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Abstract

Current district energy optimisation depends on perfect foresight. However, we rarely know how the future will transpire
when undertaking infrastructure planning. A key uncertainty that has yet to be studied in this context is building-level
energy demand. Energy demand varies stochastically on a daily basis, owing to activities and weather. Yet, most current
district optimisation models consider only the average demand. Studies that incorporate demand uncertainty ignore the
temporal autocorrelation of energy demand, or require a detailed engineering model for which there is no validation
against real consumption data. In this paper, we propose a new 3-step methodology for handling demand uncertainty in
mixed integer linear programming models of district energy systems. The three steps are: scenario generation, scenario
reduction, and scenario optimisation. Our proposed framework is data-centric, based on sampling of historic demand
data using multidimensional search spaces. 500 scenarios are generated from the historical demand of multiple buildings,
requiring historical data to be nonparametrically sampled whilst maintaining interdependence of hourly demand in a
day. Using scenario reduction, we are able to select a subset of scenarios that best represent the probability distribution
of our large number of initial scenarios. The scenario optimisation step constitutes minimising the cost of technology
investment and operation, where all realisations of demand from the reduced scenarios are probabilistically weighted in
the objective function. We applied these three steps to a real district development in Cambridge, UK, and an illustrative
district in Bangalore, India.

Our results show that the technology investment portfolios derived from our 3-step methodology are more robust in
meeting large possible variations in demand than any model optimised independently with a single demand scenario.
This increased robustness comes at a higher monetary cost of investment. However, the high investment cost is lower
than the highest possible cost when each of the initial 500 scenarios is optimised independently. In both our case studies,
building level energy systems are always more robust than district level ones, a result which disagrees with many existing
studies. The outcomes enable better examination of district energy systems. In addition, our methodology is compiled
as an open-source code that can be applied to optimise existing and future energy masterplans of districts.

Keywords: District Energy Systems, Mixed Integer Linear Optimisation, Scenario optimisation, Scenario reduction,
Data-driven demand

1. Introduction

District energy systems are becoming more prevalent
as a method of meeting building energy demand. Past
work has shown that a district energy network gives bet-
ter overall utility from energy systems than building-level
solutions. Depending on the district under study, calcu-
lated savings vary. Carbon emissions could fall by 23% [1],
44% [2], or 50% [3]. They could also more than double,
albeit with a reduction of 74% in system cost, as reported
by Jennings et al. [4] and Mehleri et al. [5]. Some studies
disagree with this trend, however, suggesting only minor
savings of a few percent in cost [6] or even a slight increase
[7].
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The positive and negative impacts of district systems
as a replacement for building-level technologies are case
specific and must be modelled accordingly. Finding an
optimal district system depends on how the problem is
mathematically formulated, including realistic representa-
tion of the demand under which the energy system will
operate. Indeed, optimal design of district energy systems
requires a good knowledge of the spatio-temporal varia-
tions of the energy demand of buildings by their end-use.
If the district consists of existing buildings, historical de-
mand data may be used directly [6, 4]. Where no historical
data exists, such as for new buildings, demand can be sim-
ulated [1, 2].If insufficient data is available, demand can
be treated as exogenous. Archetypal or reference demand
profiles from relevant buildings are thus used as representa-
tive of future energy demand for the district [8, 9, 10, 3, 5].
In all such cases, possible future variations in demand are
not considered. Meanwhile, differences between demand
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assumed at the modelling stage and actual annual energy
demand have been reported to be anywhere between 16%
and 500% in UK commercial properties [11]. In the case of
district energy systems, unexpected variations can result
in failure to meet demand.

In Mixed integer linear programming (MILP), uncer-
tainty is commonly expressed by distinct scenarios which
are either optimised independently (e.g. sensitivity anal-
ysis) or optimised in parallel using scenario optimisation1

(SO). When making investment decisions under opera-
tional uncertainty, SO allows a modeller to optimise tech-
nology investment such that the system is more robust to
each scenario realisation.

There are numerous ways through which a modeller
can generate distinct energy demand scenarios: physics-
led, data-driven, or assuming some level of variance from
average demand. The latter is the easiest to incorporate.
Studies which have considered demand variations from the
average include variations of ±10% [12] to ±30% [13]. Un-
derstandably, the choice of variance has been shown to
significantly influence optimisation results [14], and thus
cannot be applied without sufficient validation. On the
other hand, physics-led (or engineering) models require
a detailed understanding of the building fabric, external
conditions, and occupancy to simulate demand from the
bottom-up. Future scenarios can be generated through
the physics-led model by Monte Carlo simulations. In
each simulation, input parameters such as material proper-
ties, ventilation rates, appliance energy consumption, and
building occupancy are varied stochastically [15, 16]. How-
ever, specifying the uncertainty surrounding each model
parameter can be onerous [17], especially when a number
of different types of buildings are included in a district [18].

In contrast, top-down data-driven models use histor-
ical consumption data to identify inherent variability in
energy demand. They implicitly consider all influencing
parameters (predictors) such as weather, building fabric,
and occupancy. If a sufficient amount of data is available,
it is possible to understand the impact of each predictor
by casting the data into statistical models [19, 20, 17]. If
there is insufficient data, the reliability of statistical mod-
els to represent the relationships between predictors and
energy demand can be limited. Alternatively, it is pos-
sible to sample historical demand data directly. In such
cases, the emphasis is less on what causes variations in
demand and more in capturing the variations in energy
demand across different days. With measured data from
an office building, Gamou et al. [21] stated that energy
demand in any given hour can be described by a normal
distribution, where there is a 95% probability of samples
remaining within ±20% of the mean. This distribution

1‘Scenario’ and ‘stochastic’ are often used interchangeably to de-
scribe the same optimisation procedure. As stochastic optimisation
may refer to other methods of handling stochastic variables, we make
the clear distinction by describing our method as scenario optimisa-
tion.

has since been used to generate demand scenarios for op-
timising energy systems of hospitals [22, 23].

A common shortcoming across current data-driven ap-
proaches for scenario generation is that temporal autocor-
relation of energy demand is not considered. It is evident
that energy demand at any particular hour is influenced by
the demand in other hours of the day. The uncertainty de-
scribed by scenarios without considering the temporal au-
tocorrelation of demand can thus be misleading, and result
in incorrect system design. Mavromatidis et al. [15] iden-
tified this as a key issue, which was solved in their study
by use of a bottom-up physics-led model for generating
demand scenarios. Furthermore, all current approaches
consider uncertainty at any given time to be normally dis-
tributed around the mean which can result in under or
overestimation of demand uncertainty.

In this paper, we present a new 3-step methodology to
handle demand uncertainty in district-scale energy opti-
misation. Our proposed methodology is data-driven and
hence, unlike detailed bottom-up engineering models, scal-
able for application to large districts. We overcome the
shortcoming of current data-driven models by sampling
multivariate nonparametric representations of historical
demand, thus accounting for temporal autocorrelation and
skewness of demand data around the mean value at any
given hour. The methodology we introduce is made openly
available online, and therefore, in addition to being novel,
it is also reproducible and extendable by others to practi-
cal district-scale planning problems.

In the following section we describe the principal steps
of our proposed method: (1) Data-driven scenario gener-
ation, (2) Scenario reduction, and (3) Scenario optimisa-
tion. In the rest of the paper, we demonstrate this through
two illustrative studies: one in Bangalore, India, and the
second in Cambridge, UK. Through these, we examine the
impact of demand uncertainty on the design of district en-
ergy systems. Finally, we test the robustness of our sys-
tems to unseen realisations of future energy demand, using
‘out of sample’ scenarios.

2. Methodology

2.1. Scenario Generation

Particularly at a masterplanning level, little may be
known about buildings within a district other than their
intended use and floor area. Using high-resolution his-
torical data of other buildings representing similar use, a
multidimensional search space can be created to describe
the possible demand profiles for the district. To create a
search space from the available data, we borrow from ma-
chine learning by considering ‘features’ and ‘observations’.
Features are the individual measurable properties that are
being observed. Observations are the existing data de-
scribing distinct instances of those features. Features are
the consumption values in each hour of a day, which we
have observed for all historical days for which we have
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data. Over one year, there would be 24 features and 365
observations.

Clustering of observations into independent search spaces
can help ensure our samples are more realistic. For exam-
ple, we know that weekend and weekday electricity con-
sumption will differ in an office space. Seasons, academic
term times, and months are all subjective typical day clus-
ters that could be chosen. There may be other, unknown
metrics by which observations can be clustered program-
matically, such as by K-means and hierarchical clustering
[24]. The advantage of subjective clustering is the ability
to map those clusters into future years, which we can-
not readily do with clustering algorithms. Typical days
are commonly used in mixed integer linear programming
(MILP) optimisation, reducing the length of the time di-
mension from its full scale (e.g. one year - 8760 hours)
to anything from three [5] to six [3], or seven [25] days.
Clustered observations form search spaces which represent
‘typical’ days in the year.

The shape of a search space depends not only on the set
(or subset) of observations, but also the method by which
we interpolate to create a continuous surface from discrete
data. Previous studies have considered well-conditioned
demand, which can be described by a multivariate nor-
mal curve [26, 27]. However, daily demand profile sets
generally do not fit a perfect Gaussian profile. This is
especially the case when observations are acquired from
multiple buildings within a single archetype. There can be
sub-clusters of demand profiles with various local peaks in
the distribution. Indeed, our initial analysis shows that
demand is not well conditioned; i.e. it cannot be well de-
scribed by a parametric distribution. From Figure 1 we
can see that, with parametric sampling (assuming multi-
variate normal distributions), clear clusters of profiles are
lost. The symmetrical nature of multivariate normal sam-
pling has also led to areas of high profile density to become
the sample mean, not just the mode.

Nonparametric sampling can be more representative of
the demand. However, as we make no assumptions about
the shape of the input data, the search spaces resulting
from nonparametric sampling are heavily dependent on
the input data. One method to overcome this is to have
large training and validation sets to tune the relevant hy-
perparameters. We discuss here two approaches in which
a smaller data set may still be valid: multi-building data
sets and functional principal component analysis (fPCA).

If we do not wish to replicate the demand profiles
of one building when sampling a search space, we can
sample from data describing multiple buildings within an
archetype. Then, when sampling for an individual build-
ing, stochastic profiles will be unlikely to duplicate any
one of the input profile sets. When little is known about a
building other than its archetype, there is validity in this
approach. The demand in an archetypal building could
replicate the profiles in any of the input data buildings
in that archetype. In fact, combining data on multiple
buildings was used by the masterplanners when assigning

archetypal demand to the Cambridge case study district
[28]. As data from multiple buildings inform the search
space for a single archetype, when two consecutive days
are sampled from the profiles of different buildings in the
same archetype, wildly varying demand may be observed
from one day to the next. Much like the intraday tem-
poral autocorrelation of demand, there clearly should also
be some interday autocorrelation. To account for this, be-
fore stochastically sampling profiles, energy intensity for
each input building was normalised by the maximum de-
mand recorded for that building. After sampling, mod-
elled buildings had their demand scaled by a randomly
assigned normalisation factor from all those available for
their archetype.

Without multiple buildings as input data, another ap-
proach must be taken to ensure samples are representa-
tive of the archetype and not only the input building. In
fPCA, we can do this since demand for a typical day is
treated as a function of time, as opposed to being discrete
data points [29]. It provides a mathematical definition of
the shape of the curve in terms of a number of functional
Principal Components (PCs) which are the same for all the
data samples and describe particular features of the data.
Associated with each PC which is a set of weightings, or
‘scores’, particular to each day of data and end-use. The
scores describe mathematically the contribution of each
PC to the overall day’s demand profile, per end-use. A
search space is then created for each typical day by using
the set of scores associated with them [30, 31, 32]. Thus,
we generate demand profiles that retain the primary sense
of the input data without it being exactly reproduced.

In both methods of preparing the input data, we can
use kernel density estimation (KDE) to create a probabil-
ity density function (PDF). In KDE, a kernel (e.g. normal
distribution) is applied to each feature in the observations,
and the overlay of all these individual kernels represents
the full data set. Figure 2 represents this with one fea-
ture2, which is a nonparametric distribution due to its
lack of a single peak. There are two important hyper-
parameters which dictate the efficacy of KDE: the kernel
and the bandwidth. The kernel is the shape of the density
function applied to each observation when constructing the
full PDF. It is standard to use a Gaussian kernel (as used in
Figure 2), but ‘top hat’, ‘triangular’, and ‘Epanechnikov’
are among other kernel choices [33]. The bandwidth is
the scale of smoothness applied to each kernel, akin to the
standard deviation of a normal distribution. if bandwidth
= 0, the resulting PDF will have non-zero values only at
points corresponding to the input data. As the bandwidth
increases to infinity, the PDF converges on a uniform dis-
tribution, with infinite variance. We do not wish to sam-
ple from either of these extreme cases. Instead, we choose
the lowest possible bandwidth that fits a training data set

2the KDE of our 24 features, for each hour in the day, would form
a 24-dimensional probability distribution function, which is impossi-
ble to visualise.
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Figure 1: Comparison of parametric and nonparametric sampling methods as a means to produce daily profiles for demand. Profiles are at
an hourly resolution and 500 profiles of the input data were drawn from each of the sampling methods.
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Figure 2: Example of KDE, applied to a single feature observation
set. A gaussian kernel has been applied to each observation in this
case.

and can reproduce an independent validation data set on
sampling. If there are too few observations for training
and validation, we can use k-fold cross-validation in band-
width and kernel selection. In k-fold cross-validation, the
full data set is randomly partitioned into k subsets. One
subset is retained for validation while the remaining k− 1
sets are used for training. The process is repeated k times,
such that all subsets are used for validation and training
[34].

In Figure 1 we can see the impact of multivariate non-
parametric sampling using multi-building sets (Cambridge)
and fPCA (Bangalore), both sampled from a KDE-generated
PDF. fPCA samples were generated by Ward et al. [32]
while multi-building sets were prepared in this study. The
input data is better represented by nonparametric, rather
than parametric sampling; The demand profiles cover a
wider space beyond the range of the input data, while
sub-clusters across the data are still apparent.

Using fPCA for the Bangalore study and multi-building
sets for the Cambridge study, we generate 500 demand
profiles per typical day, per end-use, and per building
archetype in kWh/m2. Annual hourly demand scenarios
per building are sampled from these stochastic profiles for
a reference year (Cambridge: 2015, Bangalore: 2016), such
that no profile is duplicated between days in the year, or
between buildings in the district. A summary of the 500
scenarios is given in Figure 6 when discussing the results

of applying this method.

2.2. Scenario reduction

A large number of probabilistic demand scenarios per
building can result in intractability of a district energy op-
timisation model. Accordingly, the selection of the ‘right’
subset of scenarios becomes an important step, especially
in scenario optimisation models. This subset of scenarios
should be representative of the variations across the larger
scenario set without requiring the whole set to be included
in the optimisation model. Conejo et al. [35] proposed the
use of the fast-forward algorithm to reduce the number
of scenarios. Two primary variants of the methods are
proposed, both of which aim to reduce the Kantorovich
distance3. Both variants apply a cost metric to each sce-
nario s in the scenario set S, from which a subset S′ is
chosen based on the minimisation of the difference in the
probability distributions describing the costs in S and S′.

The two variants of scenario reduction proposed by
Conejo et al. [35] differ on the cost metric applied to each
scenario. In the first, a key performance indicator (KPI)
describing the scenarios is selected. This might be the
maximum hourly demand per scenario or the total demand
over the entire year. The KPI is selected subjectively as a
measure that has the biggest impact on the objective func-
tion. The first variant is considered less computationally
intensive to apply and has been used for scenario reduction
in existing SO studies [37, 38]. The second variant requires
that a non-probabilistic optimisation model is run for each
scenario independently. These independent models are a
formulation of the SO model which do not consider uncer-
tainty. They are relatively fast to solve and can be run
in parallel on a high-performance cluster in a matter of
minutes. The objective function value calculated for each
scenario is then used in the Kantorovich distance calcula-
tion.

A refinement of the second variant, proposed by Brun-
inx and Delarue [39], is used in this study. Conejo et al.

3For a detailed mathematical formulation, readers are referred to
[35, 36].
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[35] only considered optimisation of operation costs, fix-
ing the investment cost for each of the independent mod-
els. Bruninx and Delarue [39] included investment costs
in addition to operation costs. All decision variables are
therefore part of the independent model optimisation, but
binary and integer constraints are not included for com-
putational efficiency. In our independent models, we keep
the binary ‘purchase’ constraints applied to investment de-
cisions. Because we use typical days as against the full
time series of annual demand, each independent optimisa-
tion runs within a reasonable solution time (O(100s) on a
high-performance computing cluster).

The process for scenario reduction can be thus sum-
marised as follows:

1. Optimise the objective function for each scenario in
parallel, minimising system cost (investment and op-
eration) for each case independently.

2. Select 16 scenarios to represent the 500 input sce-
narios, by minimising the Kantorovich distance be-
tween the probability density of their objective func-
tion values to that of the full scenario set.

3. Assign each scenario in the full set to the closest
(by probability distance) of the 16 scenarios in the
reduced subset, weighting each reduced scenario by
the number of scenarios it represents.

The result of this process is a scenario subset that can
be used for tractable scenario optimisation. It is applied
in the same manner for both Bangalore and Cambridge
case studies. The selected reduced scenarios are detailed
alongside results for SG and SO, in section 4.

2.3. Scenario optimisation

Once reduced scenarios are derived, the uncertainty de-
scribed by these scenarios can be dealt with by scenario
optimisation (SO). Our SO model has two stages. The
first involves finding the optimal technologies and their
capacities, irrespective of their ability to meet variability
in demand. In the second stage, the optimal technolo-
gies are reassessed for their ability to meet variability in
energy demand represented by the 16 reduced scenarios.
If energy demand represented by any particular scenario
is not met, a financial penalty is incurred. The impact
of a single scenario is weighted by its probability of occur-
rence, such that low probability scenarios may have unmet
demand without incurring a large penalty on the overall
objective function. Having unmet demand is a risk, which
we can choose to not allow (risk-neutral SO) or to mone-
tise for direct application to the objective function (risk-
averse SO). In this study, we consider a risk-neutral SO to
examine the amount of unmet demand resulting from SO
as against deterministic optimisation. As is standard for
district energy optimisation models, we use MILP as the
optimisation technique. However, other optimisation tech-
niques can be applied within our proposed SO framework.
The risk-neutral SO objective function is shown below in

Eq. 1, where S′ refers to the reduced scenario subset de-
tailed in Section 2.2. It includes both initial investments
as well as the operational cost of technologies and is a vari-
ant of objective function used by Maurovich-Horvat et al.
[40].

min costinvest +
∑
s′∈S′

Ps′costoperates′ (1)

2.4. Model formulation

The objective function in Eq. 1 is subject to various
constraints typical to energy system models, all of which
are formulated within the open-source MILP modelling
framework Calliope v0.6.1 [41]. These are:

• Limit the maximum possible capacity of any technology;

• Limit the production of any technology to its capacity;

• Link production to consumption of energy carriers for
any technology, considering efficiency losses in the pro-
cess;

• Link locations by distribution lines, to allow carrier flow;

• Link the storage in one timestep to the storage in the
previous timestep, accounting for standing losses; and

• Ensure all demand is met at all locations in the network.

Additionally, we consider:

• Binary purchase constraints, in which a technology has
a fixed purchase cost associated with any non-zero ca-
pacity. This combines with a per unit capacity cost on
investment, to better represent technology costs;

• Inter-cluster storage, which allows us to track stored en-
ergy between all days in our reference year, even though
we are only optimising for 12/24 typical days; and

• A rooftop space limit for solar technologies, which lim-
its the combined capacity of all solar technologies being
considered.

A summary of the mathematical formulation of all con-
straints can be found in Appendix A and the full math-
ematical formulation can be found online4. Models were
run on a high performance computing cluster, with opti-
misation undertaken by the Gurobi solver (v7.5.1).

2.4.1. Side note on tractability of optimisation models

Much of the work in this study is driven by a require-
ment for tractability. In formal terms, tractability might
be considered as the necessary condition for the problem
to be computed in polynomial time, i.e. within complexity
class P [42, p.4]. Thus NP − complete and NP − Hard
(where P 6= NP ) would be considered intractable. This
classic definition is somewhat questionable, as it is clearly

4https://github.com/calliope-project/calliope
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more practical to solve a problem in the order of 20.1N (ex-
ponential) than in the order ofN20 (polynomial) for a large
N [43]. Additionally, a problem that has complexity in the
order of N2 becomes impractical to solve if the number of
computations, N , is large (e.g. 1010). Goderbauer et al.
[44] recently formalised the complexity of MINLP energy
system problems as NP −Hard but did not discuss MILP
problems. In fact, model complexity is rarely formalised.
Instead, we interchange tractability and practicality. As
such, we consider a problem to be tractable if it reaches
an optimal (and feasible) solution in a ‘reasonable’ amount
of time. What is reasonable depends on the modeller and
the computational power at their disposal. Here, we con-
sider our models to be tractable if they take less than 12
hours to solve on a high performance computing cluster.
We cannot model the infinite number of future demand
profiles, hence the need for scenarios. Nor can we achieve
tractability without a small number of scenarios and time
steps, leading to scenario reduction and time clustering.

2.5. Evaluating decisions

It is likely that any energy system, no matter how care-
fully designed, will need to cope with unexpected future
demand. In the context of this study, a robust decision
is one which ensures that demand will be met in any re-
alised future. By using SO, we aim to improve decision
robustness. However, the requirement for SR, to maintain
tractability, already reduces the number of future demand
variations for which we optimise. An effective means of
assessing the consequence of our decisions, as well as the
effectiveness of the SO approach, is to undertake out of
sample (OOS) testing [35]. Although used in both SO
[45, 39] and robust optimisation [46, 47], OOS scenario
testing is not common in the majority of studies which
incorporate uncertainty.

In our OOS tests, investment decisions have already
taken place, following either single scenario or multiple sce-
nario optimisation. The investment technology capacities
are fixed, before being exposed to new operating conditions
to evaluate their performance. The resulting optimisation
model is concerned only with minimising operational costs,
with the possibility to draw on a ‘slack’ variable to balance
supply and demand. The slack variable imposes such a
high cost on its use that it would only be chosen by the
model in instances where there is no other way to balance
the system. A robust investment portfolio is one which
continues to meet demand, or depends relatively little on
the slack variable, when faced with new data.

3. The Illustrative Studies

The two case studies represent very different techno-
economic-geographic contexts and hence test different types
of demand (cooling dominated versus heating dominated)
and associated technologies. Their energy systems are op-
timised for minimising total costs (investment and oper-
ation, normalised to one year) following the same steps.

However, for each, we use a different manner of processing
historical energy demand data for the scenario generation
step. The reason for this is solely due to the difference in
nature and volume of data available from the two sites. At
the same time, it is true that historical data from build-
ings is never uniformly available across sites, and future
applications of our proposed work may devise their own
techniques for processing their demand data as long as
they preserve key properties for estimating future possible
demand scenarios. We will discuss these in the following
section.

3.1. Bangalore, India

A collection of office buildings within Bangalore, India
have been selected, defining an illustrative district. Figure
3a shows each of these buildings, and the nodes used to
represent them. Most nodes consist of several buildings,
which are connected at the same point on the district cool-
ing network. Building floor area (table 1) has been inferred
from the external footprint and number of floors for each
building. As the development is fictitious, no other infor-
mation is known about these buildings; we use only their
relative size and position to test our modelling approach.
We propose four energy centres, at different positions on
the periphery of the district. Each is sited on a currently
undeveloped piece of land, according to satellite data.

The demand data used in this study has been acquired
from a single office building in Bangalore. Five-minute
sub-metered data is available for this building for a range
of end-uses. These end-uses include air conditioning, light-
ing, and uninterruptible power supply. The data was cap-
tured from December 2015 to November 2016 (inclusive)
and is shown clustered by typical day in Figure 4. Air
conditioning electrical consumption is converted to cool-
ing demand by using the variable refrigerant flow system
coefficient of performance (COP) of 1.6. Current litera-
ture would suggest a COP between 3 and 4 [48]. The low
COP is that which was recorded for the system in oper-
ation within the metered office building. Given that the
system has been in place for many years, older literature
suggests that it is not an unreasonably low COP. Xia et al.
[49] recorded a COP lower bound of 1.9, while Zmeureanu
[50] found their rooftop units to have operational COP
of 1.68 ±0.19 and 1.86 ±0.37, which compared particu-
larly unfavourably to the rated COP of 2.9. To match the
resolution of climate data, the five-minute metered con-
sumption was resampled to hourly data.

There are clear trends visible in Figure 4 per typi-
cal day, with weekends exhibiting a greater variation in
demand. As expected, climate clearly affects cooling de-
mand, with high April external temperatures causing high
cooling requirements. In May, there are many days with
zero demand. These likely correspond to building shut-
down days in the Summer holiday period. Some zero de-
mand days may be caused by metering errors, but this
top-down method for assessing demand data makes it dif-
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Figure 3: Case study districts.

Node A B C D E F G H I J K EC1 EC2 EC3 EC4 N1
GIA (m2) 5,440 36,586 12,650 22,400 17,184 78,086 46,582 93,064 23,846 178,496 39,504

N/A
N/ARoof area (m2) 2,720 6,098 3,162 5,600 8,592 11,155 11,646 18,613 5,962 22,312 7,900

Technologies PV, AC, DG, GridE ECh, CCHP, StoreT, GridE

Table 1: Bangalore district node details.

ficult to assess whether they are erroneous points or truly
zero-demand days.

Table 1 shows the technologies that we allow at each
node. There is no requirement that a given technology is
installed at any particular node, as the investment step
of the optimisation will decide this. At a building level,
national grid electricity (GridE), a diesel generator (DG),
and photovoltaic solar panels (PV) are possible technolo-
gies to meet electricity demand. In addition to the district
cooling system, individual air conditioning units (AC) can
meet cooling demand. In the central energy centres, a
large scale electric water chiller (ECh) or a combined cool-
ing, heat, and power plant (CCHP) can be installed. The
CCHP is either a diesel or biomass fuelled generator, whose
waste exhaust heat is redirected through an absorption
chiller to produce cooling. Thermal storage (StoreT) is
possible at the energy centre, but due to the relatively low
energy density of cold water, we do not consider StoreT
at a building level. Technology costs are collated from
various sources. Where costs specific to India were not
available, values from the (UK specific) SPON’S mechan-
ical and electrical services price book [51] have been used,
assuming a currency conversion factor of 90 INR/GBP.
More detail on the district and technology definitions is
available online5, including costs and their sources.

3.2. Cambridge, UK

Unlike the Bangalore ‘representative’ district, the Cam-
bridge district is based on intended development by the

5https://github.com/brynpickering/bangalore-calliope

University of Cambridge. The West Cambridge site is a
campus of the University, in which there exists already
a number of academic, residential, leisure, and commer-
cial buildings. The plan6 is to construct 383,000m2 of
new floorspace, through a combination of greenfield and
brownfield development (the latter directly replacing cur-
rent buildings). According to the masterplan [28], the dis-
trict will have a 42GWh annual heating load, 70% met
by Combined Heat and Power (CHP), and 88GWh an-
nual electricity load, 29GWh of which will be met by the
same CHP. To determine this expected load, the buildings
on the proposed site have been categorised by archetypes:
‘desk-based research’, ‘medium intensity laboratories’, and
‘high intensity laboratories’. Our chosen archetypes are
further disaggregated in this study, into commercial and
research usage. This different categorisation follows con-
sultation with Aecom, the contracted consultants for the
energy plan of the West Cambridge site. Thus, four build-
ing archetypes are considered: ‘Desk-based Commercial’,
‘Desk-based Research’, ‘Lab-based Commercial’, and ‘Lab-
based Research’.

The masterplanners used expert judgement and/or the
mean demand to inform the expected demand of proposed
buildings within each archetype on the West Cambridge
site. We have started from the same position, using exist-
ing buildings on the University estate to inform expected
demand within the district. Gas and electricity consump-
tion data for 17 buildings have been accessed from across

6More detail on the West Cambridge plan can be found at http:

//www.westcambridge.co.uk/
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Figure 4: Bangalore case study input demand profiles, grouped by typical day, and energy type. Profiles have low opacity such that darker
sections indicate significant profile overlap. ‘ we’ = weekend, ‘ wd’ = weekday.

Node
desk research
(10 nodes)

lab research
(17 nodes)

desk commercial
(18 nodes)

lab commercial
(1 node) Energy centre

GIA 86,774 176,173 181,908 9,473
N/A

Roof area 26,715 72,648 69,824 5,535
Technologies PV, NGB, ST, StoreE, StoreT CHP, StoreT, GridE, GridNG

Table 2: Cambridge district node details.
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1 2 3
Term 01-13 to 03-13 04-21 to 06-12 10-06 to 12-04

Vac 03-14 to 04-20 06-13 to 10-05 12-05 to 01-12

Table 3: Dates corresponding to Cambridge term times and vacations
(Vac), as used to define typical days for the Cambridge case study.
Dates given for 2015 in month-day format. ‘Vac3’ dates wrap from
December to January.

the University. We assume that an 80% efficient boiler is
used to meet heat demand from the incoming gas. As with
our Bangalore case, we cluster our input into typical days.
Many of the buildings are academic, so we have chosen to
cluster the data based on weekends/weekdays and the Uni-
versity of Cambridge term dates (Table 3). This gives us
12 typical days. Different profile sub-clusters originating
from different buildings within the same archetype are ev-
ident in Figure 5. In some cases, this can lead to an order
of magnitude variation in the possible peak on a given day.
Electricity demand profile shapes are more pronounced
than heating demand profiles, as in the Bangalore data.
Although, there is a pronounced morning heating peak in
desk-based research/commercial buildings. On weekends,
demand is lower but the profile shape is more sporadic,
particularly in the ‘lab’ archetypes. This is likely caused
by lab occupants choosing to work on weekends and un-
supervised, energy intensive lab experiments taking place
over weekends. The buildings require less heating in sum-
mer (‘Vac2’), with hot water requirements being the likely
cause of the remaining heat demand on these typical days.

Buildings within our chosen archetypes are scattered
across the development site. Figure 3b shows the proposed
CHP would be based in an energy centre at the western
edge of the district. The heating network follows the road
network in connecting to the buildings. We also include a
gas network cost along the same network, to account for
the installation of gas pipework. To make the most of a
possible energy centre, we also include the possibility of a
large-scale ground source heat pump (GSHP) and thermal
energy storage (StoreT) to enter into the district system.
Nodes in the district correspond to buildings of different
archetypes, with roof area available for solar technologies
and building-level technologies made available, if a district
system is not favourable (see table 2). Building-level heat
demand can be met by natural gas boilers (NGB) or solar
thermal panels (ST), and can be stored using building-
level StoreT. Photovoltaic solar panels (PV), grid electric-
ity (GridE), and CHP output can meet electricity demand.
Electricity can also be stored in batteries (StoreE) at a
building level. Technology costs are primarily taken from
the SPON’S mechanical and electrical services price book
[51]. More detail on the district and technology definitions
is available online, including costs and their sources7.

7https://github.com/brynpickering/cambridge-calliope

4. Results & Discussion

4.1. Scenario generation

Different methods were used to generate scenarios for
the Bangalore and Cambridge case study districts. The
Bangalore samples were generated prior to this study, us-
ing fPCA [32]. In this study, the samples were applied
to case study buildings by scaling them to building floor
area and randomly assigning them to days corresponding
to our pre-defined typical days.

For Cambridge, the acquired data included several build-
ings describing each archetype. Consequently, KDE was
applied to multi-building sets. As we use KDE for each
energy type (2), archetype (4), and typical day (12), we
require our limited observations to generate 96 probability
density functions. To make the most of our observations,
5-fold cross-validation was used to calculate the best-fit
bandwidth in the range (0, 1] with either the ‘gaussian’
or ‘top hat’ kernel, using the Python package Scikit-learn
[52] for KDE and Hyperopt [53] for optimising the error.
Table 4 shows the resulting bandwidths and kernels follow-
ing 5-fold cross-validation. Most probability density func-
tions (PDFs) are described using a gaussian kernel and
the bandwidth varies from 0.01 to 0.49. A larger band-
width refers to more variable data, requiring a sufficiently
smoothed PDF to describe the full dataset.

Figure 6 gives the range of all the 500 scenarios of
district-wide energy demand per utility for both case stud-
ies. Mean demand profiles are shown as lines and minimum
to maximum range of any scenario is given as a shaded re-
gion (also marked on the right side of the y-axis). Each
scenario is an aggregation of the demand for each build-
ing and every day in the year. The demand in Bangalore
is described with 24 distinct typical days (weekend and
weekday per month) and the demand in Cambridge is de-
scribed with 4 archetype buildings, each with 12 typical
days (academic term times and vacation). These typi-
cal days are evident in the samples, particularly between
weekdays and weekends. Electricity demand shows less
variation in throughout the year than thermal demand.
Indeed, the variation in thermal demand is not sufficiently
well described by the choice of typical days. A greater
number of typical days would better represent the data,
leading to smoother transitions in both case studies.

There is a high possible deviation from the mean in
any of the 500 scenarios, particularly for electricity and
heat demand in Cambridge (Figure 6b). The demand in
any time interval could range from 0.5 to 1.5 times the
mean. Within a set of days associated with the same typ-
ical day, there is much less variation in the peak demand.
This variation remains below 1MW in the mean curve and
5MW in the min/max range. As the profiles in Figure
6 aggregate all buildings in the district, the deviation of
the profile mean and min/max is lower than that which is
visible on a building-level.

The total annual demand of the Cambridge district is
approximately 1.61 times the amount predicted in the en-
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(d) Archetype: desk research; energy type: gas.

Figure 5: Cambridge case study input demand profiles, grouped by typical day, archetype, and energy type. Profiles have low opacity such
that darker sections indicate significant profile overlap. See table 3 for typical day dates and table 2 for buildings per archetype. ‘ we’
w̄eekend, ‘ wd’ w̄eekday.
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(e) Archetype: lab commercial; energy type: electricity.
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(f) Archetype: lab commercial; energy type: gas.
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(g) Archetype: desk commercial; energy type: electricity.
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(h) Archetype: desk commercial; energy type: gas.

Figure 5: (cont.) Cambridge case study input demand profiles, grouped by typical day, archetype, and energy type. Profiles have low opacity
such that darker sections indicate significant profile overlap. See table 3 for typical day dates and table 2 for buildings per archetype. ‘ we’
= weekend, ‘ wd’ = weekday.
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Table 4: Calculated bandwidths for each KDE subset in the Cambridge case study input dataset. Underlined values refer to those selected
for use with a ‘top-hat’ kernel; all others use a ‘gaussian’ kernel. Background bars highlight relative magnitude of bandwidth.

ergy masterplan. The total annual demand is 142 GWh
electricity and 68.2 GWh heat compared to 88 GWh and
42 GWh respectively predicted by the masterplan. The
masterplan is based on a single archetypal annual demand
mapped to all buildings of that archetype. As such, it is
possibly less accurate than our estimate, suggesting that
a greater demand can be expected on the site. We cannot
validate either our result or that of the masterplan until
all buildings are commissioned in approximately ten years’
time. In Bangalore, we cannot compare the demand to a
district prediction, as no masterplan exists for this illus-
trative study.

As aforementioned, we model only typical days, not
the full year given in Figure 6. Thus, only one day can be
used to represent each typical day in the optimisation. For
each typical day (e.g. January weekday), the mean profile
of all days represented by it (e.g. January weekdays) is
used as the model input demand. The impact of a typical
day on the objective function is scaled to the number of
days in the year it represents. The impact of just using
the typical days, instead of the full timeseries, can be cal-
culated ex-ante. In Cambridge, the mean annual demand
for electricity and heat demand shown in Figure 6b varies
by +5.6% & -3.5%, respectively, compared to the descrip-
tion of the annual demand used in the optimisation. This
change is more pronounced in Bangalore, where electric-
ity and cooling vary by +7% & +20%, respectively. Time
dimension reduction is standard practice in MILP mod-
elling, as previously discussed in section 2.1. Optimisation
results will differ due to this reduction [24], but we have
implemented intra-cluster storage management [54, 55] to
help improve the accuracy of the results.

4.2. Scenario reduction

When discussing the methodology in section 2.2, we in-
troduced two approaches to scenario reduction. Figures 7a
and 7b allows us to compare two metrics describing our 500
scenarios: annual total system demand and independently

optimal objective function value. The better the correla-
tion between the two metrics, the more likely we could use
the simpler of the two (annual total system demand) for
scenario reduction. Annual demand varies in Cambridge
from 212 GWh/a to 220 GWh/a, compared to an objective
function value variation of 20.2 million GBP to 31 million
GBP (Figure 7a). There is a trend for higher system cost
with an increase in total system demand. However, the
highest objective function value is associated with a system
demand of ∼218GWh/a and the lowest objective function
value with a system demand of ∼213.8GWh/a. There is
also a distribution skew in Cambridge in objective func-
tion value, towards lower cost, that is not exhibited in the
total system demand. These factors all reinforce the use
of the additional step in scenario reduction, where an in-
dependently optimal objective function value was sought
for each of the 500 scenarios. In Bangalore, the use of the
additional step is less clear. There is a similarly small per-
centage variation in total system demand, from 56GWh/a
to just over 57GWh/a (Figure 7b). But the variation in
objective function value, 321 million INR to 339 million
INR, is relatively well correlated to the demand. Still, the
lowest and highest demand scenarios are not the lowest
and highest cost scenarios.

The reduced scenarios chosen to represent the full set
are also highlighted in Figure 7. They are more bunched
towards the centre of total system demand in Cambridge,
compared to the greater spread exhibited in Bangalore.
As a result, the scenario with the highest objective func-
tion value in Cambridge (237) is the 12th highest total
system demand scenario. In Bangalore, the corresponding
scenario (138) is the second highest total system demand
scenario. Table 5 inspects the reduced scenarios in detail.
We can see that maximum thermal and electricity demand
is not given by the same scenario in either district. The
proportion of scenarios a single reduced scenario represents
ranges from 1% to 11.2%. We use this to weight each sce-
nario in the objective function. The lower weight reduced
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Figure 6: Total hourly district demand, as sampled for 500 scenarios for the year 2016. Mean profiles are shown as black lines. To ensure
clarity, we have not displayed the profile of all 500 scenarios, instead the minimum to maximum range of all scenarios is given as a shaded
region.
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scenarios are, as expected, those at the extremes of objec-
tive function value. Thus, costs incurred in an extreme
scenario will have approximately 10 times less influence
on the objective function value than in a moderate sce-
nario (see Eq. 1). In the optimisation, this translates to
a risk-based compromise, where we are willing to accept a
relatively high operational cost in unlikely futures (our ex-
treme scenarios) as they have an order of magnitude lower
impact on objective function value.

4.3. Scenario optimisation

Optimisation of the 16 reduced scenarios by SO took
4.12 hours and 8.51 hours to reach a solution for the Cam-
bridge and Bangalore cases, respectively. The results fol-
low similar trends in both case studies. Neither consid-
ers an energy centre and district network to be particu-
larly important (Figure 8). This is caused by the pro-
hibitive cost of laying thermal network pipework, a cost
not often included in district network studies. Albeit small
(<2MW), a centralised electric chiller with a higher effi-
ciency is considered in an energy centre in the Bangalore
case. The optimisation deems its small size relative to
the total cooling demand to still be worth the land pur-
chase and pipework cost. Practically, it could probably fit
within one of the existing structures, which would make it
more financially viable. Renewable energy technologies are
not particularly important in the Cambridge case. Rather
than increasing thermal storage to handle uncertainty in
the use of heat from solar thermal panels, it is more cost
optimal to add several MW of boiler capacity. This is
less of a concern in Bangalore, where electricity from solar
photovoltaics is sufficiently cost beneficial to be installed
across the maximum available roof space in all optimisa-
tion runs. Other than the decreased dependence on solar
thermal energy in Cambridge, there is little difference in
installed energy capacity between the mean and SO runs.

Investment costs are high as a result of SO: +6.4 mil-
lion GBP in Cambridge, +7.5 million INR in Bangalore,
compared to the mean investment (Figure 9). Compared
to the 500 independent scenario runs, the investment cost
is in the top 5% for SO in both case studies. This is a
high investment penalty, for little additional capacity in-
vestment. It is unlikely that system designers would be
willing to accept this investment increase unless it led to
a clear improvement in system robustness. No matter the
scenario, operating costs are higher than investment costs.
The operating costs for each of the 16 scenarios are based
on the same technology investment portfolio, but with a
different set of demand profiles being realised. In the Cam-
bridge case, the operating costs, no matter which scenario
is realised, will be higher than the costs incurred accord-
ing to the result of the mean scenario (Figure 10a). This
does not make the mean model better, as the cost it por-
trays relies on the demand being exactly the mean of the
uncertain profiles. It cannot necessarily meet demand in
the future scenarios used in SO, let alone doing so at a
lower cost. The spread is greater in the Bangalore case,
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Figure 8: Installed capacity of technologies to achieve the optimal ob-
jective function value in both mean (single scenario) and SO cases.
Building-level technologies have been aggregated over all demand
nodes. The contribution from each demand node to the total tech-
nology capacity has been differentiated with a colour gradient. Al-
though, in some cases (e.g. ‘ST’ in (a)), not all nodes have installed
capacity.

15



Scenario 407 340 462 17 303 332 398 310 258 10 157 415 61 371 112 237
Demand

(x108kWh)
Heat 6.58 6.56 6.52 6.58 6.47 6.59 6.46 6.45 6.68 6.60 6.63 6.66 6.48 6.62 6.70 6.63

Electricity 15.0 15.2 15.1 15.1 15.2 15.1 15.0 15.1 15.1 14.9 15.1 15.0 15.2 15.0 15.1 15.0
Sum 21.6 21.7 21.7 21.7 21.7 21.7 21.5 21.6 21.8 21.5 21.7 21.7 21.6 21.6 21.9 21.6

Objective function
value (x107GBP)

2.15 2.19 2.26 2.31 2.35 2.37 2.41 2.45 2.49 2.54 2.58 2.62 2.68 2.74 2.81 2.92

Weight (%) 3.00 2.40 6.20 8.40 7.80 6.40 9.60 9.40 11.2 8.20 7.40 8.20 4.40 4.00 2.40 1.00

(a) Cambridge, UK.

Scenario 304 11 128 272 447 338 89 205 252 157 103 198 418 216 387 138
Demand

(x107kWh)
Cooling 1.05 1.06 1.05 1.05 1.07 1.07 1.07 1.05 1.06 1.07 1.07 1.07 1.07 1.06 1.07 1.08

Electricity 4.56 4.56 4.58 4.59 4.57 4.57 4.61 4.61 4.59 4.61 4.60 4.60 4.61 4.64 4.59 4.61
Sum 5.60 5.62 5.63 5.64 5.64 5.64 5.67 5.66 5.65 5.67 5.67 5.67 5.68 5.69 5.66 5.69

Objective function
value (x108INR)

3.23 3.25 3.26 3.27 3.27 3.28 3.29 3.29 3.30 3.30 3.31 3.32 3.32 3.33 3.34 3.35

Weight (%) 1.80 3.60 6.60 7.20 9.00 7.80 9.80 7.80 8.00 10.2 5.80 5.20 4.80 5.20 4.80 2.40

(b) Bangalore, India.

Table 5: Description of the 16 reduced scenarios chosen to represent the full set of 500, given to three significant figures. Scenarios are
ordered by objective function value (left to right ascending), as this is the value on which SR takes place. Highest values in each category are
highlighted in .

where most scenarios have a lower operating cost than the
mean case, including an operating cost lower than any of
the 500 independent scenarios (Figure 10b). This possible
lower operating cost is balanced by a higher investment
cost, hence why such a low operating cost was not seen
when running the 500 scenarios through independent op-
timisations.

4.4. Out of sample tests

When conducting SO, demand must be met in all sce-
narios. This is also the case in the independently run sce-
nario models. We can test the robustness of the optimal
technology portfolios in select models by re-running our
500 scenarios with fixed technology capacities and captur-
ing the resulting supply/demand imbalance. The optimal
technology portfolio of four models are considered in this
section: mean, SO, highest objective function, and highest
total system demand. In each test, we run the optimisa-
tion with fixed capacities and a ‘slack’ decision variable in
the system balance constraint. In any time step where the
supply cannot match demand due to lack of capacity (or
over-capacity, in the case of unwanted energy produced by
e.g. solar thermal panels), the slack variable will record
the imbalance. The greater the total imbalance across the
500 scenarios, the less robust the technology portfolio.

SO leads to a more robust technology portfolio, in both
Cambridge (Figure 11) and Bangalore (Figure 12). By
considering our 16 scenarios in SO, we have ensured that
we cover a much greater range of futures in our system de-
sign, without increasing the system cost above the ‘worst
case’. We can gain a 50x and 25x reduction in system

imbalance in the Cambridge and Bangalore districts, re-
spectively if we use SO instead of the mean scenario. Com-
paring to our extreme independent scenarios, SO retains
a more robust solution. If we spent more on technology
investment by designing to the result of the highest ob-
jective value scenario it would be less robust than SO. A
similar result would be obtained by designing to the result
of the highest total system demand scenario. In fact, it
is only the SO investment portfolio that leads to multiple
scenarios having no imbalance. Granted, using 16 scenar-
ios has not ensured full balancing when testing against all
500 scenarios, as seen in figures 11b and 12b. This is an
expected result of our scenario reduction process, much
in the same way that there are likely to be more extreme
scenarios than those encompassed by our initial 500 sce-
narios. Currently, these simplifications are a necessity for
tractability.

Although more robust, the increased monetary cost
for SO may not be worth the risk reduction. The total
worst case imbalance in any scenario is never greater than
1.6GWh in Cambridge, 60MWh in Bangalore. This com-
pares to annual system demands of >200GWh in Cam-
bridge and ∼56GWh in Bangalore, 2 - 3 orders of magni-
tude greater than the imbalance. We drastically reduce the
imbalance in the SO case, but it is of small consequence.

4.5. The need for a new objective

Conventional building-level systems (Boiler & AC) are
flexible at meeting varying demand and are still relatively
cheap. Hence, they are the choice for meeting the demand
in a district, whether or not we are aiming for robustness to
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Figure 9: Contribution of investment cost to the objective function
value for all 500 independent scenarios, compared to mean and SO
contributions. The 500 scenario costs form the histogram, while
the singular results from the mean scenario and from SO have been
pinpointed on the x axis.
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future demand scenarios. The most efficient systems, such
as the CHP and CCHP cogeneration technologies, have
not been chosen. This is particularly problematic when
making decisions under uncertainty, where existing tech-
nologies such as building-level air conditioning and boilers
are better placed to handle varying demand profiles. A
new objective is required if environmental agendas are to
be prioritised in the design of energy infrastructure. This
may be the inclusion of the environmental impact, be it
only operational or for full technology lifecycles. In in-
cluding environmental concerns in the objective function,
we can also extend our work to include risk aversion by
considering unmet demand as being met by a highly pol-
luting backup system. The existing optimal solutions also
depend heavily on having a national grid connection and
are thus not robust to intermittency nor the requirement
for energy autarky.

5. Conclusion

Decision making under uncertainty can be improved by
the combination of new sampling and optimisation tech-
niques. We have shown in this study that by following
a 3-step method, we can design district energy systems
which are more robust than traditional, single scenario
models to the risk of not meeting a range of future demand.
These three steps are scenario generation, scenario reduc-
tion, and scenario optimisation. In scenario generation,
we use multivariate nonparametric sampling to produce
500 future demand scenarios from historic building-level
stochastic consumption data. Using scenario reduction,
we are able to select 16 scenarios for scenario optimisa-
tion, without misrepresenting the probability distribution
of our 500 initial scenarios. With 16 representative scenar-
ios, we can run tractable scenario optimisation models.

We applied these three steps to illustrative case stud-
ies in Cambridge, UK, and Bangalore, India. By using
out of sample scenarios, unmet demand has been quanti-
fied for scenario optimisation and single scenario technol-
ogy investment portfolios. Robustness to unmet demand
increased by 50x in the Cambridge case, and 25x in the
Bangalore case when using scenario optimisation derived
over mean scenario derived technology capacities. How-
ever, this robustness comes at a high cost: +6.4 million
GBP and +7.5 million INR investment in the Cambridge
and Bangalore cases, respectively. These results have been
applied directly to a masterplan-level site (Cambridge),
showing that such a method can be readily utilised by
practitioners.

However, given increasing calls to reduce the environ-
mental impact of infrastructure, our cost optimal solutions
are not helping. Contrary to existing literature, district
energy systems are not considered cost optimal in our
study. Incumbent energy technologies are preferred, such
as building-level boilers and AC. There is some reliance on
rooftop renewable solar technologies, for heat and electric-
ity. However, increased robustness leads to reduced depen-

dence on solar thermal technologies in our Cambridge case
study. The lack of energy centre in Cambridge and min-
imal centralised chiller production in Bangalore suggests
that a new objective is required within scenario optimisa-
tion. Such an objective would need to prioritise emission
reduction or, at least, penalise the use of the most pollut-
ing technologies. Future work will concentrate on refor-
mulating the objective function to this end. Additionally,
we will test our scenario optimisation derived technology
capacities for robustness against national grid intermit-
tency, a particular source of uncertainty in our Bangalore
case study.
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Figure 11: Cambridge case study system unmet cooling and electricity demand when running out of sample (OOS) optimisation tests. the
500 OOS scenarios are those generated in SG. Technology capacities have been fixed in the tests to the result of optimising the a. mean
scenario, b. 16 reduced scenarios in SO, c. scenario with highest objective function value (when optimised independently), and d. scenario
with the highest total annual demand. Cumulative imbalance is the rolling sum of the unmet demand from individual tests.
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Figure 12: Bangalore case study system unmet cooling and electricity demand when running out of sample (OOS) optimisation tests. the 500
OOS scenarios are those generated in SG. Technology capacities have been fixed in the tests to the result of optimising the a. mean scenario,
b. 16 reduced scenarios in SO, c. scenario with highest objective function value (when optimised independently), and d. scenario with the
highest total annual demand. Cumulative imbalance is the rolling sum of the unmet demand from individual tests.
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Appendix A. Model mathematical formulation

The mixed integer linear programming (MILP) frame-
work used to model our two districts is typical of district
energy system modelling. Sets, decision variables and con-
straints are summarised in this appendix. Decision vari-
ables are those variables which are unknown at the start of
the optimisation. Their values are selected by the optimi-
sation algorithm so that they satisfy the realisation of the
objective function value. Constraints are placed upon the
decision variables, to ensure they cannot take values which
are either physically or mathematically impossible. For a

more detailed understanding of the model implementation,
readers are referred to the Calliope software repository8.

Appendix A.1. Sets and decision variables

Sets
n ∈ N Set of geographic nodes in the system
(n, nr) ∈ L Node pairs, defining distribution links
x ∈ X Set of available technologies
t ∈ T Set of operational timesteps
c ∈ C Set of energy carriers

Subsets
store Storage technologies
conv Conversion technologies
supply Supply technologies
dem Demand technologies
dist Distribution technologies
ex Technologies which can export a carrier
prod Technologies which can produce a carrier
con Technologies which can consume a carrier
area Technologies which use physical area

Decision Variables
Pcap

n,x ∈ [0, inf) Energy capacity (kW)
Scap
n,x ∈ [0, inf) Storage capacity (kWh)

Rarea
n,x ∈ [0, inf) Resource capture area (m2)

Yn,x ∈ {0, 1} Purchase switch
P+

n,x,t,c ∈ [0, inf) Energy carrier production (kW)
P−n,x,t,c ∈ (−inf, 0] Energy carrier consumption (kW)
Pex

n,x,t,c ∈ [0, inf) Energy carrier export (kW)
Sn,x,t ∈ [0, inf) Stored energy (kWh)

Appendix A.2. Constraints

Constraints are applied across the full sets of each deci-
sion variable and parameter indices, unless explicitly noted
in the constraint.

Appendix A.2.1. Technology capacity

Our capacity decision variables must be kept below a
given parameter, denoted with the subscript max.

Storage capacity:

Scap
n,x ≤ Scap

maxn,x
∀(n, x) ∈ (N,X)store

Energy capacity:

Pcap
n,x

{
≤ P cap

maxn,x
×Yn,x, if costpurch ≥ 0

≤ P cap
maxn,x

, otherwise

Resource capture area:

Rarea
n,x ≤ Rarea,maxn,x

∀(n, x) ∈ (N,X)area

At each node, there is a limit on the available area:∑
x∈X

Rarea
n,x ≤ available arean

8https://github.com/calliope-project/calliope
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Area use is linked to energy capacity of a technology,
where ηarea is the area required per unit capacity:

Rarea
n,x = Pcap

n,x × ηarean,x ∀(n, x) ∈ (N,X)area

Storage capacity is linked to energy capacity by the
charge rate:

Pcap
n,x ≤ Scap

n,x × charge raten,x ∀(n, x) ∈ (N,X)store

Technologies which define a distribution link have the
same capacity:

Pcap
n,x = Pncap

r ,x ∀x ∈ Xdist

Appendix A.2.2. Dispatch limits

Carrier flow is limited by the technology capacity.
Carrier production:

P+
n,x,t,c ≤ Pcap

n,x ∀(n, x, c) ∈ (N,X,C)prod

Carrier consumption:

−1×Pcap
n,x ≤ P−n,x,t,c ∀(n, x, c) ∈ (N,X,C)con

Stored energy:

Sn,x,t ≤ Scap
n,x ∀(n, x) ∈ (N,X)store

Appendix A.2.3. Energy balance

At each timestep, carrier flows must balance. This in-
cludes a system-wide energy carrier balance, as well as
technology specific balances.

All demand must be met at each node, with no slack
for excess supply:∑

x

P+
n,x,t,c + P−n,x,t,c + Pex

n,x,t,c = 0

Demand technologies, where R is the (-ve) timeseries
demand:

P−n,x,t,c × ηn,x,t = Rn,x,t ∀(n, x, c) ∈ (N,X,C)dem

Distribution technologies, where η is the link efficiency:

−1 ∗P−n,x,t,c × η(n,nr),x,t = Pn+
r ,x,t,c ∀(x, c) ∈ (X,C)dist

Conversion technologies, where η is the technology con-
version efficiency:

−1 ∗P−n,x,t,ccon × ηn,x,t = P+
n,x,t,cprod

∀(n, x) ∈ (N,X)conv

Multiple-carrier conversion technologies (e.g. CHP, CCHP),
where p2 / p3 are the additional output carriers of the par-
ticular technology and ratio is the carrier conversion ratio
(e.g. the heat to power ratio):

Pn,x,t,c+prod
=

Pn,x,t,c+p

ration,x,cp

∀p ∈ {(p2), (p3)}, ∀(n, x) ∈ (N,X)conv

Supply technologies, where force R is a boolean pa-
rameter dictating whether an available resource has to be
consumed when available (e.g. un-curtailed PV) or not
(e.g. diesel fuel), and η is the technology conversion ef-
ficiency:

P+
n,x,t,c

ηn,x,t

{
= Rn,x,t, if force Rn,x is True

≤ Rn,x,t, if force Rn,x is False

∀(n, x, c) ∈ (N,X,C)supply

Supply technologies with resource given as per unit
area, where force R is a boolean dictating whether an
available resource has to be consumed when available (e.g.
un-curtailed PV) or not (e.g. diesel fuel), and η is the tech-
nology conversion efficiency:

P+
n,x,t,c

ηn,x,t

{
= Rn,x,t ×Rarea

n,x , if force Rn,x is True

≤ Rn,x,t ×Rarea
n,x , if force Rn,x is False

∀(n, x, c) ∈ (N,X,C)supply

Storage technologies, where Sloss is the storage stand-
ing loss rate, res is the timestep resolution and η is the
charge/discharge efficiency:

Sn,x,t = Sn,x,t−1
× (1− Slossn,x,t

)rest

−P−n,x,t,c × ηn,x,t −
P+

n,x,t,c

ηn,x,t
∀(n, x) ∈ (N,X)store

Appendix A.2.4. Cost

The cost decision variables given in Eq. 1 are auxil-
iary variables, calculated from the summation of decision
variables given above.

Investment cost, where cost refers to the cost associ-
ated with each capacity and AF is the annualisation fac-

tor, rateint

1−(1+rateint)Ln,x
, to scale the investment cost of each

technology to one year based on its lifetime L and interest
rate rateint (10% in this study):

costinvest = AF ×
∑
n,x

(
Scap
n,x × costScap

n,x
+

Pcap
n,x × costP cap

n,x
+ Rarea

n,x × costRarea
n,x

+ Yn,x × costYn,x

)
Operational cost, where cost refers to the cost associ-

ated with carrier production, consumption or export. Note
that costex is negative, to signify a revenue from export:

costoperate =
∑

n,x,c,t

(
P+

n,x,c,t × costprodn,x,t+

Pex
n,x,c,t × costexn,x,t

−P−n,x,c,t × costconn,x,t

)
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Appendix B. Technology characteristics

Efficiency

or COP
Capacity

Cost
Other

Capacity Operation

NGB 0.82 2MWp 2,024GBP + 35.3GBP/kWp 0.025GBP/kWh

PV 0.85a N/A
3.4x104INR + 3.6x104INR/kWp (B)

1,500GBP + 1,000GBP/kWp (C)
0 7m2/kWp

ST 1a N/A 1,200GBP + 700GBP/kWp 0 1m2/kWp

CHP 0.405 25MWp 4.65x104GBP + 703GBP/kWp 0.029GBP/kWhb HTP: 0.83

B-CCHP 0.2 100MWp 4x106INR + 5.6x104INR/kWhc 2,260INR/kWh CTP: 2.1

D-CCHP 0.45 100MWp 4x105INR + 2.2x104INR/kWhc 230INR/kWh CTP: 0.7

DG 0.45 100kWp 1.44x104INR/kWh 230INR/kWh

AC 3 1MWp 2.3x106INR + 9,510INR/kWh 8INR/kWh

ECh 5 100MWp 1.02x104INR/kWh 8.25INR/kWhc

GSHP 4.07 22MWp 2,520GBP + 4,221GBP/kWp 0.095GBP/kWh

StoreE 1 5MWh 1,670GBP + 350GBP/kWp 0 charge rate: 0.7

StoreT
1 (B)

0.9 (C)

100MWh (B)

10MWh (C)

3x103INR/kWp (B)

527GBP + 65.7GBP/kWp (C)
0

charge rate: 0.5 (B)

charge rate: 0.3 (C)

heat loss: 0.01 (C)

Distribution

Electricity 1
20MWp (B)

25MWp (C)
0 0

Thermal
1 (B)

2.5x10−3 loss/m (C)

20MWp (B)

25MWp (C)

731INR/kWp/m (B)

294GBP + 281GBP/kWp/m (C)
0

Gas 1 25MWp 1.7x104GBP + 10GBP/kWp/m 0
a Solar energy conversion efficiency has already been accounted for in the timeseries resource data for PV and ST. For PV, 0.85 refers to inverter efficiency.
b CHP can export to the grid, using a time variable rate equal to 80% of the wholesale electricity prices during 2015.
c There is an additional cost of 5x107INR for construction of an energy centre, which is incurred when at least one energy centre technology is chosen.

Table B.7: Technology characteristics used in Cambridge/Bangalore case study models. Where there is information overlap between Bangalore
and Cambridge, (B) and (C) has been appended, respectively. HTP = heat to power ratio, CTP = cooling to power ratio.
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