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Abstract

A new model for the yield stress in superalloys accounting for unimodal and

multimodal γ′ size distributions is presented. A critique of the classic models on

γ′ shearing is presented and important features not previously considered are in-

corporated in our model. This is extended to account for multimodal particle size

distribution effects by weighting the individual particle contribution to the total

strength. This analysis is focused on powder metallurgy alloys. The yield stress

and particle strengthening are predicted for eight superalloys containing wide vari-

ations in initial microstructure, composition and at temperatures up to 700 ◦C.

We demonstrate through a theoretical approach that the strength of alloys with

multimodal γ′ is lower than those with unimodal γ′ radius in the vicinity of 10–30

nm. For the first time, a parameter–free physics–based model is able to predict

the yield stress in superalloys with complex microstructures, including unimodal

and multimodal γ′ size. This has been possible by removing limitations inherent to

the classical models. Such approach also enables critical evaluation of the relevant

factors contributing to the yield strength of polycrystalline superalloys.
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1 Introduction

Polycrystalline nickel–base superalloys are employed in high–temperature structural com-

ponents in aircraft engines and power generation turbines. These alloys typically possess

microstructures consisting of a face–centred cubic matrix (γ), and can contain multimodal

size distributions of L12 precipitates (γ′), the primary γ′ which is 1–5 µm in size and is
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located on the γ grain boundaries∗, and two populations of intragranular particles of

secondary γ′ of 50–300 nm in radii and tertiary γ′ of 2–50 nm in radii. These complex

distributions allow superalloys to reach high yield strengths (≥ 1 GPa) at temperatures

up to 750 ◦C, whilst displaying high creep and fatigue life properties [1]. Primary γ′ acts

to limit grain growth during solution treatment and enhances grain boundary strengthen-

ing. Tertiary γ′ particles are known to increase creep life by controlling the mechanisms of

dislocation dissociation and decreasing dislocation mobility to reduce the strain rate [2];

additionally, the crack growth rate increases for larger secondary γ′ particles [3]. Time

dependent crack growth is also very sensitive to the size of tertiary γ’, with much reduced

crack growth rates for larger tertiary sizes compared to those for fine tertiary γ’ [4];

this is attributed to reduced crack tip stresses as a result of more stress relaxation in

coarse tertiary γ’ material. Additionally, Collins and Stone [5] have shown experimen-

tally in RR1000 that unimodal distributions of very fine γ′ particles are stronger than

multimodal γ′ distributions of the same volume fraction; however, the ductility dropped

dramatically to 2 % in the former, whereas for the latter elongation is typically in the

range of 12–25 % [5,6]. These results confirm that multimodal γ′ distributions are more

desirable to ensure a wider range of optimal mechanical properties.

It is well established that γ′ shearing is the main contributor to the strength of poly-

crystalline superalloys and modelling the individual contributions of each γ′ size range

must be considered. This deformation process has been the subject of theoretical studies

for over 50 years [7–13], where quantitative insights on the interactions between disloca-

tion pairs with small (weak pair–coupling) and large (strong pair–coupling) γ′ particles

have been obtained; however, these results are restricted to alloys with unimodal particle

size distributions and low volume fractions. This also reflects the fact that there is a

limited number of physics–based modelling approaches in superalloys with multimodal

γ′, as one would expect to predict the strength of wide range of particle sizes and vol-

ume fractions in excess of 45 % [1]. For instance, Kozar et al. [14], have proposed a

model including multimodal γ′ size effects by partially modifying the weak pair–coupling

∗No primary γ′ is present for heat treatments above the γ’ solvus temperature allowing grain growth.
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mechanism and introducing size distributions effects in the tertiary γ′; although good

predictions were obtained for subsolvus heat–treatment conditions (fine grain and low

tertiary γ′ volume fraction), their model displayed opposite strengthening effects under

supersolvus conditions (coarse grain and higher tertiary γ′ volume fraction); these results

indicate that their model is not correctly sensitive to variations in the γ′ microstructure,

as the strengthening contributions of small precipitates were overestimated at the critical

transition between weak and strong pair coupling. Jackson and Reed [15] and subse-

quently Collins and Stone [5] have employed the classic weak and strong pair models to

optimise the γ′ microstructure in Udimet 720Li and RR1000, respectively; their analysis

is based upon finding the optimal γ′ size where the transition between the weak and strong

pair coupling occurs and maximum strength can be achieved. Although higher strengths

were achieved, it was not possible to fully predict the yield strength, since the analysis

was limited to the behaviour of tertiary γ′ particles with small volume fraction. These

results confirm the need to revisit the classic models of weak and strong pair–coupling,

identifying the origin of their limitations.

The objective of this work is to postulate a modelling approach to describe the yield

stress evolution in superalloys with unimodal and multimodal γ′ size distributions. This

is based upon reviewing classic models on γ′ shearing and identifying relevant terms

not previously considered. The model will then be extended to account for multimodal

particle size distributions, where the strengthening contribution of different particle sizes

will be weighted according to the relative particle number in the alloy. This allows us

to fully describe the factors contributing to the strength of polycrystalline superalloys.

Possible scenarios are discussed to improve the yield strength in multimodal superalloys

by considering variations in the γ′ size distributions. The study is mostly focused on alloys

produced by powder metallurgy due to their final microstructure being more homogeneous

than alloys produced by the cast–and–wrought route [1].
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2 Modelling precipitate shearing

2.1 Classic approaches

Classic precipitation hardening approaches rest on the precept that the bowing angle of a

dislocation dictates the critical conditions for cutting point–like particles of small volume

fraction (weak pair–coupling) [7, 8]. This concept was later extended to account for the

effects of large precipitates where the strong pair–coupling mechanism features [8–11].

These approaches are defined for unimodal size distributions of precipitates. The models

are based upon the fact that dislocations pair–up to cut through the γ′ particles, where a

second dislocation glides in the same plane to remove the antiphase boundary introduced

by the leading dislocation. Two situations are conventionally distinguished, the weak

and strong pair coupling. The main difference between these configurations lies in the

length of the bowing dislocations driving particle cutting, as this controls the maximum

force a particle of a given size can resist; this length is controlled by the bowing angle

ϕ [7]. Figure 1(a) and (b) show schematic illustrations of the weak and strong pair

configurations, respectively, where the leading and trailing dislocations are represented

by CB1 and CB2, respectively.

The critical resolved shear stress is obtained by evaluating the force balance per parti-

cle acting at dislocations CB1 and CB2 [12] and it is given by the contributions of [13]: a)

the effective Peach-Koehler force of the applied stress acting on each line segment, b) the

repulsive force between the partials; and 3) an opposing force of the antiphase boundary

preventing cutting of the γ′. This can be mathematically expressed as [9]:

τpbΛ1 + FpairΛ1 − γAPBl1 = 0

τpbΛ2 − FpairΛ2 + γAPBl2 = 0 (1)

where τp is the applied shear stress; Λ1 and Λ2 are the lengths of the CB1 and CB2

dislocations driving particle cutting, respectively [16]; Fpair is the dislocation pair force

per unit length; γAPB is the antiphase boundary energy; and l1 and l2 are the segment

lengths of dislocations CB1 and CB2 cutting the ordered particles, respectively.
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In the weak pair case (ϕ < 180◦) it is considered that the bowing dislocation (CB1)

has fully sheared the particles between CB1 and CB2 and l1 = 2r, where r is the mean

particle radius. The critical resolved shear stress equals [1]:

τWeak
p =

γAPB
2b

((
6γAPBrf

2πTten

)1/2

− f
)
, (2)

f is the particle volume fraction, Tten = 1
2
µb2 is the dislocation line tension, µ is the shear

modulus and b is the magnitude of the Burgers vector. The original model developed by

Raynor and Silcok [8] and Brown and Ham [7] included a factor of 1/2 inside the square

root, however Reed [1] explored more in detail the force balance in the vicinity of a particle

and found that this factor was not necessary. The second term in the equation represents

the force produced by the antiphase boundary of the sheared particle (by CB1) in CB2

γAPBl2/Λ2 (Third term in equation 1). This equation has been commonly employed in

the literature [7–10], although further modifications have also been introduced by other

authors [14,17]. For instance, Ardell et al. [17] proposed a modified version of the previous

force balance, by incorporating size and shape effects from spherical particles affecting

the area sheared by dislocations. More recently, Kozar et al. [14] have followed a similar

approach by considering size effects of particles affecting the mean particle spacing; this

assumption appears to be more realistic since the force balance effectively occurs at the

dislocation–γ′ interface, rather than at the centre of a point–like particle. The critical

resolved shear stress by these models are as follow:

τArdellp =
γAPB
b

(
−B +

√
1
3
B2 + 4B

2
(
1− 1

6
B
) − f

)

τKozarp =
γAPB
b

(√
γAPBr

TK

r

Ls
− π

2

(
r

Ls

)2)
, (3)

where B = 3πγAPBfr
32Tten

, Ls =
(

8
3πf

)1/2
2r−2r and TK = µb2

4π
1−0.25ν
1−ν ln

(
10nm
b

)
= 0.36µb2, where

TK is a modifed version of the dislocation line tension. It interesting noting that in the

case of τWeak
p and τKozarp , the shear stress displays a parabolic relationship in r and f ,

whereas in Ardell’s model the relationship is more complicated. Figure 2(a) shows the

predictions of the room–temperature critical resolved shear stress employing these models
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in a NiAl single–crystal alloy as a function of (r/f/TTen)1/2† for f = 5 %. The physical

parameters for this material are [11]: γAPB = 0.14 J/m2, µ = 80 GPa, b = 0.248 nm.

First, it is clearly observed that “negative” strengthening is predicted by the Weak pair

and Ardell models, effects which increase as f increases according to γAPB

b
f (second term

in τWeak
p and τArdellp , respectively); this discrepancy is due to overestimating the pinning

effects in the force balance acting on the trailing dislocations that lead to negative values.

Secondly, both the Weak pair and Kozar’s models follow a parabolic law, whereas the

experimental results show weaker dependence in the γ′ radius [17]. This could be due

to the approximation of point–like obstacles not longer being valid and the presence of

additional force terms in equation 1, reducing the resolved shear stress as r increases.

When the γ′ size is larger than the dislocation pair spacing (strong pair–coupling

case), the force balance is modified to account for the leading dislocation being practi-

cally straight (no bowing effects as the bowing angle is ≈ 180◦ [7]) and partially cutting

the precipitate. In addition, it is considered that the maximum repulsive force of the

precipitate occurs when the second dislocation is just in contact with the particle and

no repulsive force is present in CB2 (Figure 1(b)). The critical resolved shear stress

equals [1, 9]:

τStrongp =
γAPBl1

2bL
=

√
3

2

(
µb

π3/2

)
f 1/2

r

√
2πγAPBr

µb2
− 1, (4)

where L is the mean particle spacing

L =

(
2π

3f

)1/2

r, (5)

Kozar et al. [14] have employed a similar expression but they have introduced an ad-

ditional factor in the denominator to account for the size of the precipitates: L − 2r‡.

The weak and strong pair models are compared with experiments for wide γ′ radii ranges

and volume fraction to highlight their features and limitations. Figure 2(b) shows the

experimental results (dots) at room–temperature for the resolved shear stress variations

∆τp divided by
√
f in Nimonic PE16 as a function of the mean γ′ radius for f = 8 %.

γAPB is 0.14 J/m2 [8], and µ = 80 GPa and b = 0.248 nm were considered; the exper-

†(r/f/TK)1/2 is adopted for Kozar’s model.
‡This expression is not considered in this work since it is very close to equation 4.
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imental data were obtained from [8, 9]. The predictions by the strong (equation 4) and

weak (equation 2) pair coupling are shown by the dashed and dotted lines, respectively.

∆τp was experimentally determined by removing the stress obtained in as–quenched con-

ditions (before any heat treatment), hence these values do not strictly represent τp since

grain boundary strengthening and solid solution hardening might affect the experimental

estimates [8]; a constant of 100 MPa/f 1/2 was added to the models account for other pos-

sible strengthening effects; this constant was fixed for all particle sizes. The strong pair

model displays apparent agreement with the measurements, and the transition between

weak and strong coupling seems accurate, although τWeak
p has negative stress values (up

to −(γAPB

b
f)/f 1/2=-80 MPa/f 1/2) for small r and the “offset” stress described above is

needed. However, considerable discrepancies arise for high γ′ volume fraction; Figure

2(c) shows the experimental observations (dots) on the effect of the γ′ size to the room–

temperature resolved shear stress (divided by
√
f) in Nimonic 105 and the predictions

by the weak (dotted line) and strong (dashed line) pair coupling models when f = 55

% and γAPB = 0.11 J/m2 [9]; experiments were obtained from [9]. Again in this case

an offset value of 175 MPa/f 1/2 is added to the models to match the experimental data.

It is observed that the strong pair model diverges from the experimental measurements

for γ′ with radius below ∼ 90 nm predicting stress discrepancies up to 100 MPa and the

weak pair model underpredicts most of the experiments. Moreover, the weak pair model

predicts “negative” strengths of up to −(γAPB/bf)/f 1/2 =-163 MPa/f 1/2 for γ′ radii up

to ∼ 7nm (this it is not directly observed in Fig. 2(b), since the 175 MPa/f 1/2 offset stress

is higher than the predicted negative stress). Possible explanations of the discrepancies

in the strong pair model can be related to the modifications in the effective length of the

dislocation passing through the precipitates; it was arbitrarily considered that the leading

dislocation is straight for all particle sizes (ϕ = 180◦), although it has been pointed out by

other authors [12,13] that the leading dislocation might still bow out and not fully shear

the particle (ϕ < 180◦). These results also confirm that the weak pair coupling model is

not valid for high γ′ volume fraction.

Additionally, the most critical limitation of these models is that none of them address
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specifically the critical range where maximum strength occurs, as they are formulated to

consider extreme dislocation configurations and assume them to converge at the transition

from the weak and strong pair coupling; however, since the models are incompatible, there

is no smooth transition in the driving force for particle cutting when dislocation bow–out

occurs (weak pair, Figure 1(a)) and when the leading dislocation is straight (strong pair,

Figure 1(b)). This leads to inconsistent predictions in the transition regime that only

seem apparent at low γ′ volume fractions. The discrepancies are crucial when considering

multimodal superalloys, since the tertiary γ′ lies in the range of disagreement of these

models, and the volume fraction of γ′ is 40–60 %. The next section will introduce the

respective modifications to these models in order to obtain a unified description of τp in

unimodal and multimodal γ′.

2.2 Unified approach

The limitations of the weak and strong pair models are summarised as follows:

(i) No detailed analysis at the transition between weak and strong pair coupling con-

figurations has been properly introduced.

(ii) A “negative” strengthening effect is predicted by the weak pair model for particles

with small radius.

(iii) The equilibrium force balance in the strong pair–coupling case has been defined

between dislocations and point–like particles, which remains valid for low volume

fractions.

(iv) Higher stress levels were predicted by the strong pair–coupling model in alloys with

high precipitate volume fraction and radii close to the transition between the weak

and strong pair configurations.

(v) A “stiff” particle size dependence on the weak pair model is observed for larger

particles.

Although it has traditionally been assumed that the maximum particle strength occurs

when the weak and strong pair–coupling models converge [1, 13], by definition, these
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models rest on the basis that the maximum particle strength occurs when the bowing angle

of the leading dislocation (ϕ, Fig. 1(a)) is practically null [7,8]; Brown and Ham [7] have

pointed out that this occurs when Tten ≈ γAPBr, as ϕ = 2acos
(
γAPBr
Tten

)
[7]. In addition,

Nembach et al. [18] have also pointed out that the maximum particle force occurs when

the leading dislocation crosses the diameter of the particle, and the transition between

weak and strong pair occurs when the particle size is such that the cutting force by the

leading dislocation is no longer able to fully penetrate half of the particle§; this occurs

when the dislocation line tension equals half the repelling force of the particle [11, 16]:

γAPBr = 1
2
µb2; this relationship fulfils the null–bowing angle condition [7]. Thus, the

particle radius with maximum strength is equal to:

rm =
µb2

2γAPB
. (6)

The weak and strong pair–coupling configurations are then dictated when r < rm and

r > rm, respectively. The negative stress in the weak pair model (item ii)) originates from

the repulsive force of a particle pinning the second dislocation (Figure 1(a)); details on

the force balance derivation for this case can be found in [1]. This force term is intro-

duced under the assumption that the leading dislocation has already sheared a number

of particles and dislocation CB2 is present to restore internal order in the precipitates.

Although this configuration has been widely observed in experiments, this arrangement

represents stress levels above the critical resolved shear stress (τ > τWeak
p ), since the first

dislocation has already sheared the particles between CB1 and CB2 and glide already

occurred, i.e. dislocations have already induced substantial plastic strain. This implies

that the dislocation configuration displayed in Figure 1(a) does not represent the disloca-

tion configurations at the critical resolved shear stress (i.e. before inducing plastic strain)

but rather at higher stress levels. A modified configuration for τp is represented by the

leading dislocation just shearing the first particle, whilst the trailing dislocation is just

about to enter the second particle to restore internal order. Figure 3(a) shows a schematic

representation of the modified configuration, in which dislocation CB1 has only sheared

§The ordering force is maximum at the particle’s diameter, hence the force on the second half of the
particle is lower and it will be easily sheared once the dislocation has reached its diameter.
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one line of particles at the resolved shear stress. This implies that no pinning force from

the antiphase boundary is present in CB2 and γAPBl2 = 0 in equation 1.

For the case of the strong pair–coupling, the length of CB1 cutting the precipitates,

l1, is derived by obtaining the distance to which a particle is penetrated, measured from

the point of entry [1]. Figure 3(d) shows a schematic representation of the geometric con-

figuration between l1 and rm for a particle with mean radius r¶. Following the procedure

outlined in [1], this implies that l1 is given by l1 = 2(r2− (r− rm)2)1/2 for r ≥ rm. Hence

the length of the leading dislocation cutting the precipitates can be expressed as:

l1 =

 2r if r < rm (Weak pair–coupling)

2
(
r2 − (r − rm)2

)1/2
if r ≥ rm (Strong pair–coupling).

(7)

This result unifies the effective extent of particle shearing in the force balance (equation 1),

whilst providing smooth transition between both configurations. To remove the point–

like defects assumption in the strong pair model (item iii)), a correction term on the

effective distance between obstacles being sampled by a dislocation has been previously

employed by several authors [13, 14, 17]. This consists of subtracting the length of the

dislocation cutting the ordered particle (l1) from the mean particle spacing L, defining an

effective particle spacing (L − l1), as this segment length no longer features in the shear

process [11, 13], as schematically shown in Figure 3(c).

Higher stress levels by the strong pair–coupling close to the transition regime (item

iv)) results from arbitrarily replacing the length of CB1 acting as driving force for cutting

the precipitate Λ1: In the case of the weak–pair coupling, the Friedel sampling length λ1

is used for Λ1, as it represents the mean distance between obstacles being sampled by a

bowing dislocation along its length [16]:

λ1 =

(
Tten
γAPBr

)1/2

L, (8)

where the ratio (Tten/γAPBr)
−1 is linked to the bowing angle required for cutting particles

[16]. In the strong pair model, it is assumed that the leading dislocation is practically

straight (the bowing angle is close to 180 ◦), since the precipitate size is large. Hence

¶In Hüther and Reppich original approach, the dislocation pair/particle configuration was simplified
by considering the particles homogeneously distributed, hence r is employed.
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Λi is considered equal to the effective particle spacing (L − l1). However, it has been

pointed out by Nembach [12] that an intermediate configuration can exist (medium pair–

coupling), where the dislocation pair partially cuts the particle (strong case), but CB1

will bow out to increase the applied force (weak case); this configuration was observed in

Nimonic 105 with γ′ radius of 37.5 nm [10], but was ignored to simplify the model. Figure

3(c) shows a schematic representation of this configuration. This implies that the Friedel

spacing should also feature in the strong pair regime, at least for smaller particles, whilst

L − l1 is appropriate for larger γ′ when ϕ ≈ 180◦. Thus, a unified distance Λ1 between

the obstacles being sampled by a bowing/straight leading dislocation can be defined as:

Λ1 = max(λ1, L− l1) = max

((
Tten
γAPBr

)1/2

L,L− l1

)
. (9)

This equation is well defined since the ratio Tten/γAPBr > 1 for small r and it decreases

eventually reaching L − l1, where a smooth transition occurs between these parameters.

To illustrate how the omission of the intermediate configuration affects the strong pair

model, Figure 4 shows the Friedel spacing λ1 and the effective mean particle spacing

L− l1 variations with r and the respective variations in ∆τp/
√
f in Nimonic 105 using the

same parameters as in the previous section; the transition between weak and strong pair

coupling occurs at rm = 22 nm. It is observed that the classic strong pair–coupling model

diverges from the experiments in the range where λ1 ∼ L−l1 (70–100 nm), suggesting that

Λ1 is more appropriate for describing the driving force acting on the leading dislocation,

as τp is inversely proportional to Λ1 [9] and λ1 is higher than L− l1 for r < 125 nm.

With respect to deviations from the weak pair model (item v)), we consider the effects

of the applied stress acting on spherical particles in the force balance. Although the

cutting stress for the γ′ is high (γAPB/b ∼ 560 MPa for γAPB = 0.14 J/m2), the force of

the applied stress acting on the particle becomes higher as the γ′ size increases, 2τpbr.

This term affects the critical stress for dislocation cutting as the “effective” strength of

the particle decreases when increasing the γ′ size and better matching the experimental

results shown Fig. 2(a).
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These modifications remove the limitations of the classic weak and strong pair ap-

proaches and the force balance in equation 1 is now given by:

τpbΛ1 + FpairΛ1 − γAPBl1 + 2τpbr = 0

τpbΛ2 − FpairΛ2 = 0. (10)

It is worth noting that it is not necessary to estimate Λ2 and Fpair, since these terms

cancel out when simplifying both expressions. Finally, by rearranging these equations,

the unified critical resolved shear stress τp for all particle sizes equals:

τp =
γAPBl1

2b(Λ1 + 2r)
, (11)

where l1 and Λ1 are given in equations 7 and 9, respectively. This equation successfully

captures the gradual transition from the weak and strong pair coupling configurations,

via the transition in the values of Λ1 and l1. Figure 5 shows the model predictions

(solid lines) employing this equation in (a) NiAl, (b) Nimonic PE16 and (c) Nimonic

105 employing the same parameters than in Figure 2‖; in (a) a γ′ volume fraction of 34

% was considered to show wider γ′ size range in the results. More accurate predictions

are observed in almost all cases when compared to the experimental data. Moreover,

the limitations of the previous models have been successfully removed: in Fig. 5(a) the

weak pair–coupling regime is accurately described for different γ′ sizes and no negative

stress values are predicted; these results also illustrate that the force term of the applied

stress acting on the particle (2τpbr) is responsible for removing the “stiffness” in the weak

pair–coupling model (via the 2r term in the denominator in equation 11) and that the

modified dislocation configuration is accurate (Figure 3(a)). Although in (b) the model

applied to Nimonic PE16 predicts the maximum stress to be at 2r ≈ 35 nm whilst the

experiments show an apparent peak at 2r ∼ 25 nm for low γ′ volume fraction, it does

accurately describe the peak stress in (c) when increasing f to 55 % in Nimonic 105.

The discrepancy in (b) can be attributed to considering low values for γAPB, since higher

energy values have been employed by other authors [18]. In Fig 5(c), one can note that

‖In the case of Nimonic 105, the “offset” stress is set 200 MPa /f1/2 since the finite particle size effects
(L− l1) predict slightly lower stress values.
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the model accurately describes both the small and large γ′ regimes, and this is attributed

to the introduction of the parameter Λ1, providing a smooth transition as opposed to

the weak and strong pair models that extrapolate from incompatible configurations (Fig.

2(c)). These results corroborate the complete description for all precipitate sizes with

high volume fraction. Modifications to account for multimodal size effects can now be

introduced, although the Orowan stress for large particle size needs to be introduced first.

2.3 Orowan stress

For sufficiently large precipitates, the stress required for the dislocations to bypass the γ′

is lower than the stress required for the dislocations to cut the particles and the Orowan

bypassing mechanism operates [13]. The Orowan shear stress is given by [13]:

τOro =
3µb

2L
. (12)

τOro is valid for γ′ sizes when the stress required for the dislocations to bypass the γ′ is

lower than the stress required for the dislocations to cut the particles; the critical radius

rOro for transition occurs when τp = τOro.

3 Multimodal precipitate distribution effects

The main challenge in extending the previous models for alloys with unimodal and multi-

modal size distributions is to estimate the respective contribution to the critical resolved

shear stress τp of each particle. RR1000 containing unimodal γ′ has shown higher yield

stress than that for a microstructure containing secondary and tertiary precipitates at

room temperature [5]. This indicates that during uniaxial tensile deformation a con-

stant strain rate constraints dislocations to shear the particles simultaneously in order to

accommodate the imposed strain levels.

The force balance in equation 10 is defined for individual dislocation/precipitate

events. This assumes that the force balance applies to each particle according to its

different size. The particle shear stress and Orowan bowing in superalloys with multi-

modal γ′ size are then the sum of the individual dislocation/particle interaction events,

where the relative strength of the particles is given by the γ′ size distribution p. The
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total volume fraction (f) and particle size distributions are captured by the total particle

number density [19]. If p is fitted to a continuum function, this is expressed as:

τp =

∫ rOro

0

γAPBl1
2b(Λ1 + 2r)

pdr

τOro =

∫ ∞
rOro

3µb

2L
pdr. (13)

If a typical superalloy contains primary, secondary and tertiary γ′, the particle size

distribution can be approximated by a mixed probability function [20]:

p = wppp + wsps + wtpt, (14)

where wp, ws and wt is the normalised particle number of primary, secondary and tertiary

γ′, respectively, (wp +ws +wt = 1) and pp, ps, and pt are the individual size distribution

functions of primary, secondary and tertiary γ′, respectively. wi is given by the relation:

wi = Ni/N , where N = Np + Ns + Nt, and Np, Ns, Nt are the particle number of the

primary/secondary/tertiary γ′ in the specimen. pi are approximated by lognormal distri-

butions since they have shown good correlation with experimental data [5]; additionally,

Ni can be obtained if the volume fraction of each γ′ type fi is known [1]. pi and Ni are

mathematically expressed as:

pi = Lognorm(ri, ωi) =
1√
2πr

exp

(
−
(

ln(r)− ln(ri) + ω2
i /2
)2

2ω2
i

)
,

Ni =
fi

π
∫∞
0
r2pidr

=
fi

πr2i exp(ω2
i )
, (15)

where ri is the mean particle radius and ωi is a constant related to ri and the standard

deviation si of the size distribution [5]: ω2
i = ln

(
1 +

(
si
ri

)2)
. The denominator in Ni

accounts for the total area in the specimen, since most of the experimental characterisation

has been performed from two dimensional micrographs; hence fi effectively describes an

area fraction. Combining equations 13, 14 and 15, the precipitation contribution to the

yield stress is given by:
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τp =

∫ rOro

0

γAPBl1
2b(Λ1 + 2r)

(wppp + wsps + wtpt)dr,

τOro =

∫ ∞
rOro

3µb

2L
(wppp + wsps + wtpt)dr. (16)

The total fraction f = fp + fs + ft is employed to estimate Λ1; this is to represent

the effective mean particle spacing [19]. It is interesting to note that one can isolate the

individual contributions to the particle shear stress of the secondary and tertiary γ′ size by

considering
∫ rOro

0
τpwspsdr and

∫ rOro

0
τpwtptdr, respectively, as wipi provides the weighted

contribution of the respective size range. Moreover, the weak and strong pair–coupling

relative contributions can also be obtained: τp = τWeak
p +τStrongp =

∫ rm
0

τppdr+
∫ rOro

rm
τppdr.

It is interesting noting that although a rigorous analysis on the γ’ distribution is

considered in this work, it is possible to estimate precipitation contribution by using only

the average values of the distinct γ′ particles (rp, rs and rt). This can be done if the

following individual size distributions are considered in equation 15: pi = δ(r− ri), where

δ(r) is the Dirac delta function. By the properties of the Dirac delta function, the integrals

in equations 15 and 16 are simplified∗∗. This result gives: Ni = fi
π
∫∞
0 r2pidr

= fi
πr2i

, and the

number fraction is wi = fi
r2i
/
(

fp
r2p

+ fs
r2s

+ ft
r2t

)
. If it is assumed that rs < rOro and rp > rOro [14],

τp and τOro are simplified to:

τp =

∫ rOro

0

γAPBl1
2b(Λ1 + 2r)

(wppp + wsps + wtpt)dr

=
γAPB

2b

(
ws

ls1
(Λs

1 + 2rs)
+ wt

lt1
(Λt

1 + 2rt)

)
,

τOro =

∫ ∞
rOro

3µb

2L
(wppp + wsps + wtpt)dr

= wp
3µb

2Lp
, (17)

where li1 and Λi
1 are calculated using equations 7 and 9, respectively, and f = fp +

fs + ft is employed in all cases. This equation confirms that the overall strengthening

contribution of primary, secondary and tertiary γ′ is not only determined by the additions

of their respective critical resolved shear stress but it is also controlled by their relative

∗∗∫ −∞
∞ f(r)δ(r − r0)dr = f(r0).
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number fraction (via wi). Previous approaches describing precipitation strengthening in

multimodal γ′ had ignored the latter [14]. Comparison between the values of equations

16 and 17 are shown in Section 7.

4 Yield stress

The yield stress σY in superalloys includes four strengthening contributions [21]: i) Grain

boundary (σD); ii) solid solution in γ (σss); iii) precipitation shearing (σp = Mτp), where

M is the Taylor orientation factor and it is equal to 3 [22]; and iv) Orowan bypassing

(σOro = Mτp) [13]:
σY = σD + σss + σp + σOro. (18)

σD is represented by the Hall–Petch relationship [13]: σD = kY√
D

, whereD is the mean grain

size and kY is the Hall–Petch constant which value in superalloys has been experimentally

estimated to lie in the range 710–750 MPa µm1/2 [6, 14]; 710 MPa µm1/2 is used in our

calculations.

Solid solution hardening is estimated by employing Labusch [23] theory: The incre-

ment in the yield stress results from solute atoms acting as frictional obstacles for dis-

location slip in a binary alloy [23]. Such is controlled by the local lattice and modulus

change in around in the solid solution. Gypen and Deruytterre [24,25] later extended this

approach to integrate the strength increments by various alloying elements in multicom-

ponent systems. This gives σss to be equal to: σss = (1 − f)
(∑

β
3/2
i xi

)2/3
, where the

(1−f) factor is to account for solid solution contribution confined to the γ, as dislocation

slip mostly occurs at the matrix; xi is the atom fraction of substitutional element i in

the γ; and βi are constants related to the lattice and modulus misfit of element i with Ni

in the binary system. The value of βi has been derived by Fleischer [26] and it equals:

βi = 3
2
µ(η′i + 16δi)

3/2, where η′i = |ηi|/(ηi + 0.5) is a constant; ηi = µi−µNi

µNi
and δi =

rai −raNi

raNi

are the modulus and lattice strain of element i with respect to Ni, respectively; and µi

and rai are the shear modulus and atomic radius of element i, respectively. Estimation of

βi is shown in the Appendix.
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5 Results

The model results of the yield stress are tested against experimental measurements in five

additional superalloys containing unimodal and multimodal γ′ size distributions. Table

1 shows the chemical composition of the commercial alloys referred to in this work as

well as the total γ′ volume fraction (f), covering a wide compositional range and volume

fraction; f values were obtained from the literature. No carbides, interstitial elements or

substitutional elements with concentrations less than 1 wt% are considered in this work,

since their strengthening contribution is relatively low in superalloys [1]. For σss, the

chemical composition in the γ for the alloys tested is displayed in the Appendix.

Table 2 shows the initial microstructures for these alloys obtained with different heat

treatments. The experimental measurements were obtained from the literature. In the

case of alloys with unimodal γ′ size distributions the volume fraction and mean size are

displayed in fs and rs, respectively. For the case of RR1000, the measured values of

the grain size and γ′ (fi and ri) reported in [6] are added as supplementary material.

This also includes the parameters ωi obtained in the lognormal size distributions, as

well as the particle size distributions of secondary γ′. Requests for access to additional

experimental data should be directed to the corresponding author and will be considered

against commercial interests and data protection.

σY is obtained by solving equations 16 and 18. The first step for each simulation is

to identify the γ′ size distribution and to numerically solve the integrals in equations 15

numerically. pi is obtained by inserting the mean radius for each size range (primary, sec-

ondary and tertiary) given in Table 2 into equation 15; ωi values in equation 15 were esti-

mated from the experimental standard distributions and in the case where no information

were provided, these parameters are approximated to typical experimental values [5, 6]:

ωp = 0.05, ωs = 0.25 and ωt = 0.25. For the numeric integration, a particle size interval

was taken equal to dr ≈ ∆r = 0.1 nm and the maximum γ′ radius in the integral was fixed

to 10,000 nm (the maximum mean primary γ′ radius is 1000 nm). This spans a very wide

particle size distribution in the range 0.1 ≤ r ≤ 10, 000 nm. The values of the antiphase

boundary energy were assumed identical in all alloys tested, except for Udimet 720Li.
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γAPB values were obtained from theoretical predictions in RR1000 employing the CAL-

PHAD method [5]; these values were fitted to a polynomial function to capture the tem-

perature effects: γAPB = (0.28−7×10−6T−3×10−8T 2) J/m2; this expression is consistent

with observations on the temperature dependence of the antiphase boundary energy [27].

In the case of Udimet 720Li, it has been pointed out that γAPB is slightly higher [15];

hence, its value is increased by 0.02 J/m2: γAPB = (0.3 − 0.000007T − 0.00000003T 2)

J/m2. Although the shear modulus employed in the model should be that for the ma-

trix, as dislocation generation and glide occur mostly in the γ, in practice it is difficult

to measure the elastic constants of the phases in isolation on each alloy [28]; hence, µ

is taken as the modulus of the alloy to simplify the analysis. µ in RR1000 is obtained

from the Young modulus’ measurements in [29], with µ = E
2(1+ν)

and ν = 0.32. These

values were fitted to analytical expressions to capture their temperature variations (in K)

and simplify calculations: µ = 87.32 − 0.0009T − 0.000019T 2 GPa; this expression was

assumed valid for other alloys tested as the variations of µ with composition are small [1].

b = 0.248 nm was used for all alloys tested.

Figure 6(a) shows the yield stress predictions in ATI 718Plus at room temperature

(black line) and KM4 (purple line) at 650 ◦C with unimodal γ′ distributions and the ex-

perimental measurements for these alloys; the horizontal axis represents the mean particle

radius. In this this case, ws = 0.25†† and fp = ft = 0. The model shows generally good

agreement with experiments for large γ′ (strong pair–coupling regime) in KM4 and for

smaller γ′ (weak and medium pair–coupling) for ATI 718Plus; the model successfully pre-

dicts the maximum strength in ATI 718Plus to take place at r ∼ 15nm. It is interesting

to note that He et al. [30] observed the maximum yield stress in Inconel 718 also occurred

at r ≈ 15 nm. Additionally, predictions for ATI 718Plus employing the classic weak

and strong pair–coupling models (including solid solution and Hall–Petch strengthening)

in equations 2 and 4 are shown; the combined weak–strong models predict higher stress

levels of up to ∼ 120 MPa with respect to the experimental measurements in the vicin-

ity of the maximum stress. This further confirms that our model is able to successfully

††The values of τp for unimodal γ′ are practically the same as if one simply employs equation 11, as
the size distribution functions are very narrow.
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capture the transition between the weak and strong pair configurations and illustrates

the limitations of the previous models. Figure 6(b) shows the yield stress predictions

in KM4 holding multimodal γ′ size distributions (subsolvus and supersolvus conditions)

and in Udimet 720Li following different heat treatments and at different temperatures

up to 650 ◦C [15, 31]. Figure 6(c) and (d) show the simulated γ′ size distributions in

KM4 (only mean values were reported in the experiments) and Udimet 720 Li (HT1–3),

respectively, and rm values; experimental distributions for 720Li are also shown in (d).

The model shows good agreement with the experimental trends, however discrepancies in

720Li of up to 150 MPa are shown for HT1 and HT3 and up to 50 MPa for the results

obtained from Gopinath et al.; for the case of KM4 Subsolvus, the model underpredicts

σY by 70 MPa. The discrepancies in HT1 and HT3 could be due to the size distribution

characterisation, as the number density of tertiary γ′ displayed in the original micrograph

appears to be much higher than the values reported in Figures 6(d) [15]. The additional

discrepancies can be due to the parameters in the particle size distribution differ from

those corresponding to each alloy. These results show that our model is able to describe

the yield stress in the same alloy (KM4) when it holds unimodal (a) and multimodal γ′

(b). Furthermore, to illustrate the differences in σY between subsolvus and supersolvus

heat treatments, in KM4 the strengthening contributions for subsolvus heat–treatment

conditions are σD = 290 MPa, σss =92 MPa , σp =590 MPa (σweakp = 0.01 MPa and

σstrongp =590 MPa) and σOro =40 MPa, whereas in supersolvus the strengthening contri-

butions are σD = 95 MPa, σss = 80 MPa, σp =739 MPa (σweakp =17 MPa and σstrongp =722

MPa) and σOro = 7 MPa. By comparing individual contributions, γ′ strengthening in-

creases (149 MPa) during supersolvus heat treatment although strength loss occurs from

grain coarsening (-195 MPa), providing a net strength loss with respect to subsolvus con-

ditions. This result illustrates that grain growth should be avoided in order to maintain

high strength and hence the minimum necessary primary γ′ should be included in the

final microstructure.

Figure 7 shows the yield stress predictions at 650 ◦C and their comparison against

the experimental measurements in RR1000 when applying a dual microstructure heat
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treatment (DMHT) process on a turbine disk [6,32]; this process induces a temperature

gradient between the bore and the rim of the disk and a range of microstructures can be

tailored when the disk is heat treated near the γ′ solvus temperatures; this includes wide

range in the grain size and γ′ volume fraction, which is appropriate for our investigation. A

detailed explanation of the heat treatment and a complete microstructure characterisation

can be found in [6,32]. Microstructures and yield strengths were measured as a function

of the radial distance (in mm) from the bore to the rim. Figure 7(a) shows the yield stress

measurements and the model predictions for these very different microstructures. Figure

7(c) and (d) show the measured volume fraction of the γ′ (including primary, secondary

and tertiary) and the mean γ′ radii and grain size, respectively. It is worth noting that in

the “intermediate” region (70–80 mm to the Rim) up to four distinct γ′ size distributions

were observed as the secondary γ′ displayed a bimodal distribution (see supplementary

material); this microstructure was included in the model by adding an extra term in the

size distribution to account for the residual secondary γ′; ωp = [0.04, 0.1], ωs = [0.18, 0.35]

ωt = [0.2, 0.36] were directly obtained from the particle size distributions and standard

deviations measured in [6]. The model shows very good agreement with the experiments,

as discrepancies are lower than 70 MPa and consistent with scatter in the measured

volume fractions. Figure 7(b) shows the individual contributions to the total yield stress

for these microstructures. γ′ shear is by far the highest component of strength (540-620

MPa) and increases with γ′ volume fraction; grain boundary strengthening is the second

highest contributor (100-300 MPa) if the grain size is lower than 20 µm, indicating that

a minimum volume fraction of primary γ′ should be present in order to prevent grain

growth (Fig. 7(c)); the lowest contribution is given by the Orowan mechanism as most of

the secondary γ′ is in the region of the strong pair–coupling and primary γ′ particles are

too large. The Results in Figures 6 and 7 confirm that the model is sensitive to variations

in the microstructure and it is able to predict the yield stress for wide conditions of

multimodal γ′ sizes.

Figure 8 shows predictions of the yield strength σY for two alloys (a) RR1000 and

(b) IN100 at different temperatures, compared with experimental measurements; two
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microstructures were explored in each alloy (Table 2). In Fig. 6(a) no characterisation

on the microstructure was provided; hence, these microstructures were assumed to be

equivalent to those in Fig. 6 at 14 and 119 mm to the Rim for coarse and fine grain,

respectively, as they are similar to those obtained from the standard heat treatments

[6, 32]. The temperature effects on σY are assumed to be dominated by γAPB and µ

in this temperature range, although temperature variations of the other strengthening

mechanisms can be present [1]. The model predictions show very good agreement with

the experimental trends in both alloys, except for supersolvus IN100 at 650 ◦C where the

experiments display apparent hardening, whereas the model predicts lower yield stress.

This may be due to the assumptions made about the microstructures in this case, since the

model predicts the yield strength successfully for both heat treatments of RR1000 where

the microstructures were characterised. To assess the relative strength loss between the

subsolvus and supersolvus heat treatments in IN100 at 650 ◦C the respective strengthening

contributions for subsolvus conditions are σD = 355 MPa, σss = 101 MPa, σp =607 MPa

(σweakp =600 MPa and σstrongp =7 MPa) and σOro = 0.6 MPa, whereas in supersolvus

σD = 121 MPa, σss = 101 MPa, σp =668 MPa (σweakp =654 MPa and σstrongp =13 MPa)

and σOro = 0.8 MPa; a net stress decrease of -173 MPa is associated with supersolvus

conditions, similar to the case of KM4 and RR1000. In order to compare how the yield

stress differs from unimodal and complex multimodal γ′ size distributions, Figure 8(c)

shows the yield stress predictions in RR1000 and one experimental result [5] as a function

of the secondary γ′ radius with D = 7 µm and fp = 7.5% and rp = 225 nm for three

different volume fractions (f = fp+fs). It is worth noting that although this is a bimodal

microstructure, the effect of primary γ′ on τp is very low and it can be considered as

unimodal. Based on the classic weak and strong pair models, Collins and Stone concluded

that the maximum strength is achieved when rs = 30 nm, however, with our model

maximum yield stress is predicted when rs = 12−15 nm; our predictions are in agreement

with the observations of He et al. [30] in Inconel 718 and in ATI 718Plus (Figure 5(a)).

Although the model shows lower values than the experiment by ∼ 50 MPa, it is predicted

that the yield stress is higher by up to 100 MPa for unimodal γ′ compared with multimodal
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size distributions (Figure 6(a), at distance to the Rim≥ 100 mm). This demonstrates that

σY is higher for unimodal γ′ than for an alloy containing both secondary and tertiary

γ′. Additionally, marginal increments in strength are observed when increasing the γ′

volume fraction. To illustrate this, Figure 8(d) shows the model predictions at 650 ◦C

for RR1000 with an unimodal particle size with fine (solid line) and coarse (dashed line)

microstructures for different γ′ volume fractions; σY values in a number of common turbine

disk alloys with different volume fractions are displayed [1]; the model predictions are

within the range of the actual values of these alloys. It is interesting to note that the

yield stress nearly saturates for f > 50%, indicating that only marginal increments are

expected when increasing the γ′ volume fraction beyond this point, as it is predicted in

(c).

7 Discussion

A new model for the yield stress in superalloys with unimodal and multimodal γ′ size dis-

tributions has been presented. It was shown to be valid for very wide range of particle size

and γ′ volume fraction. The model addresses the limitations identified in the classic weak

and strong pair–coupling models and introduces more appropriate configurations. These

included: 1) the dislocation configuration for the weak pair–coupling case was redefined

since the established model represents stress levels higher than the critical resolved shear

stress where slip has already occurred; 2) the maximum strength and transition occurs

when the dislocation bowing angle is null [7], as opposed to the previous approach where

the transition occurs when the (incompatible) weak and strong pair models converge; 3)

an intermediate (medium pair–coupling) configuration was identified where dislocations

bow out and partially cut the precipitates, allowing us to connect the weak and strong

pair coupling configurations; and 4) an additional term in the equilibrium force balance

was introduced to account for the force acting from the applied stress on the γ′. This

allowed us to obtain a continuous transition between weak and strong pair–coupling and

good correlation was obtained with the experiments; classic approaches do not address in

detail the critical range where the transition occurs and rely on the convergence of the
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(inconsistent) weak and strong pair models. Moreover, the ability to fully describe the

strength of γ′ with different sizes also allowed us to extend the model when multimodal

particle size distributions were present. This was done by weighting the individual contri-

bution to the total strength according to the relative particle number in the alloy. These

results were combined with grain boundary and solid solution strengthening models to

predict the yield stress in five, and the particle shear strength in three superalloys con-

taining wide variations in microstructure, composition and at temperatures up to 700 ◦C.

Thus, for the first time a parameter–free physics–based model has been able to predict

the yield stress in PM superalloys with complex γ′ microstructures for grain sizes up to

50 µm.

A rigorous analysis was performed on the effect of multimodal size distributions in

precipitation hardening (equation 16). Although this result allows us to consider more

complex distributions, it was also shown that particle strengthening can be approximated

if only the mean radii of each particle type are considered (equation 17). To illustrate

the difference between these cases, we calculate τp in RR1000 at room temperature with

D = 50 µm using equations 16 and 17 for different secondary and tertiary γ′ sizes and

fp = 0.15, fs = 0.35 and ft = 0.03. Table 4 shows the microstructures considered and

the predictions in both cases. For the case of lognormal size distributions, ωp = 0.05,

ωs = ωt = 0.25 are adopted to replicate the conditions shown in the previous section.

Both cases show similar predictions for all conditions, although slightly lower stresses are

predicted by the model when considering lognormal size distributions. This is due to a

wider size spread decreases the overall critical resolved shear stress.

The model results have been tested mostly in powder metallurgy superalloys with

grain size up to 55 µm for subsolvus and supersolvus heat treatments. However, for

alloys processed by the cast and wrought route (C&W), the supersolvus heat treatment

can lead to grain sizes as large as 1 mm [33]. A Hall–Petch constant of 710 MPa µm1/2

was considered in our model, although this value could differ for other conditions since

there is a concomitant alteration in the γ’ microstructure when modifying the grain size.

In order to test the fidelity of the model for coarser grains, the yield stress in (C&W)
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720Li is predicted and compared with the experimental observations from Vaunois et

al. [33]. These alloys followed solution heat treatments at three different temperatures

(1080 ◦C, 1120 ◦C and 1160 ◦C) in order to get different grain sizes. We consider the

microstructures for the tests where oil quench was employed at the end of the solutioning

treatment. The samples then were aged at 650 ◦C for 24 hours and followed air quenching.

For the case of 1120 ◦C, an additional ageing step of 760 ◦C for 16 hours was reported.

Table 3 shows the microstructures and the values of the measured yield stress for these

conditions. It is worth noting that dt was not reported for the case of solutioning at 1160

◦C and dt = 15 nm is adopted to be consistent with similar conditions reported in their

work. ωp = 0.05, ωs = ωt = 0.25 were considered for the particle size distributions. Our

predictions show good agreement for the case of 1080 ◦C and 1160 ◦C, where D = 4.8

µm and 456 µm, respectively, and it underpredicts σY by 100 MPa at 1120 ◦C. The

latter can be due to tertiary γ’ not being fully dissolved and very fine particles could

be aiding in increasing the precipitation strengthening term. Although the model shows

good agreement, further work should be considered in C&W alloys to study the effect of

microstructural inhomogenenities and coarser grains in σY . These features would affect

the size distribution function and number density of γ′ per grain and the Hall–Petch

strengthening term.

7.1 Is the yield stress optimal?

From our model, it is possible to assess whether or not the microstructure adopted in these

alloys provides the highest strength consistent with good creep and fatigue properties. We

take σY in RR1000 at 650 ◦C and D = 10 µm as a reference case. To explore optimal

microstructures for yield stress we base our analysis on two simple guidelines. 1) If the

creep life is not critical, a minimum volume fraction of primary γ′ should be present in

order to avoid grain growth and guarantee a fine grain microstructure [5,32]; we then fix

fp = 10% and the remaining volume fraction is shared between secondary and tertiary

γ′ ≈ 45 %, i.e. fs + ft = 45 %. 2) Combined distributions of tertiary and secondary γ′

have been shown to be beneficial for ductility, fatigue and creep properties and their effect

on σY can be assessed with our model. Contour plots on the volume fraction and mean
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radius effects in σY are shown in Figure 9 for (a) tertiary (ft VS rt) and (b) secondary

γ′ (fs VS rs); the contour lines represent the conditions for iso–yield stress. In order to

simplify the 4–dimensional analysis, the mean radius of secondary and tertiary γ′ were

fixed in (a) and (b), respectively, and only their relative volume fraction was allowed to

change. On one hand, in Fig 9(a), the maximum stress is obtained when rt = 10 − 15

nm, and only marginal gains are observed when the tertiary γ′ increases when ft ≥ 10 %;

on the other hand, in (b) the yield stress is higher as the secondary γ′ volume fraction

decreases (as the tertiary γ′ volume fraction increases), although the stress increments are

also marginal; coarser γ′ also shows marginal increments in σY since the relative number

of tertiary γ′ (wt = Nt/N) increases as the secondary γ′ radius increases for a fixed

volume fraction. This shows that the tertiary γ′ size and volume fraction are the most

important parameters to control, and optimal strengths (≥ 1100 MPa) can be obtained

as long as ft ≥ 10 % and rt = 15 nm; the size of secondary γ′ can then be tailored to give

optimal fatigue and creep properties, since the tradeoff in the yield stress is minimal [3,34].

Additionally, Crudden et al. [35] have pointed out that an efficient strategy for increasing

the strength in superalloys is by modifying alloy composition to increase fault energies

associated with anti-phase boundaries and stacking faults. Following this concept, Figure

9(c) shows a parametric analysis on the effects of γAPB and the γ′ volume fraction in σY

for alloys sustaining unimodal size distributions and (d) for alloys having multimodal γ′

size distributions consistent with the previous design criteria (fixed fp = 10%, rp = 500

nm, rs = 100 nm, ft = 10 % and rt = 15 nm); the shadowed bands show the range of

γAPB values in commercial superalloys [35]. A fixed solid solution contribution is assumed

(from the RR1000 base composition) in the calculations for simplicity. The total γ′ volume

variation is displayed in (d), although only fs is changing, i.e. fs = 0 for f < 20% and

it only increases above this value. The yield stress can reach 1800 MPa if the antiphase

boundary energy increases up to 0.5 J/m2 and f > 40% in the unimodal alloy, whereas

it peaks at ∼ 1650 MPa for the multimodal distribution with the same APB energy and

volume fraction. This implies that a 150 MPa tradeoff in σY is to be expected for assuring

good mechanical properties (ductility, creep and fatigue life), although these values are
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higher for higher γAPB. These results illustrate how the model can be employed as a tool

for process and alloy design. However, it is important to remark that variations in γAPB

can also affect the lattice misfit and γ′ volume fraction, and this should be considered

more in detail.

7 Conclusions

The following conclusions can be outlined from this work:

• A unified description of precipitation shear strengthening in alloys with unimodal

and multimodal particle size distributions was described by revisiting the classic

models on weak and strong pair–coupling.

• An intermediate dislocation pair–coupling configuration was shown to link the clas-

sic weak and strong pair models and accurately describe the transition range where

maximum strength occurs.

• It was verified theoretically that the yield stress is higher for alloys with unimodal

γ′ sizes compared to their counterpart with a multimodal size distribution. This

results from the strength being distributed according to the relative particle number.

• It was shown that the tertiary γ′ size and volume fraction are the main microstruc-

tural parameters controlling the strength of alloys multimodal distributions.

• The relative contribution of each strengthening mechanism was deconvoluted in

polycrystalline superalloys. This allowed us identify the terms contributing to the

strength loss found between supersolvus and subsolvus heat–treatments.
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Appendix

The atom fraction of each alloying element in the γ and its solid solution constant (βi) are

needed to estimate σss in the yield stress equation. The atom fraction in the matrix was

directly obtained from the experiments for IN 100 [14] and in RR1000 [6]; Thermocalc was

employed in the other alloys, where for the case of Mo, Cr and other elements forming

other secondary phases such as σ were assumed to fully partition in the matrix [36].

Table 5 shows the atom fraction xi for these alloys. The values of βi calculated with the

expressions introduced in Section 4 are also shown in this table (including η′i and δi), as

well as the shear modulus µi and atomic radius rai values of each alloying element. They

were obtained from [37]; µNi = 80 GPa and raNi = 0.117 nm were adopted for simplicity in

the calculations. By the definition of βi, the lattice misfit δi displays stronger effect than η′i

and higher strengthening is predicted for alloying elements with large atomic radius, such

as Mo, Nb, Ta, Ti, and W, whereas low strengthening occurs in elements with smaller rai ,

such as Al, Co and Cr; modulus distortion effects in strengthening are significantly lower.

Additionally, the values of βi are compared with those experimentally estimated by Roth

et al. [38] in multicomponent Ni alloys‡‡; this work extends the earlier results by Mishima

et al. [39] estimating βi for binary Ni alloys at 77 K. Roth et al. and our βi values are very

similar in Cr, Co, Mo and Al, whilst our predictions display higher values in W, Ti, Ta

and Nb. These discrepancies can be due to the difference in the exponents considered by

Roth et al., as the results originally obtained by Mishima et al. showed that W, Nb and

Ta have much higher contribution than Mo and Ti has a similar strengthening coefficient

than Mo. Our results are consistent with Mishima et al. observations.
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Table 1: Chemical composition and strengthening particle volume fraction of the super-

alloys tested in this work.

Alloy Ni Cr Co Mo W Al Ti Ta Nb f (%)

ATI 718Plus Bal. 17.42 9.13 2.72 1.04 1.46 0.71 – 5.48 14–18

KM4 Bal. 12 18 4 – 4 4 – 2 55

IN100 Bal. 12.3 18.3 3.3 – 4.9 4.3 – – 60

RR1000 Bal. 15 18.5 5 – 3 3.6 2 1.1 40–55

Udimet 720Li Bal. 16 15 3 1.25 2.5 5 – – 45–50

31



Table 2: Initial microstructures of the superalloys tested. Uni, Sub and Sup stand for

unimodal γ′, subsolvus and supersolvus heat treatment, respectively.

Alloy D (µm) fp (%) rp (nm) fs (%) rs (nm) ft (%) rt (nm) Ref.

ATI 718Plus 20 – – 14–19 7– 26 – – [40]

KM4 (Uni) 6 – – 55 50–340 – – [41]

KM4 (Sub) 6 11 1000 35 145 9 35 [41]

KM4 (Sup) 55 – – 45 180 10 20 [41]

IN100 (Sub) 4.1 20 600 34 85 6 4 [14]

IN100 (Sup) 34.4 – – 46 170 14 5.5 [14]

RR1000 7–46 0–12 408–765 36–43 91–114 1–3 8.8–11 [6]

720Li (Sub) 10 15 750 27 55, 60 3 21, 30 [15]

720Li (Sup) 30 10 750 39 57 1 15 [15]

720Li 11 18 750 22 55 5 15 [31]
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Table 3: Model comparison with experiments in 720Li for wide grain size ranges. Exp.

and Mod. stand for the measured and predicted yield stress, respectively.

Sol. Temp (◦C) 1080 1120 1160

D (µm) 4.8 12.9 456

fp (%) 18 14.1 0.1

dp (nm) 1670 2230 2110

fs (%) 9.2 30.9 20

ds (nm) 233 35.4 55

ft (%) 17.8 - 24.9

dt (nm) 14.3 - 15

Exp. σY (MPa) 1224 1250 955

Mod. σY (MPa) 1210 1154 931
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Table 4: Comparison in τp when considering lognormal size distributions and only mean

radii.

Case rs (nm) rt (nm) τp (MPa) rs (nm) rt (nm) τp (MPa)

Size distribution 200 40 227 200 20 255

Mean values 200 40 235 200 20 262

Size distribution 100 40 240 100 20 255

Mean values 100 40 242 100 20 260
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Table 5: Elemental atom fraction in the matrix and µi and rai of the respective alloying

elements. βi calculations in this work and estimations from [38].

Alloy Cr Co Mo W Al Ti Ta Nb

ATI 718Plus 0.23 0.11 0.0246 0.005 0.0016 0.0003 - 0.03

KM4 (Uni) 0.24 0.3 0.015 - 0.009 0.0012 - -

KM4 (Sub) 0.24 0.3 0.015 - 0.009 0.0012 - -

KM4 (Super) 0.24 0.3 0.015 - 0.009 0.0012 - -

IN100 0.25 0.28 0.057 0.02 0.001 - -

RR1000 0.25 0.25 0.0825 - 0.0086 0.002 0.0014 -

Udimet 720Li 0.3 0.21 0.02 0.003 0.005 0.002 - -

µi (GPa) 115 75 126 161 26 44 69 38

rai (nm) 0.13 0.118 0.146 0.15 0.124 0.148 0.158 0.156

η′i 0.36 0.06 0.44 0.67 0.5 0.36 0.12 0.41

δi 0.11 0.008 0.25 0.28 0.06 0.26 0.35 0.33

βi (MPa/at2/3) 375 10 1112 1417 212 1186 1648 1654

βi (MPa/at1/2) from [38] 337 39.4 1015 977 225 775 1191 1183
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Table 6: Nomenclature

b Magnitude of the Burgers vector [m]

βi Solid solution constant of alloying element i [MPa/at3/2]

D Mean grain size [µm]

δ(r) Dirac delta function

δi lattice distortion of alloying element i with respect to Ni

ηi modulus distortion of alloying element i with respect to Ni

η′i constant related to ηi

f Total volume fraction of γ′

fp, fs, ft Volume fraction of primary, secondary and tertiary γ′

γAPB Antiphase boundary energy [J/m2]

kY Hall–Petch constant [MPa µm1/2]

L Mean particle spacing [m]

l1, l2 Segment length of the leading (1) and trailing (2) dislocations

acting in the cutting of a particle [m]

λ1 Friedel spacing [m]

Λ1, Λ2 Effective length of the leading (1) and trailing (2) dislocations

driving particle cutting [m]

µ Shear modulus [GPa]

µi Shear modulus of the alloying element [GPa]

N Total particle number of γ′

Np, Ns, Nt particle number of the primary/secondary/tertiary γ′

ωp, ωs, ωt Constant in the lognormal size distribution of the primary,

secondary and tertiary γ′

p Total particle size distribution in the specimen

pp, ps, pt Individual particle size distribution of primary, secondary and tertiary γ′

r mean γ′ radius (unimodal size distribution) [m]

rp, rs, rt mean radius of primary, secondary and tertiary γ′ [m]
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Table 7: Nomenclature (cont.)

rai atomic radius of alloying element i [nm]

raNi atomic radius of Ni [nm]

rm particle radius with maximum strength [m]

σY Yield stress [MPa]

σp Precipitation shearing stress [MPa]

σOro Orowan axial stress [MPa]

σss Solid solution strengthening [MPa]

σD Hall–Petch strengthening [MPa]

τp Critical resolved shear stress for cutting a particle [MPa]

τOro Orowan shear stress [MPa]

wp, ws, wt particle number fraction of primary, secondary and tertiary γ′
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Figure 1: Schematic illustrations of the dislocation configurations in the case of (a) weak

pair–coupling and (b) strong pair–coupling. The shadowed regions represent the area

sheared by the leading dislocation.
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Figure 2: Predictions of the room–temperature critical resolved shear stress due to par-

ticle shear in (a) NiAl employing the weak pair–coupling, Kozar and Ardell’s models.

Additional predictions of the resolved shear stress in (b) Nimonic PE16 and (c) Nimonic

105 employing the weak and strong pair–coupling models.
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Figure 3: Schematic illustration of the modified dislocation configurations in the case of

(a) weak pair–coupling, (b) intermediate pair–coupling and (c) strong pair–coupling. (d)

Schematic representation of the geometric configuration between l1, r and rm in the case

of partial shear.
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Figure 4: Variation in the effective length being sampled by a bowing/straight dislocation

and its effect on the resolved shear stress in Nimonic 105. The dashed line represent the

critical resolved shear stress predicted by the strong pair model.
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Figure 5: Our predictions of the room–temperature critical resolved shear stress due to

particle shear in (a) NiAl, (b) Nimonic PE16 and (c) Nimonic 105.
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Figure 6: Model comparison with experimental measurements on the yield stress for

superalloys with (a) unimodal and (b) multimodal γ′ size distributions. The particle size

distributions in KM4 and 720Li (HT1–3) are shown in (c) and (d), respectively.
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Figure 7: Strength and microstructure characterisation in RR1000 under dual microstruc-

ture heat treatment (DMHT) [6, 32]. (a) Yield stress predictions and measurements, (b)

model estimation of the individual contributions to the total strength; experimental (c) γ′

volume fraction characterisation and (d) grain size and γ′ mean size; all the experiments

are expressed as a function of the distance from the bore to the rim of a turbine disk.
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Figure 8: Temperature effects on the yield stress in (a) RR1000 and (b) IN100. (c)

Yield stress in RR1000 with unimodal γ′ size at different volume fractions. (d) Model

predictions at 650 ◦C in fine and coarse microstructures for different precipitate volume

fractions and σY values in number of common precipitation–strengthened superalloys.
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Figure 9: Parametric analysis on the various parameters affecting the yield stress in

RR1000 for different (a) tertiary and (b) secondary γ′ conditions. Yield stress evolution

as a function of the antiphase boundary energy and γ′ volume fraction with (c) unimodal

and (d) multimodal size distributions. The shadowed bands show the range of γAPB values

in commercial superalloys
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