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Abstract 

Motivation 

The introduction of the Eurocodes for Concrete design will alter the way that shear design is approached for concrete 

structures.  The Eurocodes have adopted the variable angle truss model for shear, a more theoretically consistent approach 

than that found in the British Standards.  The model is confidently applied to rectangular sections, but its applicability to irregular 

sections is less clear.  In particular, the behaviour of circular concrete sections such as those often used as bridge piers is not 

well defined.  A requirement for design guidance on this topic has been recognised by key BSI Committees and this dissertation 

is intended to help shape and inform future UK design practice. 

This dissertation provides a state of the art review of shear design in concrete, followed by detailed analysis of the Eurocode 

approach.  Using both experimental and theoretical data, the Eurocode variable angle truss model for shear design is assessed 

and extended to circular columns.  Previously published test results and guidance are reviewed in the context of the introduction 

of the Eurocodes and from this new guidance for designers is determined. 

Approach 

A brief introduction to concrete design is followed by an analysis of current shear theory, and various approaches to shear 

design are investigated.  Literature spanning 60 years of research and development is assessed and British, European and 

North American design codes are analysed.  A detailed analysis of circular sections follows, where new equations for a variable 

angle truss model are proposed and alternative design procedures are investigated. 

Chapter summary 

 

Results 

A variable angle truss model is presented for closed and spirally bound circular sections.  Equilibrium is satisfied for the stirrups, 

longitudinal tensile forces and crushing of the concrete struts.  The proposed equations are broadly conservative, and simple to 

implement.  Numerous issues surrounding the shear design of concrete to the Eurocode model are highlighted for potential 

future work.  An upper bound plasticity based analysis of circular sections has shown promising results using a simple 

technique.  Comparisons with other existing design procedures have shown that more valid approaches to shear design exist, 

but are unlikely to be incorporated into the Eurocodes at the present time.  Throughout, a lack of experimental data has 

generally limited the analysis undertaken. 
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1. Introduction 
1.1. Circular sections 

The introduction of BS EN 1992-1-1 will alter the way that shear design is approached for concrete structures.  The impetus for 

this work is to provide a suitable method for the design and analysis of circular sections in shear, making full use of available test 

data to verify potential approaches.  The circular section is widely used in piling and bridge pier design, and its constant strength 

in all directions makes it useful in seismically active regions.  Bridge designers may use circular columns to take advantage of 

their low coefficient of drag under wind loading.  These piers may also be subject to vehicle impact loads, as well as loads 

applied from the bridge deck due to braking and acceleration forces on the roadway above, Figure 1.1(l). 

Shear design in the UK has historically been based on a version of Mörsch’s truss model (§2.8.1), while the Eurocodes use a 

more theoretically consistent ‘variable angle model’, illustrated in Figure 1.1(r) and discussed in §4.  This lower bound solution to 

shear behaviour provides the basis for this dissertation.  Its use, limitations and application to circular sections are considered in 

detail. 

Figure 1.1: Circular columns – as bridge piers or retaining walls (left).  The truss model (right). 

 
Table 1.1: A history of codified concrete design in the UK. 

Published Code Design concrete mixes 

1948 CP114  Structural use of reinforced concrete in buildings Approx. 31, 26 and 21N/mm2 

1972 CP110, The structural use of concrete. >20N/mm2 

1985 BS8110, Structural use of concrete. 20N/mm2 – 40N/mm2 

2010 BSEN 1992-1-1: Design of concrete structures. 12N/mm2 – 90N/mm2 

1.2. Objectives 

The objective of this dissertation is to provide guidelines for the shear design of circular sections.  To facilitate this, three main 

topics are considered: 

1) An extension of the variable angle truss model to a circular section, with full derivation of the relevant formulae; 

2) Consideration of the BS EN 1992-1-1 limits on truss angles and how these apply to circular sections; 

3) An investigation into how the concrete crushing limit is applied to circular sections. 

1.3. Outline 

This dissertation begins by assessing the current body of knowledge surrounding shear design.  A wide range of literature is 

reviewed and discussed throughout the dissertation to support and inform analysis and discussion.  Relevant design codes of 

practice are also assessed and compared.  By drawing together the approaches of leading researchers in this field, it is hoped 

that a more coherent model for the shear design of circular sections is presented.  The majority of new work comes in §6 where 

a variable angle truss model for circular sections is considered in terms of concrete crushing as well as steel yielding equations.  

To satisfy a lower bound Eurocode model, equilibrium is assessed throughout.  A new upper bound plasticity based approach 

to circular sections is presented, and economic considerations surrounding the use of BS EN 1992-1-1 are discussed and 

compared to previous design guidance. 
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pressure
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2. Shear behaviour 
2.1. Introduction 

This chapter provides an investigation into how concrete structures transfer shear, a review of current shear theory, and how 

these theories relate to current design guidance for circular sections.  This should be considered alongside the literature and 

design codes reviewed in subsequent chapters. 

2.2. Material properties 

2.2.1. Concrete 

Consider the stress-strain curve for a concrete element under uniaxial compression (Figure 2.1(l)).  The stress-strain relationship 

is almost linear in Zone 1.  In Zone 2, the concrete stress due to compression has peaked and the material subsequently 

expands due to microcrack growth.  The ‘peak’ of the stress-strain curve is sharp for high-strength concrete, while the curves 

for low-strength concrete tend to flatten out.  The tensile strength of concrete is usually ignored in strength calculations, but may 

be estimated at less than 20% of the uniaxial compressive strength (Park, 1975).  In practical situations uniaxial compression is 

rare, as concrete is more often stressed in multiple directions and so the biaxial stress condition, where principal stresses act in 

one plane only, should be considered (Figure 2.4).  Kupfer et al. (1969) concluded that the biaxial strength of concrete may be 

up to 27% higher than the uniaxial strength, although the tensile strength remains approximately equal in both cases.  Work by 

Bresler (1958) showed that the compressive strength of concrete is reduced in elements subject to direct stress in one direction 

and an associated shear stress (Figure 2.1(c)).  Finally, concrete subject to triaxial compression (Figure 2.1(r)) has been found to 

display improved strength and ductility (Park, 1975). 

Figure 2.1: Uniaxial stress-strain plot (l); Direct stress and shear (c); Triaxial stress state (r). 

 

2.2.2. The role of fibre reinforced concrete (FRC). 

Shear is a brittle mode of failure primarily because plain concrete displays very little ductility (Figure 2.2).  FRC shows greater 

compression capacity, with increases of up to 23% recorded when compared to steel-reinforced sections (Zia et al., 1994).  The 

great advantage of FRC is its improved tensile capacity, and the general effect of fibres is to improve the resistance of a section 

against crack opening and propagation (Zia et al., 1994).  Figure 2.2 highlights the differences between plain and fibre reinforced 

concrete.  Fibres have been found to be more effective in high strength 

concrete (>60MPa) with increases in both ultimate capacity and ductility 

recorded (Zia et al., 1994).  SIFCON (Slurry infiltrated concrete) uses 

fibre volumes of >12% to provide excellent ductility (see Fritz et al., 

1992) and SIMCON (Slurry infiltrated mat concrete) uses a mat of high 

aspect ratio fibres (ratios up to 500) to provide similar properties but 

using a fibre volume half that of SIFCON (Zia et al., 1994). 

2.2.3. Steel reinforcement behaviour 

A typical stress-strain curve for steel is presented in Figure 6.1(f).  The 

initial linear elastic behaviour is followed by a yield plateau and 

subsequent strain-hardening of the steel.  High yield steel bars in use today have yield strengths of around 500N/mm2.  Steel 

exhibits a Bauschinger effect under reversed (tension-compression) loading, so that the stress-strain curve becomes non-linear 

earlier than expected under repeated loading.  Park (1975) provides a more detailed discussion of this effect. 
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2.3. Shear capacity and shear stress 

The shear capacity of a concrete element is widely recognised as one of the more difficult aspects of reinforced concrete 

design.  Shear failures are characterised by brittle action and are thus particularly critical in seismically-active regions where 

ductility at the ultimate limit state is a key design requirement.  Loads applied to a concrete section in shear are carried to the 

supports by a synthesis of six mechanisms, Figure 2.3 (Stratford, 2008). 

Figure 2.3: Six mechanisms to carry shear. 

 
 

This dissertation considers both upper bound and lower bound approaches to shear design (§2.9).  The truss analogy is a lower 

bound plasticity approach; therefore equilibrium must be satisfied at all locations.  The derivation of shear stresses through 

equilibrium considerations of a homogenous uncracked and isotropic beam is relatively straightforward, but the behaviour of the 

reinforced section is more complex.  In a reinforced section, cracks will form when the principal tensile stress exceeds the 

tensile capacity of concrete (§2.4.2) and these diagonal cracks typically propagate from the tension face of the member towards 

the neutral axis (Figure 2.3).  Initial cracking often occurs at 45º to the neutral axis, and develops as applied loads are increased.  

The six mechanisms to carry shear are now considered, before the effect of axial load is analysed. 

2.4. Mechanisms to carry shear 

2.4.1. Concrete compression zone 

The uncracked compression zone is often considered to provide significant shear resistance in concrete sections (Park, 1975), 

although the depth of this zone is highly dependent on the properties of the longitudinal steel (FIB, 2007).  It has been shown (for 

rectangular sections) that the neutral axis depth reduces rapidly after the longitudinal steel has yielded (Taylor, 1970), Figure 

2.5(r).  This causes a reduction in the effective compression area, which in turn leads to a reduction in the available shear 

resistance of the member.  This must be borne in mind when considering circular sections, but it should be noted that the 

fundamentally different reinforcement layout of a circular section is likely to reduce the magnitude of this effect.  It is generally 

understood that the concrete section carries shear by a combination of the force in the concrete and in the shear stirrups that 

confine it.  Stratford (2008) argues that there are two mechanisms by which the compression concrete zone can carry shear, 

with these being a variation in axial force along the beam length and variation in the compressive force path depth.  However, 

quantifying the degree to which axial force variation can carry shear is difficult. 

2.4.2. Concrete tension zone 

The tension zone contribution to shear strength is commonly assumed to be zero in design.  However, Figure 2.4 shows the 

results of extensive biaxial testing on plate sections, whereupon the small tensile capacity of concrete is evident.  In codified 

design, it is only the Modified Compression Field Theory that fully considers concrete tensile strength, as discussed in §2.8.3.  

The tensile capacity of the concrete also influences the ability of a section to carry shear by aggregate interlock (§2.4.3). 

Figure 2.4: Biaxial tests on concrete.  Strength plot (l); tension zone (r) (After Kupfer, 1969). 
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2.4.3. Aggregate interlock 

The interlock between aggregate particles (which account for typically 60-75% of the concrete volume) has been shown to carry 

significant shear force in comparison to the capacity of the uncracked concrete, with Taylor (1970) estimating it to be between 

33 and 50% of the shear capacity of the uncracked section.  Walraven (1981) has shown that the contribution of concrete in the 

tension zone reduces with increasing crack width as the capacity to transfer stresses normal to the shear direction reduces, 

Figure 2.5(l). 

Figure 2.5: Aggregate-crack interaction (l); Decrease in neutral axis depth (FIB, 2007) (r). 

 

The interaction between shear and aggregate interlock is complex and is not considered in codified design.  In Figure 2.5(l) two 

locations are shown where there is zero capacity to carry shear.  At the crack tip (point C) rotation of the crack will be the only 

relative movement between surfaces and thus there is no interlock to generate a shear resistance.  Moving along the crack in 

the direction of propagation there comes a point whereupon the crack width (A) is sufficiently large to ensure that the two 

internal surfaces no longer interact and hence shear cannot be carried by this behaviour. 

2.4.4. Shear reinforcement and dowel action 

Shear reinforcement carries stress over cracks in the section as these cracks open under loading.  It is important to define how 

many bars intersect such a crack to determine the resistance provided against shear.  In addition to carrying shear, links both 

confine the concrete and resist dowel failure in the longitudinal steel.  Confinement of the compression zone increases shear 

capacity by improving the rotation capacity of the section, and the links also prevent the section from splitting along the 

longitudinal reinforcement, Figure 2.6(l) (Stratford, 2008).  Chana (1988) provides a method for calculating these splitting forces. 

Figure 2.6: Dowel action. Beam behaviour with and without shear links (l); Longitudinal reinforcement slippage (r). 

 

2.4.5. Flexural reinforcement and dowel action 

Longitudinal reinforcing bars provide shear resistance to the section through compatibility of the crack opening mechanism.  

This applies to deflections and rotations at the crack/bar interface, both parallel and perpendicular to the reinforcement 

(Stratford, 2008).  In the axial direction, compatibility is ensured by the mechanisms illustrated in Figure 2.6(r).  In design it may 

be assumed that the bars yield at ULS and hence extension of the deformed steel bar dominates the amount of slippage in the 

system.  The component of force acting in shear in the flexural reinforcement is most commonly attributed to the effects of 

dowel action in the bar and the actual load carried in this mode has been shown to be small to the point of being negligible 

(Kotsovos, 2006).  The complex nature of dowel action, as well as the fact that it is extremely difficult to measure experimentally, 

means that it is not generally relied on in design. 

Work by Kani (1964) showed that the use of plain bars increases shear capacity, because poorly bonded sections have wider 

crack spacing than well-bonded sections.  Therefore the concrete ‘teeth’ (§2.6) are bigger, and can thus provide greater load 

capacity according to Eq. 2.1.  Experimental work by Leonhardt and Walther (1961) supports this theory. 
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2.5. Axial Load 

The influence of axial load on shear capacity is complex.  Poor design can be catastrophic, as seen in the combined 

compression-shear failure of the Sleipner offshore platform in 1991, where economic losses totalled over a billion dollars (Gupta, 

2001).  Theoretically, the application of axial compression flattens crack inclination in the section, thereby increasing the number 

of stirrups intersected, which increases shear capacity.  It is therefore generally considered conservative to design a section for 

zero axial load in the assumption that applied axial loads will increase the capacity of the section.  Conversely, axial tension 

reduces the number of links intersected (Hawkins et al., 2005), reducing shear capacity.  However, Gupta (2001) showed that 

above a compressive stress of approximately 17MPa, the rate of increase in shear capacity due to axial compression reduces, 

and in some cases becomes negative, meaning that simple linear equations to predict shear enhancement under axial load may 

be non-conservative at high values of compressive stress.  This effect is discussed further in §2.8, §3 and §4.  Axial tension is 

less common in design, although it may be seen in some piles, or beams subject to restrain during thermal shrinkage. 

2.6. Size effects 

Size effects describe the reduction in strength of a concrete member as it increases in size.  Work by Kani (1967) first 

discovered size effects in non-shear reinforced RC beams and a simple ‘tooth’ model for the concrete section was proposed 

wherein the cracked section is considered as a series of short cantilevering concrete teeth which resist applied loads from the 

flexural reinforcement.  Initial tests, which showed a large variation in strength due to member size, have since been refined and 

it has been shown that the size effect may be reduced through proper scaling of test pieces.  Tests at the University of Stuttgart 

also revealed that the loss of shear strength in large sections was less significant when deep beams with web reinforcement 

were compared (Bhal, 1968).  Consider now a cracked concrete section, Figure 2.7(l).  Here, the concrete teeth in the cracked 

zone may behave as shown in Figure 2.7(r) to ensure equilibrium of the section given the change in stress in the longitudinal 

reinforcement (ΔF), which causes bending stresses in the tooth.  Bending stresses at the intersection must therefore increase as 

the size of the beam (and so stresses on the tooth) increase, creating the ‘size effect’.  Shear reinforcement across the tooth 

provides resistance to these bending stresses, and so in a shear-reinforced section the size effect is less pronounced. 

The size effect can also be considered in terms of the concrete crack width at failure, which is often found to be a fairly constant 

1mm irrespective of section size, implying that larger elements are more brittle.  Fracture mechanics and dimensional analysis 

can also be applied to show the presence of the size effect.  The sketched graph in Figure 2.8(l) shows that failure loads 

decrease as ‘size’ (typically measured as member depth) increases.  There are two zones of behaviour, with the initially flat line 

attributed to a linear relationship between nominal stress and section yield stress.  Linear-elastic fracture mechanics is then used 

to consider the critical stress intensity factor (KIC) and analysis provides a 1:2 gradient relationship.  The real section behaviour 

does not follow a perfectly plastic, brittle linear-elastic path; instead quasi-brittle behaviour is seen, as highlighted in Figure 2.8(l). 

Figure 2.7: Cracked concrete section(l); Concrete ‘tooth’ (r). 

 

2.7. Shear failure modes 

With the principles of shear behaviour and size effect now established, more general statements can be considered as to the 

shear strength of columns and beams.  Shear failures are found to occur over a relatively small range of values of a/d (shear 

span/effective depth) as shown in Figure 2.8(r), with a critical load position at approximately 2.5d (Kani, 1967).  Deeper sections 

exhibit larger reductions in capacity.  This famous ‘Shear Valley’ is obtained by dividing the moment from Eq. 2.1 by the flexural 

failure moment to obtain what is termed the relative beam strength, ru.  Relative beam strength depends only on the crack 

length, s, since ∆x (Eq. 2.1) remains constant.  Since crack lengths increase with beam depth, there is a reduction in strength as 

the section gets deeper.  Figure 2.8(r) is an approximation of the shear valley, adapted from work by Bazant (1993) and Brown 

et al. (2006), with a range of a/d from 1.0 to what is termed the transition point (the point at which full flexural failure is attained).  

In very deep sections, the transition point is often unobtainable and the section will always fail in shear. 

However, where a/d < 2.5 there is an increase in capacity (shear enhancement) which must also be provided for in design.  The 

enhancement of shear at supports is primarily due to changes in the load path, but the extent to which this applies to circular 

sections is unclear as there is limited test data available for circular sections loaded close to their supports. 
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Figure 2.8: Size effect limits (generalised) (l); Kani’s Shear Valley (r). 

 

2.8. Shear theories 

Using five different codified approaches, Bentz et al. (2006) showed that shear strength predictions between codes can vary by 

up to 200%, while the same codes provide flexural strength predictions within 10% of each other.  This illustrates the degree to 

which design approaches for shear vary, and these differences are discussed further in §3 and §4.  Three design models (the 

truss analogy, compression field theory, and the compressive force-path method) are now briefly investigated. 

2.8.1. Truss analogy 

Modelling shear flow in a reinforced section as a truss was first proposed by Ritter (1899) and Mörsch (1908) as a convenient 

design method.  Mörsch’s 45º-truss model has been improved upon since this time and Kupfer (1962) showed that the model 

underestimates shear capacity by up to 25%.  The basic premise of the model is that cracked concrete in the web of the 

section resists shear by a diagonal compressive stress in a concrete strut which pushes the flanges apart and causes tension in 

the stirrups which are then responsible for holding the section together, Figure 1.1(r).  The Mörsch model assumes that the 

angle from shear reinforcement to the beam axis is 90º and the angle of the compression strut from the beam axis is 45º. 

The diagonal compression in the truss model is continuous (as opposed to discrete, Figure 2.9(l,c)) and forces in the stirrups are 

easily determined from equilibrium considerations.  Early researchers (Talbot, 1909; Withey, 1907) found that shear strength 

predictions according to the force in the stirrups underestimated the section shear strength by a fairly consistent value when 

using a 45º concrete strut model.  To correct this, a ‘concrete contribution’ to shear resistance was added, Figure 2.9(r).   

Figure 2.9: Discrete truss (l); Continuous compression (c); Components of shear resistance (r). 

 

The empirical concrete contribution factor is not used in the Eurocode model (§4).  Instead, it is assumed that once cracked, 

shear capacity comes solely from the links and the concrete is ineffective.  However, the model allows the designer to choose 

the angle of the compression strut (θ).  A flatter strut angle ensures that more links are intersected, thus providing more 

capacity.  However, the compressive stress in the strut increases as θ decreases, and the strut angle is limited by a concrete 

crushing limit in the inclined strut.  This is shown in Figure 2.10(r), where a Mohr’s circle for the inclined strut is drawn for 

decreasing strut angles.  The variable angle model is generally considered to be a more theoretically consistent approach, better 

predicting the failure mode of the actual section, which is likely to occur with a compression strut angle of less than 45º. 

The truss model takes the internal condition of the section as a continuum, which is a convenient simplification.  However, this 

means that the models are inconsistent with the reality of reinforced concrete sections which consist of discrete steel bars within 

a concrete matrix.  Link spacing (§5.3.4) is critical in the use of a continuum truss model, and once link spacing is reduced 

sufficiently, any error found when compared to a discrete truss model is negligibly small.  Kim (2007) also showed that for both 

constant and variable angle truss models, rectangular sections have a higher cracked elastic shear stiffness than circular 
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sections.  Therefore, attempts to simplify circular sections as an ‘equivalent rectangle’ may be unable to properly account for the 

behaviour of the circular section, and this approach is not recommended for design.  Some design issues that arise when using 

the truss analogy are now considered (§2.8.2), before alternative design theories are introduced. 

Figure 2.10: Simplified truss model (l); The effect of a variable strut angle (r). 

 
2.8.2. Truss analogy design 

Kotsovos (2006) determined that current rules for earthquake design do not necessarily prevent brittle failure, and the research 

suggested that the primary cause of this lack of ductility was the use of the truss analogy in design, which ignores the fact that 

concrete is brittle and assumes that the concrete can plastically redistribute the applied stresses into the imaginary truss. 

A further problem with the truss analogy is seen when cracking is considered.  Under loading, microcracks form within an RC 

element and these cracks interconnect to eventually become visible on the surface once peak loading is reached.  The truss 

analogy relies on the fact that the concrete has sufficient post-peak strength to form the compression struts of the truss and this 

strength may be attributed to strain-softening behaviour of the concrete which comes about through aggregate interlock 

(Kotsovos, 2006).  However, the cracking behaviour of concrete is such that cracks extend in the direction of principal 

compressive stress and open in the orthogonal direction (Kotsovos, 2006), a mechanism which is incompatible with a reliance 

on aggregate action since this requires a shearing movement of the crack faces relative to one another.  Therefore, the concept 

of aggregate interlock behaviour might be considered as conflicting with the true behaviour of concrete. 

Fibre reinforced concrete may be the solution, as it has been shown to exhibit both strain-softening and aggregate interlock 

behaviour, making it more appropriate to use the truss analogy in design (Zisopoulos et al., 2004).  However, both compressive 

force path (§2.8.4) and compression field (§2.8.3) theories better allow for the brittle nature of concrete and are therefore 

perhaps more valid approaches for the design of concrete in shear. 

2.8.3. Compression Field Theory, Modified Compression Field Theory (MCFT) and Simplified MCFT 

Compression field theory originates from work by Wagner (1929) on the post-buckling behaviour of metal beams with very thin 

webs.  It was determined that post-buckling, the web of the beam no longer carries compression but instead resists shear by a 

field of diagonal tension.  In concrete, the behaviour is reversed such that post-cracking the section no longer carries tension, 

instead resisting shear by a field of diagonal compression (Collins, 1978).  In the development of the truss model, Mörsch was 

unable to calculate the angle of compression since there are four unknowns and three equations (Hawkins et al., 2005) as 

illustrated in Figure 2.11.  This problem has now been overcome in compression field theory by assuming that the principal 

compressive stress and principal compressive strain directions are coincident (Hawkins et al., 2005).   

Figure 2.11: Equilibrium: beam section (a); diagonal force equilibrium (b); Shear stirrup forces (c). 

 

Compression field theory in concrete was first developed for members in pure torsion (Mitchell, 1974) and then later for 

members in pure shear (Collins, 1978).  For both problems the cracked sections have their own stress-strain relationships, 

distinct from those for the uncracked section, allowing equations for equilibrium and compatibility to be formulated.  Equilibrium 

equations are found for the concrete, stirrups and longitudinal steel in a section by considering a location where the bending 

moment is zero, Figure 2.11.  A Mohr’s circle for strain is then considered to assess strain compatibility of the section, Figure 

2.12(l).  A key result is shown in Eq. 2.3 (Duthinh, 1996) where, assuming the longitudinal steel is elastic (Eq. 2.2) and the shear 

stirrups and concrete have just reached their plastic limit, the same result as a lower bound plasticity approach is obtained 
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without requiring the use of strain compatibility (Nielsen, 1984 and §2.9).  A fuller explanation of compression field theory can be 

found in Vecchio (1986) or Collins et al. (2008). 

Figure 2.12: Mohr’s circle of strain (l); Mohr’s circle of stress (r) for compression field theory.  (Collins et al., 2008). 
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The modified approach (MCFT) simplifies the concrete-steel boundary condition by allowing no slip to occur between the two 

materials (and since the prediction of slip is empirical and not well understood, this is an acceptable simplification) and thus by 

compatibility any deformation (strain) in the steel is matched by equal strains in the concrete.  Bentz et al. (2006) determined 

relationships between the principal concrete stress and principal compressive and tensile strains, giving the MCFT equations as 

shown in Figure 8.1.  The MCFT approach is analysed for circular sections in §6.9.  The simplified MCFT approach was 

developed to provide a set of equations for the AASHTO LFRD design code, which had previously relied on a tabulated version 

of the MCFT equations.  The simplifications are described in Mitchell (1974) and are primarily based on strain limits in the steel 

and concrete.  The simplified MCFT method is also used in the Canadian Bridge Design Code (§3.4.2). 

2.8.4. Compressive force path method (CFPM) 

Kotsovos (1988) first introduced the compressive force path method as a new approach to concrete design.  The basic premise 

of the method is that the ‘shear resistance of an RC beam without shear reinforcement is provided by the region of the path 

along which the compressive force is transmitted to the supports’ (Kotsovos, 1988, p74), Figure 2.13.  Experimental results 

(Kotsovos, 1988) suggest that positioning shear stirrups in the centre span of a simply supported beam under two point loading 

can significantly increase capacity, even though the critical section approach would require shear links within the shear span.  

Similar tests on deeper beams revealed that shear stirrups do not have to be provided throughout the shear span in order to 

allow full flexural capacity to be reached. 

Figure 2.13: Compressive force path method.  Reality (l); Model (r) (Kotsovos, 1990). 

 
 

Beams tested with only partial shear reinforcement cannot conform to the truss analogy since there is no continuous vertical (or 

inclined) tension member (Figure 2.10(l)) but such sections are able to sustain higher load than that predicted by the truss 

analogy (Kotsovos, 1988).  Therefore ‘truss behaviour of a section is not a necessary condition for a beam to attain flexural 

capacity once shear capacity is exceeded’ (Kotsovos, 1988, p.74).  Further details may also be found in Kotsovos, 1990. 

2.9. Plasticity theory 

Plasticity theory is concerned with the ultimate strength of members, and whereas in elasticity theory member stiffness is the 

driving factor in design, plasticity theory is more concerned with strength and ductility.  There are two theorems which need to 

be considered.  The lower-bound theorem states that: 
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 If any stress distribution throughout the structure can be found which is everywhere in equilibrium internally and 

balances certain external loads and at the same time does not violate the yield condition, those loads will be carried 

safely by the structure (Calladine, 1969, p.96). 
 

And the upper-bound theorem states that: 

 If an estimate of the plastic collapse load of a body is made by equating internal rate of dissipation of energy to the rate 

at which external forces do work in any postulated mechanism of deformation of the body, the estimate will be either 

high, or correct.  (Calladine, 1969, p.104). 
 

Therefore, a lower bound approach such as the truss analogy will provide a collapse load estimate less than or equal to the 

actual collapse load.  An upper bound approach (§6.6) equates internal and external work done for a particular collapse 

mechanism, and provides an estimate equal to or higher than the correct failure load.  The correct collapse load is found when 

both give the same collapse load factor, and hence satisfy the uniqueness corollary. 

The use of plasticity theory requires that a number of assumptions be satisfied.  The two most significant are that displacements 

should be small (to avoid affecting equilibrium in the lower-bound approach and compatibility in upper-bound approaches) and 

that all materials should be perfectly plastic.  It is evident that concrete does not display perfectly plastic behaviour and hence is 

given a factored effective strength.  This is discussed in further detail in §4.3 and §6.6. 

In contrast to compression field theory, the approach of plasticity theory does not describe the shear behaviour through the 

cracked section to failure.  This means that in a typical case, either the concrete or the reinforcement may be at their limiting 

stress, whereas in compression field theory neither material is at its limiting stress (Collins, 1978).  It should also be borne in 

mind that whilst the assumptions made in plasticity theory are of questionable validity for concrete structures, which have limited 

plastic behaviour, good design potential has been realised in upper bound analyses (Ibell et al., 1997). 

2.10. Elastic stress behaviour 

The elastic shear stresses on any section can be derived by considering the general shear flow formula, Eq. 2.6.  Here, circular 

sections are considered, and it is reasonably assumed that M/z remains constant along the length of the cross section under 

consideration.  Vertical shear stresses may be found at any location from a suitable reference point by considering the width of 

the section at that location.  In an uncracked circular section, these stresses will be distributed as shown in Figure 2.14(l).  Once 

cracked, and assuming linear elastic behaviour for both the concrete and steel, the stress distribution may be more similar to 

Figure 2.14(r), with the actual distribution being heavily dependent on the relative magnitude of applied axial load and moments. 
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For an uncracked circular section, 
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 Where: Sz = first moment of area (mm3); Vy = shear (kN); Iz = second moment of area (mm4) and b = 2r (mm).   

 
Therefore in an uncracked circular section, 
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 (Figure 2.14(l)) Eq. 2.8 

Figure 2.14: Shear stresses on an uncracked circular section (l); Shear on cracked circular section (r). 

 

2.11. Summary 

§2 provides a comprehensive review of the mechanisms by which concrete carries shear, a topic which has occupied 

researchers for many decades and remains unsatisfactorily dealt with in design codes.  New design guidance for circular 

sections must take all of the above into consideration, and apply this knowledge to the truss model developed by Ritter and 

Mörsch well over 100 years ago.  To facilitate the development of a design procedure for circular sections in shear, current 

shear design procedures are analysed and reviewed before both theoretical and experimental work on circular sections is 

considered in more detail. 
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3. General shear design 
3.1. Introduction 

Chapter 3 introduces general approaches to shear design, before the Eurocode design model (§4) and specific issues 

surrounding circular sections (§5) are analysed in more detail.  From the UK, BS8110-1, BS5400-4 and Highways Agency’s BD 

series documents are considered, and the Canadian CSA S6-06 and American ACI 318 approaches are then contrasted to 

these.  In all cases, additional information is found in the relevant code documents, and this chapter is intended to present only 

the fundamentals of each design approach.  Eurocode and British Standard axes definitions are presented in Figure 3.1(l) to 

avoid potential confusion. 

Figure 3.1: (l-r): Eurocode and British Standards axes definitions; Definitions for BS8110 (av, d). 

 

3.2. British Standards 

The basic model for shear design in the British Standards is the 45º-truss model, where total shear capacity is given by a 

concrete contribution and a steel contribution (Eq. 3.2, see also §2.8.1).  Shear design is undertaken by considering the shear 

stress, v, on a section (Eq. 3.1).  This is compared to the concrete shear resistance, vc, of the section at the point under 

consideration.  Where v is greater than vc, shear links may be required. 

BS8110-1 allows zero links when v is less than 50% of the concrete shear capacity, vc (as given by Eq. 3.3).  This is rarely the 

case, and it is more common to provide either minimum or design links (Eq. 3.4), determined by the limits shown in Table 5.2.  

Shear enhancement is applied in BS8110-1 where av is less than 2d (Figure 3.1(r)) by factoring vc by 2d/av.  Further details given 

in BS8110-1 cl.3.4.5.8, 3.4.5.9 and 3.4.5.10 should also be considered.  For axially loaded sections vc is replaced with a 

factored value of shear resistance, v’c, as described in Table 5.2. 
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 Where: v = design shear stress (N/mm2); V = design shear force at ULS (kN); bv = web width (mm); vc = concrete contribution (N/mm2); vs 
= steel contribution (N/mm2); As = longitudinal steel area (mm2); d = effective depth (mm); fcu = characteristic concrete strength (N/mm2); 
Asv = link cross sectional area (mm); fyd = design link yield strength (N/mm2); sv = link spacing (mm). 
 

3.2.1. BS5400-4:1990.  (CoP for design of concrete bridges) 

The design of bridge piers follows the same general approach to shear design as BS8110-1.  Slenderness is considered, before 

P∆ effects are applied to obtain the section’s axial and moment capacity at ultimate limit state.  The shear resistance of a 

column is given a factored value of an equivalent beam in shear.  BS5400-4 requires minimum links in all sections, and where 

design links are required 0.4N/mm2 is added to the capacity requirement to account for the effects of repeated loading.  The 

concrete contribution in BS5400-4 is defined in Eq. 3.5, where a slightly different size effect factor is used. 
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3.3. Design Manual for Roads and Bridges (DMRB) 

3.3.1. BD74/00 (Foundations) (2000); BD44/95 (Assessment of Concrete Highway Bridges and Structures) (1995) 

BD74/00 is essentially an implementation document for the use of BS8004 when designing roads to the Highways Agency 

specifications.  There are a number of alterations and annexes, including for the design of piles, which are not covered in 

specific detail in BS8004.  The design approach for shear is taken directly from BS5400-4 and hence §3.2.1 is applicable. 
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Assessment codes for existing structures are, in general, less conservative than design codes.  This is illustrated by considering 

shear enhancement clauses in BD44/95, where shear enhancement can be taken within a distance of av<3d (Figure 3.1) 

compared to the av<2d found in BS5400-4.  The interesting point to BD44/95 is that the calculation for vc in fact provides a 

lower result than the design code, which is unusual (Eq. 3.6, Eq. 3.7).  This is explained in BA44 (1996) by the fact that the value 

in BS5400-4 is the mean of the experimental data divided by γm (Clarke, 1987), as opposed to the characteristic value which is 

used in BD44/95.  

 BD44/95:  BS5400-4: 
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3.4. American and Canadian Approaches 

3.4.1. ACI 318, Structural Concrete (2005) 

The American design code is also based on a modified truss analogy.  The formulae for stirrup components are essentially the 

same as BS8110-1 and the concrete contribution (§2.4) is given by Eq. 3.8.  The commentary notes that ‘research results have 

shown that deep, lightly reinforced one-way slabs, particularly if constructed with high-strength concrete, may fail at shear loads 

less than Vc’ (ACI 318-R, 2005 cl.11.5.6.1), which is perhaps an indication of the limitations faced in shear design to existing 

codes.  No additional clauses are presented for circular sections. 
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 Where Nu = Axial load; Ag = gross concrete area (mm2); f’c = concrete compressive strength (N/mm2); bw = web width (mm); d = 

effective depth (mm). 

 

3.4.2. CSA S6-06.  Highway Bridge Design Code (2006) 

The Canadian Standards authority implements the MCFT approach (§2.8.3).  This was originally presented as a series of tables 

(Collins et al., 1996) but now uses the simplified modified approach equations, making the design process easier to understand.  

The code also allows for a strut-and-tie model to be used, which is useful where longitudinal strains do not vary linearly over the 

depth of the member, or where shear flow is not constant over the member depth (CSA, 2006) which is particularly true in deep 

beam design.  Where shear reinforcement is required (when applied shear is greater than the value given by Eq. 3.9) minimum 

steel requirements are given by Eq. 3.10 (to ensure ductility at high concrete strengths). 

The total shear capacity is given by Eq. 3.12, where the components of resistance from tension in the concrete (Vc), stirrups (Vs) 

and prestressing (Vp) are combined.  The effective shear depth, dv, is taken as the larger of the values in Eq. 3.11, where d is the 

distance from extreme compression fibre to centroid of tension reinforcement.  The variables β and θ are based on MCFT and 

are dependent on the longitudinal strain in the section, which is found for simplified cases by Eq. 3.17.  For fc< 60MPa it may be 

assumed that β = 0.18 and θ = 42º.   

The equations for Vc and Vs remain recognisable to those used in other codes, but determining the variables is more complex.  

The approach provides references to relevant literature in the commentary (CSA S6-06-R, 2006), unlike the empirical approach 

found in British Codes.  Throughout, the statement ‘in lieu of more accurate calculations [the variable] shall be calculated as:’ is 

provided, giving the designer the opportunity to use the full MCFT method for a rigorous design.   
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Eq. 3.11    

 Where: Φc  = resistance factor for concrete (=0.75) and Φp = resistance factor for tendons (prestressing); fcr = cracking strength of 

concrete; bv = section diameter; s = bar spacing; dv = effective shear depth; h = member height; bv = web width. 
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Eq. 3.12 

 Where: Vr = section resistance; Vc = resistance from concrete; Vs = resistance from stirrups; Vp = resistance from prestressing. 
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Eq. 3.13 
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Eq. 3.14 

 Where α and θ as defined in Figure 2.10.  Φs = resistance factor for bars (=0.90).  Av = area of transverse reinforcement; and: 
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 In general cases sze = 300mm, and the value for longitudinal strain is given by Eq. 3.17.  
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M f /dv +Vf −Vp + 0.5N f
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 Eq. 3.17 

 Where: Mf = Moment; Vf = Shear force and Nf = Axial load at a section.  Es = 200kN/mm2; As = area of flexural tension steel. 

3.5. Basis for design 

ACI-ASCE Committee 326 (1962) concluded that ‘a fully rational design approach [for shear] does not seem possible at this 

time’ establishing empirically based methods for shear design as the norm for future ACI and British Standard approaches.  

Collins et al. (2008) highlighted the inconsistencies between current codified approaches by testing four slab strips.  Here, 

predicted strengths using ACI 318, BS8110-1, BS EN 1992-1-1 and CSA S6-06 approaches are compared to experimental 

data and large variations are revealed.  The maximum ratio of highest to lowest predicted failure load was 2.56, and both ACI 

318 and BS EN 1992-1-1 approaches can be seriously unconservative, Figure 3.2 (where the total factor of safety is also 

included for a case when live load is 50% of the dead load).  It is perhaps worrying that the BS8110-1 approach appears to be 

safer than the proposed BS EN 1992-1-1 model.  Ideally a new code should introduce new, more accurate methods, from 

which a lower factor of safety may be taken, indicating an improved and more accurate design approach. 

Figure 3.2: Comparison of four design approaches for members without links (Collins, 2008). 

 

In comparison, flexural design using the various codes is essentially the same, and Collins et al. (2008) found just a 2% variation 

in predicted flexural strengths.  Whereas flexural design has been established since the 1950s, shear design is more complex 

and by considering the older British codes, Collins et al. (2008) found that allowable shear forces have decreased by 55% over 

the last 50 years.  In Canada, the collapse of the Laval Overpass in 2006 bought the deficiencies of shear design for concrete 

structures to the forefront of public attention.  The subsequent public enquiry (Johnson, 2007) details both technical, 

constructional and maintenance problems which together contributed to this sudden collapse.  At the time the Laval Overpass 

was designed, shear was not deemed to be critical.  The Canadian code has subsequently been updated to use the MCFT 

approach (§3.4.2) and can now much better predict the behaviour of members in shear.  An analysis of the Laval Overpass 

design using the MCFT approach did indeed show that shear would be a critical failure mode.   

Leonhardt (1970) suggested that the reason for poor shear design is simply the huge number of variables involved when 

compared to flexural design; making many shear tests redundant as they cannot shed light on which variable is causing the 

effects seen.  The MCFT approach of course is different in that it essentially considered complex membrane testing to verify a 

theoretical model, rather than an empirical one.  Furthermore, previous design approaches have been based on a relatively 

limited data set, which before 1996 included very few shear tests on beams deeper than about 560mm, and yet the empirical 

formulae were extrapolated to relate to all cases.   
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Collins et al. (2008) also consider the relative safety factors for shear and flexure, and it is found that the BS8110-1 factor of 

safety against brittle shear failure is only 9% greater than that for a flexural failure mode which gives warning of impending 

collapse.  In comparison, BS EN 1992-1-1 has a 30% increase in the factor of safety for shear, which appears to be more 

satisfactory.  Furthermore, the concrete crushing limit in BS EN 1992-1-1 is based solely on concrete strength (f’c) and tensile 

strains in the concrete are not considered.  The CSA S6 (2006) approach is able to analyse the interaction between the 

compression strut and stirrup strains, which again seems to provide a more accurate approach.  Perhaps the final issue for the 

basis of design using empirical data is the method in which members are tested.  Often, testing for shear uses members that 

contain heavy longitudinal reinforcement to prevent premature flexural failure.  The reality is that members with heavy longitudinal 

reinforcement will be subject to large moments, and in design it is preferable to have member behaviour that is governed by a 

ductile flexural failure rather than a brittle shear mode.  Designing members for shear is critical, since a beam may potentially sit 

just below its failure load and exhibit no obvious signs that it is about to fail. 

3.6. Conclusions 

The current body of UK and North American guidance for the design of concrete in shear has been presented.  Methods in use 

are limited to the approaches of BS8110-1 and BS5400-4, which essentially deal with shear in the same way, although different 

factors and limits are chosen to better represent the type of loading that the section is likely to experience.  Shear strength is 

modelled as being dependent on a ‘concrete contribution’ and a ‘steel contribution’ (Figure 2.9) and this approach allows the 

designer to account for size effects (§2.6), something the Eurocode model (§4) is unable to do for reinforced sections.  The 

American code is broadly similar to the BS5400-4 approach, and also sums the concrete and steel contributions.  The 

Canadians use the most advanced method, and analysis using this approach (§6.9) is superb. 

Concerns raised over shear capacity predictions in both the Eurocode and British Standard models for slabs are presently 

provoking debate.  Responses in the lead up to 2010 may provide some hint at future revisions to the code, although it is 

unlikely that a compression field theory based approach will be adopted in the near future.  The presence of axial load and its 

effect on section design is considered further in the following chapter, where comparisons are made between the BS5400-4 

and the equivalent Eurocode approaches.  The variable angle truss model is now considered in detail (§4) and literature 

surrounding circular sections is reviewed (§5) before new design equations for circular sections in shear are presented in §6. 

 

4. Eurocode Approach 
4.1. Introduction 

This Chapter considers the Eurocode model for shear design.  Equations for shear design are assessed and compared to those 

of §3, with the aim of informing a new approach for the design of circular sections (§6).  The presence of axial load is considered 

and comparisons between the approaches of BS EN 1992-1-1 and BS5400-4 are made. 

4.2. Basis of design 

4.2.1. Stress-strain relationships and section design 

The material models used in BS EN 1992-1-1 are presented in Figure 4.1(l).  Within BS EN 1992-1-1 there are distinct stress-

strain relationships for both the analysis and design of sections; here only the design approach is considered.  Similarly to 

BS5400-4, BS EN 1992-1-1 also allows the use of a rectangular stress block for design, Figure 4.1(r).  Concrete compressive 

and tensile design strengths are given by Eq. 4.1 and Eq. 4.2 respectively, with the designer able to choose between a bilinear 

or a parabola-rectangle relationship for concrete under compression.  The variables λ and η have constant values (as defined in 

the National Annex) of 0.8 and 1.0, and reinforcing steel is taken with fyk= 500MPa.  When considering seismic design, 

alternative yield strengths may be specified to satisfy the ductility requirements of BS EN 1998-2, remembering that ductility is 

inversely proportional to yield stress (Narayanan, 2005). 

4.2.2. Shear approach 

BS EN 1992-1-1 uses a variable angle truss model, which differs from previous approaches by assuming that once cracked, 

only the links provide any shear resistance for the section.  In simple terms, the design shear resistance of a section is given by a 

‘steel contribution’ type equation (VRd,s), the value of which is limited by crushing considerations in inclined the concrete strut 

(VRd,max) (all equations are defined in §4.3).  The advantage of the variable angle model is that it is more theoretically consistent, 

and does not rely on empirical analysis to determine a ‘concrete contribution’ in the cracked section.  The BS EN 1992-1-1 
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approach suggests that sections generally fail with a strut angle of cot(θ)=2.5, although high applied loads may require the use 

of a steeper truss angle.  For members without shear reinforcement the shear strength is primarily governed by concrete 

strength, longitudinal reinforcement and member depth.  Unreinforced sections also remain susceptible to the size effect (§2.6).   

Figure 4.1: Stress-strain plot for concrete and steel reinforcement (l); Concrete stress block (r). 
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fcd =α cc fck /γ c  
Eq. 4.1  
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fctd =αct fctk ,0,05 /γ c
 

Eq. 4.2 

 αcc = coefficient for long term effects (usually 1.0); fck = 

characteristic compressive strength; γc = partial safety factor. 

 αct = 1.0; fctk,0.05 = 0.7fctm; fctm = mean axial tensile strength 

of concrete. 

 

The conceptual approach to shear is simple, but as has been seen, the reality of shear in concrete is anything but.  In the 

simplification process, some variables are neglected and thus accuracy may be lost.  Choosing the most important variables is 

difficult, as what is critical in one case may not be in another (Cladera, 2007; Regan, 1993), which may lead to unexpected non-

conservative results.  Analysis by Cladera (2007) shows that the truss approach for rectangular sections is, in general, over 

conservative for lightly reinforced sections, and non-conservative for heavily reinforced sections.  The same effect is seen in the 

analysis of circular sections, where the BS EN 1992-1-1 equations can lead to both safe and unsafe results for sections with 

differing longitudinal reinforcement and concrete strengths (§6).   

It is also worth noting that the shear design equations present in the final version of BS EN 1992-1-1 have changed significantly 

over the years of development.  In the DD ENV (1991) release, a concrete contribution was included in the same way as found in 

BS8110-1, shown in Eq. 4.3.  This formulation is unwieldy, and highlights the simplicity of the current BS EN 1992-1-1 method, 

but does include an axial load component and what appears to be a size effect factor.  There is no indication as to where the 

various factors came from, but are most likely to be empirically derived. 
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Interestingly, shear enhancement was applied at a/d ≤ 2.5 rather than 2 as found in the current revision.  The code then had two 

methods for shear design, the second being the variable angle truss.  Confusingly, this second method did not include a 

concrete contribution in the equivalent to Eq. 4.3 and so is more similar to the current code revision.  Furthermore, the strut 

angle θ was limited in the range 0.4 ≤ cot (θ) < 2.5, giving a steeper (maximum 68º) possible strut angle while also allowing the 

designer to specify any other limits to θ, ‘provided they can be justified’. 

4.3. Design formulae for BS EN 1992-1-1:2004 

Shear reinforcement is required when VEd>VRd,c (Eq. 4.5); the resistance of the section is then given by Eq. 4.6.  The BS EN 

1992-1-1 truss model is presented in Figure 4.2, where the relationships are clearly defined.  The design of shear reinforcement 

is determined by considering the design shear force which can be sustained by yielding the shear reinforcement (VRd,s), without 

crushing the compression struts (VRd,max).  For both vertical and inclined stirrups, values for VRd,s and VRd,max are given in Table 

4.1.  The equation for concrete crushing, VRd,max includes a coefficient αcw to take account of the stresses in the compression 

chord.  Should a section be failing in crushing, rather than by failure of the stirrups, the concrete strength reduction factor, ν, is 

altered, with the recommended value given in Eq. 4.8.  However, if the design shear stress in the shear reinforcement is less 

than 80% of fyk then increased values for ν are permissible.  Values for αcw are typically taken as 1, unless there is significant 

axial compression (§4.4). 
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Eq. 4.6 
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1.0 ≤ cotθ ≤ 2.5 
Eq. 4.7 

 

€ 

ν = 0.6 1− fck 250[ ]
 

Eq. 4.8 

 Where: VEd = the design shear force in the section; VRd,c = design shear resistance of the section without shear reinforcement; VRd,s = 

shear force sustained by yielding the shear reinforcement; Vccd = shear component of force in the compression area in the case of an 

inclined compression chord; Vtd = shear component of force in the tensile reinforcement in the case of an inclined tension chord. 
 

Figure 4.2: The truss model. 

 
Where:  α = Angle between shear reinforcement and the axis perpendicular to the shear force;  

  θ = Angle between the concrete compression strut and the beam axis perpendicular to the shear force. 

 

Table 4.1: BS EN 1992-1-1 Design Equations. 

 VRd,s VRd, max 

Vertical stirrups 
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VRd, s =
Asw

s
zfywd cotθ  Eq. 4.9 
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 Eq. 4.10 

 

Inclined stirrups 
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 Eq. 4.12 

 
 

 

 

Where: Asw = shear reinforcement cross sectional area; s = stirrup spacing; fywd = design yield strength of the shear reinforcement; αcw 

= coefficient for the state of stress in the compression chord (§4.4); ν1 = strength reduction factor for concrete cracked in shear; bw = 

minimum width between tension and compression chords; z = lever arm; fcd = design value of compressive strength; θ, α = Figure 4.2. 

 

When a section is subject to high fatigue loading (for example a bridge under cyclic traffic loads), BS EN 1992-1-1 includes a 

separate fatigue check, where the truss angle is limited as shown in Eq. 4.13 (cl.3.8.2(3)).  The truss angle limit in general design 

of cot(θ)= 2.5 (Eq. 4.7) is taken from the Danish Concrete code (DS 411), and was originally introduced after experimental 

results showed that wide cracks formed when cot(θ) was greater than 2.5.  Therefore the upper limit to cot(θ) of 2.5 is a 

cracking limit (but remains under the ULS check), and in members with small amounts of shear reinforcement does not 

necessarily imply that failure loads will be reached. 
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tanθ fat = tanθ ≤ 1.0
 

Eq. 4.13 

 Where 
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θ  = angle of compression strut, Figure 4.2  

 

The truss analogy, as a lower bound approach, must satisfy equilibrium at all locations.  Therefore compression in the concrete 

strut must be considered in both horizontal and vertical components, resulting in an additional horizontal tension in both the top 

and bottom chords as shown in Figure 2.10.  The additional force (∆Ftd) is determined for a rectangular section as shown in Eq. 

4.14.  Its application to circular sections is analysed in depth in §6.4, as no provisions currently exist for sections with distributed 

longitudinal bars.  For members without shear reinforcement, the Eurocode ‘shift rule’ can also be applied (see BS EN 1992-1-1 

cl.9.2.1.3(2)), where the moment diagram is shifted by a distance a1 (Eq. 4.15) from is original position. 
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4.3.1. NDP 

It is worth noting that BS EN 1992-1-1 has 121 nationally determined parameters, more than any other Eurocode, due primarily 

to the difficulties of harmonisation between EU states.  In future development of the concrete code it may be sensible to put 

aside ‘old’ methods of shear design and concentrate on the modern approaches illustrated in §2.  However, difficulties 

associated with implementing new design approaches may mean that the truss model is used for a long time to come. 
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4.4. Axial load 

Axial load has been briefly discussed (§2.5) and in general moderate axial compression is deemed to increase the shear 

capacity of a section.  As will be seen in §6.5, crushing of the inclined compression strut is unlikely to govern design.  However, 

some concerns have been raised (Jackson, 2006) over the web crushing equation, Eq. 4.10, specifically in terms of prestressed 

concrete beams, although the same formula is used for all axially loaded reinforced concrete elements.  In Figure 4.3 the shear 

capacities, as predicted by BS 5400-4 and BS EN 1992-1-1, are plotted against the ratio of Asfy/bs for a section using 

50N/mm2 concrete.  It is clear that BS EN 1992-1-1 allows fewer links at low values of shear (since a flatter truss angle may be 

used, Eq. 4.9) and the crushing limit (Eq. 4.10) is greatly increased when compared to BS 5400-4.  However, as noted by 

Jackson (2006) a greater amount of shear steel is required to take advantage of this increase in capacity in BS EN 1992-1-1.  

The BS EN 1992-1-1 equations are plotted for stirrups with a truss angle of cot(θ) = 2.5 up to the crushing limit (Figure 4.3).  The 

truss angle is then reduced incrementally to cot(θ) = 1.0 (45º) to obtain the maximum crushing capacity.  The BS5400-4 

equations are also shown, where the longitudinal steel ratio (As/bd) is taken as 1%.  Figure 4.3 also shows the effect on the 

design equations when the stress in the stirrups is less than 80% of the yield stress and Eq. 4.8 is used, which gives a higher 

value for the concrete effectiveness factor (Eq. 4.8).  Whilst Jackson (2006) describes the basis of the 80% rule for ν as obscure, 

the limit essentially assumes a concrete strength, fck, of 0N/mm2. 

Figure 4.3: Shear capacity and link area comparison, BS EN 1992-1-1 and BS5400-4. 

 
 

Under axial load, VRd,max (Eq. 4.10) is enhanced by the factor αcw, which has a maximum value of 1.25.  The enhancement 

comes from the fact that under axial compression the direction of the principal compression is closer to the horizontal (Jackson, 

2006); in turn this means that the struts rotate less to obtain the optimum value for link design.  However, BS EN 1992-1-1 does 

not take the effect of axial load into account when calculating the link capacity, Eq. 4.9.  As has been seen in Figure 4.3 it is not 

until relatively high shear stresses that the crushing limit must be used, and in most design situations web crushing will not be a 

critical consideration.  BS EN 1992-1-1 does not consider axial load entirely satisfactorily, since high compressions could 

potentially reduce the shear capacity of a section if an accurate definition for z is taken (rather than assuming 0.9d).  This is 

illustrated in Figure 4.4, where significant axial load increases the depth of the compression zone, which in turn reduces the 

actual lever arm, z.  If this reduction in the lever arm, z, is applied to Eq. 4.9 a reduced capacity is calculated, contrary to the 

expected increase in capacity under axial loads.  This is illogical since the application of axial load prevents cracks from opening 

and increases the actions of aggregate interlock, both of which should increase shear capacity. 

Figure 4.4: Qualitative analysis of the application of axial load to a circular section. 
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BS EN 1992-1-1 allows the use of high strength concrete (up to C90/105), although the National Annex for the UK limits the 

shear strength of concrete strength classes higher than C50/60 to C50/60 (cube strength 60N/mm2).  A summary of currently 

available test data for circular sections (as analysed in §5 and §6) is shown in Table 4.2, where the maximum cube strength 
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concrete is used, the ultimate compressive strain capacity is reduced (from εcu = 0.0035 at fck < 50MPa to εcu = 0.0028 at fck = 

90MPa).  In part, this reduction accounts for the more brittle behaviour of high strength concrete, which tends to fail in a more 

explosive (and therefore less safe) manner. 

The use of a higher strength concrete would be expected to have two effects, firstly to improve the peak shear capacity of the 

section and secondly to reduce its ductility.  Higher strength concrete fails at lower values of strain, but provides higher peak 

strength, as seen in Figure 2.1.  However, given that BS EN 1992-1-1 considers the concrete to be ineffective once cracked, 

and that shear capacity comes solely from the links, this increase in strength has little bearing on the stirrup requirements.  An 

increase in concrete strength should theoretically increase the lever arm, z, if an accurate definition is used (such that the lever 

arm is the ‘distance between the centroid of the more tensile chord and the more compressive chord’, (PD6687-2, p.12)) which 

would be beneficial, but in general this improvement will be slight.  Therefore, when specifying high strength concrete it is 

essential to ensure that the concrete crushing limit is analysed for a maximum of C50/60 grade concrete and that reduced 

values for the ultimate compressive strain are used.  

In seismic design, where ductility is a prime concern, BS EN 1998-2 recommends that the values of VRd,c, VRd,max and VRd,s all be 

divided by an additional partial safety factor, γBd1, (which takes a recommended value of 1.251) specifically noted as a factor 

‘against brittle failure’.  However, this factor is presented as constant for all concrete strengths, which seems to imply that it is 

more conservative when low strength concrete is used, and less conservative for higher strength concrete.  The effect of high 

shear steel percentages is not discussed, but by providing more effective confinement to the compression zone a more ductile 

response could reasonably be expected.  In the design of FRP reinforced sections, where ductility is crucial (as the sections are 

over-reinforced), the compression zone is often helically wrapped with FRP to provide this additional ductility.   

Table 4.2: Range of concrete strengths of available test data for circular columns. 

Minimum concrete 
strength 

Maximum recorded 
concrete strength 

Average Approximate equivalent 
cylinder strength 

Experimental data set 

N/mm2 N/mm2 N/mm2 N/mm2 

Capon and de Cossio (1966), §8.2 13.15 45.00 25.42 20 

Clarke and Birjandi (1993), §8.3 20.10 50.50 33.97 25 

Collins (2002), §8.4 19.30 40.40 30.86 25 

4.6. Conclusions 

The Eurocode approach to shear differs to the British Standards approach in that it assumes the shear capacity of a cracked 

section to be dependent on the stirrup contribution only.  This is a more attractive theoretical model, and the variable angle 

model is better able to represent the response of concrete sections and no longer relies on empirically derived concrete 

contributions.  The Eurocode model for stirrup design therefore no longer considers size effects, and is relatively insensitive to 

concrete strength.  The stages of variable angle truss model behaviour are summarised in Figure 4.5 for a lightly reinforced 

section.  Heavily shear reinforced sections may not reach the yielding stress of the steel, limiting the angle at failure to that which 

occurs at crushing of the concrete struts. 

Figure 4.5: Stages of behaviour in the truss model (after Walraven, 2008). 

 

The influence of axial load has been investigated and expected increases in shear capacity when axial load is applied are not 

seen in BS EN 1992-1-1.  Furthermore, accurate analysis of the lever arm, z, could potentially lead to a reduction in predicted 

shear capacity for axially loaded and reinforced sections.  The following chapter introduces the design of circular sections, 

presenting both theoretical and experimental work.  The geometry of closed and spirally bound sections is discussed, and 

existing design guidance for circular sections is analysed.  The findings of §5 then go on to influence the new design equations 

for circular sections presented in §6.

                                                
1 At the present time (February 2009) the National Annex for BS EN 1998-2 is unpublished.  NDPs may be different to those stated in the text. 

Stage Behaviour

1 Uncracked web

2 First appearance of inclined cracking

3 Cracks stabilise under increasing load

4 Stirrups yield.  Rotation of cracking, ! reduces further.  Web crushing may occur.
~21º

1 2 3 4

! 

"

! 

V ! 

"
! 

V

Increasing shear



 

dissertation: john orr 18 

 

5. Circular sections 
5.1. Introduction 

The preceding chapters have considered a significant body of theoretical work, providing a sound basis from which to build this 

dissertation.  Now that codified design methods have been fully considered, detailed analysis is given to the specific issues 

surrounding circular sections.  This chapter considers work ranging from some of the earliest experimental data to more recent 

papers considering the Eurocodes.  Given the nature of this work, additional papers have been utilised throughout the 

dissertation to support and inform analysis and discussion. 

5.2. Shear behaviour 

5.2.1. Early Work 

Capon (1966) undertook some of the earliest shear tests on circular concrete columns following the earthquakes of Mexico City 

(1957) and Coatzacoalcos-Jaltipan (1959), where a large number of circular columns were found to have failed in shear (De 

Cossio, 1961).  It is from this early stage that design for earthquakes has played a role in the collection of experimental test data.  

De Cossio (1961) also notes that many of the failures in the aforementioned earthquakes had been designed to the American 

ACI-318 code (then 1951 edition).  Similar earthquakes in Chile in the same period, where the German DIN code was used, 

resulted in fewer shear failures, although no data is available to verify this.  The first tests by Capon included 21 specimens 

ranging from 150mm to 250mm in diameter.  Of the eleven columns that failed in shear, four of these were tested with axial load 

and two specimens had stirrups.  The test results are compared by the author (Figure 5.1) to calculated shear capacities using 

the BS5400-4 method (§3.2.1, Table 5.2) with material partial safety factors set to 1.0, and taking definitions for breadth and 

effective depth from the American Concrete Institute code ACI 318 (1999) such that the breadth is the diameter of the section 

and the effective depth, d, is the distance from the extreme compression fibre to the centroid of the tension zone, Figure 5.1(r). 

Capon’s analysis used 13 separate column 

parameters to determine the most accurate 

method of modelling a circular section when 

using formulae designed for rectangular 

sections.  This included four definitions for 

effective depth, three for measuring steel 

area, and six to determine the effective area 

of the column.  It is unsurprising, therefore, 

that the fit shown in Capon’s analysis (Figure 

5.1(l)) is relatively accurate.  However, there is 

considerable scatter in the results and 

Capon’s equations appear to become unconservative beyond the range of the test data. 

It was found that when using a BS5400-4 approach, 9 of the analysis results were non-conservative, illustrating the difficulties of 

predicting shear capacity for circular sections.  Capon concedes that the limited number of tests undertaken make it difficult to 

drawn firm conclusions, however some general statements are made.  It is found by comparing test results that the percentage 

of longitudinal steel has a greater influence on shear capacity than the ratio Vd/M (shear force divided by moment).  Further, the 

greater the space between layers of steel, the lower the inclined cracking load.  This is attributed to the fact that the longitudinal 

bars create an effect similar to horizontal stirrups, as cracking occurs in small stages between the bars to combine into a larger 

crack across the section.  Only four tests included shear reinforcement, which is surprising as the paper set out to determine 

design guidance for circular columns.  The testing of non-shear reinforced sections is repeated in much of the available 

literature. 

Cracked sections were in some cases retested and Capon found that the ultimate capacity of the section was not adversely 

affected by having been previously cracked.  It could be surmised from this that cracking of a section under ultimate loading will 

not affect the long term strength of the column.  However, cracking leaves the section open to corrosion and degradation 

through water ingress which in turn will lead to reduced capacity through spalling of the concrete and rusting of the 

reinforcement.  Capon (1966, p26) concludes that the ‘prediction of bending capacity using the rectangular stress distribution 

leads to conservative results’.  The shear strength of the columns tested was deemed to be primarily dependent on the 

concrete strength and cross sectional area, with longitudinal steel percentages being less important.  

Figure 5.1: Test results comparison (l); Section dimensions (r). 
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5.2.2. British Cement Association tests 

Recognised as the next major development, Clarke (1993), working with the British Cement Association (BCA) tested 50 

specimens in shear and produced one of the largest experimental data sets available.  The impetus for this work came from the 

British Piling industry where concern had been raised over the lack of design guidance for piles subject to high shear loads.  

Concrete strength, longitudinal and shear reinforcement percentages, axial load and section diameter were all varied to provide 

a wide ranging set of results.  Three column diameters and three column lengths were assessed with longitudinal reinforcement 

percentages of between 0.9% and 5.6%.  Where shear reinforcement was provided it was in the form of closed links except in 

six tests where spirals with a 150mm pitch were used.  Nominal concrete mix strengths ranged from 25N/mm2 to 50N/mm2.  

In Clarke’s analysis, the effective depth, d, was taken as shown in Figure 5.1(r) and the sensible step of removing the column 

width, b, from the shear equations was taken to consider shear forces rather than stresses.  This removes the difficulties of 

defining b, which if taken as the section diameter can lead to an effective shear area that is greater than the cross sectional area 

of the circle itself.  The results of Clarke’s analysis are presented throughout §6, where they are compared to the newly derived 

variable angle truss equations.  Geometrical relationships for circular sections have been formed by many different researchers, 

the most useful of these are presented and compared in §5.3, before further analysis is undertaken. 

5.3. Geometry 

Circular geometry is assessed to produce the best design formulae for circular sections.  Both Clarke (1993) and Capon (1966) 

calculated effective depths on a case-by-case basis, taking the distance from extreme compression fibre to the centroid of 

tension steel.  However, Feltham (2004) notes that the orientation of the pile or column relative to the applied shearing force is 

usually unknown and it would therefore be better to have a general equation for effective depth that can disregard the plan 

layout of the longitudinal bars.  It can be shown that a sensible estimation for the distance to the centroid of the tension bars 

below the centre of the section is given by 2rs/π, Figure 5.2.  The effective depth is then defined by Eq. 5.1 and given the low 

error seen when using this formula (maximum 3.7%), it will be used in the remainder of the analysis found in this dissertation. 

Figure 5.2:Calculation of effective depth progression. 
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For design codes which include a concrete contribution (Figure 2.9), this contribution is typically defined in terms of the effective 

shear area (bd, Eq. 3.6).  In a circular section this definition has the potential to overestimate the shear area and Feltham (2004) 

presents a simple and accurate method to determine the actual shear area of the circle, as shown in Figure 5.3.  The resulting 

equation (Eq. 5.4) may therefore replace the ‘bd’ term in all BS5400-4 and BS8110-1 shear equations. 

Figure 5.3: Section definitions. 
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5.3.1. Link efficiency 

Considering the section shown in Figure 5.3, it is evident that applied shear forces are resisted only by the vertical component of 

the force in the link, reducing their efficiency when compared to a rectangular section.  Circular sections are reinforced with 

either spirals or closed links, and the efficiency of both is dependent primarily on the geometry of the section.  The number of 

links which intersect a failure plane and thus contribute to the shear strength of a section is given by the depth of the member 

divided by the link spacing.  In the case of vertical links, Feltham (2004) suggests that only the portion of link within the effective 

depth should be considered as contributing to the overall section resistance.  Thus, the section capacity is determined by the 

sum of the vertical components of force in the stirrups within the active area for links, as shown in Figure 5.4.  By integrating 

between the top and bottom of the effective depth zone, the shear force carried by the links is determined, Eq. 5.5.  The 

integration (Feltham, 2004) has been reviewed and is presented below in an abridged form.  The result for closed links is given 

by Eq. 5.8. 

Figure 5.4: Geometry for closed links. 
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 Where: d = effective depth as given by Eq. 5.1 

5.3.2. Spiral links 

The design of circular columns can use either discrete or continuous links.  The practical design of small diameter columns may 

lead to a square cage inserted into circular formwork (and hence can be designed as a square section).  Spirals can usually only 

practically be used for column diameters of greater than 300mm (Ambrose, 2007), and spiral reinforcement makes bar spacing 

critical and limits the possible steel percentages in the section.  In very large diameter circular columns, it would be feasible to 

overcome this problem by using concentric rings of steel, but analysis of this is complex and is not considered here. 

Clarke (1993) considered the design of spiral links by firstly analysing the BS8110 approach for inclined links.  It is noted that the 

BS8110-1 approach is inconsistent since the capacity of bent-up bars is based on the geometry d-d’ (Figure 3.1(r)), whilst 

vertical link design is based solely on the effective depth, d.  The Eurocodes on the other hand consider vertical links as a 

special case of inclined links; this approach makes more sense conceptually.  Clarke applies this principal to BS8110-1 by 

rearranging the formula for inclined links and assuming a concrete strut angle of 45º.  This results in Eq. 5.12, where the 

capacity of an inclined link is found as a simple geometric factor of a vertical link with the same cross sectional area.  

Then, by taking the spiral as a special case of an inclined link, Clarke produced an efficiency factor for spiral links when 

compared to their equivalent vertical links.  This factor arises from the fact that the legs of vertical shear links both cross the 

inclined shear plane at the same angle, whereas in spiral reinforcement the angle between the leg and the failure plane is 

different on either side of the centre line of the column, Figure 5.5.  The two opposing legs in spirally bound sections will be at 
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angles α and (180-α) to each other, which, when combined with Eq. 5.12, results in an overall efficiency of sin(α).  This 

relationship is summarised in a table of efficiency factors for different values of spiral pitch (given as a proportion of d), Table 5.1. 

 Current BS8110 equation for bent up bars (cl.3.4.5.6):  
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−1( )  Eq. 5.10 

 Equivalent equation for vertical links   Rearranged for bent up bars:  
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Given the difference in angle on either side of the shear 

plane for each revolution of the spiral, it is logical to assume 

that one side of the spiral has a greater load capacity than 

the other.  If these unequal forces are considered the 

section is not in equilibrium, but instead has a torsional 

moment acting along it.  The truss analogy, being a lower 

bound solution, must satisfy equilibrium at all locations and so an unequal force distribution cannot be used.  Feltham (2004) 

proposes that the lower of the two values be taken as acting on both sides of the section, thus providing a conservative 

approach.  The shear force taken by spiral links is more complex than for a vertical link, since intersections with the failure plane 

must now consider three-dimensional variations in the link geometry, Figure 5.5.  Feltham (2004) provides a detailed analysis of 

spirally reinforced sections to determine the vertical component of force, F’, in the spiral link, Eq. 5.13.  This is given as a factor 

of the force, F, as found for a closed link reinforced circular section (Figure 5.4). 

In order to assess a ‘smeared section’ where the spiral links are treated as a continuum, the link spacing must be given in terms 

of the angle ζ, Figure 5.6.  The position of the link along axis of the column is given by Eq. 5.16 and its location over the height 

of the section by Eq. 5.15.  The spacing of the links is related to the pitch as shown in Figure 5.6, and this can then be 

rearranged to define the spacing of the spirals, s, in terms of ζ, β and α, Figure 5.6, Figure 5.7 and Eq. 5.20.  Full derivations are 

given by Feltham (2004). 

Figure 5.5: Spiral link geometry. 
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Figure 5.6: Angle derivations. 
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Table 5.1: Pitch and efficiency of spiral shear links (Clarke, 1993)  
Pitch Efficiency Pitch Efficiency 

0.20 1.00 0.80 0.93 

0.40 0.98 1.00 (i.e. d) 0.89 

0.60 0.96   
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 The angle between link and column axis is then given by θ, where:  
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Then, the crack inclination angle, ϕ, is given by: 
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Figure 5.7: Pitch and spacing relationship. 
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 The equations are solved as for flat links, with the force given by Eq. 5.14 integrated over all values of cos(ζ), Eq. 5.21 (Feltham, 2004) 
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Eq. 5.21 

 Which could be extended to a variable angle model (§6.3), given by Eq. 5.22.  

 

€ 

1+
p

2πrsv

 

 
 

 

 
 

2 

 

 
 

 

 

 
 

−0.5

fy Asvr cotθ

p

π

2
+ β + sinβ cos β

 

 
 

 

 
 
1+ sinα( )
1+ sinβ( )

−
p 1+ sinβ( )

πr

 

 
 

 

 
 

 

Eq. 5.22 

 

The proposed equation (Eq. 5.21) is rather complex and unwieldy to use.  Turmo et al. (2008) provide a further analysis which 

allows the designer to vary the depth over which the links are effective (where previously this had been assumed to be d).  This 

method is analysed in greater detail in §6.3.4, and comparisons can be drawn between the factors used in Eq. 5.21 and Eq. 

6.21.  

In conclusion, Clarke (1993) notes that tests on concrete in shear tend to give proportionally large amounts of scatter.  In work 

by Brown (2006) 1200 tests on rectangular sections were compiled, of which 47% had some shear reinforcement.  The data 

showed considerable scatter and 7% of tests were deemed unsafe, leading to alterations to the ACI-318 code.  In contrast, 

Clarke (1993) provides a test database of under 100 samples, greatly reducing accuracy and range of applicability for any 

empirical formulae derived.  

Whilst the determination of empirical trends can be made difficult by the large number of tests required, Feltham concludes that 

the approach shown above is valid.  In comparing theoretical and experimental results, it is shown that the effects of varying 

longitudinal reinforcement, concrete strength or shear reinforcement do not affect the ability to calculate shear capacity with 

good accuracy.  The recommendations for the design of circular sections as put forward by Clarke are summarised as follows: 

 • Area of tension reinforcement should be taken as the area of steel below the mid-depth of the section; 

• Effective depth, d, is taken from the extreme compression fibre to the centroid of the steel area; 

• In determining concrete capacity, the term bd should be replaced with the true area to the effective depth of the section; 

• When spirals are used, their efficiency is reduced as shown in Table 5.1. 
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5.3.3. Design approach comparisons 

The approach proposed by Feltham (2004), as presented above, can be compared to the approaches of Clarke (1993) (referred 

to as the BCA approach) and to Highways Agency design documents BD42 (2000) and BD74 (2000) which in turn both make 

reference to the current code of practice for foundations (BS8004, 1986) (see §3 for further details).  BD74/00 also includes, as 

an Appendix, a design approach for bending, axial and shear forces 

on circular piles.  In this, three of Clarke’s recommendations are 

included but no adjustment is made for the actual shear area of the 

section, Av (Eq. 5.4).  

A comparison of the three approaches (Figure 5.8, Spreadsheet 5.1) 

is interesting and reveals some close similarities.  The three 

approaches are compared by plotting applied shear force against 

link requirements for a nominal 900mm diameter section.  It is clear 

that the BD74 method gives a smaller required design reinforcement 

area than either the Feltham (2004) or BCA methods, suggesting 

that BD74 has not properly accounted for the reduction in efficiency 

seen in circular sections.  All three methods give the same nominal 

value of shear reinforcement, since they all use the same definition 

for minimum steel area. 

5.3.4. Discrete and continuum models for shear 

Design codes typically assume a ‘smeared’ distribution of steel through a section, whereas the reality is of course a discrete 

distribution.  Kim (2005) assesses the effects of link distribution in a circular section by considering the number of links 

intersecting an inclined crack.  A variable, N, is defined as the number of spaces between reinforcing hoops crossing a crack 

generated in shear.  When link spacing is high, there will be fewer links crossing a shear crack (and therefore a lower value for 

N).  Kim (2005) uses this value to define a correction factor for sections with widely spaced shear reinforcement.  However, this 

approach has not been taken up in design codes, since minimum steel requirements tend to prevent widely spaced shear 

reinforcement from being used.  The result of this is that the continuum truss model is, in most cases, an acceptable 

simplification for design purposes.  

5.4. Seismic design 

Much research has been undertaken into the seismic behaviour of circular sections, which are often perceived as being the best 

shape for seismic design due to their uniform directional strength.  In seismic design, the provision of ductility can be an 

overriding concern.  Shear, being a non-ductile mode of failure, is therefore critical in many cases.  Priestley et al. (1994) provide 

an expression for the shear capacity of circular sections which broadly follows those seen previously.  Shear carried by the 

transverse reinforcement in a section is considered by resolving parallel to applied shear forces, Eq. 5.23, for a variable angle 

truss model, and the links are assumed to be effective over their entire height (D’), which is potentially non-conservative. 

 

€ 

Vs =
π 2Ash fyh( ) ′ D 

4s
cotθ

  
(kN)

 

Eq. 5.23 

 Where: Ash = area of the hoop; D’ = diameter of section confined between the circular links; s = pitch of bars  

 

5.4.1. Formula development 

Eq. 5.23 assumes that the stirrups are effective over their full height.  Kowalsky (2000) notes that within the compression zone, 

cracks must be closed and so there cannot be any shear transfer by strain in the reinforcement in this zone.  It is then sensible 

to say that stirrups provide shear resistance only in the tension zone and therefore the equations should be effective over a 

reduced area, shown as (D-c-cover) in Figure 5.9.  Kowalsky et al. (1995) considered the effective area of a circular link simply 

as being the component of link area in the direction of the applied shear.  The effective area (Figure 5.9) is given by Eq. 5.24 

which can then be integrated across the section to obtain Eq. 5.25, where the ‘effectiveness factor’ is approximated to π/2.  

Turmo et al. (2008) consider a more general factor (§6 and Table 6.2) which varies depending on the section geometry. 

 

€ 

Aeff = Asp cosγ   
And so:   

€ 

Aeff = 2Asp

r
2
− x

2

r
 Eq. 5.24 

 Where Aeff = effective spiral area in direction of applied shear; Asp = real spiral area; γ = angle between tangent to spiral and direction 
of applied shear; r = confined core radius. 

Figure 5.8: Method comparison. 
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And since 

€ 

n =
D − c − cov

tanθ( )s  
then

 

€ 

Vsg =

2Asp fy r
2 − x 2 r dx

x=− r−c( )

r

∫

D − c − cov

D − c − cov

s
cotθ  

 

 

€ 

⇒   Vsg =
π

2
Asp fy

D − c − cov

s
cotθ  Eq. 5.25 

  

Figure 5.9: Section layout for Eq. 5.25 adapted from Kowalsky (2000) and Kowalsky et al. (1995). 

 

5.5. Codified design 

Codified design provisions for circular sections are summarised in Table 5.2, where analysis from §3, §4 and §5 is collated.  In 

BS8110, irregular sections are considered just once, when it is noted that: (cl.3.8.1) ‘While the provisions relate primarily to 

rectangular cross sections, the principles involved may be applied to other shapes where appropriate.’  It is therefore up to the 

designer to adapt the provisions of the code for circular sections, and to decide if the section is ‘appropriate’ as no guidance is 

given on this general statement. 

In BS EN 1992-1-1, no mention is made of circular sections, but BS EN 1998-2 appears to have adopted Feltham’s definition 

for effective depth in circular sections (cl.5.6.3.3(2)).  For consistency, it is therefore recommended that BS EN 1992-1-1 should 

reference BS EN 1998-2.  ACI 318 provides a simple definition for the effective depth of a circular section as discussed in §5.2, 

but this is the limit of its analysis.  The Canadian S6-06 does not explicitly mention circular sections, but the MCFT approach 

may be applied to any section geometry through computer analysis, hence the analysis method (§2.8.3) and design equations 

(§3.4.2) can be applied to circular sections. 

5.6. Conclusions 

The analysis undertaken thus far is sufficient to show that there is a requirement for the design of members in shear to be 

rationalised.  Work by Collins and others, moving towards a compression field theory for concrete appears to be a fruitful 

approach.  However, BS EN 1992-1-1 uses only the truss analogy and so any design guidance must follow this model.  Recent 

research has begun to bring this together, with the work by Turmo et al. (2008) being particularly fruitful for comparison and 

verification of proposed design approaches.  The geometric ratios from Clarke (1993), Feltham (2004) and Kowalsky (2000) will 

help to shape the design equations of §6.   

The truss analogy for rectangular sections is a powerful design method and is relatively simple to envisage.  Defining a circular 

truss is more difficult, Figure 5.10.  Here, the circular truss has been given elliptical top and bottom chords and ellipsoidal web 

members.  Their behaviour under applied loads is not at all clear, and the influence of longitudinal steel may be more significant 

in circular sections that in rectangular sections.  The provision of a circular truss model (Figure 6.44) is a key outcome of §6. 

Figure 5.10: Simplified comparison of rectangular (l) and circular (r) trusses. 

 
 

The lack of relevant test data is a significant hindrance to the development of a new design method and since the majority of 

new tests are being carried out from a seismic engineering perspective the database of shear tests for regular concrete sections 

is unlikely to be matched.  With codified design methods fully established, and key papers surrounding circular section design 

introduced, new design guidance for circular sections is now considered.  §6 presents variable angle truss equations for circular 

sections based on the Eurocode model.  The additional tensile force and crushing are also considered, before an upper bound 

plasticity approach is presented, and the economics of design are analysed. 
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Table 5.2: A summary of approaches to shear design for circular sections. 
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6. Design approach 
6.1. Introduction 

After a presentation of the available test data for circular reinforced sections failing in shear, design procedures are considered 

with the following objectives: 

 • An extension of the variable angle truss model to cover circular sections, with equations derived for BS EN 1992; 

• A system to deal with concrete crushing in a circular section; 

• Development of an upper bound plasticity based approach; 

• The use of BS EN 1992-1-1 truss angle limits of 1≤cot θ≤2.5 in the design of circular sections; 

• Analysis of unreinforced circular sections and their efficiency. 
 

The work of Feltham (§5.3) is considered and design formulae for a fixed angle truss are extended to the variable angle truss 

model before being analysed against Clarke’s (1993) experimental data.  Work by Turmo et al. (2008) is then examined, and 

equilibrium is considered in terms of the additional tensile force, ∆Ftd (§4.3), before web crushing in circular sections is analysed. 

Analysis is undertaken for a range of strut angles (θ), but it should be remembered that the designer is in fact free to choose any 

value for θ, within the limits illustrated in §4.  Typically, cot(θ)=2.5 provides the most economical design.  A new design 

approach for upper bound plasticity in circular sections is explored, before an evaluation of non-shear reinforced section design 

procedures in both BS EN 1992-1-1 and BS5400-4.  The economics of design to BS EN 1992-1-1 are investigated, and 

comparisons to BS5400-4 are made.  Design of circular sections using MCFT (§2.8.3) is then undertaken, and comparisons are 

made to the proposed Eurocode approach. 

6.2. Test database 

Verification of both existing and proposed design formulae will be carried out primarily using static load tests from Clarke (1993).  

A database of approximately 129 statically loaded tests compiled during the writing of this dissertation (see Appendices, §8) is 

provided on the accompanying CD, but as Clarke provides the most complete and consistent set, this is used exclusively.  The 

PEER2 online database provides test data for dynamic load tests, useful for potential future work in BS EN 1998-2. 

6.2.1. Analysis 

Basic statistical analysis of the data was carried out to determine its variability.  Figure 6.1(a) shows that the majority of the 

columns tested are 300mm in diameter.  Clarke (1993) tested 300mm diameter columns with up to 5.6% longitudinal steel 

reinforcement ratio, as seen in Figure 6.1(b).  Figure 6.1(c) shows that 25% of the specimens in the database contain no shear 

links, this being typical of the tests carried out by Capon (1966).  Finally, just over 70% of the samples were tested without axial 

load.  Application of axial load and shear is relatively difficult to carry out and complicates the correlation between loading and 

member behaviour.  By initially using sections predominantly loaded in shear, cases with axial load can be considered separately 

in order to assess the effects of axial load on shear capacity (§4.4).  The assessment of shear strength also relies on the 

concrete strength (fcu) and Figure 6.1(e) shows the variation in cube strength for the available data.  Both Capon and Clarke 

provide concrete cube data, whilst only Capon provides the stirrup yield strength, Figure 6.1(f).   

Figure 6.1: Statistical variations in obtained test data (continued on following page). 
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The principal relationships derived thus far are summarised in Figure 6.2.  Values for fcu are given equivalent cylinder strengths 

(for analysis to BS EN 1992-1-1) by considering Table 3.1 of BS EN 1992-1-1.  Partial safety factors are given in Table 2.1N (BS 

EN 1992-1-1).  The analysis by Feltham (2004), §5.3, is extended to a variable angle truss model for BS EN 1992-1-1 in §6.3. 

Figure 6.2: Section definitions.   

 

6.3. Variable angle truss 

The equations of BS EN 1992-1-1 rely on the use of a variable angle truss.  The most common use of circular sections is with 

vertical links and so it is the concrete strut angle which will usually be varied.  Previous work by Feltham (2004) and Clarke 

(1993), §5.3.1, considered only a 45º-truss angle.  Feltham’s analysis is extended for a variable angle model below (Eq. 6.1 

through Eq. 6.10), and all variables are defined in Figure 6.3.  Analysis is undertaken by considering that as the truss angle (θ) is 

reduced, the failure plane intersects more links and thus shear capacity is increased.  §6.3.1 presents an analysis of these new 

variable angle equations.  Sections with spiral links are considered separately in §6.3.4, and the procedure described below can 

similarly be applied to the spiral section analysis presented in §5.3.2.  Similarities between the work of Feltham (2004) and 

Turmo et al. (2008) for spirally bound sections become apparent when Eq. 5.22 is compared to Eq. 6.22. 

Figure 6.3: General approach. 
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 The number of links crossing the failure plane is given by Eq. 6.1 and the force in the links is given by Eq. 6.2. Force carried in the links 

is expressed by integrating along the length of the failure plane (d cotθ), Eq. 6.3. The relationship between ξ and x is given by Eq. 6.4 

(see Figure 6.3) which is rearranged in Eq. 6.5.  The differential (dx/dζ) may then be used in Eq. 6.7. 
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Eq. 6.6 

 

€ 

∴dx = dζ
r cosζ

tanθ

1+ sinα

1+ sinβ

 

 
 

 

 
 

 

 
 

 

 
  

The total force carried in the links is then found by the integral:
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Eq. 6.7 
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Eq. 6.8 
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Eq. 6.9 

 Total shear capacity is given either by links yielding or concrete crushing.  Equate Eq. 6.8 to the shear force on the section to obtain: 
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Eq. 6.10 

 Where fy = link yield strength (N/mm2); As = area of links (both legs, mm2); s = spacing (mm); θ, α, and β are defined in Figure 6.3  

 

6.3.1. Analysis 

Eq. 6.10 is the defining equation for the force carried in the links as the truss angle, θ, is varied.  As cot(θ) is varied in the range 

1< cot(θ)≤2.5, more links are utilised, providing greater capacity.  Data from Clarke (1993) is now analysed for the new variable 

angle model, and, in line with the Eurocode approach, it is assumed that the shear reinforcement provides all the shear capacity. 

The design yield strength of the links used in the original analysis has been confirmed as 250MPa (J. Clarke, pers. comm., 9th 

March 2009).  The actual yield strength of the links is quite likely to have been greater than 250MPa, but unfortunately no 

coupon tests were undertaken to verify this (see §6.3.2 for discussion).  Figure 6.4 shows that the recommended value for the 

truss angle of cot(θ)=2.5 provides the best results, but remains considerably more conservative than the previous BS5400-4 

approach.  At steeper truss angles the method is considerably conservative, as summarised in Table 6.1, where variability of the 

results is also highlighted.  Analysis is initially carried out using partial safety factors set to 1.0, Figure 6.4(l); applying the material 

factor of γs = 1.15 simply reduces the capacity predictions.  Full data is provided in Spreadsheet 6.1. 

Figure 6.4: Capacity for Eq. 6.10,fyk = 250N/mm2 (l); Comparison to BS5400 ‘Vs’ term (r). 

 
 

Note: variations in shear span limits are presented in Spreadsheet 6.2. 
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The analysis includes shear enhancement to BS EN 1992-1-1 (cl. 6.2.3(8)), although this is only applied at shear spans of less 

than 2d.  In the analysis by Clarke (also shown on Figure 6.4), enhancement was applied when sections were loaded at av<3d 

from the supports (taken from BD44/95).  The BS EN 1992-1-1 approach is adjusted for this limit in Spreadsheet 6.2, although 

relatively little benefit is obtained due to the test setup.  The BS EN 1992-1-1 approach to the design of shear-reinforced 

sections highlights a number of problems.  Firstly, as the capacity of the section is determined irrespective of any concrete 

capacity, step changes are seen in Figure 6.4, since the same section diameter, with the same shear stirrups must be predicted 

to fail at the same load, irrespective of concrete strength and longitudinal steel percentages.  This is generalised in Figure 6.6  

Table 6.1: Effect of varying truss angle on ϖ and standard deviation. 

γs = 1.00 

cot θ 

€ 

ϖ = V
a
V
th

 SD cot θ 

€ 

ϖ  SD 

1 5.84 1.92 2.2 2.65 0.87 

1.4 4.17 1.37 2.4 2.43 0.80 

1.8 3.24 1.07 2.5 2.34 0.77 

 

Figure 6.5: BS5400, BS EN 1992-1-1 comparison 

 

Figure 6.6: General effect of varying θ. 

 
 

 

The analysis presented in §6.3.1 appears to be more conservative than Clarke’s analysis to BS5400-4.  Taking cot(θ)=2.5 in the 

Eurocode model would be expected to provide a capacity prediction approximately 2.5 times that predicted by the steel term of 

an equivalent BS5400-4 approach.  Analysis of the Clarke data (Spreadsheet 6.1) reveals that Vs accounts, on average, for just 

30% of the total shear capacity when fyk = 250MPa (for sections failing in shear, with closed links).  Knowing this, EN1992-1-1 is 

expected to predict a smaller overall capacity, at 75% of the total BS5400-4 prediction (Figure 6.5).  In comparison, by 

assuming fyk = 500MPa and carrying out the same analysis to BS5400, Vs now accounts for 45% of the total BS5400 prediction 

(which is now slightly less conservative, Figure 6.7(l)).  The EN1992-1-1 prediction will then be 1.125 times that of BS5400, 

which is perhaps more what one would expect.  It is clear that the stirrup yield strength is a crucial consideration when analysis 

is undertaken to BS EN 1992-1-1, and §6.3.2 considers the impact that doubling fyk has in both BS5400 and BS EN 1992-1-1. 

6.3.2. The effect of yield stress in BS5400-4 and BS EN 1992-1-1.  

The analysis presented above has shown that the proposed equations are conservative when compared to the analytical results 

presented by Clarke (1993).  The Eurocode model, when a truss angle of 21º is taken, is generally expected to be slightly less 

conservative than the BS5400-4 model, which does not correlate to the results shown in Figure 6.4.  The influence of yield 

strength in both the BS5400-4 and BS EN 1992-1-1 approaches is analysed in Figure 6.7 (without material partial safety 

factors).  Work undertaken at around the same time as Clarke’s experimental analysis tested similar bar diameters (6-8mm), and 

found yield strengths to be in the range 400-500MPa (Ibell, 1992), as compared to the 250MPa assumed in §6.3.1.  These two 

limits (250MPa and 500MPa) are assessed for both approaches, and it is seen that the BS5400-4 method as used by Clarke 

(Figure 6.7(l)) is relatively insensitive to a doubling of the yield strength.  The BS EN 1992-1-1 model (shown for cotθ=2.5), which 

is dependent solely on the steel contribution, is considerably more sensitive, highlighting the need for an accurate value for fyk. 

Figure 6.7: Effect of fyk on analysis results.  Clarke method (l); BS EN 1992-1-1 variable angle truss (r). 
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The analysis presented in Figure 6.7 must be treated with caution as it cannot prove the actual yield strength of the links used 

was greater than 250MPa, it merely provides evidence to support this assumption.  A value of 500MPa is perhaps slightly too 

high, and produces non-conservative results when partial safety factors are set to 1.0 (Figure 6.7(r)).  A value of approximately 

400MPa provides the best correlation to the test data from Clarke (1993).  This analysis is presented in Spreadsheet 6.3. 

The extension to the Feltham (2004) approach presented above provides a relatively poor correlation to available test data when 

fyk = 250MPa, and is further hampered by overly complex equations which rely on a large number of variables.  Results for non-

shear reinforced sections are presented separately in §6.7.  A second analysis for shear-reinforced sections is now considered 

in §6.3.3, working towards simplified design equations for both closed and spirally bound sections. 

6.3.3. Eurocode design model approach 

The basic Eurocode equation for design of members in shear with vertical links is shown in Eq. 6.11.  A sensible approach for 

circular sections is to use a simple modification factor, Eq. 6.12.  In §5.4 it was seen that Priestley et al. (1994) assumed the 

links to be effective over the full depth of the column, and Eq. 5.23 includes an efficiency factor of π/4 (0.785), while Kowalsky 

(2000) and Feltham (2004) both assume that only a portion of the links are effective.  Recent work by Turmo et al. (2008) has 

considered the Eurocode approach for both solid and hollow circular sections, and by redeveloping the equations of Kowalsky 

(2000) a more general approach was developed by assuming the stirrups to be effective over a variable height, z.  This is 

dependent solely on the geometry of the section (Figure 6.8), and allowed the efficiency factor presented in Eq. 6.14 to be 

developed.  The factor is dependent on the ratios of z/rs and z0/rs (Figure 6.8) but is independent of the chosen truss angle, θ, 

allowing the more general formula, Eq. 6.16, to be used.  Analysis using this approach is presented in Spreadsheet 6.4. 
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Figure 6.8: Section definitions (Turmo et al., 2008). 
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Eq. 6.14 

 Where: rsv = radius of stirrups; z0 = depth from centroid of section to centroid of tension steel.  Measured from the base of the section, 

z0 is approximated by Eq. 6.15.  Where r is the section radius and (sinα) is given by Eq. 5.2. 
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Eq. 6.16 is solved for different ratios of effective depth to column diameter in Table 6.2, ignoring impossible values and imposing 

the limits of Eq. 6.17.  Turmo et al.’s method is essentially the same as previous approaches, and if the stirrups are made fully 

effective (by introducing the limits of Eq. 6.18) then Eq. 6.16 gives the same result as found in Priestley et al. (1994), making the 

‘effectiveness factor’ equal to π/4, Eq. 6.19.  The numerical integration of Eq. 6.16 is found in Spreadsheet 6.5. 
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Table 6.2: Effectiveness factor.  (Turmo et al., 2008). 

z/2rsv 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.05 0.998 0.988 0.964 0.922 0.858 - - - - - 

0.10 0.993 0.993 0.980 0.951 0.902 0.820 - - - - 

0.15 0.978 0.988 0.985 0.967 0.933 0.876 - - - - 

0.20 0.952 0.973 0.980 0.973 0.951 0.911 0.839 - - - 

0.25 0.914 0.946 0.964 0.967 0.957 0.930 0.882 - - - 

0.30 0.863 0.908 0.936 0.951 0.951 0.936 0.905 0.842 - - 

0.35 0.797 0.856 0.896 0.922 0.933 0.930 0.911 0.871 - - 

0.40 0.709 0.786 0.842 0.880 0.902 0.911 0.904 0.880 0.827 - 

0.45 0.592 0.694 0.768 0.820 0.856 0.876 0.882 0.871 0.840 - 

z
0
/2

r s
v
 

0.50 0.409 0.559 0.661 0.773 0.785 0.820 0.839 0.842 0.827 0.785  

Figure 6.9: Closed form solution for Eq. 6.16. 
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(Solved using Wolfram Mathematica® computational integration) 

See Spreadsheet 6.5 for full analysis and notes. 

 

Effectiveness factors for different section geometries are analysed in Table 6.2 (above).  A closed form solution for Eq. 6.16 has 

also been determined and is shown in Figure 6.9.  This may be used instead of numerical integration, but is quite unwieldy.  

Turmo et al. (2008) provide a further simplification to this method by ignoring variations in effective depth along the length of the 

member.  If it is assumed that the lever arm is constant at 0.8D (where D is the column diameter), and the minimum value for rsv 

is taken as 0.45D then Eq. 6.16 gives an effectiveness factor of 0.85.  Taking a lever arm of 0.8D is consistent with an ACI 318 

approach, although less accurate than that proposed by Feltham (2004).  The approach culminates in Eq. 6.20, which is 

evaluated against experimental data from Clarke (1993) in Figure 6.10.  Eq. 6.20 is now analysed for two definitions of z, (Table 

6.3, Figure 6.10).  Case 1 follows current BS EN 1992-1-1 rules for z and Case 2 follows ACI 318 (1999) guidelines. 
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Table 6.3: Design cases for Eq. 6.20. 

Case 1 Case 2 
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z = 0.9d  
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d = r 1+ sinα( )  
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z = 0.8D  D = column diameter 

 

Figure 6.10 shows that simple modification factors can be used to model the behaviour of circular sections, although the results 

are conservative when fyk = 250MPa.  The recommended truss angle of cot(θ)=2.5 provides the best fit, and Figure 6.10(r) 

provides the best results, although both analyses are considered slightly over-conservative.  Note also that the maximum failure 

load in the analyses presented below is 366kN, making any extrapolation beyond these values less conclusive.  Both methods 

have no unsafe results, but this does not in itself suggest a satisfactory design method has been achieved.  In a similar manner 

to §6.3.1, the effect of an increase in link yield strength is shown in Figure 6.11 for Case 1 (z = 0.9d).  The analysis using fyk = 

500MPa correlates better with experimental data, providing additional evidence that the yield strength of the links was greater 

than the 250MPa as assumed in the original analysis by Clarke. 

Figure 6.10: Analysis of Eq. 6.20. fyk = 250N/mm2 Case 1(l) and Case 2 (r). 
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Figure 6.11: Second analysis of Case 1; fyk = 500N/mm2 (l) and fywd = 434N/mm2 (r) (γs = 1.15). 

 

The analysis presented in §6.3 has determined two suitable methods for the design of circular members in shear.  Feltham’s 

definition for effective depth is to be combined with the equations from Turmo et al. (2008), which allow the height over which 

the links are effective (z) to be varied depending on section geometry.  A design approach for BS EN 1992-1-1 is greatly 

simplified by taking λ1 equal to 0.85, although again this may not be applicable in all cases.  Both approaches are conservative, 

and analysis has been hampered by concerns over the true yield strength of the links used by Clarke.  Further experimental 

testing is recommended, as this analysis has shown that the BS EN 1992-1-1 model is sensitive to the yield strength of the 

links.  The above has solely considered the simpler analysis of closed links, and spirally bound sections are now considered 

(§6.3.4), although analysis is hampered by a lack of available test data. 

6.3.4. Spiral links 

Clarke (1993) determined that the efficiency of spiral links varies as shown in Table 5.1.  Turmo et al. (2008) used the same 

approach as Feltham (2004) to introduce the efficiency factor shown in Eq. 6.21, which accounts for spiral section geometry 

better than the approach found in Clarke (1993).  When the pitch is set to zero, Eq. 6.21 is equal to 1.00 and so the modified 

equation (Eq. 6.22) is valid for both spirally and vertically reinforced sections.  Test data for members with spiral links is limited, 

but Eq. 6.22 is verified against Clarke’s (1993) data in Figure 6.12 (fyk = 250MPa).  Trend lines are not drawn, since all sections 

were 300mm in diameter, with the same pitch and shear span.  Longitudinal steel was varied between 2.3% and 5.6%, and fcu 

between 22N/mm2 and 49N/mm2.  As has been discussed, the Eurocode approach is insensitive to these variations. Clarke’s 

analysis is also shown, where it appears that better correlation with the test data is predicted by using a concrete contribution. 
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Whilst predictions for spirally bound sections are 

conservative (Figure 6.12), this is a limited data set and so 

verification of the proposed equation for spiral links is not 

provided.  Sections with high concrete strengths and 

longitudinal steel percentages see capacity predictions up 

to 8 times less than experimental data.  This is 

unsatisfactory, and further experimental data is required 

to properly assess the proposed Eurocode model for 

spirally bound sections. 

With the above analyses in mind, the additional tensile 

force in the longitudinal reinforcement (BS EN 1992-1-1 

cl.6.2.3(7)), which comes about from equilibrium of the 

truss model is now considered.  Following this, crushing 

limits are assessed, before an upper bound plasticity approach (§6.6), unreinforced section design (§6.7), economic 

considerations (§6.8) and an entirely new approach to design are investigated (§6.9). 
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Figure 6.12: Members with spiral links (fyk = 250MPa) 
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6.4. Additional tensile force, ∆Ftd 

The concrete struts of the truss model are in uniaxial compression.  Therefore, an additional tensile force (Eq. 4.14) must be 

applied to the longitudinal steel to satisfy equilibrium, Figure 6.13(l).  This force is applied at the centroidal axis of the section, 

and is then divided between the tension and compression chords.  Therefore, in a symmetrical section with discrete tension and 

compression chords, both chords feel an additional tension of half the total value.  The model for a circular section (Figure 6.14) 

is determined by considering the tension chord to be located at a depth d from the extreme compression fibre, separated from 

the compression chord by a lever arm, z, which is taken as 0.9d.  The two chords are therefore not symmetrical about the 

centroidal axis, and the additional force is distributed between them as shown in Eq. 6.23 and Eq. 6.24.  Where axial load is 

applied, it may also be divided between the chords in this manner, although a new value for z should be determined and this is 

not considered here.  Once the chord forces have been determined, horizontal and moment equilibrium (Eq. 6.25) is checked. 

Figure 6.13: ∆F in regular sections (l); Circular sections (c); The effect at supports (r). 
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The bar forces (Fti) in the real circular section are then determined by distributing the total force in the imaginary tension chord 

between the real bars in proportion to their distance from the compression chord, Figure 6.14(r).  Some iteration may be 

required and this is undertaken in Spreadsheet 6.19, where analysis of the bar forces and equilibrium is considered in more 

detail.  The end result should be that the sum of the forces in the real bars is equal to the total force in the imaginary tension 

chord, Eq. 6.26, and that these bar forces also satisfy moment equilibrium.  BS EN 1992-1-1 (cl.6.2.3(7)) limits the value of ∆F 

to ensure that it is correctly determined close to supports, where the concrete struts rotate and carry load directly to the 

support.  Over the support, the struts are vertical and so longitudinal bar forces are found by considering M/z only.  At >2.5d 

from the support the struts are again inclined at an angle θ, so ∆F is found as normal, Figure 6.13(r). 

Figure 6.14: General model for circular sections (l); Tension bar forces (r). 

 

6.4.1. Conclusions 
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longitudinal bar sizes are likely to lead to construction problems and should be 

avoided wherever possible.  The designer should also check the level of strain 

in the bars; if they have not yielded then the strain distribution should be 

determined to find the force that is carried in the bar (Figure 6.15).  The 

calculation of ∆F in a circular section is more complex than for a rectangle 

section, and care must be taken to ensure equilibrium is satisfied.   
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Analysis is further complicated by small errors which arise from the simplifying assumptions made for values of z and d.  There 

may also be more than one possible solution to the longitudinal bar forces, which can complicate any required iterations.  The 

use of Spreadsheet 6.19 is recommended, where the effect of taking moments about either the centroidal axis or the 

compression chord is analysed.  It is found that it is often simpler to take moments about the compression chord. 

In the BS EN 1992-1-1 model, it is assumed that ∆F is divided equally between the tension and compression chords.  A 

comparison between this model and the proposed approach (§6.4) is presented below.  A section with 12 longitudinal bars, 

20mm cover, 8mm links and a diameter:section length aspect ratio of 1:10 is arbitrarily loaded at 2.5d from its support for 

diameters ranging from 200-4000mm.  At small diameters the error in assuming ∆Ftd=0.5Vcot(θ) is significant, and even larger 

diameter sections do not divide ∆F equally.  Therefore, in a section with distributed longitudinal steel, the simple assumption that 

∆Ftd=0.5Vcot(θ) is potentially non-conservative for the tension chord, and over conservative for the compression chord. 

Figure 6.16: Simple model for ∆F (l); Error when compared to §6.4 (r). 

 
 

With two models for ∆F established and contrasted, forces in the concrete can now be considered.  The shear capacity 

provided by stirrups, VRd,s, is limited by crushing of the concrete struts as described in §4.3.  To satisfy the requirement of an 

equilibrium truss model, new formulae for crushing in circular sections are presented and analysed in §6.5. 

6.5. Crushing 

Although it is rare for a strong web-section to be limited by concrete crushing, in order to provide an equilibrium model 

consideration must be given to the stresses in the concrete struts.  The method proposed by Turmo et al. (2008) did not 

consider concrete crushing as it is typically only found web-dominated sections.  Crushing in a rectangular section is simple to 

apply, while in a circular section the elliptical inclined members are more difficult to analyse (Figure 5.10).  Potential methods are 

shown in Figure 6.17(a,b), where the section beneath the compression chord is divided into discrete ‘beams’, each with a 

different effective depth to the longitudinal steel.  The main problem in using this approach is seen when the central slice is 

considered.  The transverse steel at the base of this slice is almost horizontal and so to provide any kind of vertical capacity 

would have to be highly stressed.  Determining the layout of the fans would be arbitrary, with no certainty that the critical layout 

had been chosen.  In addition, the rectangular layout creates two edge strips with more steel than the others, Figure 6.17(a). 

Figure 6.17: Concrete crushing models. 
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may then be analysed to BS EN 1992-1-1 as a regular section.  However, this approach also presents some difficulties.  Firstly, 

as axial compression increases, the width of the compression chord also increases, Figure 6.17(d).  This can potentially lead to 

overestimation of the area of the new section, and therefore the limits shown in Eq. 6.34 and described below must be applied. 

Section geometry is defined in Figure 6.18(l).  The depth of the compression zone is found by considering the applied loads, 

with the effective depth defined by Eq. 5.1 (or by another method if axial load is applied) and the lever arm, z, is taken as 0.9d.  

The required area of the compression chord is then given by Eq. 6.27 where η is reduced by 10% since the width of the 

compression zone decreases in the direction of the extreme compression fibre (BS EN 1992-1-1 cl.3.1.7(3)).  Concrete cube  

(as opposed cylinder) strengths are generally given in the available test results, meaning a reduction of 0.67 is applied.  Whilst it 

would be conservative to ignore applied shear forces since they reduce the force in the compression chord, Eq. 6.28 is correct 

for equilibrium of the truss (see §6.4 and Figure 6.14).  The area of the compression chord is found by considering the geometry 

of the circular section, Eq. 6.29, allowing the value of ω (Figure 6.18) to be found iteratively by equating the two values for Ac as 

shown in Eq. 6.30.  This is achieved for data from Clarke (1993) in Spreadsheet 6.6, using an Excel ‘goal seek’ function. 
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The depth of the compression zone, c, is then given by Eq. 6.31 and finally the two dimensions of the equivalent rectangle, B 

and H, are found as shown in Eq. 6.32 and Eq. 6.33.  A final check on the section must ensure that the area of the equivalent 

rectangular section does not exceed the area of the circular section minus the area of the compression chord, Eq. 6.34. 

Figure 6.18: Definitions for equivalent rectangular beam (l); Column loading arrangement for analysis (r). 
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force in the column, (Eq. 6.35).  Clarke’s experimental test layout is illustrated in Figure 6.18(r).  VRd,max is found as shown in Eq. 

6.37 and is compared to the actual failure loads in Figure 6.19(l), where a truss angle of cot(θ) = 1.0 is taken.  The full range of 

truss angles is shown in Figure 6.19(r); there is just one value where a truss angle of cot(θ) = 2.5 gives almost an exact 

prediction of the failure load (Va/Vth = 98%).  As expected this occurs in a section with heavy reinforcement and low concrete 

strength.  However, in general it can be seen that the members fail long before the concrete crushing limit (VRd,max) is reached. 
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 Eq. 6.37 

 Where (for zero axial load): αcw = 1.0; bw = B (Eq. 6.33); z = 0.9d; v1 = 0.6; fcd = design concrete strength; θ = concrete strut angle 

 Alternatively, analysis of available data shows that bw may conservatively be taken as 80% of the section diameter (Spreadsheet 6.6). 
 

Figure 6.19: Analysis of crushing load for cot(θ) = 1.0 (l); Analysis for truss angles 1.0 ≤ cot(θ) ≤ 2.5 (r). 
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used for the crushing analysis of circular sections, simply because there is no experimental data with which it can be properly 

verified, as discussed above.  It should also be considered that early tests on prestressed I-beams by Hanson (1964) showed 

that under concentrated loading it was possible to achieve web crushing, stirrup failure and shear-compression failures; 

however when tested under uniform loads web crushing was not observed.  Achieving a web-crushing failure in strong-web 

circular sections is therefore unlikely, although sections with heavy reinforcement may fail in crushing as discussed in §6.5.1.  

Further analysis of crushing in both rectangular and circular (including spirally-bound) sections is presented in Spreadsheet 6.6. 

6.5.1. Forcing a crushing failure 

By heavily shear reinforcing a circular section it is theoretically possible to force a crushing failure.  Figure 6.20(l) shows that while 

crushing may govern in small diameter sections, it is less likely when larger diameters are used.  This analysis is also presented 

in Spreadsheet 6.18, where different diameters and truss angles are investigated.  Consider that VRd,max = 1.8MN for a 500mm 

diameter section (fck=40MPa; cot(θ)=1).  To force a crushing failure would therefore require Asv/sv = 10.1, which is approximately 

equal to 20mm links at 50mm centres (fyk=500MPa, Asv/sv = 12.6).  This is unlikely to occur in a realistic design situation.  Taking 

cot(θ)=2.5 provides a smaller value for VRd,max and thus requires proportionally less steel to force a crushing failure.  Larger 

diameter sections have sufficient capacity to make it essentially impossible to reinforce the section heavily enough to ensure 

crushing failure for any value of θ.  Therefore, it is only in certain cases that crushing limits will be a governing factor in design. 

Figure 6.20: Crushing failures for cot(θ) = 1 (l); Analysis of z = 0.9d (r). 

 

6.5.2. Analysis of z = 0.9d 

The assumption that z = 0.9d in a circular section is briefly considered.  Eq. 6.38 gives a more accurate definition of the lever 

arm for sections without axial load (the majority in Clarke database) taken between the centroid of tension steel and the centroid 

of the compression concrete (centroid of a segment of a circle).  The depth of the compression zone and the angle ω (Figure 

6.18) are found as described in §6.5.  Figure 6.20(r) shows that the formula 0.9d consistently overestimates the lever arm, which 

is not ideal as this potentially provides unconservative values for VRd,max.  The largest error, of approximately 20% of the effective 
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depth, is found where relatively low concrete strengths (24-26N/mm2) are combined with high longitudinal steel (5.6% Ac) and 

transverse steel percentages.  The more accurate method does require iteration, as a value for ω must initially be guessed to 

obtain z.  After determining Eq. 6.28 and Eq. 6.30, a new value for ω is then found and the process is repeated.  VRd,max is 

typically reduced by less than 10% when compared to taking z=0.9d, although sections under high axial load have not been 

considered fully.  Complete analysis and methodology is presented in Spreadsheet 6.6. 
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Eq. 6.38 

 Where rs =radius to longitudinal steel; r = section radius, ω is defined in Figure 6.18(l). 
 

6.5.3. Conclusions 

Crushing in circular sections has been considered by using an ‘equivalent rectangle’ approach.  An iterative procedure has been 

described to define the rectangular section properties, and the lever arm for the equivalent section, z, is given by the circular 

section geometry to avoid over-conservative analysis.  Without experimental data the proposed equations cannot be fully 

verified, but theoretical analysis reveals that heavy reinforcement is required to force a crushing failure.  From a practical point of 

view, crushing of the web is unlikely to be critical in strong-web circular sections, and it has been seen that even for web-

dominated I-sections crushing does not govern under uniformly distributed loading (Hanson, 1964).  Now that the lower bound 

truss model has been thoroughly considered, an upper bound model is developed to provide a new approach to the plastic 

analysis of circular sections in shear. 

6.6. Upper bound plasticity methods 

The truss analogy has been fully developed for circular sections and useful design equations have been derived.  As a 

comparison, an upper bound plasticity approach is considered in this section, building on the introduction of §2.9.  A simplified 

approach is initially taken, followed by a more complex rotating model where enhanced accuracy is seen.  The upper bound 

approach of §6.6 equates a possible displacement field to the strains in the material that are possible in that condition.  The 

failure mode chosen will provide a high, or exact, load capacity and optimisation is always required.  Fuller explanations of the 

upper bound approach may be found in Nielsen (1984) and Calladine (1969), but essentially the method equates internal energy 

dissipation to external work done as shown in Eq. 6.39. 
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′ W 
i∑ u

i
≤ ˙ D 

*

V

∫ dV   Eq. 6.39 

 Where W’i is a set of loads calculated by equating external work to internal dissipation of energy, and u
*
i the associated set of 

displacement increments giving the external work done.  D
*
 is the calculated increment of dissipation of energy per unit volume, 

obtained by considering the Tresca formulae for a perfectly plastic material, as given in Calladine (1969) as: 

 

€ 

˙ D 
*

= Y ˙ ε *
max

  Eq. 6.40 

 Where Y is the yield stress in simple tension and |ε*|max is the greatest principal strain rate magnitude.  D is derived by considering the 

principal strain increments in two rigid blocks of concrete, moved apart in the normal and tangential directions.  The energy dissipated 

in the concrete is given by integrating along the length of the shear line, while the steel contribution is found by assuming that the bars 

yield, and thus their contribution is found by summing for the number of bars crossed by the shear line, Eq. 6.42. 
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ED = ED
concrete

+ ED
steel   Eq. 6.41 

 

€ 

ED = 0.5 1− sinα( ) fc δ
l

∫ bdx + Asi fy δ si∑   Eq. 6.42 

 fc is the effective concrete strength (see below); δ is the resultant displacement of the concrete at an angle α; and b is the sample 
breadth.  Asi is the area of each bar and δsi gives the notional length that each bar has extended.  fy is 200N/mm2. 
 

Applying plasticity theory to concrete structures is quite sensible in an under reinforced section since the steel governs and has 

properties similar to a perfectly plastic material.  Applying a plasticity approach to over reinforced sections in which the 

behaviour of the concrete governs is more difficult, since concrete undergoes strain-softening (Figure 2.1) meaning that post 

peak load, stresses decrease with increasing strains.  To account for this, the concrete is given a factored effective strength, Eq. 

6.43.  The factor, ν, is determined analytically for only a few special cases and in general empirical methods are used.  Two 

effectiveness factors are to be considered, the first by Nielsen (1984), Eq. 6.44, and the second by Ibell et al. (1997), Eq. 6.45.  

The yield strength of links (fy) is to be taken as 200N/mm2, based on experimental analysis (Ibell et al., 1997). 
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 Eq. 6.44 

 Where fcu is the compressive strength of the concrete (Nielsen, 1984).  
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 Where the variables are defined in Table 6.4  
 

Table 6.4: Factors for Eq. 6.45. 
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The formulae developed by Ibell et al. (1997) in general provide a lower value for the concrete effectiveness factor.  It should be 

borne in mind that this factor was originally developed for T-beams, in which the compression zone in the top chord is thin and 

has a large lever arm to the tension zone.  To compensate for the resulting highly effective concrete, a lower effectiveness factor 

was developed to ensure good correlation with experimental data. 

It is now possible to apply an upper bound plastic analysis to the experimental results determined by Clarke (1993).  Loading 

arrangements are shown in Figure 6.21, from which initial failure surface geometry will be drawn.  Optimisation is carried out in 

subsequent sections and potential extensions to this work include bilinear or curved failure surfaces, Figure 6.22.  To determine 

the true collapse mechanism a number of failures should be analysed, and results compared to a lower bound approach. 

Figure 6.21: Loading arrangement and overall section dimensions (Clarke, 1993). 

Type av Diameter Length 

1 330 300 3000 

2 660 300 3000 

3 1200 500 3500 

 

 

 

Figure 6.22: (l-r) Potential bi-linear failure; Optimisation limits; Extensions to an upper bound approach. 

 
 

The upper bound approach is considered first for a circular section (§6.6.1) and subsequently for a rectangular section.  It is 

hoped that by analysing the two geometries separately some kind of equivalency factor may be drawn between the two, with 

the aim of simplifying the plastic analysis of circular sections.  The test data represents columns that have been tested with an 

asymmetric layout as shown in Figure 6.21.  Upper bound shear analysis is generally undertaken on symmetrically loaded 

sections since this allows the centre to move vertically with no rotation of the ends (Shave, 2005). 

In a four point bending test, the central portion moves vertically downwards with no support displacement (Figure 6.23(a, b)) 

whereas the three point bending failure mode (Figure 6.23(c)) must be accompanied by rotation about the supports in order to 

satisfy compatibility, otherwise an erroneous displacement (δ) at the support location occurs as shown in Figure 6.23(d).  Shave 

(2005) demonstrated that for web-dominated sections such as T-beams or I sections, where there is a high degree of 

longitudinal reinforcement such that rotation of the section occurs about the reinforcement, the upper bound capacity of the 

symmetrical and asymmetrical setups is the same, since the asymmetrically loaded section undergoes rotation at the supports 

in order to maintain equilibrium.  In initial analysis, this assumption is assumed true for a circular section and good results are 

obtained.  However, the strong web and distributed longitudinal steel in a circular section necessitate a more detailed analysis 

(§6.6.2) to obtain the true section behaviour, and the actual rotation-displacement of the section must be considered. 
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Figure 6.23: Modes of failure in four- (l) and three-point (r) bending tests (after Shave, 2005). 

 

6.6.1. Circular section analysis 

The initial analysis assumes vertical displacement of the section only, with a failure plane inclination (β) of tanβ = d/av (Figure 

6.21).  The concrete contribution requires that the area of the elliptical failure plane, inclined at β, be determined as described in 

Figure 6.24 and Eq. 6.53.  The link component requires that the angle between the failure plane and the link is defined, which 

itself must be resolved into the vertical plane. 

 Area of ellipse = 
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πAB  where A = half length of long axis; B = half length of short axis  
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EDc = 0.5 1− cosβ( ) fc δ πr 2 sinβ( )   Eq. 6.53 

 Where r = radius of concrete section; fc = effective concrete strength.  For this analysis Eq. 6.44 shall be used (Nielsen approach) to 

simplify the concrete effectiveness factor calculation. 
 

Figure 6.24: Area of inclined plane (l); Section definitions for upper bound analysis (r). 

 
 

Each link crosses the failure plane at a different angle, φ, (Figure 6.24(l)), defined by Eq. 6.56.  The contribution of each link is 

then found by varying s (increasing away from the inclined plane) assuming that the first link is located a horizontal distance s 

from the start of the inclined plane as shown in Figure 6.24(r).  This is a simplification, but is considered acceptable for this 

analysis.  Other variables are defined in Figure 6.24(r).  The steel contribution is determined for the links by considering Eq. 6.42 

and Eq. 6.56 from which an upper bound plastic analysis for a circular section can then determined, Eq. 6.58. 

The problem with an upper bound analysis is that first assumptions will usually not give the correct failure mechanism.  The 

section will fail by the easiest mode and so only a complete analysis would find the lowest value of the upper bound analysis.  

Figure 6.25 shows the upper bound results of the analysis method described above.  The data (from Clarke, 1993) considers 

only members with vertical stirrups, failing in shear: a total of 35 tests are shown.  Of these, there are four different section 

layouts as described in Table 6.5.  Longitudinal steel is assumed not to be contributing, since it has no vertical component for 

this simplified analysis.  The influence of longitudinal steel is significant for circular sections since they have bars distributed 

across the height of the section and this is considered in detail in §6.6.2.  The full data set is found in Spreadsheets 6.7 and 6.8. 
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 Coordinate y is given by:    Coordinate x is given by  
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sv
cosφ  Eq. 6.55 

 Where n = number of links intersected by the plane, and: 
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 Hence the gradient of the tangent to the circle at the location of the link-inclined plane intersection is given by Eq. 6.56. 
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Eq. 6.56 

 
Then,

€ 

tanφ =
dx

dy
.  Angles derived using Spreadsheet 6.7 (see attached CD), and: Eq. 6.57 

 

€ 

EDs = Asi fy δ si∑ = Asi fy cosφ( )∑   Eq. 6.58 

 Where r = radius of concrete section; fc = effective concrete strength.  For this analysis Eq. 6.44 shall be used.  
 

Table 6.5: Data set for upper bound plastic analysis 

Section designation Diameter (mm) Link Spacing (mm) Shear span (mm) Concrete strengths (N/mm2) Cover (mm) Number of specimens 

1 300 75 660 23.80 – 50.50 20 4 

2 300 150 330 34.40 20 1 

3 300 150 660 22.20 – 49.30 20 26 

4 500 150 1200 32.90 – 37.80  20 4 
 

Figure 6.25: Upper bound analysis for circular section where tanβ = d/av (l); ‘Optimised’ upper bound analysis (r). 

 
 

Figure 6.25(l) shows a good distribution from a relatively simple upper bound analysis method for circular sections.  The results 

are upper bound, making them ‘unsafe’ so this is not a design procedure per say.  Calculation of the intersection angle between 

link and failure plane is somewhat lengthy, but has been automated through the use of Excel.  Optimisation of the results has 

been undertaken by varying the angle β, with the results shown in Figure 6.25(r) and summarised Table 6.6.  Spreadsheet 6.7 is 

used to undertake this analysis, where the failure plane angle, β, can be varied to obtain the lowest failure load. 

Table 6.6: Statistical analysis for Figure 6.25. 

 Initial Optimised   Initial Optimised 

Section 1 0.43 0.43  Actual/Theoretical failure load (all sections) 0.81 0.83 

Section 2 0.74 0.58  Standard Deviation 0.14 0.12 

Section 3 0.43 0.41  COV 18% 15% 

β  
(rads) 

Section 4 0.39 0.23     
 

The optimised failure plane angle for Section 4 (Figure 6.25(r)) is limited by the column length, suggesting that a different (bilinear) 

failure is actually taking place.  Furthermore, a very low angle of the failure plane would be limited by crushing in the section as 

well as the limits set out in BS EN 1992-1-1 which would prevent this condition from being realised.  The variation in capacity 

due to the value of β is analysed in Figure 6.26 for the specimen designated as ‘Section 2’ in Table 6.5.  When β = 90º the 

failure plane gains capacity solely from the concrete plane (which is vertical).  As β is reduced, the concrete plane increases in 

area (as it becomes an ellipse, Figure 6.24) but its contribution to the section resistance reduces as the value of cosβ increases 
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(Eq. 6.53).  However, the failure plane now cuts a number of links, all of which provide a steel contribution as given by Eq. 6.58.  

The concrete contribution, in general, dominates the upper bound results.  In a ductile flexural failure, the concrete contribution 

would typically account for 10% of the total; here it can be up to 100% when the failure plane does not intersect any links.  The 

real failure plane will be rather different to, and certainly steeper than, that predicted by this method, since prior flexural cracking 

will change the load paths through the section, making it difficult to predict the shape of the critical failure plane. 

Interpolation between points allows the failure plane angle that corresponds to the experimental failure load (262kN) to be 

estimated at 32º (0.55rad).  As discussed previously this is unlikely to represent the true failure plane since bilinear failures have 

not been considered.  Considering photographs of test failures (for example in Capon, 1966) the actual failure mode tends to 

vary considerably and it is clear that the failure mode will be more complex than can be estimated using a simple linear 

approach.  Figure 6.27 shows the one available photograph of a specimen from Clarke (1993).  Although the section is under 

axial load, the crack distribution appears to span approximately from support to the load point.  The level of axial load present 

on this section will also have influenced the crack pattern. 

Figure 6.26: Variation in concrete and steel capacity for Section 2. Figure 6.27: Cracking in a circular section (Clarke, 1993). 

  

 

6.6.2. Rotation extension 

The analysis of §6.6.1 has provided good results and shows that a simplified approach can be utilised in an upper bound 

approach for circular sections.  The simplified method does not consider longitudinal steel, which is dispersed across the 

section and therefore requires a more detailed rotational analysis.  Figure 6.28 shows the full analysis to be considered here, 

where Segment I remains stationary and Segment II rotates about the support.  In order to provide a tension and compression 

zone through the section, there must be a coincident lateral displacement of the section, Uh.  The section shall be rotated by a 

value of η, varying from 0  1; each increment will further be analysed for a lateral displacement varying from 0  D, where D is 

the section diameter. 

Figure 6.28: Rotation and longitudinal displacement (l); Geometry for longitudinal steel (r). 

 
 

The components of displacement are now more complex, and links are resolved into the plane perpendicular to a line drawn 

from the rotating support to the link, Figure 6.29.  The curvature of the links where they cut the failure plane is considered in the 

same manner as for the simplified method (§6.6.1 and Figure 6.24(l)).  The longitudinal steel is considered in a similar way, with 

the applied longitudinal displacement (Uh) added to the vertical as shown in Figure 6.28(r).  The angles therefore depend on 

variables such as the beam geometry, number of links crossing the failure plane and the angle of the failure plane itself, which 

may be optimised as seen in Figure 6.25(r).  The point at which the failure plane crosses a longitudinal bar is defined by the 
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angle β, which also determines how many links are intersected.  The concrete failure plane is considered as a linear surface, and 

to simplify analysis only the average displacement is considered, measured at the mid-height of the inclined plane and applied to 

the area of the inclined ellipse (Eq. 6.52).  More detailed consideration of the concrete plane is given in §6.6.3. 

Figure 6.29: Full displacement mechanism. 

 
 

For the concrete plane, the displacement at a point on the failure surface is given by Eq. 6.59 which is then input to Eq. 6.53.  

The steel components are determined by considering the displacement in the relevant direction, (Figure 6.30 and Eq. 6.60).  

Then Eq. 6.41 is applied, and by equating the internal and external work done a failure load is predicted.  The external applied 

load also undergoes a displacement, u, in the same manner as given by Eq. 6.59.  Analysis then considers the combined 

variation in the angles η and β with horizontal displacement, Uh.  The method requires considerable iteration, and is heavily 

influenced by the inclination of the failure plane, β. 

In rotating a section with zero horizontal displacement, the longitudinal bars are put into compression.  Allowing the section to 

move laterally produces the tension and compression zones that one would expect.  This is shown in Figure 6.31(l) for a 500mm 

diameter section (Section 44 in Clarke, 1993) where rotation is held constant and lateral movement extended from 0-300mm.  

The advantage of the extended analysis method is that the displacements of the section (Uh) allow the calculation of external 

work done by the axial loads, whereas the simplified approach is unable to account for axial loads.  However, consider that if the 

work done (that is, axial load multiplied by the displacement) is dependent on the value of Uh, then it is recommended that only 

50% of this load be used in the analysis (T. Ibell, pers comm., 09/03/09) to account for some initially elastic behaviour.  

Therefore, the influence of axial load is relatively small, in part due to the small values of Uh used in analysis, but also due to the 

small axial loads (270kN – 550kN) applied in the experimental data from Clarke (1993). 
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Figure 6.30: Angle definitions for links (l) and longitudinal steel (r) for extended upper bound analysis. 

 
 

Analysis using this method shows that good predictions are made when sensible values for lateral movement and rotation are 

chosen.  Each section is analysed for rotation in increments of 1/1000 and displacements in increments of 1mm; a total of half a 

million iterations per section.  Having a single line of calculations and a slider variable for rotation and displacement (Spreadsheet 

6.9) solves the problem of viewing and presenting this data.  Complete analysis of the 500mm and 300mm diameter sections is 

presented in Figure 6.32 and Table 6.7.  Improvements over the simplified method are seen and this upper bound approach 

appears to be successful.  However, whilst this analysis improves accuracy, it was found that the inclination of the failure plane 

still has a great influence on capacity predictions, which is why the simplified method is so successful.  The extended analysis, 

where β, η and Uh are all varied, allows predictions as low as 0.99 and 1.00 to be obtained.  However, similar to all upper bound 

analysis it is also possible to predict capacities 8 or 10 times the actual failure load, again highlighting the necessity to choose a 
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sensible failure mechanism.  The analysis presented here is of course somewhat biased, since the failure load is known and 

parameters are varied for each section to provide the most accurate result. 

Figure 6.31: Bar forces under varying horizontal displacement (l); Axial load in an upper-bound analysis (r). 

 
 

Figure 6.32: Results of extended upper bound analysis. 

 

Table 6.7: Results of improved upper bound 

analysis. 

 
Optimised, 
simplified 
analysis 

Extended Upper 
Bound Analysis, 
optimised 

Actual/Theoretical 
failure load 

0.82 0.93 

Standard 
Deviation 

0.12 0.07 

COV 14% 8%  

 

6.6.3. Concrete plane 

The inclination of the failure plane has great bearing on the capacity predictions, since its inclination determines how many links 

are cut.  §6.6.3 considers the effect of a non-linear concrete plane, and Figure 6.22 presents potential bi-linear and curved 

failure surfaces.  Whilst the linear failure mode used in §6.6.1 and §6.6.2 is not ideal, curved failure surfaces introduce additional 

geometric difficulties, making mistakes more likely since the intersections with longitudinal and shear steel are now quite 

complex and make spreadsheets difficult to use effectively.  The analysis of faceted and curved concrete surfaces is shown in 

Figure 6.34, taken from Spreadsheet 6.10.  The simpler faceted approach defines n number of segments that make up the 

concrete plane (in this example n = 4, although 10 or 20 segments might be used).  The angle (βi) of each plane is then chosen, 

and the position of the plane on the section is determined to find its contribution to the total work done (EDc).  The area of each 

facet is taken as a rectangle whose width is given by the width of the segment at mid-height, and height by the length of the 

inclined plane.  The approximation of the curved section edges to a rectangle leads to small errors.  

An alternative approach is to define the failure plane by some equation: for example a cubic may be used, Figure 6.33(r).  This 

simplifies intersection calculations somewhat, as each point along the plane is simply determined from the initial equation (see 

Spreadsheet 6.11).  When calculating energy dissipation, concrete and steel terms must always be considered together, as the 

concrete plane will predict its lowest energy dissipation when it is very flat, but this ensures that lots of steel is activated, and 

thus the prediction may not be the lowest upper bound result.  The use of C++ for curved and multi-linear failure surfaces would 

be a sensible extension to this work to properly assess the effect of a variable-shaped concrete failure plane. 

Figure 6.33: Curved failure surfaces, simple method (l); Use of equation to define failure plane (r). 
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Figure 6.34: Segment geometry.  Simple faceted method (l); Equation method (r). 

 

6.6.4. Circular analysis conclusion 

Two approaches to upper bound analysis have been presented.  The first is easier to apply, but is less accurate than the 

second, which essentially allows the correct failure load to be determined.  Considerably more analysis is required however, and 

the method is better suited to a more powerful approach than the spreadsheets used here.  Application of the upper bound 

theorem is relatively simple in general, and could be extended to include multiple loads along the length of the column quite 

easily.  The major disadvantage of the simplified approach is its inability to analyse axial load (since these loads have no vertical 

displacement component), which for column sections is somewhat of a problem.  The extended analysis is able to account for 

axial load, but here we see that its influence is relatively small (Figure 6.31(r)).  A solution may be to propose a further concrete 

effectiveness factor to account for axial load.  Clarke (1993) lists just 12 axially loaded tests, of which only 4 have shear 

reinforcement, making any potential effectiveness factor for axially loaded and shear reinforced sections difficult to determine.  

Further experimental data is certainly required to determine the effect of axial load (see also §4.4).   

6.6.5. Equivalent rectangular section 

The upper bound approach is now considered on an equivalent rectangular section, created by defining the effective depth, d 

as Eq. 5.1, from which the shear area is found, Eq. 5.4.  The equivalent section width is given by (Av/d) and the overall 

rectangular section height (heff) is given such that (beffheff) equals the gross cross sectional area of the circular section, πr2.  This 

area is then used in the plasticity calculations.  Steel areas are kept the same (in percentage terms) and whilst this may be 

unconservative for the stirrup steel (since the circular section can utilise only the vertical component of the link force) it is used to 

avoid over complication of the problem.  In determining the integral (Eq. 6.39) the yield line length multiplied by the effective 

width gives an approximation of the result of a circular section area integrated over its depth.  The approach is summarised in 

Figure 6.35 and the results of the upper bound analysis for rectangular sections are presented below. 

Figure 6.35: Equivalent rectangular beam section definitions. 

 
 

The experimental data from Clarke (1993) is again used along with the two concrete effectiveness factors from §6.6.1.  Initially 

only those members conforming to the limits of Table 6.4 are analysed, Figure 6.36(l).  It is clear that there is a much greater 

degree of scatter when compared to the results of §6.6.1, and this is summarised in Table 6.8.  The two approaches appear to 

have the same overall trends, with the Ibell approach being slightly closer to the actual failure values but a coefficient of variation 

of between 20% and 24% does suggest an additional modification factor is required to improve the analysis. 

The second analysis is undertaken for all members, including those that do not conform to the limits shown in Table 6.4.  The 

results of this are shown in Figure 6.36(r) and again are summarised in Table 6.8.  The scatter seen in this analysis, and the large 

coefficient of variation now obtained does indeed suggest that the limits as proposed by Ibell et al. (1997) are applicable to this 

analysis of circular sections.  The behaviour of heavily reinforced sections with high concrete strengths appears to have altered 

the effectiveness of the equations.  Furthermore, there are now a considerable number of ‘safe’ predictions (that is, less than the 

actual failure load), which the upper bound approach should theoretically not produce.  This occurs (bar one exception) solely in 

those members that were previously omitted from the analysis. 

 

! 

D
n

! 

=

! 

=

! 

"
1

! 

"
2

! 

"
3

! 

"
4

! 

D

! 

H
1

! 

X
1

! 

l pl

! 

x
i

! 

x
total

! 

=

H1 = Distance from centre 
line to centre of plane

X1 = Segment width at 
mid height

lpl = Segment length

n = Number of segments

xi = Increments of x (to 
form xtotal)

Simple method:

! 

xi , yi( )! 

x = ay
3

+ by
2

+ cy

! 

x
i

! 

yi

Failure plane defined by equation:

! 

x
total

r beff

heff
d

! 

A
sv
% =

100A
sv

2r s( )
! 

A
s
% =

100A
s

2r( )d

! 

Ag = "r 2

! 

A
v

= r
2 "

2
+# + sin# cos#

$ 

% 
& 

' 

( 
) 

! 

Asv% =
100Asv

beff s( )
! 

As% =
100As

beff( )d
! 

Ag = beff heff = "r 2

! 

Av = beff d = r
2 "

2
+# + sin# cos#

$ 

% 
& 

' 

( 
) 



university of bath: department of architecture and engineering section six: design approach 

dissertation: john orr 45 

Figure 6.36: Results for members conforming to Table 6.4 (l); Results for all members (r). 

 
 

Table 6.8: Statistical variations for Figure 6.36. 

Figure 6.36(l) Figure 6.36(r) 
 ‘Ibell’ ‘Nielsen’ ‘Ibell’ ‘Nielsen’ 

Average Va/Vth 0.74 0.62 1.26 0.86 

Standard Deviation 0.18 0.12 0.36 0.19 

COV (%) 24.2 19.6 28.7 22.3 

 

The equivalent rectangle approach analysis has been undertaken for an inclined failure plane as shown in Figure 6.21, with a 

straight line assumed between point of support and point of vertical load application.  This approach again requires optimisation 

to determine the lowest upper bound value; however, as has been discussed for circular sections the possibilities of bi-linear 

failures make this optimisation unlikely to yield any useful results.  A further analysis could include three-plane or even curved 

failure surfaces on the rectangular section, although the added complexity of this may not add anything if the underlying theory 

is failing to correctly predict the behaviour of circular sections in shear.  It should be noted that the limit of Eq. 6.50 to fcu < 

40N/mm2 accounts for the fact that the original experimental data did not include members outside this range.  This highlights 

one of the main problems with empirically based formulae in that they must be continually reviewed to ensure that they remain 

applicable to modern design and construction, where perhaps higher strength concrete or higher-grade steel is used than was 

originally tested.  The ideal design approach is therefore one which does not rely on a massive experimental database. 

6.6.6. Discussion 

The four upper bound approaches considered thus far are outlined below.  The methods are compared in Figure 6.37, where a 

summary of the analysis methods is presented (Clarke (1993) data is used for all members, failing in shear, with closed links, see 

also Spreadsheet 6.12).  The trends for the equivalent rectangle approach (as shown in Figure 6.36) can be compared to the 

circular analysis and it appears that the proposed circular method provides better results, although extrapolation beyond the 

small range of available test data is difficult to validate. 

 1) Upper bound plasticity for circular sections (proposed method); 

o Simplified method and extended angle analysis method (§6.6.2) 

2) Upper bound plasticity for an equivalent rectangular section, using concrete effectiveness factors from: 

o Ibell et al. (1997) and Nielsen (1984). 

 

The analysis shown below is most revealing when the 300mm diameter sections (failing in shear only) are considered.  Here, it is 

clear that the Ibell approach provides too low a concrete effectiveness factor and hence underestimates the member capacity.  

This has been discussed previously, and is a function of the original T-beam tests undertaken by Ibell et al. (1997).  The Nielsen 

approach gives similar responses for both 500mm and 300mm diameter sections.  The most consistent approach is seen in the 

extended circular analysis, where the trend lines of Figure 6.37(l) and (r) are essentially the same.  The simple circular method 

shows considerable variation when 500mm sections are included.  However, for smaller diameter (300mm) sections a simplified 

approach is valid and does not require extensive optimisation. 
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Figure 6.37: Comparison of four upper bound approaches.  All members (l); 300mm diameter sections only (r). 

 
 

Table 6.9: Statistical variations for Figure 6.37(r). 

Rectangular  Circular  
 

Ibell Nielsen Simplified Extended 

Average Va/Vth 1.26 0.86 0.80 0.93 

Standard Deviation 0.36 0.19 0.13 0.07 

Coefficient of Variation 29% 22% 17% 8% 
 

The limits to the truss angle, θ, provided in BS EN 1992-1-1 (Eq. 4.7) should also be borne in mind when considering any further 

plastic analysis.  Nielsen (1984) provides a simple proof that the angle of the diagonal compression field, θ, analogous to the 

ideal strut angle in a truss model, is equal to half the angle of the failure plane, β, where θ is given by a lower bound analysis as 

Eq. 6.61 and β is given for upper bound analysis as Eq. 6.62.  Therefore, a limit to the angle of the failure plane can be 

considered as the range βmin ≤ β ≤ βmax for the values shown in Eq. 6.63. 
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tanθ =
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1−ψ
  (Where 
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AS = stirrup area; b = section breadth; s = stirrup spacing.) Eq. 6.61 
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 Eq. 6.62 

 For 
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1≤ cotθ ≤ 2.5; 
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π

2
≥ β ≥ 0.761 Eq. 6.63 

 

Applying the limits shown in Eq. 6.63 to the upper bound circular analysis requires, in general, that a steeper failure plane be 

taken (Table 6.11).  The effect of this is to reduce the contribution of the links and increase the concrete contribution, since 

fewer links are cut, with the resulting analysis shown for the simplified approach (§6.6.1) in Figure 6.38 and Table 6.10.  Energy 

contributions (as a percentage) from the Concrete and Steel terms for the simplified method, both with and without limits on the 

value of β, are presented in Table 6.11.  These results are averaged for each of the general section definitions (Table 6.5), where 

the energy dissipated in the concrete is given by Eq. 6.53 and in the steel by Eq. 6.58.   

Figure 6.38: Analysis of upper bound results with β limited by Eq. 6.63. 

 Table 6.10: Analysis of Figure 6.38. 

  

Average Va/Vth 0.56 

Standard Deviation 0.14 

Coefficient of variation 24% 

 

Note 1: 
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Without limits to β, failure is predicted to occur at a flat truss angle, so by imposing the limits of Eq. 6.63 the failure planes are 

made steeper.  Steeper failure planes then lead to a significant increase in predicted failure loads; an analysis of the 500mm 

diameter sections, for example, now predicts failure loads of up to three times the actual values.  Table 6.10 also shows that the 

method becomes more variable when these limits are imposed (although this is heavily influenced by the 500mm diameter 

analysis, Section 4).  It is therefore considered that these limits should not be applied in an upper bound analysis, but the 

influence of a limiting value for β is interesting nonetheless.  The use of a flat truss angle appears to provide better analytical 

results in both upper and lower bound approaches, which perhaps may warrant the use of cot(θ)>2.5 to obtain the most 

economical design (see also §6.8).  Full analysis and data is presented in Spreadsheet 6.14.  The angles used in the extended 

approach are limited only by the geometry of the section. 

Table 6.11: Comparison of analysis when using a limited failure plane angle. 

Analysis for general failure plane Analysis for limited failure plane angles 
Section 

β (§6.6.1) %EDSTEEL %EDCONCRETE βLIMITED %EDSTEEL %EDCONCRETE 

1 0.48 34 66 0.76 15 85 

2 0.68 14 86 0.76 6 94 

3 0.41 26 74 0.76 6 94 

4 0.22 47 53 0.76 6 94 
 

6.6.7. Conclusions 

An upper bound plasticity approach has been applied to circular sections.  A simplified approach for circular sections provides 

acceptable results, and excellent accuracy is achieved when the extended method is used, although geometry considerations 

can become complex and spirally bound sections have not been considered.  An ‘equivalent rectangle’ approach was also 

investigated, but provided little in the way of design simplification and is less accurate than a ‘true’ circular analysis.  Therefore, 

this approach is not recommended for the upper bound analysis of circular sections, and no equivalency factor can satisfactorily 

be drawn between the two approaches.   

The concrete contribution dominates the upper bound approach (up to 100% of total energy dissipation), suggesting that the 

concrete does do some work.  The lower bound analysis relies solely on a steel contribution, which is generally larger than that 

predicted by the upper bound analysis.  The principle advantage of the upper bound approach is its simplicity and ease of 

application.  However, concrete crushing is not considered and the results are generally unsafe.  It remains the aim of this 

dissertation to provide a suitable lower-bound model that remains in equilibrium for all applied forces.  The design of non-shear 

reinforced sections is now briefly considered, before economic design to both BS5400-4 and BS EN 1992-1-1 are investigated. 

6.7. Non shear reinforced design comparison 

The strength of a member that is unreinforced in shear is principally dependent on the concrete strength, reinforcement ratio 

and depth of the member (Narayanan, 2005).  Comparisons between the BS5400-4 and BS EN 1992-1-1 empirically based 

approaches for unreinforced sections are presented.  For non shear reinforced sections, early analytical models which proposed 

that load was carried directly to the supports in a concrete strut, which itself was tied together across the base of the section by 

the tension steel are valid only when plain longitudinal bars are considered.  The use of deformed bars means that the force in 

the tension chord must decrease towards the supports (Reineck, 1991) and so cracks form in this zone.  Reineck (1991) 

suggests that such direct load transfer is only valid for loads applied near to the support, which in turn means that where a 

member does not have shear reinforcement within the Kani shear valley (Figure 2.8(r)) plasticity theory cannot be applied.  

Experimental work by Muttoni (1989, cited by Reineck, 1991) has supported these findings.  The following sections consider the 

empirically based equations of both BS5400-4 and BS EN 1992-1-1 for non-shear reinforced sections. 

6.7.1. Design approaches 

The BS EN 1992-1-1 formulae for unreinforced sections are given below.  Unlike previous equations, axial load is considered 

directly as a beneficial effect.  Since BS5400-4 requires minimum links to be provided in all cases, values for ξsvc (Eq. 6.66) will 

be multiplied by bd to determine the equivalent concrete shear resistance, Eq. 6.67.  For coexistent axial loads, the method 

shown in Table 5.2 for BS5400-4 is used. 
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Figure 6.39: Non-shear reinforced analysis (l); Excluding partial safety factors (r) to EN 1992-1-1 and BS 5400-4. 

 
Clarke’s (1993) experimental data is used for the analysis.  The actual shear area, Av (Figure 6.2) replaces the bd term 

throughout, and the longitudinal steel area is taken as half the total longitudinal reinforcement.  A total of 36 tests are included in 

the comparison (see Spreadsheet 6.15).  Figure 6.39(r) shows that the two approaches are similar when partial safety factors 

are set to 1.0, and both are acceptably conservative when compared to the test results.  When partial safety factors (γc =1.5 in 

BS EN 1992-1-1 and γm=1.25 in BS5400-4) are included, the BS EN 1992-1-1 (Figure 6.39(l)) approach appears to be slightly 

more conservative than BS5400-4.  The ratio of Actual/Theoretical failure load for the BS5400 approach is 1.43, and in BS EN 

1992-1-1 it is 1.63.  This is a relatively small difference, and broadly speaking the two methods give similar results. 

Again, the scatter of data seen in shear tests is evident here, illustrating the problems of empirical formulae derivations.  

Developments in codified design tend to become less conservative with time, as more knowledge or increased confidence is 

gained in the design processes, generally supported by an increasing experimental data set.  It is interesting to note therefore 

that the BS EN 1992-1-1 approach for non-shear reinforced sections appears to be more conservative than BS5400-4. 

6.8. Economic considerations 

This section considers the potential benefits of replacing small diameter shear-reinforced sections with larger diameter, 

unreinforced sections.  Analysis is undertaken by firstly considering the capacity of the shear-reinforced section (VRd,s).  Then, 

the diameter of an unreinforced section with the same shear capacity is determined by plotting VRd,c (Eq. 6.64) against section 

diameter.  Comparisons are provided in Figure 6.40 for a 300mm diameter section with 8-H20 longitudinal bars and concrete 

cube strength of 31.20N/mm2.  Different ratios of shear reinforcement are plotted (Figure 6.40), as described in Table 6.12.  As 

the diameter is increased, the longitudinal steel area is kept constant, and cot(θ)=2.5 throughout.  The results show that only 

small diameter sections are likely to be limited by VRd,max.  Full analysis is presented in Spreadsheet 6.16. 

Table 6.12: Shear reinforcement for Figure 6.40. 

Designation Abbreviation Asw/s  Designation Abbreviation Asw/s  Designation Abbreviation Asw/s 

VRd,s(1) H12-50 4.52  VRd,s(3) H12-150 1.51  VRd,s(5) H12-200 1.131 

VRd,s(2) H12-100 2.26  VRd,s(4) H12-175 1.293  VRd,max = concrete crushing capacity 

 

Figure 6.40: Relative capacities for cot(θ) = 2.5. 

 
 

-

50

100

150

200

250

300

- 50 100 150 200 250 300

Theoretical failure load (kN)

A
c
tu

a
l 
fa

ilu
re

 l
o

a
d

 (
k
N

)

Clarke
EC2
BS 5400
Fs = 1
Linear (Clarke)
Linear (EC2)
Linear (BS 5400)

-

50

100

150

200

250

300

- 50 100 150 200 250 300

Theoretical failure load (kN)

A
c
tu

a
l 
F
a
ilu

re
 L

o
a
d

 (
k
N

)

EC2

BS 5400

Series4

Linear

(EC2)
Linear

(BS 5400)

-

50

100

150

200

250

300

- 50 100 150 200 250 300

Theoretical failure load (kN)

A
c
tu

a
l 
fa

ilu
re

 l
o

a
d

 (
k
N

)

Clarke
EC2
BS 5400
Fs = 1
Linear (Clarke)
Linear (EC2)
Linear (BS 5400)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 300 400 500 600 700

Diameter (mm)

C
a
p

a
c
it
y
 (
k
N

)

VRd,s (1)

VRd,s (2)

VRd,s (3)

VRd,s (4)

VRd,s (5)

VRd,max

VRd,c (kN)

Linear
(VRd,c (kN))

Zone of unreinforced 
section

Capacity for H12-200 
at ø300mm = 288kN

Equivalent 
unreinforced section 
occurs at ø = 1020mm 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 300 400 500 600 700

Diameter (mm)

C
a
p

a
c
it
y
 (
k
N

)

VRd,s (1)

VRd,s (2)

VRd,s (3)

VRd,s (4)

VRd,s (5)

VRd,max

VRd,c (kN)

Linear
(VRd,c (kN))

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 300 400 500 600 700

Diameter (mm)

C
a
p

a
c
it
y
 (
k
N

)

VRd,s (1)

VRd,s (2)

VRd,s (3)

VRd,s (4)

VRd,s (5)

VRd,max

VRd,c (kN)

Linear
(VRd,c (kN))

Concrete crushing governs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 300 400 500 600 700

Diameter (mm)

C
a
p

a
c
it
y
 (
k
N

)

VRd,s (1)

VRd,s (2)

VRd,s (3)

VRd,s (4)

VRd,s (5)

VRd,max

VRd,c (kN)

Linear
(VRd,c (kN))



university of bath: department of architecture and engineering section six: design approach 

dissertation: john orr 49 

The unreinforced section capacity increases linearly in proportion to section diameter, Figure 6.40 and Eq. 6.68, allowing 

equivalent reinforced and unreinforced sections to be defined.  To provide the same shear capacity as a 300mm diameter 

section reinforced with H12-200 stirrups (288kN capacity, given by VRd,s(5) in Figure 6.40), an unreinforced section would 

therefore be 1020mm in diameter, Eq. 6.69.  This is an unrealistic proposition, due to material requirement increases and space 

losses, both of which have negative impacts on sustainability. 

 

€ 

y = 0.3232 D( ) − 41.56   Eq. 6.68 

 Where: y = capacity; D = section diameter.  Capacity, y = 288kN.  Hence: 

 

€ 

D =
288+ 41.56

0.3232
= 1020mm   Eq. 6.69 

 

Unreinforced sections are rarely used in design, since links are required in all cases for cage stability, and large sections use up 

valuable floor area in building design.  Since shear is a brittle failure mode, a degree of reinforcement is considered to be a good 

idea to improve concrete confinement, which in turn improves the ductility of the concrete.  Fibre reinforced concrete may also 

be used, where similar improvements in ductility are seen (§2.2.2).  The use of fibre-reinforced columns (without shear stirrups) 

could be an interesting extension to this dissertation, and may lead to a more economic unreinforced section design. 

6.8.1. Cost comparisons to BS5400-4 

Cost effective design in concrete relies to a certain extent on a parametric analysis of member size, reinforcement percentage 

and concrete strength.  Other considerations, such as material costs, site labour and transport can also be included.   Eq. 6.70 

considers a simplified approach to the cost of a concrete column.  Since BS EN 1992-1-1 removes the concrete contribution 

from stirrup requirements the relationships are more complex than in BS5400-4, although they remain interlinked since an 

increase in section size provides a greater lever arm, reducing link requirements.  A full analysis would include the effects of 

axial, moment and shear forces on section design to reveal the differences between BS5400 and BS EN 1992-1-1 approaches. 

 Cost/column = (Concrete Cost x Area) + (Steel Cost x Area) Eq. 6.70 

 

€ 

⇒ C = C
c
A
c
1+ ρC

c
C
s( )  Where C = cost; Ac = area concrete; As = area steel; 

€ 

ρ = A
s
A
c

 Eq. 6.71 

 

Consider the nominal section described in Table 6.13, where an arbitrary design shear capacity of 2N/mm2 has been specified 

for the section under consideration.  Under BS5400-4, few extra stirrups are required to maintain this shear capacity when lower 

strength concrete is used (Table 6.14), but it may be cheaper to pour high-grade concrete and reduce time spent fixing steel.  A 

second analysis considers the effect of varying column diameter to carry a constant design shear force of 575kN.  Under 

BS5400-4, there comes a point at which the concrete contribution provides enough capacity to negate the use of links entirely, 

Figure 6.41(r).  In the BS EN 1992-1-1 approach (Figure 6.41(l)), after crushing limitations on small diameter sections, full 

capacity is provided solely by the links up until the point at which an unreinforced section has sufficient capacity to carry the full 

575kN.  Full analysis is provided in Spreadsheet 6.17. 

Table 6.13: Design column parameters. 

Variable Design Value 

Diameter 600mm 

fcu 20N/mm2 – 50N/mm2 

Longitudinal Steel 8H20 Bars 

Transverse Steel Varies 

Shear Constant 2N/mm2 capacity  

Table 6.14: Effect of concrete strength on stirrup requirements (BS5400 only). 

fcu (N/mm2) vc (N/mm2) Asv/Sv required 

50 1.01 1.19 (H12-200) 

40 0.93 1.28 

30 0.85 1.38 

20 0.74 1.51 (H12-150)  

 

Figure 6.41: Varying diameter for constant shear force of 565kN (fcu = 40MPa). EN 1992-1-1 (l); BS5400-4 (r). 
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Figure 6.41(r) illustrates that the concrete contribution in BS5400 can be significant.  Consider now Figure 6.42, where a 

constant section diameter (1000mm) is subject to increasing shear force, which is plotted against the required area of shear 

steel (Asv/sv).  In BS5400, the concrete contribution is constant, and up until approximately 1000kN BS5400 provides the most 

economical design for this section.  The same analysis for a 500mm diameter section reveals that BS EN 1992-1-1 becomes 

more economical at approximately 300kN (see also Spreadsheet 6.20).  Furthermore, BS EN 1992-1-1 provides much higher 

crushing resistances (VRd,max) for both limiting values of truss angle θ.  Whilst bridge piers may be subject high design shear 

loads, and will thus benefit from the reduced steel requirements in BS EN 1992-1-1, in general design little benefit may be seen 

when moving from BS5400-4 to BS EN 1992-1-1 and in some cases BS EN 1992-1-1 may initially require more links. 

Figure 6.42: (l-r) Section properties, Analysis showing crushing limits, Detailed analysis. 

 
 

6.8.2. Conclusion 

§6.8 provides a very brief introduction to possible comparisons between BS5400-4 and BS EN 1992-1-1.  Interesting 

comparisons between the shear steel requirements of BS5400 and BS EN 1992-1-1 have been made by varying both the 

section diameter and applied loads.  The proper assessment of the variable angle truss model and how its introduction will 

affect design is a suitable topic for further, separate work.  For example, actual cost data could be incorporated into the 

analysis.  Furthermore, axial load has not been considered, which in BS EN 1992-1-1 can potentially reduce the shear capacity 

of a section if an accurate definition for z is taken, as discussed in §4.4.  Economic design to BS EN 1992-1-1 appears to be 

more complex than previously thought.  Now that the Eurocode model for circular sections has been considered, an alternative 

design approach is briefly considered in §6.9, before final conclusions are presented in §7. 

6.9. Alternative design approaches 

Modified compression field theory (§2.8.3) remains an attractive design method and is assessed here using experimental data 

from Clarke (1993).  Analysis is undertaken using Response-2000, a computerised MCFT packaged developed at the University 

of Toronto.  Tests with closed links which failed in shear are analysed initially, although tests with axial load are not included.  

The results of this analysis are presented in Figure 6.43(l).  Analysis to BS5400-4 by Clarke (1993) obtained an average Va/Vth of 

1.44 for these samples, with a standard deviation of 0.13.  The MCFT approach gives a more consistent average Va/Vth of 1.11, 

with a standard deviation of 0.11.  This suggests that 95% of the experimental results lie between 0.89 and 1.33 times the 

MCFT predictions.  The method therefore appears to be better suited to carrying out capacity calculations for shear in circular 

sections.  The MCFT method does present some issues of non-conservative results, but these are dealt with in design by partial 

safety factors. 

Figure 6.43: MCFT comparison for shear reinforced sections (l); MCFT for unreinforced sections (r). 
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Non-conservative results using MCFT are highlighted by considering test specimen 44 (see Clarke, 1993).  Here, the same 

section has been tested twice, and so the MCFT prediction for failure in shear remains the same for both tests (320.4kN).  The 

experimental data yields failure loads of 301kN and 329kN, giving factors of 0.94 (unsafe) and 1.03 (just safe) on the MCFT 

analysis.  Partial safety factors would be introduced in any codified design procedure to ensure that the predicted failure load 

remains safe.   

Non-shear reinforced sections are also analysed, Figure 6.43(r), and again good correlation with experimental data is seen, 

although both MCFT and BS5400 approaches are quite conservative.  The MCFT method appears to be a step in the right 

direction for the development of a uniform and easily applied approach to the design of members in shear.  Full analysis data is 

presented in Appendix 4. 

6.10. Summary 

The analysis of circular sections in shear is more complex than for their rectangular counterparts.  The analysis presented in §6 

has shown that through geometry considerations formulae for circular sections in shear can be developed.  Two truss models 

have been analysed, and equilibrium has been considered by applying an additional tensile force, ∆F, to their compression and 

tension chords.  A logical approach to the crushing analysis of circular sections has been presented, although experimental 

verification is required.  The crushing approach (§6.5) may be overly conservative for spirally bound sections, where the 

reinforcement pitch is not considered (Eq. 6.37).  Justification for the use of Eq. 4.12 in circular sections requires experimental 

work, as this considerably increases VRd,max predictions for spirally bound sections (see also Spreadsheet 6.6).   

Initial results appear to suggest that the concrete contribution is significant in circular sections (Figure 6.4(r)).  This is a potentially 

important consideration, as other work has suggested that the flattest truss angle in BS EN 1992-1-1 more than accounts for 

the loss of a concrete contribution in rectangular sections.  Analytical accuracy in BS EN 1992-1-1 is also more dependent on 

the value chosen for fyk than in BS5400-4 (§6.3.2).  Furthermore, differences between BS5400-4 and BS EN 1992-1-1 

approaches can become significant as section diameter or link spacing is increased (fewer links intersected).  The concrete 

contribution in BS5400-4 tended to ‘dampen’ the influence of the stirrups; while in BS EN 1992-1-1 appreciable step changes 

in capacity predictions occur when fewer links are intersected. 

The work undertaken in analysing the variable angle truss model is summarised in Figure 6.44 for closed and spirally bound 

circular sections.  It is hoped that this provides a valid, logical and simple to implement extension to the Eurocode approach for 

the design of concrete sections in shear.  The use of a flatter truss angle (cot(θ)>2.5) could potentially be introduced to improve 

analytical results, perhaps following the DIN EN 1992-1-1 model where the truss angle has an upper limit of cot(θ) = 3.0 (18º). 

Figure 6.44: A truss model for circular sections.  Closed links (l); Spirals (r). 

 

Following from work by Nielsen, an upper bound plasticity approach has been introduced and has yielded good results with a 

simple analysis method.  The MCFT approach has also been analysed and whilst good correlations to the available experimental 

data have been found, this method is unlikely to be implemented in the Eurocodes in the near future.  The design of non-shear 

reinforced sections has been considered, with comparisons drawn to the current BS5400-4 approach.   

Consideration has also been given to the economics of design to the Eurocodes, and scope for further study has been identified 

throughout this chapter.  It is hoped that more time and analysis will be given to the development of the methods presented in 

this dissertation before the introduction of BS EN 1992-1-1 in 2010.  Concluding remarks and a set of design equations (to be 

read in conjunction with BS EN 1992-1-1) are presented in §7. 
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7. Conclusions 
7.1. Conclusions 

The design of concrete in shear is more complex and less well understood than flexural design.  For over a century, the truss 

analogy has provided a simple and effective design method based on the lower bound theorem of plasticity.  The 45º-truss 

analogy used in existing design codes requires the use of an empirically based ‘concrete contribution’ to match analytical results 

to experimental data.  The Eurocode model for shear uses a more theoretically consistent variable angle model, which assumes 

that once cracked the concrete provides no shear capacity.  §7 presents a set of equations for the design of circular sections in 

shear using the variable angle truss model, which are intended to be adopted in future revisions of BS EN 1992-1-1. 

Writing the new European design code has been a massive undertaking and it is well worth considering Walraven (2004) and 

Virlogeux (1999) who agree that new codes should be ‘based upon clear and scientifically well founded theories… 

corresponding to a good representation of structural behaviour’ (Walraven, 2005, p. 46).  Einstein (1933, p.163) said:  ‘It can 

scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as 

possible without having to surrender the adequate representation of a single datum of experience’.  In flexural design, both of 

these statements are, in general, satisfied by the Eurocode approach.  However, the simplification of shear to a truss model 

arguably fails to recognise the complex nature of shear in concrete.  

It should be recognised there exist more consistent and valid design approaches for concrete in shear, and that the balance 

between validity and simplicity is complex, depending greatly on the level of reliability and accuracy required of a specific 

analysis.  The great advantage of the truss model is its transparency and ease of application, which allows expedient design of 

concrete elements that would not benefit from a more complex finite element or MCFT based analysis.  Historically, analysis has 

relied on simplifications to save time, but with the widespread use of computer analysis, methods such as MCFT are now far 

more accessible.  That said, the ability to verify a method by hand remains crucial to the implementation of proper and safe 

structural design.  

7.2. Design equations - Stirrups 

After consideration of the design approaches seen in §6, the method of Turmo et al. (2008) is presented for the design of 

circular sections.  Dimensions used in the following are described in Figure 7.1.  Where current BS EN 1992-1-1 equations and 

clauses are used, they will be referred to in bold type. 

Figure 7.1: Circular section dimensions, vertical links (left); spiral reinforcement (right). 

 
r  = section radius; 

rs = radius to longitudinal steel; 

d  = effective depth (Eq. 5.1); 

rsv  = radius to shear reinforcement; 

s  = stirrup spacing; 

θ  = concrete strut angle; 

z  = the lever arm for a member with constant depth; 

z0  = lever arm from centroid of tension steel to section centroid of area 

p  = pitch of spiral stirrups. 

 

7.2.1. Members requiring shear reinforcement (BS EN 1992-1-1, cl.6.2.3). 

In regions where the design shear force in the section from external loads (VEd) is greater than the unreinforced section capacity 

(VRd,c, §7.2.2), shear reinforcement should be provided such that VEd ≤ VRd,s.  VRd,s (the design value of shear force sustained by 

yielding of shear reinforcement) may be given by Eq. 7.1, with θ limited by Eq.(6.7N). θ may be found by equating Eq. 7.1 and 

Eq. 7.5, and only in sections with high design shear stresses will cot(θ) be less than 2.5.  Eq. 7.1 covers all possible design 

situations for circular columns requiring shear reinforcement, with variables as defined in Table 7.1 below. 

 

€ 

VRd ,s = λ
1
λ
2

Asw

s
zfywd cotθ   Eq. 7.1 

! 

d

! 

z = 0.9d! 

s

!

! 

r

! 

r
s

! 

r

! 

r
s

! 

r
sv

! 

r
sv

V

Fcd

Ftd

! 

z
0

= b"
d

2

! 

b

! 

p

!

Flat links Spiral Links



university of bath: department of architecture and engineering section seven: conclusions 

dissertation: john orr 53 

Table 7.1: Variables for closed and spirally reinforced circular columns. 

Variable Closed Stirrups Spirals 

λ1 
λ1 = 0.85 (in general), or: 

λ1 = values in Table 6.2 for more detailed analysis. 

λ1 = 0.85 (in general), or: 

λ1 = values in Table 6.2 for more detailed analysis. 

λ2 1.0 

€ 

λ
2

= p 2πrsv( )
2

+1
 
 
 

 
 
 
−0.5

  Eq. 7.2 

 
s  Stirrup spacing Spiral pitch (or p in Eq. 7.2) 

Asw Area of transverse reinforcement 

z 

€ 

z = 0.9d  Eq. 7.3 
 

d  Effective depth,

€ 

d = r + 2r
s
π( )   Eq. 7.4 

 

fywd  Design yield strength of the shear reinforcement, as defined in BS EN 1992-1-1. 

 

Figure 7.2: Effectiveness of design equations for circular sections. 

 

Table 7.2: Analysis for Eq. 7.1. 

cot(θ) Average Va/Vth Standard deviation 

1 3.77 1.19 

1.4 2.69 0.85 

1.8 2.10 0.66 

2.2 1.71 0.54 

2.4 1.57 0.50 

2.5 1.51 0.48 

 

Experimental data analysed: Clarke (1993) 

For general design, cot(θ) = 2.5, unless geometry or loading dictates 

otherwise. 

A final analysis of Eq. 7.1 is shown in Figure 7.2 and Table 7.2, for the data presented in Clarke (1993), using fyk = 500MPa (see 

§6.3.2).  The full range of cot(θ) is shown, and the recommended value for general design of cot(θ) = 2.5 provides good 

accuracy, a suitable factor of safety and has a degree of scatter comparable to other shear analyses. 

7.2.2. Members not requiring shear reinforcement (BS EN 1992-1-1, cl.6.2.2). 

In regions where calculated shear reinforcement is unnecessary (VRd,c≥VEd), shear capacity may be calculated as given in 

Eq.(6.2a) and Eq.(6.2b).  Enhancement may be applied as per cl.6.2.2(6), Eq.(6.5) and Eq.(6.6N).  Detailing clauses also apply 

to the design of circular sections (cl. 9.5.3). 

7.2.3. Additional tensile force (BS EN 1992-1-1 cl.6.2.3(7)). 

The additional tensile force must be applied to circular sections.  This additional force should be divided between the longitudinal 

tension bars in accordance with their geometrical arrangement as described in §6.4 and Figure 6.13. 

7.3. Design Equations – Crushing 

In general, crushing of the compression struts will not be a critical consideration for circular sections if suitable member sizes are 

chosen during scheme design.  The circular section may be analysed by considering an equivalent rectangular section, Eq. 7.5, 

Figure 7.3 and Table 7.3.  No crushing failures are recorded in available test data, making this approach unverified.  An iterative 

approach is required to determine the correct value for ω.  Spirally bound sections are considered in Spreadsheet 6.6. 

Figure 7.3: Equivalent rectangle section definitions for Eq. 7.5. 
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Table 7.3: Variables for Eq. 7.5. 

Variable   

αcw
 

1.0 for non-prestressed structures (defined in NA to BS EN 1992-1-1). 

Bw
 

= width of the effective rectangular section,
 

€ 

B
w

= πr 2 − 0.5r 2 ω − sinω( )( ) D − c( )   Eq. 7.6 

Where r = section radius; ω = angle to compression chord; D = section diameter; c = depth of compression chord (see Figure 7.3).   
Alternatively, a sensible initial value for Bw may be taken as 0.8D, determined from analysed test data.  

z Lever arm, as defined by Eq. 7.3 

fcd Design value of the concrete compressive capacity.  fck not to be taken as > C50/60 grade (NA to BS EN 1992-1-1, Table 3.1N (cl.3.1.2(2)P). 

θ 1 ≤ cot(θ) ≤ 2.5 BS EN 1992-1-1 6.7N  

7.4. Further Work 

The design of members in shear has long been based on empirical data. Tests on circular sections under static loading are 

relatively rare and more work is required to properly verify the above equations.  To retain confidence in the truss analogy for 

circular sections, there must be sufficient experimental data to validate it.  Potential extensions to this dissertation may therefore 

include: 

• Extension of upper bound plastic analysis to bi-linear and curved failure surfaces, utilising C++ or similar; 

• Experimental work on web crushing failures in circular sections; 

• Feasibility study into use of MCFT for design in BS EN 1992-1-1; 

• Economic considerations and lowest cost design comparisons with BS5400-4; 

• Experimental work to better determine the effect of axial load in shear reinforced columns; 

• Verification of shear enhancement in circular sections; 

• Shear response of high strength and fibre reinforced sections with and without shear reinforcement. 

Compression field theory has provided the best analytical results for circular sections, §6.9, but incorporating the MCFT method 

into a Eurocode model would be a huge change in design procedure.  Aside from its theoretical benefits, perhaps the best 

reason for adopting MCFT is that no European country currently uses it, negating any discussion over which national code 

clauses to incorporate.  A change such as this will not come until well after the introduction of the current Eurocode in 2010. 

7.5. Summary 

The design equations presented above are the result of an analysis of the principals behind shear behaviour in concrete.  By 

considering the underlying theories (§2), worldwide design codes (§3), Eurocode design approaches (§4) and current research 

areas (§5), an understanding of shear in circular sections has been developed.  From this, lower bound truss equations have 

been formed for inclusion into BS EN 1992-1-1.  The great advantage of the Eurocode approach to shear design is its ease of 

use and transparency in application; the equations presented here are intended to continue this as much as possible.  

Equilibrium considerations have led to the development of a new approach to determine the additional tensile force, ∆F, in 

circular sections (§6.4).  New equations for crushing are also presented, but require experimental verification.  An upper bound 

approach for the analysis of circular sections has been introduced and yields consistent results, and opportunities to extend this 

method of analysis have been highlighted. 

Throughout this dissertation, issues arising in the Eurocode design model have been identified, and are summarised below: 

• The compression zone contribution to shear strength is not satisfactorily considered in the truss model; 

• The design of shear reinforcement is, to a large degree, insensitive to concrete strength; 

• The application of axial load has the potential to increase design stirrup requirements; 

• Crushing in irregular sections is not addressed (although it may be difficult to achieve this failure mode). 

The design formulae presented in §7 are intended to allow the safe design of both closed and spirally bound circular sections to 

the Eurocode model, but care must be taken in assumptions made for the lever arm, z.  Further investigation is required before 

the true behaviour of a circular section in shear can conclusively be determined.  More complex design methods also provide 

valid results, and may be used to verify a Eurocode based analysis. 

The introduction of the Eurocodes and the variable angle truss model will change the way that shear design is approached for 

concrete structures.  This dissertation has shown that the variable angle model can be applied with confidence to circular 

sections.  Whilst further experimental work is recommended, it is hoped that the analysis undertaken in this dissertation will help 

to shape and inform future UK design practice.
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8. Appendices 
8.1. Introduction 

The space constraints of this document necessitate that full data tables cannot be published here.  Full tables are found at the 

relevant website addresses as listed alongside each section, and on the accompanying CD. 

8.2. Appendix 1 – Capon and de Cossio (1966) 

See http://people.bath.ac.uk/jjo20/d_a/ 

8.3. Appendix 2 – Clarke and Birjandi (1993) 

See http://people.bath.ac.uk/jjo20/d_a/ 

8.4. Appendix 3 - Collins test data 

See http://people.bath.ac.uk/jjo20/d_a/ 

8.5. Appendix 4 – MCFT analysis results 

See http://people.bath.ac.uk/jjo20/d_a/ 

Also included on the CD are the relevant Response 2000 analysis files. 

8.6. Appendix 5 – MCFT Design Equations 

Full design equations are presented below, from Collins (2002), to be read in conjunction with §3.4.2. 

Figure 8.1: MCFT Design equations 
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