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28 October 2018 

 

Dear Doctor Kong, 

 

REJOINDER: MS. No. (TREPAR-D-18-00201) 

Entitled ‘Helminth Microbiomes - a Hidden Treasure Trove?’ Trends in Parasitology. 

 

We are very grateful for the reviewers’ and editor’s time and efforts in evaluating this 

manuscript. The points raised by the reviewers are very constructive and have contributed to 

enhance the manuscript. We have provided detailed responses to individual points in the 

following rejoinder: 

 

 

Reviewer #1: 

 

I am not sure that Figure 1 is absolutely necessary. Perhaps a figure depicting the selective 

acquisition of bacteria by Trichuris- and then how these bacteria and murine host bacteria then 

aid the parasite may be of greater interest? 

 

RESPONSE: The authors thank the reviewer for this comment and have provided an additional 

figure depicting the proposed microbiome acquisition strategies of Trichuris muris, 

Haemonchus contortus, and Brugia malayi. The focus of this figure lies on acquisition rather 

than mechanisms of gut microbial benefits, since the latter remains highly speculative. 

 

Reading this article made me think of "microbes" other than bacteria that may inhabit parasites- 

i.e. viruses and fungi- and how these affect parasite development/host responses. Given it is an 

opinion article, could the authors speculate this field as one that will emerge in future? I am 

aware of some fungi that negatively affect plant nematodes. With the new technologies for 

culturing and sequencing it may be pertinent to identify more than just bacterial species? 

 

RESPONSE: The authors thank the reviewer for the comment and agree that other microbes 

could be of importance and should be investigated alongside bacteria. Following the reviewer’s 

suggestion, an additional “outstanding question” has been added and discussed in the 

“Concluding Remarks” section (lines 251-252). 

  

 

 

 

Reviewer #2:  

My only comment/concern is with the term 'parabiome'. Although it is defined within the text, 

I don't know that it is essential. My original interpretation of the term was that it referred to the 

parasitic component of a host microbiome (similar to virome, mycobiome referring to viral and 

fungal components). When I did an informal poll of colleagues and trainees to see what they 

thought a 'parabiome' referred to, the responses were either as above, or that it could refer to 

the microbiome of mice that undergone parabiosis. Overall, I think it would be clearer to 

Cover Letter
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continue to refer to the 'helminthic microbiome' as laid out in the title, and interspersed 

throughout the text.  

 

RESPONSE: The authors thank the reviewer for this constructive comment and agree that the 

term ‘parabiome’ may raise some confusion. Therefore, following the reviewer’s suggestion, 

we have replaced it with “helminth microbiome”. 

 

 

In conclusion, we consider that we have rigorously addressed each of the points raised by each 

of the reviewers. We agree with the points raised, and modified the text accordingly. These 

comments have led to an enhanced manuscript, which we consider to meet the standard for 

publication in Trends in Parasitology. 

 

Yours sincerely, 

Cinzia Cantacessi 

On behalf of all authors. 



Highlights 

 In spite of a plethora of evidence supporting key roles of resident bacteria for parasite 

fitness and survival (i.e. in filarial nematodes and whipworms), little is known of 

microbial populations inhabiting organs and tissues of gastrointestinal nematodes of 

major socio-economic significance.  

 

 To date, one of the few well-characterised examples is the symbiotic relationship 

between bacteria of the genus Wolbachia and filarial nematodes.  

 

 Notably, our understanding of this symbiosis has already been successfully exploited 

for therapeutic purposes. 

 

 The relentless advancement in sequencing techniques, together with the rise of novel 

microbiome editing tools provide unprecedented opportunities to investigate helminth 

parabiomes and exploit parasite-parabiome relationships for the development of novel 

strategies of parasite control. 
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There is increasing attention on the complex interactions occurring between gastrointestinal 13 

parasitic helminths and the microbial flora (microbiota) inhabiting the host gut. However, little 14 

is known about the occurrence, structure and function of microbial populations residing within 15 

parasite organs and tissues. In this article, we argue that an in depth understanding of the 16 

interplay between parasites and their microbiomes may significantly enhance current 17 

knowledge of parasite biology and physiology, and may lead to the discovery of entirely novel, 18 

anthelmintic-independent interventions against parasites and parasitic diseases.   19 
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Gastrointestinal helminths – worm guts within host guts 20 

The gastrointestinal (GI) tract of vertebrates is inhabited by 10–100 trillion microorganisms, 21 

including bacteria, viruses, fungi, protists and archaea, which are collectively known as the 22 

‘gut microbiota’ (see Glossary) [1, 2]. This complex ecosystem exerts a number of highly 23 

specialised functions that are essential to host physiology, including the absorption of nutrients, 24 

synthesis of essential organic compounds, development of adaptive immunity and protection 25 

against pathogens [3-6]. In particular, amongst such pathogens are metazoan parasites (called 26 

‘the macrobiota’, which includes parasitic nematodes such as roundworms, hookworms and 27 

whipworms) that are traditionally considered detrimental to the vertebrate host, as they can 28 

subtract nutrients, damage host tissues and release toxic waste products (reviewed by [7]). 29 

These parasites live in close association with the vertebrate microbiota and, over the last few 30 

years, evidence has started to emerge of the existence of complex mutualistic relationships 31 

between these two players that might facilitate the long-term establishment of nematodes in 32 

the gut of the host [8-11]. Similar to their vertebrate hosts, parasitic nematodes have complete, 33 

tubular digestive systems responsible for nutrient uptake, processing and absorption; yet, for 34 

most species of socio-economically important parasites, and GI nematodes in particular, little 35 

is known about the occurrence, structure and function of populations of resident gut microbes 36 

[12]. Nevertheless, critical evidence of the existence of essential symbiotic relationships 37 

between parasites and bacteria is provided by filarial nematodes, e.g., Onchocerca volvulus 38 

(causing river blindness) and Wuchereria bancrofti and Brugia malayi (causing lymphatic 39 

filariasis) (reviewed by [13]), whose propagation and survival are dependent on a genus of 40 

bacteria, i.e. Wolbachia, which has become the target of intense investigations aimed to 41 

develop novel filaricidal compounds [14-18]. This evidence supports the hypothesis, strongly 42 

corroborated by recent experimental findings [19, 20], that the digestive system as well as other 43 

organs and tissues of GI nematodes may also harbour resident microbes with essential roles in 44 
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parasite physiology and survival. Fully characterizing and understanding the structure and 45 

function of helminth microbiomes, and determining the role/s they play in key aspects of 46 

parasite biology and host-parasite interactions, could not only have broad implications for 47 

future studies of the origin of parasitism itself, but might also lead to the discovery of radically 48 

new interventions against these worms.  49 

Here, we (i) summarize current knowledge of the origin, structure and function of helminth 50 

microbiomes; (ii) identify some key knowledge gaps for future research in this field; and (iii) 51 

discuss the potential therapeutic advances that such knowledge could deliver, with a particular 52 

focus on the development of novel, helminth microbiome-based strategies for the control of 53 

infections by GI nematodes of major socio-economic significance. 54 

 55 

Strategies of acquisition and maintenance of helminth microbiomes 56 

Investigations of the interactions between parasites and their resident bacteria rely on a 57 

thorough understanding of the dynamics of microbiome acquisition. Whilst for GI nematodes 58 

knowledge in this area is relatively limited, several investigations have documented the fine 59 

strategy via which bacteria of the genus Wolbachia are propagated through successive 60 

generations of filarial parasites (reviewed by [21]) (cf. Figure 1). In the filarial nematode B. 61 

malayi, these bacteria inhabit the lateral chords of both adult male and female worms, and the 62 

reproductive system of the latter sex, where they colonise the ovaries, oocytes and early 63 

embryos within the uteri [22]. Upon egg fertilisation, populations of Wolbachia segregate 64 

asymmetrically in the developing embryo, which results in an uneven distribution of these 65 

bacteria in the tissues of the resultant microfilariae [22]. In particular, the numbers of vertically 66 

transmitted Wolbachia remain stable (~70 per embryo [17]) throughout development of the 67 

new generation of filarial parasites into infective third-stage larvae (L3s) in the mosquito vector 68 
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(reviewed by [21]). Upon L3-invasion of a new, susceptible vertebrate host, the number of 69 

Wolbachia bacteria rapidly increases in the hypodermal cord of developing worms, with a 70 

further expansion occurring in the reproductive tissues of sexually mature females (reviewed 71 

by [21]). Crucially, embryonic development is entirely dependent on Wolbachia, as treatment 72 

with tetracycline antibiotics results in a marked reduction of viable microfilariae (reviewed by 73 

[22]). To daeujte, the obligate relationship between filarial nematodes and Wolbachia 74 

represents the only known example of a mutualistic association between parasitic nematodes 75 

and bacteria.  76 

Members of another group of helminth parasites, the digenean trematodes, are known to 77 

harbour populations of Neorickettsia endosymbionts which share numerous genetic 78 

similarities with Wolbachia (reviewed by [23]). Neorickettsia inhabit a range of environments 79 

suitable for the development of the infective stages of digenean parasites and their intermediate 80 

hosts (e.g., aquatic molluscs), thus lending credit to the hypothesis that a proportion of these 81 

bacteria are horizontally transmitted (reviewed by [23, 24]). Nevertheless, in Plagiorchis 82 

elegans, a common GI helminth of a range of fishes, birds and mammals (including humans) 83 

[25], Neorickettsia is predominantly transmitted vertically across generations of parasites [26]. 84 

However, unlike Wolbachia in filarial nematodes, transmission of Neorickettsia in P. elegans 85 

occurs also through the asexual stages of this parasite [27]. Furthermore, since transmission 86 

rates of Neorickettsia from adult P. elegans to the offspring vary from 11% to 91% [27], it has 87 

been suggested that the life cycle of this flatworm is not dependent on their neorickettsial 88 

endosymbionts, but rather that Neorickettsia utilises P. elegans as a vehicle for transmission to 89 

vertebrate hosts [28].  90 

For GI nematodes, experimental evidence of microbiome acquisition strategies is available for 91 

two species, namely Haemonchus contortus, an abomasal roundworm of small ruminants [19] 92 

and Trichuris muris, a large intestinal whipworm of rodents [20] (cf. Figure 1). For the former, 93 
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a recent study [19] localised selected genera of bacteria (i.e. Weissella and Leuconostoc) to the 94 

gut of adult worms and to the uterus of sexually mature females by fluorescence in situ 95 

hybridization (FISH) and transmission electron microscopy; using DNA fingerprinting, the 96 

same genera could be identified in eggs laid by these females and, following larval culture, 97 

their L3 offspring [19]. Notably, these microorganisms could not be identified in the faecal 98 

matter on which larval culture was performed, thus providing evidence of maternal 99 

transmission of these bacteria [19]. Other bacterial genera (i.e. Lactococcus and Streptococcus) 100 

could be identified in the distal uterus of sexually mature females of H. contortus [19]. 101 

Nevertheless, these bacteria were not detected in newly deposited eggs and developed L3s. 102 

Since these bacteria occur in the rumen of the host [29], the authors hypothesized that female 103 

worms acquired them by ingesting ruminal fluid [19]. Whilst the roles that species of 104 

Lactococcus and Streptococcus might play in the fundamental biology of H. contortus is 105 

presently unknown, these data suggest that this parasite might employ a ‘hybrid’ microbiome 106 

acquisition strategy, with some ‘core’ endosymbionts (i.e. Weissella and Leuconostoc), which 107 

may play essential roles in parasite fitness and survival, being vertically transmitted, and others 108 

(i.e. Lactococcus and Streptococcus) being acquired from the host to underpin a certain level 109 

of microbiome plasticity and capacity for environmental adaptation.  110 

A clear strategy of microbiome acquisition from the mammalian host has been recently 111 

demonstrated for T. muris [20] (cf. Figure 1). The essential role that the host microbiome plays 112 

in the development and propagation of this parasite had already been demonstrated in a seminal 113 

study [30], which showed that parasite egg hatching in the large intestine of the mouse was 114 

dependent on the microbial flora within the host gut. Recently, a study by the same research 115 

group [20] demonstrated that, following egg hatching, T. muris acquires populations of bacteria 116 

that, together, form a ‘core’ nematode microbiome, which is markedly distinct from the 117 

microbiome inhabiting the environment in which the worms reside [20]. Although the 118 
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Trichuris microbiome described predominantly comprised Firmicutes and Bacteroidetes, 119 

similar to the host microbiome, it was also rich in Proteobacteria. Proteobacteria constituted 120 

9% of the entire T. muris microbiome – a 31-fold and 13-fold increase in relative proportions 121 

of this bacterial group compared with the microbiome of uninfected mice and T. muris-infected 122 

mice, respectively [20]. This process of selective microbiome acquisition was demonstrated to 123 

be independent from the initial host microbiome composition, and the administration of broad-124 

spectrum antibiotics to adult T. muris ex vivo resulted in a marked decrease in parasite fitness 125 

and survival rates, thus providing cogent evidence for an essential role of the host-acquired 126 

microbiome for the successful completion of the whipworm life cycle. Whether T. muris 127 

acquires its own microbiome passively, or actively selects populations of bacteria with 128 

functional properties which are able to facilitate its survival in the vertebrate host, remains to 129 

be established (cf. [20]). Nevertheless, the observation that mono-colonisation of germ-free 130 

mice with a single species of bacterium, i.e. Bacteroides thetaiotaomicron, resulted in 131 

successful egg hatching and establishment of chronic T. muris infection [20] provides a unique 132 

opportunity to design targeted experiments that can shed light on the precise mechanisms of 133 

acquisition of the T. muris microbiome. In turn, this knowledge will form the necessary basis 134 

to answer fundamental questions regarding helminth microbiome structure and function. 135 

 136 

Are helminth microbiomes key to parasite fitness? 137 

Studies of the structure and function of helminth microbiomes are in their infancy. 138 

Nevertheless, over the past decades, evidence has emerged about the functional association 139 

between the free-living nematode Caenorhabditis elegans and the bacteria inhabiting it [31, 140 

32]. Indeed, C. elegans is known to host a species-rich bacterial community, dominated by 141 

Proteobacteria, such as Enterobacteriaceae and members of the genera Pseudomonas, 142 

Stenotrophomonas, Ochrobactrum, and Sphingomonas [31, 32]. Crucially, the relative 143 
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proportions of bacterial populations forming the C. elegans microbiome vary according to the 144 

developmental stage of this nematode [32], thus suggesting that worm development relies on a 145 

range of bacterial functions that differ over time. In support of this hypothesis, worms 146 

experimentally colonised with a subset of bacterial isolates representing the C. elegans ‘core’ 147 

microbiome displayed increased fitness and survival rates, and were maintained under 148 

stressful conditions of temperature and osmolarity, compared with worms colonised solely by 149 

Escherichia coli [32]. In addition, compared with E. coli-colonised C. elegans, worms fed with 150 

the soil bacterium Comamonas displayed accelerated development, which was attributed to the 151 

ability of this bacterial group to up-regulate the expression of genes associated with the 152 

nematode’s moulting program [33]. The C. elegans microbiome has also been demonstrated to 153 

play important roles in worm defence against pathogens; indeed, Pseudomonas isolates 154 

detected amongst the worm resident populations of bacteria produce anti-mycotic compounds 155 

that prevent colonisation by fungal agents [32].  156 

Evidence from investigations of C. elegans, employed as a model for nematode-microbiome 157 

interactions, points to a likely functional role of the microbiomes of parasitic helminths for 158 

worm physiology, development and survival. However, the parasite microbiome itself may 159 

benefit from the protected and nutrient-rich environment that the worm host offers [34, 35]. 160 

For instance, the Gammaproteobacteria Photorhabdus and Xenorhabdus, that inhabit the gut 161 

of the entomopathogenic nematodes Heterorhabditis and Steinernema, are released upon 162 

infection of the insect host by the infective juveniles; following their release, these bacteria 163 

actively replicate and kill the insect host, while converting the insect carcass into a source of 164 

nutrients to support nematode growth and development [36, 37]. 165 

For parasitic nematodes of medical and veterinary importance, the mutualistic association 166 

between filarial nematodes and Wolbachia offers a key example of the fundamental functions 167 

that the helminth microbiome exerts in the biology of its worm host, and vice versa. Indeed, 168 
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besides its known role in the development and survival of filarial embryos (reviewed by [21]), 169 

Wolbachia is essential for worm nutrition and metabolism. The bacterium synthesizes haem, 170 

riboflavin (vitamin B2), and flavin adenine dinucleotide, which the parasite host is unable to 171 

synthesize and that have been inferred to play an important role in filarial reproduction and 172 

development, as well as nucleotides, which are required during oogenesis and embryogenesis 173 

[18, 38, 39]. In addition, members of the genus Wolbachia participate in pathways aimed at 174 

preventing apoptosis of filarial reproductive, embryonic and somatic cells [17, 40], likely by 175 

the direct targeting of the apoptotic signalling cascade [41-43]. Finally, in the filarial parasite 176 

of cattle Onchocerca ochengi, Wolbachia has been demonstrated to play a key role in host 177 

immune evasion, specifically by attracting host neutrophils and, thus, averting a potentially 178 

lethal effector response by degranulating eosinophils [44].  179 

Over the years, the fundamental roles that Wolbachia play in pathways linked to reproduction, 180 

metabolism and immune defence of filarial nematodes have been the subject of intense 181 

scrutiny, focusing on developing novel chemotherapeutics to disrupt this mutualistic 182 

relationship; some have been successful [15, 17, 21, 45]. For instance, the administration of 4-183 

week courses of doxycycline (belonging to the tetracycline family of antibiotics) and 184 

rifampicin have been deemed effective in reducing the transmission of O. volvulus 185 

microfilariae to mosquito intermediate hosts and filarial embryogenesis, respectively 186 

(reviewed by [13]). Nevertheless, the length of drug administration required to achieve 187 

significant effects, along with the severe adverse reactions that tetracyclines can cause in 188 

children and pregnant women (e.g. permanent dental staining, teratogenic effects and 189 

potentially fatal hepatotoxicity [46]), limit the use of these antibiotics in mass drug 190 

administration (MDA) programs in areas where filariases are endemic. Nevertheless, these 191 

findings raise the question as to whether a deep exploration of the microbiomes of other 192 

helminth parasites of major socio-economic significance could hold promise for the 193 
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identification of novel targets for the development of antibiotic-independent control strategies 194 

against the diseases caused by these worms.  195 

 196 

A new generation of helminth microbiome-targeting chemotherapeutics? 197 

Globally, more than two billion people are at risk of infection by GI nematodes, mainly the 198 

hookworms Ancylostoma duodenale and Necator americanus, the whipworm T. trichiura, the 199 

roundworm Ascaris lumbricoides, and the threadworm, Strongyloides stercoralis. 200 

Collectively, these nematodes are responsible for more than 5.5 million disability-adjusted life 201 

years (DALYs) (reviewed by [47]). Moreover, GI nematodes inflict significant production 202 

losses in livestock due to the extensive morbidity and mortality associated with a range of 203 

diseases that they cause (reviewed by [48]). Complete reliance on anthelmintics for the control 204 

of these parasites (via MDA or targeted strategic worming programmes in humans and 205 

livestock) bears substantial risks, linked to the global threat of emerging anthelmintic 206 

resistance, as already observed in several GI nematodes of veterinary importance (reviewed by 207 

[49, 50]). Yet, the discovery of alternative strategies for parasite control should be built on a 208 

thorough understanding of the fundamental biology of these pathogens, and of key mechanisms 209 

of interactions with their vertebrate hosts. A deeper knowledge of the structure and function of 210 

the microbiomes of parasitic helminths, and of mechanisms of microbiome acquisition and 211 

transmission, could lead to unprecedented discoveries in parasite physiology, pathology and 212 

reproduction, and thus, to the development of completely novel control tools. Nevertheless, for 213 

such discoveries to be harnessed, fundamental information needs to be acquired. We propose 214 

that, in the first instance, the microbiomes of representative species of GI nematodes of 215 

considerable medical and veterinary significance (Figure 2) could be qualitatively 216 

characterized using high-throughput sequencing of the bacterial 16S rRNA gene (Box 1). The 217 

selection of specimens of a range of parasite species from different hosts and geographical 218 
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locations would assist the determination of species-specific ‘core’ parasite microbiomes. 219 

Following the establishment of reference 16S rRNA databases for each key parasite species, 220 

shotgun metagenomic sequencing of their microbiomes would provide important information 221 

on the relative abundance of each ‘core’ microbial species, and clues about their functional 222 

potential. The latter, coupled to investigations of the proteomes and metabolomes of the 223 

microbial communities inhabiting these parasites, could lead to a better understanding of the 224 

possible role/s that the microbiomes of parasitic helminths play in the biology and physiology 225 

of individual worms.   226 

Key information on the modes of transmission of helminth microbiomes could be acquired via 227 

experimental infections of vertebrate hosts with selected GI nematodes, followed by qualitative 228 

and quantitative comparative analyses of the host microbiomes and key parasite developmental 229 

stages. Furthermore, for selected GI nematodes (e.g. Nippostrongylus brasiliensis), 230 

experimental infections of germ-free or antibiotic-treated mice re-colonised with fluorescently 231 

labelled bacteria might provide clues on host-parasite microbiome transfer using in vivo 232 

imaging (cf. [51]).  Similar techniques could be used to localise species or groups of bacteria 233 

in parasite organs and tissues, thus providing additional clues on the functions of such 234 

microorganisms in worm biology. Together, this information would form a basis for 235 

experimentation, aimed at interfering with such functions that may potentially lead to the 236 

discovery of entirely novel, antibiotic-independent strategies for parasite control (Figure 3), for 237 

example, via cutting-edge microbiome editing techniques including CRISPR/Cas9, 238 

engineered probiotics, and/or bactericidal bacteriophages (reviewed by [52]).  239 

 240 

Concluding Remarks 241 
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In spite of substantial evidence that points towards key role(s) of microbial species inhabiting 242 

parasitic helminths in the fundamental biology of these pathogens and host-parasite 243 

interactions, e.g. in filarial nematodes and, more recently, whipworms, current knowledge of 244 

the microbiomes of key parasites of major socio-economic significance, such as GI nematodes 245 

of humans and livestock, is scarce and fragmented. Nonetheless, the relentless progress in 246 

microbiome investigation and editing technologies (Box 1), and novel high-throughput 247 

bioinformatics pipelines, provides us with unprecedented opportunities to thoroughly 248 

characterize the structures and functions of such microbial populations. At the core lie 249 

questions surrounding modes of helminth microbiome acquisition and propagation to 250 

successive generations of parasites, the localisation of endosymbiont microorganisms in the 251 

organs and tissues of parasites, the functions that helminth microbiomes (including bacteria, 252 

viruses and fungi) play in parasite biology and physiology, and the effects that disrupting 253 

parasite-microbiome interactions may exert on parasite propagation and survival (see 254 

Outstanding Questions). In turn, the new knowledge can be expected to provide us with a 255 

plethora of opportunities to exploit parasite-microbiome associations to our advantage, for 256 

example, by applying cutting-edge microbiome-editing techniques as novel intervention 257 

strategies against parasitic nematodes and the diseases that they cause. 258 

 259 
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Glossary 401 

Core microbiome: The group of microbes consistently found within a host microbiome, which 402 

demonstrate a persistent association and provide a critical function within the habitat in which 403 

they are detected. 404 

Endosymbionts: Any organism that lives within the body or cells of another organism in a 405 

symbiotic relationship with the host body or cell, often but not always to mutual benefit. 406 

Macrobiota: Collective term used to describe the macroorganisms (e.g. helminths) that live in 407 

a particular niche, on or in a living being, and are large enough to be seen with the naked eye. 408 

Microbiota: Collective term used to describe the microorganisms that live in a particular niche, 409 

on or in a living being, and exhibit a symbiotic relationship with the host. 410 

Microbiome editing: Targeted manipulation of microbiota through the use of technology 411 

and/or other microbiota. 412 

Mutualism: A symbiosis which is beneficial to both organisms involved. 413 

Obligate relationship: One or both of the symbionts entirely depend on each other for 414 

survival. 415 

Helminth microbiome: The collective microbiome of parasitic helminths. 416 

Symbiosis: A relationship between two or more organisms that live closely together.  417 
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Box 1: Sequencing and analysis of helminth microbiomes – a need for 418 

standardisation  419 

The most commonly used techniques for microbiome profiling include high-throughput 420 

sequencing of the bacterial 16S rRNA gene (often referred to as ‘16S rRNA sequencing’), and 421 

whole genome sequencing of microbial communities (‘metagenome sequencing’) [53, 54]. 422 

Whilst these techniques are highly suitable for the study of vertebrate microbiomes, their 423 

application to investigations of the microbiomes of helminth parasites, and GI nematodes in 424 

particular, will require careful considerations surrounding sample processing, as well as data 425 

analysis and interpretation. First, GI nematode specimens are usually directly harvested from 426 

vertebrate hosts (e.g. experimentally infected animals), or cultured in host faecal matter, which 427 

dramatically increases the risk of ‘contaminating’ microbial populations, for instance coating 428 

the outer nematode cuticle, in the parasite DNA of interest. In order to overcome this potential 429 

limitation, the cuticle of worms collected from infected hosts should be sterilized (e.g. using 430 

sodium hypochlorite) prior to microbial DNA extraction. In addition, in order to generate 431 

meaningful data on parasite microbiome structure and function, the determination of ‘core’ 432 

taxa, specific to a given parasite species and/or species group will be necessary. Importantly, 433 

negative (‘no-DNA template’) samples must be processed alongside samples of interest, in 434 

order to ensure that sequences generated from microorganisms contaminating laboratory 435 

surfaces and equipment, glassware and plastic ware, as well as nucleic acid isolation and 436 

amplification and sequencing reagents [55, 56] are correctly identified and subtracted from the 437 

final sequence dataset(s). Whilst existing high throughput genome sequencing datasets 438 

generated from a range of GI nematodes (particularly as part of whole genome sequencing 439 

projects; [57]) might include useful sequence information on the occurrence of resident 440 

microbial populations within parasite tissues (which, in such datasets, are traditionally 441 

considered ‘contaminant sequences’ and therefore discarded), the absence of adequate controls 442 
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in these experiments largely prevents the retrospective use of these data in parasite 443 

microbiome-sequencing studies. Once microbial sequence data have been obtained and 444 

annotated [58], information on the localization of specific taxa of interest in parasite tissues 445 

can be obtained using microscopy techniques, including fluorescence in situ hybridization (= 446 

FISH), immunofluorescence, and transmission electron microscopy (TEM) (reviewed in [59]). 447 

Whilst all of these techniques require highly specialized staff and are relatively costly and time 448 

consuming to use, they might provide useful insights into means of helminth microbiome 449 

acquisition and function.  450 
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Figure 1. Proposed helminth microbiome acquisition strategies for Brugia 451 

malayi, Trichuris muris, and Haemonchus contortus. 452 

(A) B. malayi microfilariae acquire Wolbachia microorganisms via the female germ line, and 453 

populations of resident microbes expand throughout larval development through to infective 454 

third stage larvae in the mosquito intermediate host. In adult male and female B. malayi, the 455 

bacteria localise to the lateral chords of both sexes and the female reproductive system, where 456 

they colonise the ovaries, oocytes and early embryos within the uteri (B) Unembryonated T. 457 

muris eggs are passed through murine faeces and embryos develop inside the eggs. Upon 458 

ingestion by a murine host, the eggs hatch in the small intestine and release larvae that acquire 459 

selected populations of bacteria from the gut of their rodent hosts. Thereafter, the larvae mature 460 

and establish themselves as adult males and females in the colon. (C) Female H. contortus 461 

transfer selected populations of bacteria to the offspring via the germline. Eggs shed in the 462 

environment with the faeces of the ruminant host hatch and release first-stage larvae. Upon 463 

ingestion of the latter by a new ruminant host, the developing worms acquire further 464 

populations of bacteria from the rumen of the latter. Red arrows indicate helminth microbiome 465 

acquisition events. Empty blue circles indicate the absence of a microbiome. 466 

 467 

Figure 2. Identification of key helminth taxa to be investigated as 468 

representatives of their taxonomic clades. 469 

Asterisks (*) indicate taxa for which published data on parasite microbiome structure and/or 470 

function(s) is available. The figure was adapted from Parkinson et al. [60]. 471 

 472 

Figure 3. Plan of action for an efficient investigation and consequent 473 

exploitation of helminth microbiomes.  474 
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(A) 16S rRNA gene sequencing of helminth microbiomes to establish core microbiota present. 475 

(B) Shotgun metagenomic sequencing (i), proteomic (ii), and metabolomic (iii) analyses of the 476 

helminth microbiota to annotate functional roles to the core microbiota. (C) Implementation of 477 

animal models in wild type and germ-free mice to assess helminth-microbiota acquisition and 478 

transmission. (D) Localization of microbiota through fluorescent light- and electron 479 

microscopy. (E) Identification and targeting of key microbiota to decrease parasite fitness 480 

(based on the previously assessed parameters) through the implementation of microbiome 481 

editing techniques. 482 



Outstanding questions 

 Which microbial taxa form the core microbiomes of different helminth species? 

 

 How do helminths acquire their microbiomes? 

 

 Where do endosymbionts localise within the parasite host? 

 

 What are the functions of the microbiomes of parasitic helminths? 

 

 What role/s do microbes other than bacteria (i.e. viruses and fungi), play in parasite 

biology and physiology? 

 

 Can helminth-microbiome relationships be exploited for the development of new 

strategies for parasite control?  

Outstanding Questions
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