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ABSTRACT 

 

Soft robotic systems are an interesting alternative for classic rigid robots in applications 

requiring interaction with living organisms or delicate objects. Elastic inflatable actuators are 

one of the preferred actuation mechanisms for soft robots since they are intrinsically safe and 

soft. However, these pneumatic actuators each require a dedicated pressure supply and valve to 

drive and control their actuation sequence. Because of the relatively large size of pressure 

supplies and valves compared to electrical leads and electronic controllers, tethering pneumatic 

soft robots with multiple degrees of freedom is bulky and unpractical. This article describes a 

new approach to embed hardware intelligence in soft robots where multiple actuators are 

attached to the same pressure supply, and their actuation sequence is programmed by the 

interaction between non-linear actuators and passive flow restrictions. We show how to model 

this hardware sequencing, and demonstrate it on a 8 degree-of-freedom walking robot where 
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each limb comprises two actuators with a sequence embedded in their hardware. Our robot is 

able to carry pay loads of 800gr in addition to its own weight, and is able to walk at travel 

speeds of 3 body lengths per minute, without the need for complex on-board valves or bulky 

tethers. 

 

 

Since the early 60s, most industrial robots have been designed as a series of rigid links and 

joints that are driven by localized actuators. In a more recent approach to robotics, soft members 

and actuators that have infinite degrees of freedom are combined into so-called soft robots [1]. 

Because of their soft and compliant nature, these robots inherently struggle with tasks that need 

accurate positioning or high forces. However, they excel at tasks that require dexterity [2], 

safety [3], or compliance to an unknown environment or freeform object [4].  During the past 

three decades, impressive advances have been made in the design and fabrication of soft robotic 

actuators, and a wide variety of actuation principles have been used to drive these systems [1, 

5-9]. The focus of this research is on actuators that are powered through pneumatic inflation 

[10], which are attractive for soft robotics because of their simplicity. These actuators typically 

only consist of an elastic inflatable structure that converts a pressurized fluidic input to an 

expansion [11-14], contraction [15-18], bending [19-22] or twisting [23-26] output deformation. 

Further, these actuators can be combined to create complex soft robots with applications in 

medicine [27-30], automation [20, 31-33] and biomimetic locomotion [10, 34-36]. 

Because of their simplicity and ability to create complex motions, soft inflatable actuators are 

one of the most attractive solutions for driving future soft robots. However, to power these 

actuators, they each require a pressure supply tube and a pressure control valve. Because these 

are larger than electrical leads and control circuits, the peripheral requirements for inflatable 

actuators rapidly become prohibitively bulky for multiple degree-of-freedom (DoF) robots. 

Challenges in tethering are therefore a key factor inhibiting wider breakthroughs of fluidic soft 

robotics. To address this challenge, some remarkable advances have been made in miniature 
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pressure supplies [37, 38] and valves [39, 40], some of which have recently been integrated in 

soft actuators [41]. However, these systems still require a chemical or electrical power supply, 

and often result in bulky systems for multiple degree-of-freedom robotic systems [42]. These 

challenges are summarized in Figure 1: In most of the current soft robots, separate pressure 

supply tubes are used for each inflatable actuator along with off-board valves and control 

systems (Figure 1A). Alternatively, on-board valves are used to replace multiple pneumatic 

tethers by electrical tethers in combination with fewer pressure supply tubes or an on-board 

pressure generator (Figure 1B) [43]. Alternatively, the on-board valves can be controlled 

pneumatically [27], or passive fluidic valves are used that convert the pressure input to a fluidic 

actuation sequence [40, 44]. However, on-board valves remain voluminous and stiff, reducing 

load capacity and shape compliance of the overall robot. 

 

 
Figure 1. Tethering concepts of soft robots where each degree-of-freedom is actuated using a 

dedicated controlled fluidic input (A), that can be reduced to a single fluidic tether and internal 

valves with electrical tethers (B). By tuning the non-linear properties of the actuators with 

intermediate flow restrictions this can be further reduced to a single fluidic supply tube, without 

the need for internal valves (C). 



     

4 

 

 

Here we suggest an alternative hardware sequencing approach, where no active nor passive 

valves are needed to create a programmable actuator sequence (Figure 1C). Hardware 

sequencing is achieved by tuning the non-linear properties of the inflatable actuators and the 

pressure drop over passive flow restrictions to a predetermined single periodic pressure input. 

In our approach, two pneumatic components are needed: a pneumatic inflatable actuator with a 

clear peak and valley in their pressure versus volume (PV) characteristics, and flow restrictions 

with tunable pressure losses. Peak-and-valley PV characteristics often occur in inflatable elastic 

actuators as a result of the changing stiffness of the elastic membrane when being inflated, with 

a typical example being party balloons [45]. Here we use a peak-and-valley actuator, consisting 

of an inner latex tube constrained by a slitted surrounding polyethylene braid [46, 47], as 

detailed in SI. These actuators longitudinally contract when pressurized as depicted in Figure 

2, and our measurements of the actuator’s PV characteristic clearly shows a peak-and-valley 

PV curve. This characteristic is caused by the ballooning of the inner latex tube, while the valley 

and the consequent pressure rise originates from contact between inner balloon and outer braid 

after a certain volume has been reached. As has been shown by Overvelde et al. [46] the 

characteristics of these actuators in terms of peak and valley pressures can be tuned by altering 

the length of the inserted latex tube and the length of the surrounding braid, where other 

deformation types are possible when altering the slit pattern of the outside braid [47]. 
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Figure 2. (A) Schematic design of an elastic inflatable actuator consisting of a highly flexible 

inner latex tube that is inserted into a slitted outer braid. (B) Upon inflation, the volume increase 

is transformed into an axial contraction of the actuator. (C) Pressure and length versus input 

volume, recorded using a syringe pump and simultaneously recording pressure using a pressure 

transducer and a deformation measurement using subsequent camera images. 

 

When connecting two of these contracting actuators, with PV characteristics shown on Figure 

3A, in parallel to a pressure supply, their inflation and deflation can be elegantly analyzed by 

mirroring the PV curve of actuator 2 along its pressure axis and offsetting it in volume with an 

amount equal to the input volume of the total system, 𝑉 , in accordance to [45]. At this total 

volume, equilibrium occurs at the intersection of both curves with an equilibrium pressure, 

𝑝12(𝑉). This is shown on Figure 3C for two input volumes (𝑉∗ and 𝑉∗∗). The internal volume 

of each individual actuator can also be deduced from these figures, as indicated with 𝑣1(𝑉) and 

𝑣2(𝑉) . For a continuous value of 𝑉 , 𝑝12(𝑉)  is depicted on Figure 3B, together with the 

corresponding internal volumes of actuator 1 and 2, indicated by colored area. From this graph, 

it can be concluded, that until volume V** is reached, the vast majority of the total volume is 

channeled to actuator 1. After V**, actuator 2 starts to inflate until both actuators are inflated 

at volume V***. The corresponding actuator deformations are shown on inset images of Figure 
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3B. It is essential to note that the lower peak pressure of actuator 1 is inhibiting the inflation of 

actuator 2 until a critical volume is reached, and that the peaks and valleys in the combined PV 

curve correspond to the original peaks and valleys of the individual actuators. The same analysis 

can be repeated for actuator deflation, resulting in the same PV curve and deformations that are 

in symmetry with inflation. For simplicity, we will denote this actuation sequence where 

actuator 1 inflates before actuator 2, and actuator 2 deflates before 1 as 12|21. This sequence 

can be programmed in the hardware of the robot by making the peak and valley pressures of 

actuator 1 lower than those of actuator 2.  

 

 
Figure 3. (A) 12|21 sequence originating from two actuators with offset PV characteristics 

connected in parallel. (B) Global PV characteristics from inflation this system. The volume 

distribution between actuators in terms of the total input volume is indicated by the colored 

areas and is shown on inset images. (C) The global characteristics can be analyzed by flipping 

the PV curve of actuator 2 along its pressure axis and translating it along the horizontal axis 

with the total input volume of the system. This is done here for a total input volume 𝑽∗ and 𝑽∗∗. 

 

The other possible sequence, 12|12, is harder to achieve as the peak pressure of actuator 2 needs 

to be higher than the peak pressure of actuator 1 while the valley pressure of actuator 1 needs 

to be higher than the valley pressure of actuator 2 [48]. Instead, this paper suggests a simpler 

solution, where a pressure drop, in the form of a passive flow restriction between the two 
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actuators instigates the same effect, as is shown on Figure 4 for two identical actuators. For 

now, and for ease of analysis, a fixed pressure drop (∆𝑝) is used. However in reality, this 

pressure drop is dependent on fluid flow [49], an aspect which will be detailed later on. 

Essentially, the flow resistance raises the PV curve of actuator 2 while inflating and lowers it 

while deflating, as perceived by actuator 1 (index *). This is depicted on Figure 4B with rising 

arrows for inflation and descending arrows for deflation. The corresponding total system 

characteristics are shown on Figure 4CD, exhibiting the 12|12 sequence, with corresponding 

actuator deformation shown on inset pictures, which is the result of the same analysis as 

explained in Figure 3C. Although the presented theory is a simplification of reality, as it is 

assuming fixed Δp’s and monotonous inflation/deflation (which is not always the case [46]), it 

can be considered a rough design tool to dimension the flow restrictions and actuators in order 

to achieve a certain sequence that can be then fine-tuned using a more detailed analytical 

approach.  

 
Figure 4. (A) 12|12 sequence created when a flow restriction (∆𝒑) is placed between two 

identical actuators. (B) A flow restriction offsets the PV characteristic of actuator 2 relative to 

actuator 1, by ∆𝒑 upwards during inflation (rising arrows) and downwards during deflation 

(descending arrows). (C) The resulting system characteristics during inflation and (D) during 

deflation. 
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For the analytical modelling, we will make use of filling (𝑁) as the driving parameter, which 

can be thought of as the number of air molecules that are present in the system. As such, we 

can shift from volume to filling, using the ideal gas law: 

𝑁𝑖 =
𝑝𝑖𝑉𝑖

𝑅𝑇
       ,    𝑖 = 1 … 𝑛        (1) 

Where index ‘𝑖’ denotes the different actuators that are present in the system, 𝑅 is the ideal gas 

constant, 𝑇 the absolute temperature of the system and 𝑝𝑖, 𝑉𝑖 are the pressure and volume inside 

the actuator, which are also related to each other using the actuators PV characteristic: 𝑝𝑖(𝑉𝑖). 

To capture the highly nonlinear response of our soft actuators, this analysis relies on recorded 

PV characteristics of actuator prototypes. The actuators with preceding flow restrictions can be 

placed in series or in parallel, where no fluid losses are assumed at junctions: 

∑ 𝑁�̇� =𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ∑ 𝑁�̇�𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 ,        (2) 

where the dot indicates a derivative in time. As we consider incompressible fluid flow, which 

is acceptable for moderate flow speeds, the presence of a flow restriction can be modelled using 

the Darcy-Weisbach equation [49]: 

𝑝𝑜𝑢𝑡 − 𝑝𝑖𝑛 = 𝑓.
𝐿

𝐷
.

𝜌〈𝑣〉2

2
 ,         (3) 

where 𝑓 is the Darcy friction factor of the restriction, 𝐿 its length, 𝐷 its hydraulic diameter, 𝜌 

the density of the fluid, 𝑝𝑜𝑢𝑡 − 𝑝𝑖𝑛  the pressure drop over the flow restriction and 〈𝑣〉 the 

average speed of fluid flow, which can be converted to filling flux using (1): 

�̇� =
〈𝑝〉𝐴

𝑅𝑇
〈𝑣〉,           (4) 

where 𝐴 is the cross sectional area of the restriction and 〈𝑝〉 the average pressure inside the flow 

restriction, which in this paper has been taken to be: 

 〈𝑝〉 =
𝑝𝑜𝑢𝑡+𝑝𝑖𝑛

2
.          (5) 

This set of equations make it possible to quasi-statically simulate the response of an arbitrary 
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system to a pressure input, where for each incremental time step, all equations are in equilibrium. 

This has been implemented on a two actuator system with a supply tube length 𝐿1  and 

interconnecting tube length 𝐿2, as shown on Figure 5A, where PV curves are measured on a 

prototype actuator. A pressure block pulse (89 kPa for 2 seconds) has been applied as input, 

where supply tube length is constant (𝐿1 = 1𝑚) and two lengths of interconnecting tube have 

been simulated (𝐿2 = 0.3𝑚, 8𝑚), both with an inner diameter of 2 mm and assumed constant 

Darcy friction (𝑓 = 0.04). Simulation results are depicted on  Figure 5B and Figure S1, clearly 

showing the 12|12 sequence, with the inflation rate of the second actuator decreasing if L2 

increases. 

 
Figure 5.  (A) Modeled two-actuator system that incorporates the measured PV curve of a 

prototype actuator, where the actuators are placed in series with a supply tube length 𝑳𝟏 and an 

interconnecting tube length 𝑳𝟐. (B) Modeled dynamic response to a block pressure pulse  as a 

function of individual actuator volume, where 𝑳𝟏 is fixed to 1m and two values of 𝑳𝟐 are used: 

0.3m (solid lines) and 8m (dashed lines). The real response of this two-actuator system has been 

captured as a function of individual actuator volume (C), using video recording (D and Movie 

S1). 

 

To validate the presented theory to control actuator sequencing with a simple flow restriction, 

the two actuator system of Figure 5A (𝐿1 = 1𝑚, 𝐿2 = 0.3𝑚) has been fabricated and subject to 

a block pulse pressure input. The response of this system can be seen on Figure 5D, which 

clearly shows a 12|12 sequence (see also Movie S1). To validate our model, markers on the end 



     

10 

 

points of the actuators are tracked by video software, which can be used to plot the volume 

versus time characteristics using the previously registered length versus volume relation (Figure 

2, blue), as shown on Figure 5C. In contrast to the analytical model, this prototype system shows 

a more discrete sequence, as made visible on Figure S2. This discrepancy can be explained by 

the assumptions that have been made in the model: incompressible fluid flow, constant Darcy 

friction factor and ignoring the dynamics of the actuators themselves. Further, it has been 

observed that the addition of flow restrictions reduces the sensitivity of the actuator sequence 

to variations in individual PV curves, which are hard to avoid due to variability of the 

production process [46]. 

The proposed sequencing technique can be broadened to multiple actuators, as demonstrated in 

Figure S3, where generally the actuation sequence can be described as follows. The order of 

actuation during inflations is determined by the magnitude of the pressure peaks: actuators with 

lower peak pressures will inflate first. The order of deflation is determined by the magnitude of 

the pressure valleys: actuator with highest valley pressures will deflate first. As the magnitudes 

of peak and valley pressure of individual actuators are directly linked to the optima of the 

combined system (figure 3B), further sequencing is possible by separating the magnitudes of 

the optima in distinct pressure bands. The magnitudes of these optima values can be tuned by 

either actuator characteristics or by changing the preceding flow restriction, where the fixed 

Δp-approach can be used a first rough approximation, that can be fine-tuned using the presented 

analytical model.  

The ability to drive the actuators in a 12|12 sequence is of huge importance, as it enables to 

create motion asymmetry which is needed for various types of locomotion. For instance, the 

knee and hip joint of humans are roughly sequenced in 12|12 when walking. To demonstrate 

the elegance the presented hardware sequencing theory, a tetrapod walking robot has been built, 

as shown on Figure 6A. This soft robotic walker comprises four legs, where each leg is actuated 

using two nonlinear actuators. A schematic overview of this walker can be seen on Figure 6B 
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and Figure S4A. In this figure, blue colored actuators control the vertical motion of the feet, 

while orange colored actuators control their horizontal motion. The mechanism that converts 

actuator contraction to foot motion, is displayed on Figure 6C for vertical motion, where a 

parallelogram structure is used to keep the feet always horizontal to ground (see linkage 

mechanism on figure S4B). Figure 6D and figure S4C show the cantilever system that is used 

to transfer actuator contraction to horizontal motion. When the blue and orange actuators are 

driven in a 12|12 sequence, the robot legs continuously perform a downward, backward, upward, 

forward motion (see figure 6E and MovieS2); which enables walking. 

 
Figure 6 (A,B) Overview picture of the developed tetrapod robot, where each leg is powered 

using two nonlinear actuators. (C) The blue colored actuators induce a vertical lift of the robot 

body. (D) The orange colored actuators drive the robot forward. (E) By sequentially actuating 

the blue and orange actuators in 12|12, a stepping motion is generated. 

 

In the most straightforward tethering, the four different legs of the robot are individually 

addressed using four separate solenoid valves (see connection scheme in figure S5). Using this 

wiring, each leg is sequenced in 12|12, effectively resulting in the following actuator sequences: 
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12|12, 34|34, 56|56, 78|78 (actuator number according to figure S4D). By actuating crossed legs 

in phase with each other, and in antiphase with the other two legs, trotting locomotion is 

observed, as can be seen on Figure 7A and in Movie S3-S5. The number of tethers can be 

further reduced to two, by connecting each pair of crossed legs with the same valve (see 

connection scheme in figure S5). In essence, each leg is still sequenced in 12|12, and by placing 

a large pressure restriction between crossed legs, an exchange in fluid between both legs is 

severely restricted. This type of locomotion is shown in Movie S6. A final  reduction to only 

one tether  is possible by adding passive supports on the bottom of the robot. The robot rests on 

these supports while the orange actuators perform their back stroke, which is depicted on figure 

S6 (see connection scheme in figure S5). This crawling locomotion with only one tether is 

shown on figure 7B and in Movie S7  

The robot weighs 1.1 kg,  is able to travel at a speed of 3 body lengths per minute (four tethers) 

and can carry a maximum pay load of 0.8 kg (Movie S8). More importantly, the induced 

hardware sequencing embedded in this robot, allows for walking without extensive tethering 

(Fig 1A), or on-board valves or control electronics (Fig1B). By directly encoding the actuator 

sequence in the robots hardware, we have eliminated the need of software control, showing an 

opportunity for hardware intelligence to be embedded in the nonlinear material characteristics 

of soft robots. 

 

 
Figure 7. Movie still takes the tetrapod robot for different modes of locomotion: (A) walking 

with four tethers and (B) crawling with one tether. Images taken from Movie S4 and Movie S7.  

 

 



     

13 

 

Acknowledgements 

The authors would like to thank N. Govaerts, S. Kushwaha, Q. Brosens and V. De Brouwer for 

their contributions to this work. This research was supported by the Fund for Scientific 

Research-Flanders (FWO) and the European Research Council (ERC starting grant HIENA).  

 

Received: ((will be filled in by the editorial staff)) 

Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 

 

References 

[1] D. Rus, M. T. Tolley, Nature 2015, 521, 467. 

[2] R. Deimel, O. Brock, Int. J. Robotics Res. 2016, 35, 161. 

[3] A. De Greef, P. Lambert, A. Delchambre, Precis. Eng. 2009, 33, 311. 

[4] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, H. M. 

Jaeger, PNAS 2010, 107, 18809. 

[5] S. M. Mirvakili, I. W. Hunter, Adv. Mater. 2017, 30, 1704407. 

[6] S. Jun, C. Vito, F. Dario, S. Herbert, Adv. Mater. 2018, 0, 1707035. 

[7] M. Ma, L. Guo, D. G. Anderson, R. Langer, Science 2013, 339, 186. 

[8] S. Taccola, F. Greco, E. Sinibaldi, A. Mondini, B. Mazzolai, V. Mattoli, Adv. Mater. 

2015, 27, 1668. 

[9] M. Acerce, E. K. Akdoğan, M. Chhowalla, Nature 2017, 549, 370. 

[10] B. Gorissen, D. Reynaerts, S. Konishi, K. Yoshida, J.-W. Kim, M. De Volder, Adv. 

Mater. 2017, 29, 1604977. 

[11] R. V. Martinez, C. R. Fish, X. Chen, G. M. Whitesides, Adv. Funct. Mater. 2012, 22, 

1376. 

[12] C. Moraes, Y. Sun, C. A. Simmons, J. Micromech. Microeng. 2009, 19, 065015. 

[13] Y. C. Su, L. W. Lin, A. P. Pisano, J. Microelectromech. Syst. 2002, 11, 736. 

[14] X. Gong, K. Yang, J. Xie, Y. Wang, P. Kulkarni, A. S. Hobbs, A. D. Mazzeo, Adv. 

Mater. 2016, 28, 7533. 

[15] M. C. Birch, R. D. Quinn, G. Hahm, S. M. Phillips, B. Drennan, A. Fife, H. Verma, R. D. 

Beer, in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) 2000, 1109. 

[16] T. Chishiro, T. Ono, S. Konishi, in Proc. IEEE Int. Conf. on Micro Electro Mechanical 

Systems (MEMS) 2013, 532. 

[17] K. Takemura, S. Yokota, K. Edamura, in Proc. IEEE Int. Conf. on Robotics and 

Automation (ICRA) 2005, 532. 

[18] B. Verrelst, R. Van Ham, B. Vanderborght, F. Daerden, D. Lefeber, J. Vermeulen, Auton. 

Rob. 2005, 18, 201. 

[19] K. Suzumori, Trans. Jpn. Soc. Mech. Eng. 1989, 55, 2547. 

[20] W. Choi, M. Akbarian, V. Rubtsov, C.-J. Kim, IEEE Trans. Ind. Electron. 2009, 56, 

1005. 



     

14 

 

[21] A. Yamaguchi, K. Takemura, S. Yokota, K. Edamura, Sens. Actuators, A 2011, 170, 139. 

[22] N. Correll, Ç. D. Önal, H. Liang, E. Schoenfeld, D. Rus, in Proc. Int. Symp. On Exp. 

Rob. (ISER) 2014, 227. 

[23] B. Gorissen, T. Chishiro, S. Shimomura, D. Reynaerts, M. De Volder, S. Konishi, Sens. 

Actuators, A 2014, 216, 426. 

[24] F. Connolly, P. Polygerinos, C. J. Walsh, K. Bertoldi, Soft Rob. 2015, 2, 26. 

[25] S. Hirai, T. Masui, S. Kawamura, in Proc. IEEE Int. Conf. on Robotics and Automation 

(ICRA) 2001, 3807. 

[26] A. A. M. Faudzi, R. F. Surakusumah, D. E. Octorina Dewi, I. N. A. Mohd. Nordin, M. R. 

Muhammad Razif, in Medical Imaging Technology: Reviews and Computational Applications 

2015, 223. 

[27] K. Ikuta, H. Ichikawa, K. Suzuki, D. Yajima, in Proc. IEEE Int. Conf. on Robotics and 

Automation (ICRA) 2006, 4161. 

[28] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, A. 

Menciassi, Soft Rob. 2014, 1, 122. 

[29] Y. Watanabe, M. Maeda, N. Yaji, R. Nakamura, H. Iseki, M. Yamato, T. Okano, S. Hori, 

S. Konishi, in Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS) 2007, 

494. 

[30] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, Rob. Auton. Syst. 

2015, 73, 135. 

[31] Y. Hwang, O. H. Paydar, R. N. Candler, Sens. Actuators, A 2015, 234, 65. 

[32] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, 

D. F. Gruber, Soft Rob. 2016, 3, 23. 

[33] K. Suzumori, A. Koga, H. Riyoko, in Proc. IEEE Int. Conf. on Micro Electro 

Mechanical Systems (MEMS) 1994, 136. 

[34] R. K. Katzschmann, A. D. Marchese, D. Rus, in Proc. Int. Symp. On Exp. Rob. (ISER) 

2014. 

[35] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, 

M. Wang, G. M. Whitesides, PNAS 2011, 108, 20400. 

[36] M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, 

R. Nunes, G. M. Whitesides, R. J. Wood, in IEEE/RSJ Int. Conf. on Intelligent Robots and 

Systems (IROS) 2014, 561. 

[37] J.-W. Kim, T. Suzuki, S. Yokota, K. Edamura, Sens. Actuators, A 2012, 174, 155. 

[38] K. Suzumori, A. Wada, S. Wakimoto, Sens. Actuators, A 2013, 201, 148. 

[39] A. J. M. Moers, M. F. L. De Volder, D. Reynaerts, Biomed. Microdevices 2012, 14, 699. 

[40] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, 

R. J. Wood, Nature 2016, 536, 451. 

[41] D. Han, H. Gu, J.-W. Kim, S. Yokota, Sens. Actuators, A 2017, 257, 47. 

[42] A. A. Stokes, R. F. Shepherd, S. A. Morin, F. Ilievski, G. M. Whitesides, Soft Rob. 2014, 

1, 70. 

[43] A. D. Marchese, C. D. Onal, D. Rus, Soft Rob. 2014, 1, 75. 



     

15 

 

[44] K. Ikuta, H. Ichikawa, K. Suzuki, Medical Image Computing and Computer-Assisted 

Intervention-(Miccai) 2002, 182. 

[45] I. Muller, P. Strehlow, Rubber and rubber balloons: paradigms of thermodynamics 2004. 

[46] J. T. B. Overvelde, T. Kloek, J. J. A. D'Haen, K. Bertoldi, PNAS 2015, 112, 10863. 

[47] L. Belding, B. Baytekin, H. T. Baytekin, P. Rothemund, M. S. Verma, A. Nemiroski, D. 

Sameoto, B. A. Grzybowski, G. M. Whitesides, Adv. Mater. 2018, 30, 9. 

[48] E. Milana, B. Gorissen, M. De Volder, D. Reynaerts, in IEEE Int. Conf. on Soft Rob. 

(RoboSoft)  2018, 108. 

[49] B. R. Munson, D. F. Young, T. H. Okiishi, Fundamentals of fluid mechanics, Seventh 

edition 2013. 

 


