
Schematic presentation of the subcellular localization of the proteins altered in abundances upon the loss of 
functional SIL1 in murine sciatic nerves.  
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Discussion 

PNS is vulnerable against the loss of SIL1 

Recessive SIL1 mutations cause MSS in human patients and the woozy phenotype in mice [13, 

15, 23], both with degeneration of Purkinje cells and ataxia. Some MSS patients present with 

additional Dandy-Walker syndrome [9], spastic paraplegia [10] or motor neuronopathy 

associated with bradykinetic movement disorder [11]. Moreover, Sil1 knock down in zebrafish by 

two different antisense oligo morpholinos resulted in loss of Purkinje cells [33]. Hence, a 

profound role of SIL1 in neuronal function and maintenance can be postulated. This assumption 

is also supported by the crucial role of (functional) BiP levels for motor neuron survival [34] and 

observations that SIL1 elevation (i) attenuates motor neuron vulnerability in a mouse model of 

ALS [18] and (ii) triggers the expression of proteins with neuroprotective properties [20]. To 

address the vulnerability of the PNS against SIL1 loss, we performed combined electron 

microscopic, immunofluorescence, proteomic and selected transcript studies. Results of our 

ultra-morphological studies on intra-muscular nerve fascicles from two MSS-patients and three 

woozy and wildtype mice revealed affection of myelinating and non-myelinating Schwann cells 

as well as of axons engulfed by both types of Schwann cells. Hereby, changes in the 

architecture of the nuclear envelope were observed accompanied by mitochondrial 

degeneration and aggregates of autophagic material. These aggregates were remarkably 

prominent in myelinated axons of Sil1-mutant mice and were found to be more pronounced in 

26- compared to 16-week-old animals. Interestingly, abnormal aggregates of autophagic 

material and perturbations of nuclear envelope structures as well as mitochondrial degeneration 

have already been extensively described in MSS-patient and woozy mouse muscle as well as in 

in vitro models of the disease [13, 21] suggesting that these ultra-morphological changes are a 

consistent feature in tissues vulnerable for SIL1 loss. Moreover, this finding is in line with the 
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results of a study linking levels of functional BiP to the activation of autophagy as a mechanism 

acting towards the breakdown of protein aggregates and to axonal degeneration [34].  

The major differential diagnosis of MSS is the congenital cataracts, facial dysmorphism and 

peripheral neuropathy (CCFDN) syndrome due to a recurrent recessive mutation in CTDP1. 

CCFDN is associated with a symmetric, distal peripheral neuropathy with a predominant motor 

phenotype. Secondary scoliosis and foot deformities are common. Sensory neuropathy 

develops after age ten years [35]. Interestingly, scoliosis has also been described in 61% of 

patients with SIL1 mutations [36]. Our present findings suggest that MSS is phenotypically even 

more reminiscent to CCFDN, as neuropathy appears to be a consistent feature of SIL1 mutation 

in patients and mice. However, the buildup of autophagic material in MSS and woozy mice was 

present predominantly in axons, whereas the neuropathy in CCFDN was described to be 

hypo/demyelinating [35] . Moreover, myelination also seemed to be normal in the MSS-

zebrafish model. 

NMJs are vulnerable to the loss of SIL1 

Axonal neuropathies often go along with defects of neuromuscular junctions (NMJs) [37]. 

Therefore, we sought to determine whether perturbed NMJ integrity is a pathophysiological 

aspect of SIL1 deficiency. Immunofluorescence of NMJs in woozy mice revealed smaller NMJs 

and weaker fluorescence intensity for α-bungarotoxin, suggesting reduced presence of 

acetylcholine receptor (AChR) subunits. Immunofluorescence of our MSS zebrafish model 

confirmed impaired NMJ integrity, supporting our findings obtained in woozy mice and 

demonstrating that this pathophysiological feature manifests across different species. 

Alterations of AChR density might, at least partially, result from a disturbed SIL1-BiP machinery 

involved in the folding of muscle membrane proteins such as AChRs. In this context, it is 

important to note that agrin which is secreted by axon endings and crucial for clustering of 

AChRs is also itself a substrate of a neuronal SIL1-BiP machinery. Our findings confirm our 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

24 

 

previous report of perturbed NMJ integrity in woozy mice [18], and indicate that impairment of 

neuromuscular transmission is part of MSS pathophysiology. The concept of a pre- and post-

synaptic impact is supported by results of our proteomic studies (discussed below in more 

detail) showing that gephyrin, a synapse/ NMJ-associated protein [38] is affected by Sil1-

muation in murine sciatic nerves and by results of our targeted skeletal muscle transcript studies 

showing that NCAM as well as AChRγ display altered transcript abundances. Neural cell 

adhesion molecule (NCAM) plays a crucial role in the development and maturation of NMJs and 

is required for stability of re-innervated NMJs also by acting as a signal for regenerating axons 

[39]. Thus, the NCAM increase most likely is a compensatory mechanism preventing NMJs from 

complete breakdown in MSS. The strong increase of AChRγ transcript levels might also 

compensate for decreased AChR presence at the NMJs.  

Proteomic changes in sciatic nerves of woozy mice allow molecular insights into PNS 

vulnerability 

To obtain biochemical insights into PNS vulnerability upon SIL1-loss, comparative proteome 

profiling via a label-free approach was performed. To this end, the proteomic signature of SIL1-

deficient sciatic nerve was examined utilizing three biological replicates derived from woozy and 

wildtype animals aged 26 weeks. Some of the proteins found to be affected prominently such as 

perilipin are major regulators of lipid homeostasis which is important for mitochondrial integrity 

and function [40-43]. Pyruvate carboxylase (PYC) is a mitochondrial protein catalyzing ATP-

dependent carboxylation. As fatty acid oxidation can be attenuated by PYC-inhibition, a 

decrease in SIL1-mutant nerves most likely serves as a protective mechanism. However, 

vulnerability of PYC activity in both non-synaptic and synaptic mitochondria against cellular 

stress burden has been demonstrated [44] suggesting that decreased abundance of PYC in 

SIL1-mutant nerve might correspond with mitochondrial perturbations on the morphological level 

as well as with impaired function of the NMJs discussed above.  
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Mitochondrial defects promote ROS production [45], a fact which is in line with the detected 

increase in antioxidant factors upon SIL1 deficiency, exemplified by the up-regulation of 

Murinoglobulin-1 (MUG1), Serine protease inhibitor A3K (SA3K), Chloride intracellular channel 

protein 6 (CLIC6), Alpha-1-antitrypsin 1-5 (A1AT5), Thymosin beta-4 (TYB4) and Copper 

transport protein ATOX1 [46-48]. Interestingly, TYB4 improves neurological functional outcome 

and axonal remodeling after embolic stroke in rats also suggesting a neuroprotective function of 

this protein [49]. EGFR promotes intrinsic axonal regeneration [50]. Similarly, as purine 

nucleoside phosphorylase (PNPH) deficiency results in a disorder characterized by recurrent 

infections, neurologic symptoms (rigid muscles, ataxia, developmental delay, and intellectual 

disability) [51, 52], its increased abundance in Sil1-mutant PNS may also be a protective 

mechanism. Collagen nerve guides support axonal regeneration of the peripheral nerve [53] and 

COL1A1 and COL1A2 have been identified with increased abundance in woozy nerves. 

Gephyrin is well known to promote nerve survival by establishing synaptic specificity at the 

NMJs [54]. Periostin (POSTN) has been identified to play a key role in axonal regeneration [55]. 

Additionally, secreted POSTN has been shown to promote nerve regeneration in patients with 

peripheral neuropathies [56]. Therefore, the down-regulation of POSTN in the global profile 

either hints for an increasing activity of secreted POSTN in the extracellular space in axonal 

regeneration or contributes to axonal vulnerability. However, increased abundance of proteins 

with protective potential does not only indicate a vulnerability of the PNS against loss of 

functional SIL1, but also might explain why PNS pathology is subtle compared to cerebellar and 

skeletal muscle phenotype. In this context, it is worth noting that recently one of our molecular 

studies on organ vulnerability in MSS suggested that the presence of antagonizing factors 

modifies the vulnerability of cells/ tissues against loss of functional SIL1 [57]. 
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Conclusion 

Results of our combined morphological and biochemical studies suggest that the PNS along 

with the NMJs are vulnerable to SIL1-deficiency in human, mouse, and zebrafish. Only few 

nerve fibers showed disproportionately thin myelin sheaths. In contrast, axonal mitochondria 

seem to be affected by the loss of SIL1, and the build-up of autophagic material in axons is 

progressive. Up-regulation of proteins supporting axonal survival not only support the concept of 

PNS vulnerability to SIL1-loss but might also explain why other cellular populations are more 

vulnerable. Moreover, our findings highlight that the presence of PNS pathology might be added 

to the spectrum of MSS and should be considered when delineating MSS from CCFDN in the 

clinical setting. 
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Supplemental Figure 1: STRING-network analysis of proteomic findings. 
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Note:  Green: up-regulated protein 

Red: down-regulated protein 

Accession 

number 

Name Subcellular 

localization 

Function Ref. 

O88492 

 

Perilipin 4 Cell 

membrane, 

lipid droplet 

Formation of lipid droplets (LDs) by coating their 

surface and selectively recruiting lipases and other 

proteins. Inactivation of PLIN4 reduces LD 

accumulation in mice. 

[1, 2] 

Q9DBL9 

 

1-acylglycerol-3-

phosphate O-

acyltransferase 

(ABHD5) 

Lipid droplet Accumulation of ectopic fat by activating ATGL. 

Interaction of ABHD5 with ATGL and the 

mitochondrial PLINs at LD surface enhances 

mitochondrial LD accumulation. 

[3, 4] 

Q05920 

 

Pyruvate 

carboxylase, 

mitochondrial 

(PYC) 

 

Mitochondria PYC decrease causes ATP deficit leading to 

decrease of cytochrome c oxidase activity and 

oxidative phosphorylation in turn resulting in a severe 

mitochondrial damage. However, in response to 

reduction of ATP production, the energy sensor AMP-

activated protein kinase (AMPK) pathway is activated 

and inhibits energy-consuming processes including 

protein, carbohydrate and lipid biosynthesis by 

inactivating lipid metabolic enzymes such as acetyl-

CoA carboxylase (ACACA and ACACB). 

[5, 6] 

P07759 

 

Serine protease 

inhibitor A3K 

(SA3K) 

Secreted Protecting cells against oxidative stress. SA3K also 

elevates SOD, a key antioxidant factor of ROS.  

Furthermore, SA3K inhibits NADPH oxidase 4 

(NOX4) which functions in catalyzing the reduction of 

molecular oxygen to ROS.  

[7, 8] 

Q00898 

 

 

Alpha-1 

antitrypsin (AAT) 

Secreted Mutant AAT or AAT deficient mice show 

inflammation, high ROS-level and a more oxidized, 

cellular redox state. Moreover, AAT injection/ 

overexpression can not only inhibit oxidative stress 

but also promote proliferation and migration and 

suppress apoptosis. 

[9-11] 

 Thymosin beta-4 

(Tβ4) 

cytoskeleton Regulates multiple cell signalling pathways related to 

cell proliferation, differentiation and modulation of 

inflammatory mediators by targeting the antioxidant 

SOD enzymes and increasing their expression 

[12, 13] 
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therefore reducing the intracellular ROS level. 

Moreover, Tβ4 can increase expression of catalase 

enzymes and thus protects cells against oxidative 

damage. In addition, Tβ4 is an actin sequestering 

protein and thus plays a role in organisation of 

cytoskeleton. 

P28665 

 

Murinoglobulin-1 

(MUG1) 

Secreted MUG1 is an inhibitor for Neuropsin , a protein 

responsible for visual and non-visual photoreception. 

Notoriously, inactivation of Neuropsin has a positive 

effect against stress and promoting synaptic 

plasticity. 

[14, 15] 

Q8BHB9 

 

Chloride 

intracellular 

channel protein 6 

(CLIC6) 

Cell 

membrane 

CLIC6 has an antioxidant effect by interacting with 

dopamine D receptors. Moreover, a transcriptome 

study on chronic mild stress (CMS) linked CMS to 

deregulation of genes such as CLIC6 involved 

in dopamine receptor mediated signaling pathway. 

Hence, the up-regulation of CLIC6 in woozy nerves 

might accord with stress protection. 

[16] 

O08997 

 

Copper transport 

protein ATOX1 

(ATOX1) 

Cytoplasm ATOX1, an antioxidant copper chaperone, binds and 

transports cytosolic copper to copper transporting 

ATPase proteins (such as ATP7A) in the trans-Golgi 

network and various endocytic vesicles. This 

maintains copper levels in cytosol and mitochondria 

which is required for maturation of cytochrome c 

oxidase. ATOX1 deficient mice have lower SOD 

activity due to low efficiency of copper loading. Many 

studies demonstrated protective functions of ATOX1 

against hydrogen peroxide-induced oxidative damage 

and the inactivation of ATOX1 greatly increases cell 

sensitivity to stress. 

[17] 

Q01279 

 

Epidermal 

growth factor 

receptor EGFR  

Cell 

membrane 

EGFR promotes axonal regeneration via modulation 

of the neuronal intrinsic regenerative ability. 

[18] 

P23492 

 

Purine 

nucleoside 

phosphorylase 

(PNPH) 

Cytoplasm PNPH cleaves inosine into hypoxanthine and ribose-

1-phosphate which is necessary for many essential 

biochemical processes in the nervous system. It has 

been shown that the uric acid hypoxanthine induces 

axonal growth and has antioxidant effects in multiple 

sclerosis, stroke, and other neurodegenerative 

diseases. 

[19, 20] 

Q9EQ80 Putative GTP Cytoplasm, NIF3L1 negatively regulates expression of genes [21] 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

36 

 

 cyclohydrolase 1 

type 2 NIF3L1 

nucleus involved in neuronal differentiation. Hence, its 

decrease suggests promotion of expression of 

differentiation-related genes in woozy nerves. 

Q8BUV3 

 

Gephyrin 

(GEPH) 

Cell junction, 

synapse 

Microtubule-associated protein involved in membrane 

protein-cytoskeleton interactions. Anchors the 

inhibitory glycine receptor (GLYR) to subsynaptic 

microtubules. Its increase might accord with a cellular 

strategy compensating the vulnerability of the NMJs. 

[22, 23] 

Q62009 

 

Periostin 

(POSTN) 

Secreted, 

extracellular 

matrix 

Expressed in Schwann cell precursors and Schwann 

cells, and is particularly high in migratory Schwann 

cells. Stimulation of Schwann cells with NRG1 or 

TGFβ-1 results in elevated periostin expression. 

Astroglial-derived periostin promotes axonal 

regeneration after spinal cord injury thus suggesting a 

protective effect of this secretory protein. 

[24, 25] 

Q01149 

 

Collagen alpha-

2(I) chain 

(CO1A2) 

 

Secreted, 

extracellular 

matrix 

Impaired extracellular matrix (ECM) degradation 

perturbed nerve regeneration and the transformation 

into a mature ECM is necessary for efficient nerve 

regeneration. Upregulation of collagens is supported 

by increase of the serine protease inhibitor AAT 

which degrades many extracellular matrix 

components such as elastin, collagens and 

fibronectin. 

[26-29] 

P11087 

 

Collagen alpha-

1(I) chain 

(CO1A1) 

 

Secreted, 

extracellular 

matrix 

  

P31428 

 

Dipeptidase Cell 

membrane 

Hydrolyzes a wide range of dipeptides and modulates 

cell proliferation  

http://w

ww.unip

rot.org 

Supplemental Table 1: Description of subcellular localization and function of proteins affected by SIL1-deficiency in 
murine sciatic nerve. 
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Highlights: 

 

- Electron microscopic studies identified vulnerability of the peripheral nervous system 

against the loss of functional SIL1 by the build-up of protein aggregates, perturbations of 

the nuclei of Schwann cells and mitochondrial degeneration 

- Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels 

of proteins implicated in neuronal maintenance suggesting the activation of 

compensatory mechanisms 

- Perturbed integrity of the neuromuscular junctions (NMJs) could be identified upon the 

loss of functional SIL1 in mice and zebrafish 

- Results of transcript studies support the concept of NMJ-vulnerability against SIL1-loss 
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