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Abstract

The fluid-structure interaction (FSI) effect experienced by an elastomer-coated concrete slab

subjected to blast loading in air is studied numerically. The aim is to establish whether a

flexible coating alters blast-structure interactions and whether this can explain the apparent

blast mitigating capability of this retrofit solution as reported in published experimental

investigations. Numerical models for a typical concrete and spray-on elastomer coating are

established and a Coupled Eulerian-Lagrangian (CEL) model is employed to predict the air

blast response. A 1D FSI analysis suggests that the elastomer coating increases the peak

compressive stress in the concrete during short timescale pressure wave interactions. But

the effect on the total imparted momentum is small, across a range of target mass and blast

intensity. However, due to momentum sharing, the impulse imparted to the concrete plate

is reduced in the coated configuration. By extending the analysis into 2D, it is found that

the displacement of a concrete slab is marginally reduced when coated on either the blast-

receiving or non-blast-receiving face. Thus, it is postulated that the elastomer contributes a

small, beneficial mechanical effect. Finally, the need for a fully coupled (CEL) approach to

model the blast-structure interaction is interrogated. For a wide range of cases, the results

suggest that using a purely Lagrangian approach, in which a pressure-time history is directly

applied to the structure (thereby neglecting full representation of FSI effects), is sufficient

to capture the deflection behaviour of coated concrete plates. However, it is shown that the

significance of the error associated with this simplification depends on the blast intensity

and slab geometry under consideration.
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1. Introduction1

Increasing concerns related to terrorist activity have shaped global agendas towards the2

protection and resilience of critical buildings and infrastructure. Despite the current atten-3

tion focused on the need to design for enhanced blast resilience in the built-environment, it4

is accepted that there is still a great deal yet to be understood regarding the effects of blast5

on structures and how best to mitigate them.6

Blast loading itself is a complex phenomenon. It is a transient, dynamic event which7

presents many modelling challenges, analytically and numerically. The simplest approxima-8

tion of a typical blast wave is the exponential time-dependence of the imparted pressure9

given by Eq. 1, (see, for example, Kambouchev et al. [1]):10

p(t) = pse
− t

ti 0 ≤ t ≤ ∞ (1)

where ps is the peak overpressure and ti is the decay time. Thus, the incident impulse:11

Ii =

∫ ∞
0

p(t)dt = psti (2)

While new buildings can be designed with higher threat levels in mind, existing structures12

remain vulnerable if the threat level changes. Retrofitting buildings and infrastructure for13

enhanced blast resistance is one approach to solving this problem. One particular retrofit14

solution that has gained attention in recent years is the use of a spray-on elastomer coat-15

ing. Early experiments on masonry structures yielded encouraging results regarding the16

elastomer’s ability to contain blast debris [2, 3]. Further work on elastomer application to17

steel plates has suggested that it is also capable of significantly reducing peak deflections18

due to dynamic loading [4–6]. However, there is some debate in the literature regarding the19

optimum coating location i.e. whether it is more beneficial to coat the blast-receiving or20

non-blast-receiving face. Indeed, some researchers have reported that the coating can have21

detrimental effects if applied to the load-receiving face of a steel substrate [4, 5].22

Comparatively little work has focused on spray-on elastomers applied to a concrete sub-23

strate, despite concrete representing a significant proportion of the aging, vulnerable infras-24
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tructure in today’s built environment that could benefit from such a retrofit solution. In25

one study by Raman et al. [7], a numerical analysis is used to investigate the performance26

of a polyurea-coated, reinforced concrete slab. Results indicated that polyurea coatings can27

significantly contribute to controlling panel displacement, and deflection reductions of more28

than 40% were reported. However, the question remains as to what mechanism is respon-29

sible for this apparent enhancement in blast resistance: is the elastomer effect a purely30

mechanical one, or does the application of an elastomer coating to a concrete slab introduce31

a fluid-structure interaction (FSI) effect?32

There are various examples in the literature whereby the introduction of a compliant33

layer gives rise to beneficial FSI effects. For example, this phenomenon has been exploited34

for blast mitigation in the case of sandwich panels subject to underwater blast loading [8, 9].35

However, it is not clear whether FSI can explain the apparent enhanced air blast resistance36

observed for concrete panels coated with a spray-on elastomer coating.37

G.I. Taylor [10] performed one of the first investigations to explore FSI effects for the38

case of underwater explosions. He analysed the interaction between a 1D blast wave and39

a rigid plate and proposed that the FSI effect was governed by a single, non-dimensional40

parameter. Further, he was able to quantify the relative impulse transmitted to the plate,41

as a function of this non-dimensional parameter.42

The 2006 work of Kambouchev et al. [1] expands upon the work of Taylor [10] to account43

for non-linear compressibility effects during FSI, with a focus on the air blast loading of44

structures. They consider the case of a free-standing plate, of arbitrary mass, impacted45

by a planar blast wave, propagating in a compressible medium. An expression (Eq. 3) is46

postulated for the relative transmitted impulse, Ip/Ii.47

Ip
Ii

= γR

(
CRfR
γR

)βs/(1+βs)
ββs/(1−βs)s (3)

where Ip is the transmitted impulse to the plate, Ii is the incident blast impulse and CR, γR48

and fR are parameters derived in [1].49

The compressibility is encapsulated in the revised FSI parameter, βs that is now depen-50

dent on blast intensity parameters.51
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βs =
tiρsUs
ρphp

(4)

where hp is the plate thickness and ρp is the density of the plate. ρs is the density of the52

compressed blast medium and Us is the shock propagation speed, each defined by Rankine-53

Hugoniot relations in [1]. Similarly to Taylor [10], this parameter represents the relative time54

scales of the blast wave duration, ti and of the fluid-structure interaction, t∗s.55

Throughout this investigation, we will employ finite element analysis using the commer-56

cial code, Abaqus/Explicit [11]. The paper is structured as follows. First, a fully coupled57

Eulerian-Lagrangian (CEL) finite element model is developed. Appropriate constitutive58

models for concrete and an elastomer coating are attained. For coated configurations, the59

present study focuses on the case of perfect bonding between the concrete and elastomer.60

We begin with a high resolution 1D investigation to study the stress wave interactions be-61

tween the air/polymer/concrete interfaces over very short time scales. This allows us to62

consider the various non-linear effects in the air (compressibility), polymer (hyperelasticity,63

viscoelasticity) and the quasi-brittle substrate, concrete. We follow this with longer duration64

1D calculations to interrogate the effect of these non-linearities on the total impulse trans-65

mission. For a practical range of concrete and coating thicknesses, the influence of coating66

on the imparted momentum to each layer is assessed. We extend our investigation to the67

2D response to examine any interplay between FSI effects (acting over short timescales) and68

any longer timescale mechanical benefit that might arise from the elastomer coating, for69

both a low and high intensity blast. It emerges that the function of the elastomer depends70

on the response regime of the slab and thus motivates a need for further interrogation of71

performance sensitivity to the coating, substrate and blast parameters. In order to facilitate72

this, we quantitatively assess the suitability of simplified numerical modelling strategies, that73

would enable such a study at reduced computational cost.74

2. Numerical model development75

2.1. Concrete constitutive model76

The Concrete Damaged Plasticity (CDP) model in Abaqus/Explicit [11] is chosen for the77

concrete material model. The model does not track individual macrocracks but rather consid-78
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ers the concrete as a continuum which exhibits isotropic, damaged elasticity and isotropic,79

pressure-dependent plasticity. Pressure dependent damage is prescribed via compressive80

crushing and tensile cracking responses.81

The model parameters are summarised here, with further details provided in Appendix82

A. To implement this model, the compressive behaviour is defined in terms of the uniaxial83

compressive stress, σc vs. inelastic strain, ε̃inc according to the empirical relationships set84

out in the CEB-FIP Model Code [12]. The tensile response is based on the relationship85

proposed by Hordijk [14] for the uniaxial tensile stress, σt in terms of cracking displacement,86

uckt . Damage is incorporated through the use of compressive and tensile damage parameters,87

dc and dt which quantify the degradation of elastic stiffness and can take values between88

zero (undamaged material) and one (fully damaged material). The compressive and tensile89

damage parameters are defined as a function of inelastic strain, ε̃inc and cracking displacement,90

uckt , respectively, according to the relationship proposed by Birtel and Mark [15]. To complete91

the definition, the CDP model employs the yield function proposed by Lubliner et al. [16]92

and includes the modifications suggested by Lee and Fenves [17]. Further, a non-associated93

plastic flow rule is assumed whereby the flow potential takes the form of the Drucker-Prager94

hyperbolic function. We assume a concrete compressive strength of 39.5 MPa and tensile95

strength, 4.2 MPa. The undamaged elastic modulus is 28.3 GPa, the Poisson’s ratio is 0.296

and the density is 2550 kg m−3.97

In this investigation, we opt to omit strain rate dependence in the constitutive response98

of the substrate. There is currently a lack of published data on the strain rate dependence99

of the full suite of constitutive parameters in the CDP model. This constitutive assumption100

might affect the model fidelity, in terms of reproducing specific experimental results (for101

which a more detailed representation of the blast loading conditions would also be required).102

However, within the scope of this investigation, it provides an adequate model for studying103

the fundamentals of FSI effects for a quasi-brittle substrate, representative of concrete. 1
104

1Additional calculations were performed in Appendix A.2 to check, nonetheless, that the predictive quality

of the model is reasonable, for dynamic structural response in the regimes of interest.
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2.2. Elastomer constitutive model105

To help develop a representative material model for the elastomer, we take as a reference106

material a sample of commercially available, spray application polyurea/polyurethane hy-107

brid. The sample coatings were sprayed to a thickness of around 3−5 mm (precise control of108

thickness is not possible) onto an untreated steel plate and then peeled off. Characterisation109

tests on the coating were performed in tension, compression and shear, as follows.110

Uniaxial tension tests were performed on dogbone specimens, machined from this sheet,111

shown in Fig. 1. The geometry was based on the ASTM D182 standard [23], but modified112

to ease manufacture and enable testing on a servo-hydraulic materials testing rig.113

Figure 1: Tensile specimen used to characterise the polyurea/polyurethane hybrid spray-on elastomer. The

thickness of the specimen is 3.5 mm, though this varied between specimens.

An Instron screw-driven materials testing machine was used to perform tensile testing114

at low to moderate nominal strain rates, in the range 10−3 − 100 s−1. Higher nominal strain115

rates, in the range 100 − 102 s−1 were achieved using a servo-hydraulic materials testing116

machine. The resulting nominal stress-nominal strain results up to failure are presented in117

Fig. 2. It is observed that the response is non-linear and strain rate dependent. A substantial118

increase in failure stress with increasing strain rate is noted, though failure strains do not119

show considerable strain rate dependency.120

Next, a constitutive model is developed for the polymer on the basis of the tensile data.121

This will subsequently be validated against characterisation tests performed in compression122

and shear. Rather than trying to match precisely the response of a particular coating, the123

aim is to achieve a material model representative of a realistic elastomer coating to allow124

subsequent interrogation of the key phenomena at play. First, a hyperelastic constitutive125

relationship is fitted to the uniaxial tensile response up to a nominal strain ε = 1, using126

the data obtained at a nominal strain rate, ε̇ = 10−3 s−1 (assumed to be the long term127
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Figure 2: Uniaxial tensile results at various strain rates, ε̇ for the elastomer sample.

i.e. relaxed response). A Yeoh strain energy potential is found to give the best fit and its128

formulation is presented in Appendix A.3. A nearly incompressible variant of the model was129

selected, corresponding to a Poisson’s ratio of ν = 0.475 (a small degree of compressibility130

was required for numerical reasons). The density was chosen as ρe = 1.1 Mg/m3. A Prony131

series is used in conjunction with this hyperelastic model to provide a viscoelastic model132

suitable for a finite strain analysis (see [11]). The Prony series parameters are presented in133

Appendix A.3 (obtained from Table 3.4 in [24]).134

In order to validate the material model, first the ability of the viscoelastic model to135

predict the experimentally measured strain rate dependence in uniaxial tension was tested.136

Abaqus/Explicit was used to simulate a uniaxial tension test at strain rates of up to 102 s−1,137

which is indicative of the blast regime [25]. The resulting nominal stress-nominal strain plot138

is compared with that obtained experimentally in Fig. 3a. No failure criterion was included139

in the numerical model so the failure stresses and strains are not comparable. In order140

to isolate the effect of the Prony series on the shape of the stress-strain curve at higher141

strain rates, an additional result is shown (labelled inviscid) for which the Prony series is142

removed, but the hyperelastic strain energy potential is re-fitted to the higher strain rate143

data measured at 102 s−1.144

Reasonable agreement is observed between the numerical model and the experiment in145
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(a) Uniaxial tension

(b) Shear punch

(c) Compression

Figure 3: Comparison between experimental results and those obtained via the numerical model. Uniaxial

tension and shear punch results are compared for strain rates, 10−3 s−1 and ε̇ = 102 s−1. Compression data

is presented for ε̇ = 10−3 s−1. Two numerical models are considered — an inviscid model based on data

measured at ε̇ = 102 s−1 and a viscous model based on data measured at ε̇ = 10−3 s−1.
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terms of the strain rate dependence and the stresses at larger strains. However, the model146

underpredicts the initial modulus, not capturing precisely the shape of the measured tensile147

response curve.148

To test the material model under alternative stress states, shear punch experiments were149

performed using the rig illustrated in Fig. 4a. The polymer specimen (thickness he ≈ 3.5 mm)150

was clamped between a pair of steel plates, and loaded through a hole in the centre of the151

plates by a circular cylindrical punch (diameter d = 8 mm), driven by a servo-hydraulic test152

machine. The test machine cross-head velocities spanned several orders of magnitude to153

simulate the strain rates expected during a blast loading event.154

(a) Shear punch (b) Compression

Figure 4: Rigs used for the shear punch and compression disc experiments. For shear punch, the specimen

is sandwiched between steel plates of thickness 3 mm and impacted by a rigid punch of diameter 8 mm. For

compression, 25.9 mm diameter samples are compressed by a platen 40 mm in diameter.

Abaqus/Explicit was then used to simulate the shear punch experimental test at the high-155

est cross-head velocity achievable by the servo-hydraulic machine, ẋ = 900 mm/s, indicative156

of a nominal strain rate, ε̇ = 102 s−1. A plot of the nominal shear stress at the perimeter157

of the punch (given by P/πdhe, where P is the punch force) vs. normalised displacement158

(given by δp/he, where δp is the punch displacement) is compared with the experimental159

results in Fig. 3b. Once again, no failure criterion was included in the numerical model.160

Again, the viscoelastic model captures the strain rate dependence well. The model also pre-161

dicts the initial stiffness better for shear loading, compared to uniaxial tension. To further162

validate the model, compression of thin discs was performed at ε̇ = 10−3 s−1 on an Instron163

screw-driven materials testing machine as illustrated in Fig. 4b. Results are compared with164

numerical predictions in Fig. 3c. Loading and unloading is shown. Although the model fails165
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to capture the observed hysteresis, very good agreement is achieved for the loading portion166

of the curve.167

Throughout this study, we will proceed with this viscoelastic material model in the168

numerical analysis of the spray-on elastomer. Although the strain energy potential fails to169

capture accurately the shape of the tensile response, the model does capture well the strain170

rate dependence, and the responses in compression and shear.171

2.3. Coupled Eulerian-Lagrangian (CEL) model172

In order to capture the fully coupled air blast response, a Coupled Eulerian-Lagrangian173

(CEL) model was built in Abaqus/Explicit. A Lagrangian domain is used for the target174

structure, with the Eulerian domain capturing the air. In order to validate the model, a one-175

dimensional test case was developed. It simulates the behaviour of a rigid plate (Lagrangian176

domain), placed in an air column (Eulerian domain), impacted by a blast wave. The model177

is illustrated in Fig. 5 where point A corresponds to the point at which the blast pulse enters178

the air column and point B corresponds to the point of first impingement by the blast wave179

on the rigid target. The CEL model and its validation are summarised here, with further180

details provided in Appendix B.181

Figure 5: A schematic illustration of the 1D CEL model in Abaqus/Explicit.

It is assumed that the air can be modelled as an ideal gas [26] with the model parameters182

presented in Table B.6. The blast pulse is generated by specifying a velocity-time boundary183

condition to the end of the column at A. The velocity is specified in the direction AB,184

to generate a compressive pressure pulse. After having determined a finite element mesh185

density that can adequately resolve the propagating shock front, an iterative process can be186

employed to determine what velocity-time history is necessary at point A, to achieve the187

desired pressure-time history at point B. Iteration is necessary as the wave shape changes188

during propagation. This iterative process is similar to that presented by Chen et al. [28]189

using the Rankine-Hugoniot equations to relate particle velocity to peak overpressure.190
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To validate the CEL technique, in terms of its ability to resolve FSI effects, we compare191

calculated results for the relative transmitted impulse with Kambouchev et al.’s [1] analytical192

expression for a free-standing, rigid plate of arbitrary mass, given by Eq. 3. Very good193

agreement is found between the two FSI predictions (see Fig. B.17). This gives a strong194

indication that the CEL approach in Abaqus/Explicit is capable of accurately analysing195

fluid-structure interaction problems across the range of blast intensities of interest. The196

results indicate that for the case of low βs values, the relative transmitted impulse becomes197

insensitive to βs. This suggests that there is negligible fluid-structure interaction in this198

regime, as there is little plate movement during its interaction with the blast. Conversely,199

for lighter plates, as βs increases, there is a significant reduction in relative transmitted200

impulse to the plate relative to this heavy plate limit. This can be attributed to motion of201

the plate during the period of blast loading.202

3. 1D wave interaction study203

We begin our study by first examining in 1D the details of pressure wave propagation204

through the air/polymer/concrete interfaces. We examine the very short time scale response,205

using a high resolution numerical calculation, with the objective of determining whether the206

presence of a thin elastomer coating can serve to distort the blast wave. A number of207

non-linear effects are at play, such as air compressibility, concrete damaged elasticity and208

plasticity, and hyperelasticity and viscoelasticity in the polymer. Thus, the effect of the209

polymer can not necessarily be determined a priori, by analytical means.210

We implement the 1D CEL model described above, replacing the rigid plate with a211

deformable, Concrete Damaged Plasticity part of density, ρp = 2550 kg m−3 and compressive212

strength, σcu = 39.5 MPa. A concrete plate depth, hp = 100 mm is considered. On the basis213

of a mesh sensitivity study, it is determined that the shock front width (which is of the order214

of 20 mm in the concrete, and 4 mm in the air column) is adequately resolved with a mesh215

size of 1 mm in all material layers. 3D stress (C3D8) elements are used for the concrete216

and polymer while 3D Eulerian (EC3D8R) elements are chosen for the air column. All217

elements are constrained to permit only 1D deformations. A 5 mm thick elastomer coating is218

considered, positioned on the blast-receiving face, and we assume a perfect bond between the219
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concrete and polymer, simulated by tying all degrees of freedom at the interface. We examine220

the intermediate blast intensity case considered by Kambouchev et al. [1] corresponding to221

a peak overpressure of ps/p0 = 3.29. As described in Appendix B, we achieved ps/p0 = 3.34,222

Ii = 698 Pa s and ti = 2.0 ms in our CEL model.223

Figure 6 illustrates the spatial variation in the compressive stress at various times after224

impingement on the blast receiving face, for three configurations: concrete alone, concrete225

coated with a hyperelastic polymer on its blast-receiving face and concrete coated with a226

visco-hyperelastic polymer on its blast-receiving face. We note that in the latter case, when227

unloading occurs, the FE model predictions may lose fidelity, as the elastomer constitutive228

model does not capture the hysteresis of the polymer accurately. (However, as discussed229

subsequently, the key longer timescale effects appear to be insensitive to this.)230

We observe that the addition of a polymer layer causes significant distortion to the wave231

front due to both the non-linear elasticity and viscoelasticity in the polymer. Higher peak232

stresses are observed in the concrete as a consequence of the coating. It is therefore necessary233

to examine the longer timescale response, including the total impulse transmission and the234

development of any plasticity or damage in the substrate, which is discussed next.235

4. 1D air blast response of a concrete part236

Before proceeding to study the influence of an elastomer coating, the longer time scale air237

blast response of uncoated concrete is first considered. The aims, for a realistic range of areal238

mass and blast parameters, are; (i) to determine the regime of FSI response relative to the239

heavy and light plate limits identified by [1] and (ii) to identify any FSI effects attributable240

to concrete elasticity, plasticity or damage. In this section, the scope is restricted to the 1D241

FSI response. The 2D response of a slab will be described subsequently.242

For a fixed concrete density of ρp = 2550 kg m−3, four different plate thicknesses were243

considered: hp = 25 mm, 50 mm, 75 mm and 100 mm. This corresponds to areal densities of244

63.75 , 127.5, 191.25 and 255 kg m−2, respectively. Two different blast intensity cases were245

examined; the first is the intermediate intensity case considered by Kambouchev et al. [1]246

corresponding to a peak overpressure of ps/p0 = 3.29. As described in Appendix B, we247

achieved ps/p0 = 3.34, Ii = 698 Pa s and ti = 2.0 ms in our CEL model.248
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(a) Concrete only

(b) Concrete coated with hyperelastic polymer

(c) Concrete coated with visco-hyperelastic polymer

Figure 6: Stress profile in the concrete plate at three different time steps: t = 0 ms, t = 0.0112 ms and

t = 0.0187 ms where t is the time after first impingement of the blast wave on the target structure. Plotted

for three configurations: a) concrete only, b) concrete coated with a hyperelastic polymer on its blast-receiving

face and c) concrete coated with a visco-hyperelastic polymer on its blast-receiving face.
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Using the empirical relationships proposed by Kinney and Graham [29], the blast param-249

eters corresponding to examples of realistic threats in the built environment are presented250

in Table 1. The second blast case considered in our study corresponds to 20 kg of TNT at251

a stand-off distance of 15 m, indicative of a “suitcase bomb”. βs values were calculated for252

each case and are summarised in Table 2.253

Table 1: Examples of realistic blast threats where the peak overpressure, ps and incident impulse, Ii are

calculated using Kinney and Graham’s empirical relationships [29].

Threat [30] kg of TNT Stand-off (m) ps (kPa) Ii (Pa s)

Pipe bomb 3 15 9.4 19

Suitcase bomb 20 15 24 34

Car bomb 300 15 158 80

Truck bomb 5000 15 1320 120

Table 2: Summary of the βs values obtained using Eq. 4 for each concrete depth, hp considered, for both

blast intensity cases.

βs

hp (mm) Case 1, ps/p0 = 3.34 Case 2, ps/p0 = 0.24

25 0.068 0.012

50 0.034 0.006

75 0.023 0.004

100 0.017 0.003

The model set-up is as described in Appendix B except that the rigid plate is replaced254

with a deformable part assigned the Concrete Damaged Plasticity material model with a255

compressive strength, σcu = 39.5 M Pa. The mesh consists of 8-node linear elements (C3D8256

in Abaqus notation) of side length 5 mm, chosen on the basis of a mesh sensitivity study. The257

relative transmitted impulse, Ip/Ii to the concrete plates is compared with Kambouchev et258

al.’s theoretical expression for a rigid plate, Eq. 3 [1] as well as the numerical predictions for259

a rigid plate of equivalent βs. The results are presented in Fig. 7.260
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(a) Log-log plot

(b) Non-log plot of region of interest

Figure 7: Comparing numerical predictions with Kambouchev et al.’s (KNR) theory [1] for a rigid plate and

concrete plates of depth: 25 mm, 50 mm, 75 mm and 100 mm. Case 1 refers to the medium intensity blast

referred to in KNR’s work where ps/po = 3.34 and Ii = 698 Pa s. Case 2 refers to our “suitcase bomb”

reference blast indicative of 20 kg of TNT at a stand-off distance of 15 m; ps/po = 0.24 and Ii = 34 Pa s.
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Firstly, the concrete plates appear to lie on the “heavy plate” plateau of Kambouchev et261

al.’s theoretical expression. It would appear that for realistic concrete density and slab262

depths, the calculated βs values are relatively low. In this region, Ip is relatively insensitive263

to βs i.e. to the blast intensity and to the plate mass per unit area. On closer inspection264

(Fig. 7b), we observe that the FSI response of the concrete is close to that of a rigid plate265

of the same mass. This can be explained as follows. First, the model predicted no plasticity266

or damage occurring in the concrete during either load case. So, the plate remained elastic267

throughout FSI. Secondly, it can be shown that the transit time of an elastic wave through268

the plate is short compared to the duration of loading, and so the influence of stress wave269

propagation on FSI would be negligible. The elastic wave speed in concrete is, cd =
√
E0/ρp.270

For the largest concrete plate depth considered, hp = 100 mm, the transit time for the elastic271

wave is given by;272

tT =
hp
cd

=
hp√
E/ρp

= 30µs (5)

Considering a blast intensity corresponding to ps/po = 3.34, the propagation time, tT is273

much smaller than the decay time of the incident blast wave, ti = 2 ms.274

Incidentally, we also note that Kambouchev et al.’s [1] theory gives a slightly lower275

prediction of the transmitted impulse in this regime compared to the numerical calculations.276

5. 1D air blast response of an elastomer-coated concrete part277

In the final phase of the 1D investigation, an elastomer layer is applied to the concrete278

plate to assess whether it enables an FSI effect that might offer a contribution to protection.279

A 5 mm thick elastomer layer is modelled as a deformable part, and meshed with 5 mm280

3D stress (C3D8) elements. A mesh refinement investigation is performed on the 1D model281

(and for the 2D model, discussed subsequently). It is found that the overall response is282

relatively mesh insensitive, provided the Eulerian, air mesh density is matched to that of the283

Lagrangian concrete and elastomer coating. Boundary conditions are prescribed to ensure284

plane strain conditions throughout. In this study, we assume a perfect bond between the285

concrete and polymer, simulated by tying all degrees of freedom at the interface. Three286
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plate configurations are analysed, illustrated in Fig. 8. The reference case is an uncoated287

concrete plate at a stand-off, s = 3 m. Next, a 5 mm elastomer layer is applied to either288

the blast-receiving or non-blast-receiving face of a CDP plate. In both cases, the stand-off,289

s = 3 m measured to the blast-receiving face of the target is held constant. Thus, the shape290

of the incident pressure pulse by the time it has reached the blast-receiving face is the same291

in all cases. Figure 9 presents the calculated total transmitted impulse for plates of different292

mass per unit area for two blast intensities. Four plate thicknesses are considered — 25 mm,293

50 mm, 75 mm and 100 mm. This corresponds to a mass per unit area of, 63.75, 127.5, 191.25294

and 255 kgm−2 for the uncoated concrete, and 69.32, 133.07, 196.82 and 260.57 kgm−2 for295

the coated cases. The coatings therefore increase the mass of the target by 8.7%, 4.4%, 2.9%296

and 2.2%, respectively. In each configuration, the impulse imparted to the complete target297

plate (concrete plus elastomer, if present) is plotted, as well as the impulse transmitted to298

the concrete layer alone, when in its coated configuration. Also, comparison is made in each299

case with the response of a rigid plate of the same mass.300

(a) Case i (b) Case ii (c) Case iii

Figure 8: Schematic illustrating the stand-off distance, s for analysis of both coated and uncoated cases.

5.1. Discussion301

Considering the results in Fig. 9, four key observations are made:302

• Firstly, it is found that the concrete elasticity (compliance and thus, impedance) has303

the effect of reducing the imparted momentum, compared to a rigid plate of the same304

mass.305

• It appears that the imparted impulse to the composite configuration (coated concrete)306

is insensitive to the coating location, thus suggesting that coated concrete behaves as307
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(a) Blast Case 1: ps/po = 3.34 and Ii = 698 Pa s

(b) Blast Case 2: ps/po = 0.24 and Ii = 34 Pa s.

Figure 9: A plot showing how total transmitted impulse varies with plate mass per unit area for four plate

configurations: uncoated rigid and CDP plates of depth: 25 mm, 50 mm, 75 mm and 100 mm, and for CDP

plates of these depths, coated with 5 mm elastomer on either the blast-receiving or the non-blast-receiving

face.
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a monolithic plate, of mass equal to the mass of the concrete plus the mass of the308

polymer, from the perspective of FSI.309

• The coated concrete composite acquires slightly more momentum than a monolithic310

concrete plate of the same mass. However, this effect is negligible and is likely due to311

a change in effective compliance of the plate. Figure 6 illustrated that during the short312

timescale response, the effect of adding a viscoelastic polymer layer led to substantial313

wave distortion and an increase in peak compressive stress in the concrete. Here,314

we show that while this has a small effect on the transmitted impulse to the coated315

configuration (pushing it towards that of a rigid plate), it is apparent that the longer316

timescale response is relatively insensitive to the short timescale pulse distortion effects.317

• Although the composite plate acquires slightly more momentum than the uncoated318

concrete plate, the concrete layer in the composite configuration acquires less. This is319

because each layer acquires a fraction of the total imparted momentum in proportion320

to the mass fraction of that layer (assuming perfect bonding i.e. both concrete and321

elastomer acquire the same velocity). The effect is most significant for the lightest322

plate tested (63.75 kgm−2) where there is an 8 % reduction in transmitted impulse to323

the concrete. This diminishes as the plate mass increases. For the 255 kgm−2 plate,324

the reduction is 2 %. Any mechanical benefit of this momentum sharing between the325

concrete and polymer layers on critical slab deflections and failure mechanisms remains326

to be determined.327

6. 2D coupled Eulerian-Lagrangian model328

In this section, we extend the analysis to consider the 2D response of coated and uncoated329

concrete slabs to explore any interplay between the short timescale FSI effects and any330

mechanical benefit offered by the coating during slab flexure. The 2D model geometry331

is illustrated in Fig. 10. We consider a concrete slab of dimensions typical of structural332

elements: 50 mm deep, with a span of 1 m. The boundary conditions at the end of slab are333

illustrated in Fig. 10. The end faces of the slab are fully constrained, with all degrees of334

freedom set to zero. To avoid unrealistic stress concentrations at the boundary, a degree of335
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boundary compliance is introduced: a 50 mm length at the end of the slab is placed between336

rigid, frictionless surfaces, which terminate with a radius of curvature of 90 mm. The slab is337

placed in a 6 m long air column, at a target distance, Lt = 3 m. In all cases, a planar blast338

wave is modelled. A half-model only is simulated, using symmetry boundary conditions at339

mid-span. The slab is modelled in 2D plane strain.340

Figure 10: A schematic illustration of the 2D CEL 1/2-model in Abaqus/Explicit. A CDP part of depth,

hp = 0.05 m and width 0.55 m is placed in a 6 m long air column, at a target distance, Lt = 3 m. The CDP

part is coated with elastomer of depth, he = 5 mm. Point A corresponds to the inflow of the air column and

point B corresponds to the point of first impingement by the blast wave on the elastomer-coated concrete.

The diagram is not to scale.

As before, two blast intensities are considered and for each case, the mid-span displacement-341

time response is compared for an uncoated concrete slab, a concrete slab coated with a 5 mm342

elastomer on the blast-receiving face and a concrete slab coated with a 5 mm elastomer on343

the non-blast-receiving face. The results are presented in Fig. 11. Two distinct response344

regimes are observed for the two loading cases.345

For the higher blast impulse, Case 1, total failure of the slab occurs early in its motion.346

This occurs at a time of around 0.0063 s, as indicated by the dashed line in Fig. 11a. Failure347

occurs by extensive tensile cracking and significant damage near the support region. The348

effect of the polymer coating in this regime is to reduce the mid-span deflection at a given349

time, before failure. This reduction is ∼ 5% for coating on either the blast-receiving or350
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(a) Blast Case 1: ps/po = 3.34 and Ii = 698 Pa s

(b) Blast Case 2: ps/po = 0.24 and Ii = 34 Pa s

Figure 11: Central deflection (m) vs. time (s) for the slab geometry illustrated in Fig. 10 for two blast

intensity cases. Results are compared for an uncoated concrete slab, a concrete slab with a 5 mm elastomer

coating applied to the blast-receiving face and a concrete slab with a 5 mm elastomer coating applied to the

non-blast-receiving face. Inset to a) is a snapshot at a step time of 0.0063 s of the damaged uncoated slab

for Blast Case 1.
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non-blast-receiving face. However, the coating does not have a significant effect on altering351

the mechanism or onset of failure for this loading intensity.352

For the lower blast impulse, Case 2, the slab responds by elastic-plastic bending. The353

deflections are small, with a peak predicted deflection of 0.81 mm (1.6% of the slab thickness),354

before elastic oscillations about a permanent deflection of around 0.48 mm for the uncoated355

case. The polymer coatings serve to reduce permanent slab deflections by 5% and 18%356

when located on the blast-receiving and non-blast-receiving faces, respectively. Although357

the coating appears to have no significant effect on the total transmitted impulse to the358

target, it appears to contribute an additional mechanical resistance to bending.359

In summary, the regime of response was not affected by the coating for these load cases,360

though we do show a protective benefit in terms of reduced deflections. The load cases361

here represent lower and upper bounds on realistic blast impulses in a structural protection362

context. However, there are a wide range of other possible regimes of response at intermediate363

impulse levels, for other pressure-impulse combinations, and for other slab geometries. The364

role of the polymer coating across this full regime map requires further analysis.365

6.1. Coupled vs. decoupled response366

In order to tackle the problem of identifying the full range of response regimes for367

coated structural elements, it is useful to consider the necessity of a fully coupled Eulerian-368

Lagrangian analysis. This adds significantly to the computational cost, but may not be369

justified if the coatings do not induce a strong FSI effect. In this section, the scope for370

simplifying the load case is assessed.371

Three simplified load cases are considered, progressively decoupling the loading from the372

slab response, for comparison with the fully coupled CEL simulations.373

(i) A pressure-time history, p1(t) is applied directly to the blast-receiving face of the slab,374

in a purely Lagrangian analysis (i.e. with no air domain). However, the applied loading375

is obtained by outputting the pressure-time history calculated at the slab-air interface376

(at point B in Fig. 10) in the coupled simulation. This is the pressure felt by the slab377

in a fully coupled FSI analysis.378
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(ii) A pressure-time history, p2(t) is again applied directly to the blast-receiving face of the379

slab in a Lagrangian analysis. However, this time, the applied pressure-time history is380

obtained by applying a pressure reflection coefficient factor, CR (defined in [1]) to the381

free-field incident overpressure, ps measured at point B in Fig. 10. We assume that382

the decay time of the applied pressure-time history remains the same as the incident383

value, ti.384

The value of CR is taken to be the heavy plate limit (i.e. βs = 0 [1]). This gives385

CR = 3.9 for the higher intensity blast case considered (ps/po = 3.34) and CR = 2.2386

for the lower intensity blast case considered (ps/po = 0.24). (Note that in the acoustic387

limit, CR would be equal to 2). Thus, we remove FSI effects (because the heavy plate388

limit for CR is used), but retain a loading timescale.389

(iii) Lastly, we consider impulsive loading, in which an initial velocity is imparted uniformly390

to the slab, again in a fully Lagrangian simulation. Here, the initial velocity is equal391

to the imparted impulse, Ip (obtained by integrating the p2(t) profile) divided by the392

mass per unit area of the slab, m = ρphp + ρehe [31]. Thus, we remove both the FSI393

effect and the timescale of loading.394

Results for the slab geometry illustrated in Fig. 10, are presented in Fig. 12 for the high395

intensity blast (ps/po = 3.34) and Fig. 13 for the low intensity blast (ps/po = 0.24). The396

results suggest that the slab’s deflection-time history can be accurately represented using397

a simpler load case, though the accuracy depends on the blast impulse. For both blast398

impulses, we find that direct application of p1(t) or p2(t) matches well the response of the399

fully coupled analysis. Impulsive loading is reasonably accurate for the higher blast impulse400

case, apart from at short timescales (of the order of ti). However, it significantly over-predicts401

the slab deflections for the lower blast impulse case.402

7. Conclusions403

Elastomer coatings have been previously reported as an effective solution for protecting404

structural components against blast loading. However, to date, the mechanisms responsible405

have not been clearly identified. In this investigation, we present the first detailed study of406
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(a) Uncoated

(b) Coated on blast-receiving face

(c) Coated on non-blast-receiving face

Figure 12: Central deflection (m) vs. time (s) for the slab geometry illustrated in Fig. 10 for Blast Case 1:

ps/po = 3.34 and Ii = 698 Pa s (ti = 0.00205 s). Results are compared for a Coupled Eulerian-Lagrangian

(CEL) model, a purely Lagrangian model with loading applied by direct application of a pressure-time

history, p1(t), p2(t) and for a purely Lagrangian model with impulsive loading applied by imparting an

initial velocity. Note, total failure of the slab occurs early in its motion, c. 0.0063 s.
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(a) Uncoated

(b) Coated on blast-receiving face

(c) Coated on non-blast-receiving face

Figure 13: Central deflection (m) vs. time (s) for the slab geometry illustrated in Fig. 10 for Blast Case

2: ps/po = 0.24 and Ii = 34 Pa s (ti = 0.0014 s). Results are compared for a Coupled Eulerian-Lagrangian

(CEL) model, a purely Lagrangian model with loading applied by direct application of a pressure-time

history, p1(t), p2(t) and for a purely Lagrangian model with impulsive loading applied by imparting an

initial velocity.
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one candidate mechanism for concrete structural elements: fluid-structure interaction (FSI)407

effects during blast loading.408

• Representative constitutive models for concrete and a spray-on elastomer are developed409

using a combination of published data and our own characterisation experiments.410

• A coupled Eulerian-Lagrangian finite element model is verified as an effective tool411

for studying the fully coupled FSI response for air-blast loading. Comparison with412

Kambouchev et al.’s theory [1] over a wide range of the non-dimensional FSI parameter,413

βs verifies the model fidelity.414

• A high resolution, short timescale, 1D stress wave interaction study shows that the415

presence of an elastomer coating significantly influences the transient stress state in416

the concrete during initial wave propagation through the layered structure. The non-417

linear elasticity of the polymer reduces the peak compressive stress, but introducing418

viscoelasticity results in a net increase.419

• The longer timescale, 1D FSI response of coated and uncoated concrete is then as-420

sessed, to identify the effect of coating on the total imparted momentum. It is found421

that, for practical concrete thicknesses and blast impulses, the transmitted impulse422

for both coated and uncoated plates approaches the heavy plate limit as defined by423

Kambouchev et al.’s theory [1]. In this regime of βs, the imparted impulse is insensitive424

to the target mass.425

• It is found that the imparted momentum is more sensitive to the elasticity of the426

concrete than to the target mass. Replacing a rigid target with a concrete target427

reduces the imparted momentum, for a given target mass. But the effect is small428

(∼ 3%).429

• It is also found that coating (on either face) has a negligible influence on the total430

imparted momentum. However, due to momentum sharing, the impulse imparted to431

the concrete plate is reduced in the coated configuration (by up to ∼ 8% for the lightest432

plates).433
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• For blast impulses representative of a small improvised explosive device, a small addi-434

tional mechanical resistance to bending is identified with the addition of the coating.435

The net effect is that peak deflections are largely unchanged, though permanent de-436

flections are reduced by between 5− 18%, depending on the polymer location.437

• For a much higher blast impulse, the slab undergoes extensive cracking, and failure at438

the support. The coating provides a small reduction in slab deflection, but does not439

prevent slab failure.440

• Finally, it is concluded that a partially decoupled Lagrangian analysis, maintaining the441

timescales of loading but assuming the heavy plate limit of imparted impulse, provides442

a reasonable substitute for the fully coupled FSI calculation. This result will facilitate443

future investigations of the dynamic mechanical benefit offered by the coatings across444

a wider range of blast pressure-impulse regimes.445
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Appendix A. Further details on material constitutive modelling449

Appendix A.1. Concrete450

Empirical relationships were employed to generate the curves required by Abaqus/Explicit451

for the complete definition of the Concrete Damaged Plasticity (CDP) material model. The452

approach taken is similar to that presented in [13].453

Appendix A.1.1. Defining compressive behaviour454

To define the uniaxial compressive stress, σc vs. inelastic strain, ε̃inc curve; the empirical rela-455

tionships proposed by the 1990 CEB-FIP Model Code [12] are used. Figure A.14 illustrates a456

typical uniaxial compressive stress-strain curve for concrete where the first part of the curve,457

for |εc| < |εc,lim| can be described using Eq. A.1 and the descending branch can be described458

using Eq. A.2 [12].459

σc = −
E0

Es

εc
εc1
− ( εc

εc1
)2

1 + (E0

Es
− 2) εc

εc1

σcu for |εc| < |εc,lim| (A.1)
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where ζ =

4
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)2 (
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)

+ 2
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− E0

Es

]
[
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(
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)
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]2 (A.3)

and E0 = Ec0

[
σcu
σcu0

] 1
3

(A.4)

where460

σc is the compressive stress in MPa;461

E0 is the initial tangent modulus in MPa;462

Ec0 = 2.15× 104 MPa;463

σcu is the peak compressive stress in MPa;464

σcu0 = 10 MPa;465
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(a) Compressive behaviour

(b) Tensile behaviour

Figure A.14: Compressive and tensile behaviour definitions for the ABAQUS/Explicit Concrete Damaged

Plasticity model (adapted from [11]). Parameters are defined in the text.
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εc is the compressive strain;466

εc1 = 0.0022 is the strain corresponding to the peak compressive stress;467

Es = σcu/0.0022 is the secant modulus from the origin to the peak compressive stress468

in MPa;469

εc,lim limits the applicability of Eq. A.1 and is calculated using Eq. A.5.470

εc,lim
εc1

=
1

2

(
1

2

E0

Es
+ 1

)
+

[
1

4

(
1

2

E0

Es
+ 1

)2

− 1

2

]1/2
(A.5)

Appendix A.1.2. Defining tensile behaviour471

There are two methods permitted by ABAQUS for defining the post-failure branch of472

the uniaxial, tensile stress-strain curve. Typically, tensile stress, σt is given as a function473

of cracking strain, ε̃ckt which is defined as the total tensile strain, εt minus the elastic strain474

corresponding to the undamaged material, εel0t. This definition is illustrated in Fig. A.14475

where εel0t = σt/E0.476

However, as noted in the ABAQUS User’s Manual [11], in cases where the concrete has477

little or no reinforcement, choosing to define the post-failure behaviour in terms of cracking478

strain can introduce unreasonable mesh sensitivity. The Manual [11] suggests that it would be479

more reliable to specify post-failure tensile stress, σt as a function of cracking displacement,480

uckt , based on the 1976 work of Hillerborg [18]. To achieve this, the relationship proposed by481

Hordijk [14] in his work on concrete fatigue is employed, given by Eq. A.6.482

σt
σt0

=

[
1 +

(
c1
uckt
ucritt

)3
]

exp

(
−c2

uckt
ucritt

)
− uckt
ucritt

(
1 + c31

)
exp(−c2) (A.6)

where ucritt = 7
GF

σt0
mm (A.7)

and GF = GF0

(
σcu
σcu0

)0.7

N/mm (A.8)

where483
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ucritt is the critical crack opening displacement, beyond which the tensile stress is zero.484

This is calculated according to Eq. A.7 which is taken from the CEB-FIP code [12] and is485

based on a concrete with medium aggregate size of approximately 16 mm;486

c1 = 3 and c2 = 6.93 are constants determined by Hordijk [14] based on deformation-487

controlled uniaxial tests on normal-weight concrete;488

σto is the tensile strength in MPa;489

GF is the tensile fracture energy of concrete in opening mode in N/mm;490

GF0 is the base value of fracture energy which depends on the maximum aggregate size.491

Assuming a maximum aggregate size of 16 mm, the CEB-FIP code [12] recommends a492

value of GF0 = 0.03 N/mm.493

Appendix A.1.3. Defining damage parameters494

The CDP model in ABAQUS/Explicit allows the user to define compressive and ten-495

sile damage parameters, dc and dt that quantify how the concrete elastic stiffness becomes496

degraded when unloaded from the softening branch of the uniaxial curves.497

Compressive damage.498

For the compressive damage case, Birtel and Mark [15] propose the following relationship499

between the damage parameter, dc and the compressive inelastic strain, ε̃inc :500

dc =
ε̃inc (1− bc)

ε̃inc (1− bc) + σc
Eo

0 ≤ dc ≤ 1 (A.9)

Through comparison with experimental data, Birtel and Mark determined that the best fit501

was achieved using bc = 0.7 in Eq. A.9 [15]. Thus, a curve can be obtained for dc as a502

function of ε̃inc .503

Tensile damage.504

An equation of the same form as Eq. A.9 [15] can also be used to define a curve for the505

tensile damage parameter, dt in terms of cracking displacement, uckt and fitting parameter,506

bt. Best fit with experimental data was achieved for bt = 0.1 [15].507
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Appendix A.1.4. Yield surface and flow rule508

The CDP model in ABAQUS/Explicit employs the yield function proposed by Lubliner et509

al. [16] and includes the modifications suggested by Lee and Fenves [17]. The shape of the510

yield surface is determined by Kc, a user-defined ratio based on the second stress invari-511

ants [11].512

The flow rule specifies the relationship between the yield surface and the uniaxial stress-513

strain relationships. Non-associated plastic flow is assumed by the CDP model where the514

flow potential takes the form of the Drucker-Prager hyperbolic function. Further details on515

the yield surface and flow rule can be found in the Abaqus User’s Manual [11].516

Table A.3 presents the parameters required to fully define the yield surface and flow517

rule. Values used for ε, fb0/fc0, Kc and the viscosity parameter are the default parameters518

suggested by ABAQUS [11]. The dilation angle, ψ is chosen to be 36◦ [19].519

Table A.3: User-defined parameters required to define the yield surface and flow rule in the Concrete Dam-

aged Plasticity model in ABAQUS/Explicit.

Dilation angle, ψ Eccentricity, ε fb0/fc0 Kc viscosity parameter

36◦ 0.1 1.16 0.667 0

Appendix A.2. Validating the Concrete Damaged Plasticity model520

To validate the developed CDP model’s predictive capabilities, model predictions are521

compared with two sets of published experimental results on the blast testing of rein-522

forced concrete slabs [20, 21]. Loading was implemented via the CONWEP option in523

ABAQUS/Explicit [22], specifying the mass of TNT explosive charge and stand-off distances524

to match the experiments. While this load application does not capture the full details of525

the FSI or close-in blast effects, it enables broad assessment of the model to first order under526

realistic conditions. The concrete and reinforcing steel material properties and geometries527

are modelled to match those reported in the literature reference cases [20, 21].528

The numerical predictions of cracking and spall patterns were qualitatively compared529

with experimental observations for a concrete slab subjected to 0.31 kg of TNT at a stand-530
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off of 0.4 m [20]. Figures A.15 and A.16 show that the model is capable of predicting well531

the characteristic crack patterns for both the blast-receiving and non-blast-receiving faces.532

(a) 1/4-model in ABAQUS (b) Experiment

Figure A.15: Qualitative comparison between experimental results [20] and a 1/4-model in ABAQUS for

the blast-receiving face of a reinforced concrete panel subjected to 0.31 kg of TNT at a stand-off of 0.4 m.

Plotting contours of tensile damage parameter, dt where 0 ≤ dt ≤ 1. Blue contours indicate dt = 0 and red

indicate dt > 0.9. Image taken at step time = 0.02 s, well after maximum displacement is reached. Image

(b) is reproduced from [20].

(a) 1/4-model in ABAQUS (b) Experiment

Figure A.16: Qualitative comparison between experimental results [20] and a 1/4-model in ABAQUS for the

non-blast-receiving face of a reinforced concrete panel subjected to 0.31 kg of TNT at a stand-off of 0.4 m.

Plotting contours of tensile damage parameter, dt where 0 ≤ dt ≤ 1. Blue contours indicate dt = 0 and red

indicate dt > 0.9. Image taken at step time = 0.02 s, well after maximum displacement is reached. Image

(b) is reproduced from [20].

Quantitatively, comparison of slab deflections in Table A.4 show that predictions are533

acceptable within the limitations described above. The largest discrepancy is observed for534

33



a close-in blast case (0.31 kg of TNT at 0.4 m) and this discrepancy may be attributable as535

much to simplifications in the CONWEP load case as to the assumed constitutive model.536

Hence, we believe the CDP model is adequate for the purposes of this investigation.537

Table A.4: Comparison between the maximum central slab deflection, δmax predicted using the

ABAQUS/Explicit numerical model with that obtained in literature experiments performed by Wang et

al. (Case A) [20] and Wu et al. (Case B) [21].

Case kg of TNT Stand-off (m) Experiment δmax (mm) ABAQUS δmax (mm)

A 0.31 0.4 15 35

A 0.46 0.4 35 43

B 1 3 1.5 1.3

B 8.1 3 11 15

Appendix A.3. Elastomer538

The elastomer is modelled using a hyperelastic relationship with a Yeoh strain energy539

potential as defined in [11]:540

U = C10(Ī1−3)+C20(Ī1−3)2+C30(Ī1−3)3+
1

D1

(Jel−1)2+
1

D2

(Jel−1)4+
1

D3

(Jel−1)6 (A.10)

where U is the strain energy per unit reference volume, Ci0 andDi are temperature-dependent541

material parameters and Ī1 is the first deviatoric strain invariant given by, Ī1 = λ̄21 + λ̄22 + λ̄23.542

λ̄i are the deviatoric stretches defined as λ̄i = J−
1
3λi where J is the total volume ratio and543

λi are the principal stretches. Jel is the elastic volume ratio given by Jel = J/J th where544

J th = (1+ εth)3 and εth is the linear thermal expansion strain obtained from the temperature545

and thermal expansion coefficient [11].546

In conjunction, viscoelastic effects are accounted for using a Prony series. The Prony547

series parameters (non-dimensional shear relaxation modulus gn and corresponding time548

constants, τn) were obtained from a literature source for a similar material [24] and are549

tabulated in Table A.5.550
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Table A.5: Prony series parameters, obtained from [24] and defined in [11].

n gn τn(s)

1 0.94159 1.49E-6

2 1.31E-2 2.93E-5

3 1.01E-2 2.79E-4

4 7.62E-3 3.02E-3

5 5.69E-3 3.77E-2

6 4.17E-3 0.55586

7 3.01E-3 10.035

8 2.13E-3 236.29

9 1.43E-3 7521

Appendix B. 1D Coupled Eulerian-Lagrangian model validation551

With reference to Fig. 5, an air column with dimensions L = 6 m and wp = 0.01 m was552

modelled in Abaqus/Explicit as an Eulerian part with boundary conditions prescribed to553

ensure a 1D plane strain analysis throughout. A free-standing, rigid plate of dimensions554

hp = 0.1 m, wp = 0.01 m was modelled as a discrete rigid part and assembled at a distance,555

Lt = 3 m away from the inflow of the air column. The dimensions were chosen to minimise556

secondary wave reflections disrupting impulse transmission to the plate.557

The air material model is based on the assumption that air can be treated as an ideal558

gas [26]. Table B.6 summarises the material model parameters, where, ρ0 is the initial air559

density, p0 is atmospheric pressure, R is the specific gas constant for dry air and cv is the560

specific heat capacity at constant volume.561

Table B.6: The user-defined parameters required to define the Eulerian air domain.

ρ0 (kg m−3) Temperature (K) R (J kg−1K−1) p0 (Pa) cv (J kg−1K−1)

1.225 290 287 101,957 717.6

As a shock wave propagates in the non-acoustic regime, the wave shape changes. For562
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the CEL model developed in this study, the distance between the inflow of the Eulerian563

domain and the target is kept as large as possible to avoid secondary wave reflections, as564

described above. Thus, the wave propagates a large distance before it interacts with the565

target structure and in turn, the wave shape distorts. An iterative procedure is required566

to determine the inflow boundary condition required to achieve the desired free-field wave567

profile at the target location.568

The blast intensity chosen in this investigation was selected to be consistent with Kam-569

bouchev et al.’s intermediate blast intensity case [1] corresponding to ps/p0 = 3.29 and570

Ii = 653 Pa s. These are the incident, free-field loading parameters that we aim to achieve571

in the air column at point B in Fig. 5. An iterative procedure is performed to determine the572

velocity-time history necessary at point A, to achieve the desired pressure-time history at573

point B. A velocity boundary condition is prescribed as it has been shown to provide better574

modelling stability [27]. Equation B.1 presents this iterative calculation, where pB is the575

measured free-field overpressure at point B, a0 is the speed of sound and uA[0] is the particle576

velocity corresponding to the desired free-field overpressure at point B. The calculation pro-577

ceeds until reasonable agreement is attained with the desired peak overpressure at point B.578

The incident impulse is checked against the desired value and the decay time, ti may need579

to be adjusted. The iterative process then begins again.580

uA[i+1] = uA[i] +

uA[0] − a05

7

pB
p0

1√
6
7

(
pB
p0

)
+ 1

 (B.1)

For this case, the chosen inflow velocity boundary condition is given by; uA(t) = 701e−t/0.9×10
−3

581

m/s. This generates a free-field peak overpressure at point B of 341 kPa (ps/p0 = 3.34) and582

an incident impulse of 698 Pa s.583

A number of simulations were performed to investigate how the relative transmitted im-584

pulse varies with Kambouchev et al.’s non-dimensional FSI parameter, βs [1]. With reference585

to Eq. 4, different values of βs were achieved by only varying the density of the rigid part,586

ρp between simulations. The blast intensity was kept constant as well as the plate depth,587

thereby fixing the values of ti, ρs, Us and hp. The comparison between Kambouchev et al.’s588
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expression (Eq. 3) [1] and that predicted by our numerical model is presented in Fig. B.17.589

Figure B.17: A log-log plot of Kambouchev et al.’s (KNR) expression (Eq. 3) [1] for a rigid plate subjected

to a blast intensity corresponding to ps/p0 = 3.34. The plot compares results obtained using our 1D CEL

numerical model.

It should be noted that our numerical simulations modelled a rigid plate in the middle590

of an air column i.e. there was air on the front and back faces of the plate as illustrated591

in Fig. 5. This is not exactly the case considered by Kambouchev et al. [1]. Rather, their592

analysis was for a plate with no fluid on its back face (though a constant atmospheric pressure593

was applied to ensure the plate was initially in equilibrium). The close agreement between594

our simulations and Kambouchev et al.’s theory would suggest however, that the presence595

of air on the back face of the plate does not have a significant effect.596
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