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Abstract

A general scheme is derived to connect transitions in configuration space with features in the heat ca-

pacity. A formulation in terms of occupation probabilities for local minima that define the potential energy

landscape provides a quantitative description of how contributions arise from competition between different

states. The theory does not rely on a structural interpretation for the local minima, so it is equally applicable

to molecular energy landscapes and the landscapes defined by abstract functions. Applications are presented

for low temperature solid-solid transitions in atomic clusters, which involve just a few local minima with

different morphologies, and for cluster melting, which is driven by the landscape entropy associated with

the more numerous high energy minima. Analysing these features in terms of the balance between states

with increasing and decreasing occupation probabilities provides a direct interpretation of the underlying

transitions. This approach enables us to identify a qualitatively different transition that is caused by a single

local minimum associated with an exceptionally large catchment volume in configuration space.

PACS numbers: 64.70.Nd, 36.40.Ei, 65.40.Ba, 64.60.-i, 05.70.Fh
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For atomic and molecular clusters, analysis of heat capacity features in terms of finite sys-

tem analogues of phase transitions has proved particularly insightful. Clusters that exhibit a low

temperature heat capacity peak corresponding to a solid-solid transition between alternative low

energy morphologies are especially interesting [1–11]. The corresponding potential energy land-

scapes exhibit a double funnel structure, which leads to broken ergodicity. Solid-solid transitions

generally involve just a few distinct low energy minima from the competing funnels [1–11]. It is

usually possible to locate the relevant structures quite easily using global optimisation techniques,

such as basin-hopping [1, 12, 13]. In contrast, melting transitions involve a relatively small number

of low energy minima and a much larger ensemble of high energy minima favoured by entropy.

In the present contribution we provide a general theoretical framework that quantifies the con-

tributions of local minima (or more general regions of configuration space) to features in the heat

capacity. We express the heat capacity in terms of occupation probabilities and their temperature

derivatives, and hence identify the states that define the underlying transition. This approach does

not rely on assignments based on molecular structure, and we can therefore apply it to landscapes

defined by abstract functions [14, 15]. Applications to solid-solid transitions and melting in atomic

clusters illustrate how the occupation probability analysis pinpoints the key states involved. The

final example is a qualitatively different transition, where one particular local minimum becomes

stabilised entropically at higher temperature. In a molecular system, this scenario could arise

for an isomer with one or more very low frequency vibrational modes, corresponding to weakly

coupled domains.

In the superposition approach [6, 11, 16–19] we obtain an expression for the global partition

function as a sum over contributions from local minima:

Z(T ) =
∑

γ

Zγ(T ). (1)

This formulation reproduces the equilibrium occupation probability for each minimum as a func-

tion of temperature, and in this sense it is explicitly ergodic. Normal mode analysis for each

minimum yields a harmonic approximation to the vibrational density of states, which is quite

accurate at low temperature [10, 11]. The partition function for minimum α is

Zα(T ) =

2
∏

s

Ns!

oα

(

kBT

hνα

)κ

e−Vα/kBT ≡ nα

(

kBT

hνα

)κ

e−Vα/kBT (2)

where Ns is the number of atoms of element s with
∑

sNs = N , oα is the order of the molecular

point group, kB is the Boltzmann constant, h is the Planck constant, να and Vα are the geometric
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mean normal mode vibrational frequency and potential energy of minimum α, and κ = 3N − 6 is

the number of vibrational degrees of freedom. Corrections for well anharmonicity can be included

[17, 20–23]. In the present contribution accurate anharmonic densities of states are employed from

basin-sampling calculations [24].

The internal energy and heat capacity corresponding to the superposition partition function are:

E = kBT
2

(

∂ lnZ(T )

∂T

)

N,V

= κkBT +
1

Z(T )

∑

γ

nγVγ

(

kBT

hνγ

)κ

e−Vγ/kBT ≡ κkBT +
z1(T )

z0(T )
,

and CV =

(

∂E

∂T

)

N,V

= κkB −
z1(T )

2

kBT 2z0(T )2
+

z2(T )

kBT 2z0(T )
, (3)

with zr(T ) =
∑

γ

nγ (Vγ)
r

(

kBT

hνγ

)κ

e−Vγ/kBT . (4)

To obtain the configurational contribution we can subtract κkBT/2 from E and κkB/2 from CV .

For the harmonic superposition partition function the occupation probability for minimum α is

pα(T ) =
nαe

−Vα/kBT/νκ
α

∑

γ

nγe
−Vγ/kBT/νκ

γ

. (5)

From the definitions we have

zr(T ) = Z(T )
∑

γ

pγ(T ) (Vγ)
r = z0(T )

∑

γ

pγ(T ) (Vγ)
r , (6)

and
∂pα(T )

∂T
= −

pα(T )

Z(T )

∂Z(T )

∂T
+

κpα(T )

T
+

pα(T )Vα

kBT 2

= −pα(T )
∂ lnZ(T )

∂T
+

κpα(T )

T
+

pα(T )Vα

kBT 2
. (7)

Since kBT
2∂ lnZ(T )/∂T = E = κkBT +

∑

γ pγ(T )Vγ we obtain

gα(T ) ≡
∂pα(T )

∂T
= pα

(

κ

T
+

Vα

kBT 2
−

κ

T
−

1

kBT 2

∑

γ

pγ(T )Vγ

)

=
pα

kBT 2

(

Vα −
∑

γ

pγ(T )Vγ

)

≡
pα

kBT 2
(Vα − 〈V 〉min) . (8)

Hence minima with energies above and below the mean value 〈V 〉min have increasing and decreas-

ing occupation probabilities, respectively, as T increases. From equations (3) and (6)

CV = κkB −

(

∑

γ pγ(T )Vγ

)2

kBT 2
(

∑

γ pγ(T )
)2 +

∑

γ pγ(T ) (Vγ)
2

kBT 2
∑

γ pγ(T )
= κkB +

〈V 2〉min − 〈V 〉2min

kBT 2
. (9)
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Equation (8) can be used to obtain an alternative expression for the potential energy fluctuation:

∑

γ

gγ(T ) (Vγ − 〈V 〉min) =
∑

γ

pγ
kBT 2

(Vγ − 〈V 〉min)
2

=
1

kBT 2

∑

γ

pγ
[

(Vγ)
2 + 〈V 〉2min − 2 〈V 〉min Vγ

]

=
〈V 2〉min − 〈V 〉2min

kBT 2
. (10)

Hence we can relate the heat capacity to occupation probability gradients as

CV = κkB +
∑

γ

gγ(T ) (Vγ − 〈V 〉min) (11)

= κkB + kBT
2
∑

γ

gγ(T )
2 1

pγ(T )
= κkB + kBT

2
∑

γ

gγ(T )

(

∂ ln pγ(T )

∂T

)

.

A local maximum in CV (T ) is therefore equivalent to a maximum in
∑

γ gγ(T ) (∂ ln pγ(T )/∂T ).

Since ∂ ln pγ(T )/∂T has the same sign as gγ(T ) we can interpret such peaks in terms of the

contributions from local minima with positive and negative temperature derivatives:

CV = κkB +

gγ(T )>0
∑

γ

gγ(T ) (Vγ − 〈V 〉min) +

gγ(T )<0
∑

γ

gγ(T ) (Vγ − 〈V 〉min)

≡ κkB + C+(T ) + C−(T ), (12)

For a decomposition within the normal mode approximation this analysis is sufficient to deter-

mine which local minima are primarily responsible for any given heat capacity feature. Hence we

have an unbiased assignment of contributions to CV (T ). For example, the landscape defined by

the cost function involved in fitting a neural network depends upon weights between nodes [15].

To exploit the present analysis for visualisation we set a threshold for the contributions to C±

at the temperature of interest, T ∗, adding them in order of decreasing magnitude. The minima

that contribute a given fraction of the total C±(T ∗) are then coloured in the corresponding dis-

connectivity graph [25, 26]. Details of how these graphs are constructed can be found elsewhere

[6, 25, 26]. In brief, databases of local minima and the transition states that connect them are

obtained using well established methods based on geometry optimisation [6]. To visualise the

resulting kinetic transition networks, local minima are associated with the termini of branches on

a vertical energy scale. At a regular series of energy thresholds, branches are joined if the cor-

responding minima can intervert via a pathway where the highest transition state lies below the

threshold. The organisation on the horizontal axis was chosen to prevent branches from crossing,

which produces a hierarchical grouping of sets that merge at increasing energy thresholds.
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In each example presented below, minima with positive and negative gα(T
∗) contributing up

to a fraction f for C+(T ∗) and C−(T ∗) have branches coloured blue and red. If f = 1 then all

branches will be either red or blue. However, for low temperature peaks in CV only a few local

minima have significant occupation probabilities. Choosing a cutoff at f = 0.9 or 0.99 highlights

these states. It is then meaningful to associate the heat capacity feature with a transition between

these sets. This assignment could also be used to define products and reactants in the calculation

of overall rate constants.

The heat capacity features that appear at higher temperature in atomic clusters are associated

with the finite system analogue of melting. For small systems, such as LJ13 and LJ14, it is straight-

forward to obtain practically complete sets of local minima. If CV (T ) is then calculated using

harmonic vibrational densities of states the melting peak is systematically shifted to higher tem-

perature (Figure 1), because the higher energy minima in the high entropy liquid-like phase gener-

ally have more anharmonic vibrational modes. Hence the harmonic analysis for local minima can

account for the landscape entropy (potential energy density of local minima), but is missing the

anharmonic contributions to these well entropies.

For large systems it is not possible to characterise sufficient local minima in the liquid-like

phase to account for the landscape entropy directly. Instead, we must adopt an appropriate sam-

pling scheme. Here we employ the basin-sampling approach, which can treat the broken ergodicity

associated with multifunnel landscapes very efficiently, producing quantitatively accurate densi-

ties of states [24]. This method couples basin-hopping global optimisation to locate low-lying

minima, with parallel tempering at high temperature. A two-dimensional distribution is calculated

for the instantaneous potential energy V I and the quench energy obtained on local minimisation,

V Q. A common energy bin width ∆ was chosen, and the bins are indexed by subscripts i and q as

V I
i and V Q

q .

Optimal one- and two-dimensional weights W 1D
i and W 2D

iq are obtained from overlapping dis-

tributions corresponding to replicas at different temperatures by direct minimisation of χ2 statistics

[24]. For W 2D
iq an anharmonic fit is used for each Q bin [24]. The occupation probability of in-

stantaneous potential energy bin i at temperature T , pi(T ) is -147

pi(T ) =
W 1D

i e−V I
i /kBT

I bins
∑

j

W 1D
j e−V I

j /kBT

=

e−V I
i /kBT

Q bins
∑

q

W 2D
iq

I bins
∑

j

e−V I
j /kBT

Q bins
∑

r

W 2D
jr

. (13)
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For bin width ∆ the microcanonical configurational density of states Ωc(V
I) is proportional to

I bins
∑

j

W 1D
j Θ(V I − V I

j )Θ(V I
j +∆− V I). (14)

Laplace transform gives the configurational part of Z(T )

Zc(T ) = kBT
(

1− e−∆/kBT
)

I bins
∑

j

W 1D
j e−V I

j /kBT . (15)

The temperature derivatives of the occupation probabilities are

gi(T ) ≡
∂pi(T )

∂T
=

pi
kBT 2

(

V I
i −

〈

V I
〉

I bins

)

, (16)

where
〈

V I
〉

I bins
=
∑I bins

j pj(T )V
I
j . Adding κkB/2 to the configurational heat capacity we then

obtain various equivalent expressions for CV (T )

CV =
κkB
2

+ kB −
∆2e∆/kBT

kBT 2 (1− e∆/kBT )
2 +



















































kBT
2

I bins
∑

j

gi(T )
2 1

pj(T )
,

kBT
2

I bins
∑

j

gi(T )

(

∂ ln pj(T )

∂T

)

,

I bins
∑

j

gi(T )
(

V I
j −

〈

V I
〉

I bins

)

.

(17)

Equation (17) can be used to analyse heat capacity features in terms of positive and negative

temperature derivatives of potential energy bin occupation probabilities, analogous to the inter-

pretations based on local minima above. It is also possible to project the above formulation onto

contributions of potential energy minima by reordering the sums over i and q:

I bins
∑

j

gj(T )
(

V I
j −

〈

V I
〉

I bins

)

=
I bins
∑

j

pj
kBT 2

(

V I
j −

〈

V I
〉

I bins

)2
(18)

=

Q bins
∑

q













I bins
∑

gj(T )>0

(

V I
j −

〈

V I
〉

I bins

)2
W 2D

jq e−V I
j /kBT

kBT
2

I bins
∑

m

W 1D
m e−V I

m/kBT

+
I bins
∑

gj(T )<0

(

V I
j −

〈

V I
〉

I bins

)2
W 2D

jq e−V I
j /kBT

kBT
2

I bins
∑

m

W 1D
m e−V I

m/kBT













≡

Q bins
∑

q

[

c+q + c−q
]

.
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The contribution to CV (T ) from quench bin q can contain terms corresponding to I bins with

both positive and negative gj(T ). To associate a quench bin with overall positive or negative prob-

ability gradient we therefore consider the overall contribution cdiffq (T ∗) = c+q (T
∗) − c−q (T

∗). The

sets of positive and negative cdiffq (T ∗) are sorted according to |cdiffq (T ∗)| and fractional contribu-

tions to CV (T ) from the two signs are defined in terms of the sums over the two subsets. For

visualisation, the local minima that lie in any given quench bin are associated with the fractional

contribution to c+q (T
∗) or c−q (T

∗) (whichever is larger) for that bin.

The following applications illustrate the interpretation of heat capacity features for solid-solid

and melting transitions in atomic clusters, along with an example for a neural network. Heat ca-

pacity plots are illustrated in Figure 1 for three clusters bound by the Lennard-Jones potential and

for a machine learning landscape. The systematic shift of the melting peak to higher temperature

in the harmonic approximation is shown for the LJ13 cluster in Figure 1a. The other cluster sizes,

LJ31 and LJ75, exhibit low temperature solid-solid peaks [1–11], which are associated with slow

relaxation time scales and broken ergodicity.

Figure 2 shows disconnectivity graphs for LJ13 and LJ14 comparing thresholds of 90% and

99% for the heat capacity contributions, using breakdowns based on the harmonic superposition

framework for LJ14 and basin-sampling for LJ13. In each case the transition is described in terms

of a negative occupation probability gradient from the global minimum, with the positive gradient

delocalised over numerous higher energy minima. This description is consistent with our usual

interpretation in terms of competition between low energy, low entropy and high energy, high

entropy phase-like forms. Interrogating how different local minima contribute to a given heat

capacity peak provides detailed insight into the origin of these features [27].

For LJ31 and LJ75 disconnectivity graphs are presented in Figure 3 for states that contribute

99% of the peaks corresponding to the solid-solid and melting transitions. In each case, only

the global minimum contributes significantly to the negative gradient component at the solid-

solid transition, while 3 and 19 minima are identified with the positive gradient components, for

LJ31 and LJ75, respectively. In contrast, for the two melting transitions the positive and negative

gradient contributions to the heat capacity are delocalised over a significant fraction of all the

minima in the corresponding databases. These results were obtained using densities of states from

basin-sampling [24]. The two-dimensional distribution obtained in the basin-sampling approach

produces an accurate anharmonic density of states by appropriate reweighting [24].

These results for molecular energy landscapes all provide quantitative support for interpreta-
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tions of the cluster thermodynamics based upon analysis of the families of structures that represent

the competing phase-like forms. No such intuition is available for the machine learning landscape.

The disconnectivity graph in Figure 4 is coloured according to the heat capacity contributions at

the two temperatures corresponding to the maxima in the CV analogue function plotted in Figure

1b. In contrast to the molecular examples, both peaks are accounted for by a relatively small num-

ber of local minima, and we do not see any analogue of melting. Instead, the high temperature

peak corresponds to occupation of a single minimum with exceptionally high entropy, associated

with a low curvature degree of freedom. This scenario is qualitatively different from the cluster

melting transitions, which are mostly driven by the much larger number of high energy minima

(landscape entropy), with a smaller contribution from the local vibrational well entropy.

The present contribution shows how a formulation in terms of occupation probabilities for lo-

cal minima, or states defined by potential energy bins, provides a quantitative assignment for heat

capacity features that is applicable to landscapes beyond molecular science. For the atomic clus-

ters, this approach reinforces our structural interpretation of how such features are encoded in the

underlying potential energy surface. It also provides a way to visualise the competition between

phase-like forms using disconnectivity graphs. These tools should lead to new insight into the

behaviour of molecular systems, and allow us to make connections with more general landscapes,

such as those defined by neural networks. Here there is the possibility of combining different

fits to obtain more accurate predictions and classifications. It seems likely that combinations cor-

responding to qualitatively different local minima would be useful, and these are precisely the

solutions highlighted by transitions in configuration space associated with features in the analogue

of the heat capacity. Decomposing contributions to the heat capacity using occupation probabili-

ties provides a direct way to obtain the corresponding minima.
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FIG. 1: (a) CV for LJ13 calculated using parallel tempering (PT) and the harmonic superposition approxi-

mation (HSA) [6, 11, 16, 17]. (b) CV for the machine learning landscape obtained by fitting a three-layer

neural network to predict patient outcomes from a combination of vital signs. (c) CV for LJ31 calculated

using basin-sampling [24]. The lowest and second-lowest minima with Mackay and anti-Mackay overlayers

[28] coloured in green are illustrated on the left and right of the low-temperature peak, respectively. The 13-

atom icosahedral core is coloured red in both structures. (d) CV for LJ75 calculated using basin-sampling

[24]. The lowest and second-lowest minima based on a Marks decahedron and an incomplete Mackay

icosahedron are illustrated on the left and right of the low-temperature peak, respectively. The atoms are

coloured according to their contribution to the total energy: the most tightly bound atoms are blue, the least

tightly bound are red, with intermediate binding energies in green.
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FIG. 2: Disconnectivity graphs for LJ13 coloured according to the occupation probability gradients pro-

jected onto local minima, as derived in equation (19). Minima are coloured for contributions to the heat

capacity that account for (a) 90% and (b) 99% of the contributions from positive (blue) and negative (red)

gradients at kBT/ǫ = 0.28. The two-dimensional probability distributions required were obtained by basin-

sampling [24]. For comparison, the results for LJ14 in panels (c) and (d) correspond to assignments based

on harmonic superposition analysis for the occupation probabilities of local minima [equation (12)] with the

same thresholds of (c) 90% and (d) 99%. The global minima are illustrated by the corresponding branches

in each case. The corresponding stationary point databases include 1441 minima and 21161 transition states

for LJ13, with 3413 minima and 52005 transition states for LJ14.
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FIG. 3: Disconnectivity graphs for double-funnel landscapes coloured according to the overall occupa-

tion probability gradients for the quench energy bin associated with each local minimum, as derived in

equation (19). Minima are coloured for contributions to the heat capacity that account for 99% of the con-

tributions from positive (blue) and negative (red) gradients. The two-dimensional probability distributions

required were obtained by basin-sampling [24] and the corresponding stationary point databases include

47193 minima and 100704 transition states for LJ31, with 312178 minima and 602580 transition states for

LJ75. (a) LJ31 at kBT/ǫ = 0.0268, (b) LJ31 at kBT/ǫ = 0.329, (c) LJ75 at kBT/ǫ = 0.082, (d) LJ75 at

kBT/ǫ = 0.291. For the low temperature peaks corresponding to solid-solid transitions the assignments are

the same as for the harmonic superposition analysis applied directly to the occupation probabilities of local

minima, as defined in equation (12). For the higher temperature melting peaks neglect of well anharmonic-

ity in a harmonic analysis systematically shifts positive probability gradients to higher energy minima (not

shown). The lowest and second-lowest minima with Mackay and anti-Mackay overlayers [28] are illus-

trated for LJ31 in panels (a) and (b). For LJ75 the global minimum Marks decahedron and the second-lowest

minimum based on icosahedral packing with an anti-Mackay overlayer are illustrated in panel (c). The

graphs in panels (b) and (d) exclude all minima that do not contribute to components of the heat capacity

peak within the 99% threshold, and the global minimum does not appear for LJ75 in (d). Instead the lowest

minimum based on icosahedral packing with a Mackay overlayer is illustrated along with the second-lowest

minimum, both of which belong to the set with negative occupation probability gradient.
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FIG. 4: Disconnectivity graphs for a machine learning landscape corresponding to the heat capacity ana-

logue illustrated in Figure 1b. Panel (a) is the complete graph including all the minima. Panels (b) and

(c) correspond to the temperatures of the two peaks in CV at (b) kBT = 0.000236, (b) kBT = 0.000761,

including only minima that account for 90% of the contributions from positive (blue) and negative (red)

gradients based on harmonic superposition analysis for the occupation probabilities [equation (12)]. The

vertical position of each minimum is the same in the three panels and corresponds to the value of the cost

function. The stationary point database contains 1997 minima and 7492 transition states.
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