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Abstract 

Post-transcriptional regulation of gene expression is largely achieved at the level of splicing 

in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be 

global, through the direct inhibition of central factors, such as the spliceosome, translation 

initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific 

sequences or particular features are regulated by RNA-binding factors which mobilize or 

impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-

binding proteins, conserved from yeast to man, that enhance the removal of the 5’ cap by 

the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational 

repression. Like Dcp1/2, other decapping co-activators including DDX6 and Edc3, and 

translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which 

have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and 

splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these 

functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the 

cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 

complex alternative splicing. This dual role of human Pat1b illustrates the power of 

paralogous complexes to impact distinct processes in separate compartments. The review 

highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are 

particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-

rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA 

decay pathways.
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Caption 

The conserved family of Pat1 nucleocytoplasmic shuttling RNA-binding proteins mediate a 

wide range of RNA processing steps including AU-rich mRNA decay, translational repression 

and alternative splicing, depending on its associated heptameric Lsm complexes, and are 

found enriched in membrane-less RNP granules including cytoplasmic P-bodies and nuclear 

Cajal bodies.

Introduction 

The Pat1 family of RNA-binding proteins (RBPs) mediate mRNA decay in the cytoplasm, a 

role that is shared by homologues from primitive land plants to man. Its founder member is 

the S. cerevisiae homolog, Pat1p, identified though a two hybrid interaction as a protein 

associated with topoisomerase II (Wang et al. 1996). Red alga, fungi, flies and worms have 

one Pat1 paralog while vertebrates possess two (see Fig.1 for names), which are 

differentially expressed. Pat1a/PATL2 proteins in Xenopus, mice and man are present in 

oocytes but decayed during oocyte maturation, and are replaced by newly synthesised 

Pat1b/PATL1 in eggs which are further expressed in embryos and the soma (Fig.1  (Marnef 

et al. 2010; Marnef and Standart 2010; Nakamura et al. 2010; Chen et al. 2017; Christou-

Kent et al. 2018). The functional importance of this protein family is demonstrated by 

genetic studies. Deletion of S. cerevisae Pat1p results in a slow growth phenotype at 300C 

and lethality at 370C (Wang et al. 1996; Bouveret et al. 2000). S. pombe Pdc2 mutants are 

defective in recovery from glucose starvation (Wang et al. 2017) and deletion of D. 

melanogaster or C. elegans Pat1 proteins is embryonic lethal (Kamath et al. 2003; Pradhan 

et al. 2012). Pat1b homozygous null mice are sub-viable, meaning incomplete penetrance of 

preweaning lethality; only 1 such pup survived compared to 32 WT pups (IMPC, 

http://www.mousephenotype.org). In the case of Pat1a/PATL2, bi-allelic missense and 

nonsense mutations lead to infertility. Four recent studies report that women carrying  

PATL2 mutations and Patl2-/-mice exhibit oocyte maturation defects, an extremely rare 

primary cause of female infertility (Chen et al. 2017; Maddirevula et al. 2017; Christou-Kent 

et al. 2018; Huang et al. 2018). 

Pat1 proteins do not contain any obvious feature or motif known to mediate protein 

or RNA interactions. Their N-terminal regions are predicted to be largely disordered, are 

proline-rich and tend not conserved amongst paralogs. In contrast, the so-called Mid and 
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PatC domains are highly conserved and predicted to be largely a-helical, though only the 

structure of PatC has been solved (Fig.2 ). PatC forms a so called a-a superhelix, an 

elongated domain related to the ARM repeat and HEAT repeat family of proteins (Braun et 

al. 2010; Sharif and Conti 2013; Wu et al. 2014). At steady state Pat1 proteins are found 

principally in the cytoplasm, where they are enriched in P-bodies, membrane-less 

compartments that store untranslated mRNAs and contain RNA-binding proteins including 

translational repressors and decay machinery (Luo et al. 2018; Standart and Weil 2018). 

Moreover, fungal and human Pat1b proteins shuttle to nuclei, in a Crm1-dependent 

manner, with an estimated 15% being nuclear in proliferating HEK293 cells (Teixeira and 

Parker 2007; Marnef et al. 2012; Vindry et al. 2017; Wang et al. 2017). The binding partners 

of Pat1 proteins include mRNA decay enzymes and co-activators (CCR4/NOT, Dcp1/2, Xrn1, 

Lsm1-7, Edc3, Edc4; see Box 1 for an overview of mRNA decay pathways), translational 

repressor proteins (DDX6, 4E-T), additional RNA-binding proteins (Lsm14A) and snRNP 

components (U4/5/6 snRNP). Our recent transcriptome analysis of the effects of Pat1b 

depletion in human cells revealed the up-regulation of a large class of mRNAs and specific 

splicing alterations in some transcripts. In addition to universal roles in mRNA decay and a 

role in alternative splicing in man, Pat1 proteins repress translation in yeast and in Xenopus 

oocytes. In this review we will discuss our current understanding of Pat1 protein function in 

mRNA decay, splicing  and translational repression, in the light of their interactome and how 

they bind to RNA, and end on consideration of their evolutionary conservation. We will 

highlight our recent findings indicating that Pat1b mediates the decay of AU-rich mRNAs, 

which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which 

facilitates the decay of GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss 

the implications of these observation for mRNA decay pathways. 

Box 1

Overview of cytoplasmic mRNA decay pathways 

The half-lifes of eukaryotic mRNAs vary considerably between transcripts, dictated by 

multiple parallel and partially redundant decay pathways in collaboration with cis-acting 

RNA elements and trans-acting RNA-binding proteins. Decay is typically initiated by 

deadenylation of the 3’ poly(A) tail, catalyzed by PAN2/PAN3 and the large multiple subunit 

CCR4-NOT deadenylase enzymes, and in the major decay pathway, deadenylation leads to 
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decapping by DCP1/DCP2, a step which allows the highly processive 5’-3’ exonuclease Xrn1 

access to the 5’ end of the transcript, resulting in 5’-3’ decay. Several conserved activators 

of the decapping enzyme have been identified including Edc3, Edc4, Dhh1/DDX6, the Lsm1-

7 heptamer and Pat1 proteins. Alternatively, deadenylation enables the exosome nuclease 

complex access to the body of the mRNA at the 3’ end, leading to 3’-5’ decay (reviewed 

(Łabno et al. 2016; Grudzien-Nogalska and Kiledjian 2017)). Recent studies have shown that 

the initial trigger for mRNA decay may not always be deadenylation, but may be due to 3’ 

extension of the transcript by several uridine residues by terminal uridyltransferases 

(TUTases). Of note, uridylation and deadenylation can proceed both sequentially and in 

parallel, and uridylation-dependent decapping is enhanced by the Lsm1-7 complex. 

Following decapping, Xrn1 degrades these transcripts 5’-3’ while the Dis3l2 nuclease and 

the exosome degrade oligo-uridylated transcripts 3’-5’ (reviewed (Scott  and Norbury 2013; 

De Almeida et al. 2018)). 

Identifying proteins that interact with Pat1 

In light of the multiple roles of this RBP family, examination of the proteins that bind Pat1 

proteins was a key issue. Yeast two hybrid approaches (Fromont-Racine et al. 2000) 

(Pilkington and Parker 2008; Alhusaini and Coller 2016)), co-immunoprecipitation studies 

including BioID (Youn et al. 2018) coupled with western blotting (Bouveret et al. 2000; 

Tharun et al. 2000; Braun et al. 2010; Haas et al. 2010; Nissan et al. 2010; Ozgur et al. 2010), 

and mass spectrometry (Vindry et al. 2017) have identified conserved Pat1 mRNA 

decay/translational repression co-factors from fungi and metazoa and revealed novel 

association with splicing factors in human cells. Except where noted otherwise, all the 

interactions reported below are RNA-independent. Table 1.

Arguably the best characterized amongst these co-factors are the Like-sm (Lsm) 

proteins, structurally similar to the Sm family of proteins, which form heteroheptameric 

rings and bind RNA. Sm and Lsm protein families are present in all three domains of life and 

mediate RNA annealing, unwinding, decay and stabilization. In eukaryotes Lsm proteins are 

best known for roles in mRNA turnover and splicing, via Lsm1-7 and Lsm2-8 respectively. 

While Sm proteins bind U1, U2, U4 and U5 snRNAs and function in splicing, the nuclear 

Lsm2-8 complex interacts with U6 snRNA. In contrast, the cytoplasmic Lsm1-7 complex has 

been characterized as a decapping activator, and mediates mRNA decay (reviewed (Beggs 
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2005; Tharun 2009)). The interaction between yeast Lsm1-7 and Pat1 has been captured in a 

crystal where the PatC domain binds a composite surface of Lsm2 and Lsm3 with a rather 

rigid recognition mechanism between folded domains (Sharif and Conti 2013). The PatC 

region is missing or mutated in many PATL2 infertility patients due to premature 

termination codons or missense mutations, as summarized in (Huang et al. 2018), 

illustrating its importance for Pat1 protein function.

Also a key conserved partner of Pat1 proteins is the translational 

repressor/decapping co-activator DEAD box RNA helicase DDX6. Human DDX6 interacts with 

translational repressors and with the decapping enzyme Dcp1/2 and its activators (Ayache 

et al. 2015), and its depletion results in both translational activation and mRNA stabilization 

of distinct transcripts (Courel et al. 2018). In yeast its homologue Dhh1 has been 

characterized as a decapping co-activator as well as a translational repressor (reviewed in 

(Presnyak and Coller 2013). In this case, the structure has been determined between a N-

terminal yeast Pat1 peptide and the second RecA domain of Dhh1/DDX6 (Sharif et al. 2013). 

This DDX6 domain also binds the decapping co-activator Edc3, the RNA-binding protein 

Lsm14A and the eIF4E-binding protein 4E-T, in a mutually exclusive manner (Tritschler et al. 

2009; Ozgur et al. 2015; Brandmann et al. 2018). Interestingly, the N-terminal Pat1 peptide 

and DDX6 binding is conserved between yeast, flies and human Pat1b, though not human 

Pat1a proteins (Braun et al. 2010; Haas et al. 2010; Ozgur et al. 2010; Vindry et al. 2017). 

Nevertheless, the DDX6-binding peptide is present in Xenopus Pat1a, as well as in xPat1b, 

and indeed both interact with Xp54/DDX6 (Marnef et al. 2010; Nakamura et al. 2010; 

Ayache et al. 2015), and this is likely the case for zebrafish too, based on sequence 

alignments.

The decapping enzyme Dcp1/2 as well as Edc3 and Edc4 (found only in metazoa) 

decapping enhancers and the Xrn1 5’-3’ exonuclease all interact with Pat1 proteins. S. 

cerevisiae Pat1p harbours an extended C-terminal domain compared to its human 

counterpart, and it is this extension that binds Dcp2, at multiple sites, as well as Xrn1, very 

likely in a mutually exclusive manner (He and Jacobson 2015; Charenton et al. 2017). It is 

less clear where the decapping enzyme binds human Pat1b,  and whether it does so directly, 

as in yeast. It appears that Dcp2 co-precipitates with both the N-terminal and the C-terminal 

halves of Pat1b, whereas Dcp1a preferentially associates with the proline-rich domain 

(Ozgur et al. 2010), though another study finds Dcp2 binding only to PatC (Braun et al. 
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2010). It is important to note that the decapping enzyme composition and architecture 

differs between yeast and metazoa (reviewed (Charenton and Graille 2018)), as only the 

yeast Dcp2 protein contains the multiple HLM (short leucine-rich helical motifs) that bind 

Pat1 (He and Jacobson 2015; Charenton et al. 2017), and the interaction between human 

Dcp1 and Dcp2, and between Dcp1 and Xrn1 is bridged and enhanced by the metazoan 

specific Edc4 (Chang et al. 2014). 

In addition to the 5’-3’ decay factors, human Pat1b also interacts with the multi-

subunit Ccr4/Not deadenylase complex (Ozgur et al. 2010; Vindry et al. 2017; Youn et al. 

2018). With the BioID approach, able to detect transient association, the entire complex 

bound Pat1b (Youn et al. 2018). Binding was noted for the N-terminal half or Mid domain of 

Pat1b and HPat respectively (Haas et al. 2010; Ozgur et al. 2010). In yeast, only the two 

related Not3/5 subunits, lacking catalytic (Not6/7) or bridging (Not1) ability have been 

reported to bind Pat1p (Alhusaini and Coller 2016). 

The RNA-binding proteins Lsm14A/B, or Scd6 in yeast, interact with Pat1, but details 

of this binding and its role remain to be studied (Nissan et al. 2010; Brandmann et al. 2018). 

The metazoan translational repressor 4E-T, which binds the cap-binding protein eIF4E 

precluding it from interacting productively with eIF4G to initiate translation, also co-

precipitates with human Pat1b (Nishimura et al. 2015; Kamenska et al. 2016; Youn et al. 

2018) and Xenopus Pat1a (Minshall et al. 2007; Nakamura et al. 2010). This interaction is 

independent of DDX6, a well-characterized 4E-T co-factor, as 4E-T has separate binding sites 

for Pat1b and DDX6 (Ozgur et al. 2015; Kamenska et al. 2016). And last in this compilation of 

the cytoplasmic interactors of Pat1 proteins are the miRISC components Drosophila Ago1 

and GW182, and human Ago1/2 and TNRC6 proteins (Barišić-Jäger et al. 2013; Nishihara et 

al. 2013; Youn et al. 2018), suggesting a possible role in miRNA silencing.

As to its nuclear co-factors, we recently showed that human Pat1b interacts with 

components of the U4, U5, U6 tri-snRNP (see Box 2 for role of tri-snRNP in splicing).  In 

particular, the Mid +PatC domains of Pat1b co-immunoprecipitate SART3 (Prp24 in yeast) in 

an RNA-dependent manner, and Lsm2-8, Prp3, Prp4, Prp31 and other components in the 

absence of RNA. Pat1b also interacts with U4 and U6 snRNAs, but not U1 snRNA, and 

altogether sets up the Pat1b/Lsm2-8/U6 snRNA/SART3 axis (Vindry et al. 2017). A proteomic 

analysis of column-based fractionations of nuclear and cytoplasmic proteins of HeLa and 

HEK293 cells identified several hundred soluble complexes (Havugimana et al. 2012). 
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Interestingly, one of the largest complexes includes Pat1b and tri-snRNP components (eg 

Prp3, Prp4, Prp6, Prp8, Prp31) and additional splicing proteins. While SART3 was not found 

in this complex, this may reflect the nuclease treatment used to prepare the cell lysate 

(Havugimana et al. 2012). More recently, the BioID approach identified several tri-snRNP 

components such as Prp3 and Prp4 co-purifying with human Pat1b (Youn et al. 2018). And 

last, as yeast Pat1p was detected in U6-containing penta-snRNP (Stevens et al. 2002), we 

anticipate these interactions to be conserved.

Box 2

Overview of the role of tri-snRNP in splicing

Splicing of pre-mRNA is catalyzed by the spliceosome. This dynamic machinery is composed 

of several small nuclear ribonucleoprotein particles (U1, U2, and U4/U6·U5 snRNPs) and 

non-snRNP factors. During a splicing cycle, U1 and U2 snRNP recognize 5’ and 3’ splice sites 

respectively; then the binding of U4/U6.U5 tri-snRNP trigger spliceosome rearrangement 

and remodeling into a catalytically active spliceosome. During this process, U1 and U4 

snRNPs are released and additional factors join the spliceosome. At the end, the 

spliceosome disassembles before the next round of splicing. Thus, U4, U5 and U6 snRNPs 

enter the splicing cycle as a 1.5 MDa pre-assembled complex. The assembly of the tri-snRNP 

involves base pairing between U4 and U6 snRNA and addition of specific proteins such as 

Lsm proteins and SART3.  The U5 snRNA is then attached by protein-protein binding (for 

example Prp31 and Prp6). After a splicing cycle, new tri-snRNP assembly occurs in part in 

Cajal Bodies. 

Cellular distribution of Pat1 proteins: residence in RNP granules

As introduced earlier, Pat1 proteins shuttle between cytoplasm and nuclei, and are found 

enriched in RNP granules in both compartments. Fig.3.

It has been appreciated for some time that Pat1 proteins localize to cytoplasmic 

P(rocessing)-bodies in yeast (Sheth and Parker 2003; Pilkington and Parker 2008), 

Drosophila (Haas et al. 2010) and human cells (Braun et al. 2010; Marnef et al. 2010; Ozgur 

et al. 2010). P-bodies are non-membranous organelles, constitutively present in mammalian 

cell lines, averaging 0.5 µm in diameter, with 10 or less per cell (reviewed in (Luo et al. 2018; 

Standart and Weil 2018)). Until recently, P-bodies were thought of mainly as centers of 
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mRNA degradation in part due to their concentration of decay factors, as detailed below, 

though a few examples of stored mRNAs that can return to translation have been 

documented (Standart and Weil 2018). However, recent novel particle sorting and imaging 

approaches revealed that purified P-bodies harbor intact untranslated mRNAs, and that 

mRNAs, including ARE mRNAs (bearing AU-rich elements), are not decayed in P-bodies 

(Horvathova et al. 2017; Hubstenberger et al. 2017). RNP granules such as P-bodies form by 

liquid-liquid phase transition in which viscous droplets condense in the liquid cytosol. These 

transitions are mediated by several types of molecular interactions including specific, high 

affinity protein-protein binding, low affinity binding between low-complexity protein 

domains or intrinsically disordered regions (IDR) and interactions between RNA and 

proteins, which provide an additional platform for multivalent protein binding (Ditlev et al. 

2018; Luo et al. 2018; Standart and Weil 2018). Numerous interactions and RNA assemblies 

based on combinations of specific interactions and promiscuous IDRs are common features 

of RNP granules including P-bodies in eukaryotic cells (Jonas and Izaurralde 2013; Protter et 

al. 2018).

Interestingly, even after overexpression, only Pat1b, but not Pat1a localizes to P-

bodies in mammalian cell lines (Marnef et al. 2010). DDX6 was a good candidate to mediate 

this localization, since it is highly enriched in P-bodies and binds Pat1b but not Pat1a. 

However, the P-rich, Mid and PatC domains of Pat1b were implicated in this targeting, 

rather than the N-terminal DDX6-binding region (Braun et al. 2010; Ozgur et al. 2015).

Strikingly, proteins related to RNA metabolism comprise at least 75% of human PB 

content (Hubstenberger et al. 2017). Prior immunostaining and fluorescent protein-tagging 

approaches as well as the more recent analysis of purified P-bodies generally agree that 

they fall into the categories of mRNA decay, translational control and RNA interference: 5’-

3’ decay (Dcp1/2, Xrn1), decapping activators (Edc3, Edc4, Pat1b, Lsm1-7), deadenylase 

factors (Ccr4/Not, Pan3), RNAi/miRNA silencing factors (Ago1-4, GW182), nonsense 

mediated decay factors (Upf1, Smg5, Smg7), translational repression factors (the helicase 

DDX6, the eIF4E-binding protein 4E-T and the RNA-binding proteins (Lsm14A, CPEB1, 

IGF2BP1/3 and PUM1/2) (reviewed in (Ditlev et al. 2018; Luo et al. 2018; Standart and Weil 

2018); (Hubstenberger et al. 2017)). While the 5’-3’ decay pathway is well represented, 

components of the 3’-5’ exosome have not been identified in P-bodies. Interestingly, 

however, TUT4 uridylase is enriched in P-bodies (Hubstenberger et al. 2017).
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As this list closely resembles that of the Pat1b interactome, the link strongly 

suggested that Pat1b acts as a scaffolding P-body protein or that it associates with such 

proteins. Several studies addressed this question in depleted or genetically deleted cells. In 

S. cerevisae, S. pombe and human cells lines, lowered or absent levels of Pat1 proteins only 

partially reduced P-body size and/or number, showing that they are not absolutely required 

for P-body assembly (Teixeira and Parker 2007; Marnef et al. 2010; Ayache et al. 2015; 

Wang et al. 2017), and are thus not critical scaffolds. In man these have been defined as 

DDX6, 4E-T and Lsm14A, which all bind each other (Ayache et al. 2015; Kamenska et al. 

2016; Brandmann et al. 2018), illustrating both the redundancy of assembly factors and 

their multivalent interactions. Yet, phosphorylation of yeast Pat1 by Protein kinase A inhibits 

P-body formation (Ramachandran et al. 2011; Sachdev et al. 2019), while phosphomimetic 

mutation of the equivalent potential PKA site in human GFP-Pat1b rendered it dominant 

negative for endogenous P-bodies (Vindry et al. 2017). Thus, Pat1b clearly has a 

contributory role in P-body assembly whose molecular mechanism has yet to be elucidated. 

A potential clue arises from recent In vitro experiments suggesting that yeast Pat1p 

enhances the phase separation of Dhh1 (DDX6) and RNA into liquid droplets (Sachdev et al. 

2019).

Pat1b’s nuclear life in granules was revealed following the identification of its NES 

(Nuclear Export Signal), whose mutagenesis prevented export, thus enabling visualization of 

its enrichment in PML, splicing speckles (Marnef et al. 2012) and Cajal bodies (Vindry et al. 

2017). The function of Pat1b in these granules is best understood in the case of Cajal bodies, 

involved in aspects of short non-coding RNA metabolism, including tri-snRNP assembly 

(reviewed in (Staněk 2016)), as discussed further below. 

Pat1b is by no means a unique P-body shuttling protein, but it is the only so far with 

clearly defined and distinct roles in the cytoplasm and nucleus. Other such proteins include 

4E-T (Dostie et al. 2000; Kamenska et al. 2014), DDX6 (Huang et al. 2017) as well as Lsm14B 

and Lsm1/4  (Kırlı et al. 2015). Intriguingly, this shuttling group partly overlaps that of the 

essential P-body assembly factors. 4E-T, Lsm14B and Lsm1/4, as well as Pat1b, rely on Crm1, 

the mediator protein for the leucine-rich NES-dependent  export pathway, while DDX6 is co-

transported with one of its partners, such as 4E-T, Lsm14B and/or possibly Pat1b in a 

piggyback manner (Kırlı et al. 2015; Huang et al. 2017). It is not known if and how Pat1b 
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nucleocytoplasmic shuttling is regulated, though it is notable that the nuclear form of Pat1b 

is modified, likely by phosphorylation (Vindry et al. 2017).

How Pat1 proteins bind RNA

Pat1 proteins bind RNA both when complexed with Lsm proteins, and in an Lsm-

independent manner. Pat1-Lsm1-7 form a stable stoichiometric complex that has been 

purified from yeast and extensively characterized by Tharun and colleagues. The complex 

preferentially binds oligoadenylated rather than polyadenylated mRNA, facilitated by a 

stretch of U-residues near the 3’ end of reporter RNAs, with 3’ A5 being dominant over the 

presence of a U-tract. And yet, in vitro, in gel-shift assays, the complex only interacts with 

oligo(U) and no other oligomer (Chowdhury et al. 2007). Interestingly, a stretch of U-

residues forms the binding site of the Lsm2-8 complex, which binds the 3’ end of U6 snRNA. 

Recent CLIP analysis confirms the preferential though not exclusive binding of yeast Pat1 

and Lsm1 to 3’ ends of mRNAs, with a single binding site for Pat1 identified in most mRNAs 

(Mitchell et al. 2013). The absence of a strong consensus binding sequence suggests that the 

proteins of the complex may simply recognize the 3’ oligo(A) and the proximal U-rich 

stretch.

However, separately, the Lsm1-7 ring is severely impaired in RNA-binding, and 

indeed both Pat1 and Lsm1-7 contribute to the RNA-binding activity of the complex 

(Chowdhury et al. 2014), though quite how they collaborate to do so isn’t yet understood. It 

is also not clear, in the absence of any Pat1/Lsm1-7/RNA co-crystal, whether the mRNA 3’ 

end threads through the central cavity of the Lsm1-7 ring. In the case of yeast Lsm2-8, 

whose structure with U6 snRNA has been solved (Zhou et al. 2014; Montemayor et al. 

2018),  the 3’ end of U6 snRNA, which terminates in 5 U-residues, binds the ring’s interior 

and proximal face. In yeast Lsm1-7, the C-terminal extension of Lsm1 partially occupies the 

internal channel  of the ring (Sharif and Conti 2013), and it may be that Pat1 binding to the 

Lsm1-7 ring alleviates this potential obstruction to the RNA exit site. This would rationalize 

the need for both Pat1 and Lsm1-7 for optimal RNA affinity, as well as the observation that 

the C-terminal extension of Lsm1 is important for the RNA-binding activity of the complex 

(Chowdhury et al. 2012).

Secondly, Pat1 can also bind RNA directly. In the purified yeast complex, both Pat1 

and Lsm1 UV-crosslink to reporter RNA (Chowdhury et al. 2014). More recently, 
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interactome capture, which detects proteins with the capacity to crosslink to poly(A+)RNA 

on a genome-wide scale, showed that yeast and human Pat1 proteins bind RNA (Baltz et al. 

2012; Castello et al. 2012; Beckmann et al. 2015). A new interactome approach based on 

organic phase separation and independent of crosslinking verified this finding (Queiroz et al. 

2019).

While studies of full-length Pat1 proteins have been hampered by their insolubility in 

E. coli, analysis of fragments has been informative. The recombinant human PatC domain 

(Fig. 2) co-elutes with synthetic poly(U) in gel filtration assays, which further demonstrated 

its preference for U30 over U15/20, and over A30 (Braun et al. 2010). A conserved patch 

composed of arginines and lysines at the N-terminus of PatC has been proposed to mediate 

RNA interactions (Braun et al. 2010; Wu et al. 2014), and indeed mutagenesis of six of these 

basic residues in the human domain abrogated co-elution with U30 (Braun et al. 2010). This 

basic patch in PatC may extend the surface of interaction with RNA by the Lsm1-7 ring in the 

complex, explaining its preferred interaction with longer RNAs. 

The M (Mid) domain of Pat1 proteins (Fig. 2) has also been shown to interact with 

RNA. Pat1 proteins synthesized in vitro in the rabbit reticulocyte lysate are retained on 

poly(U) Sepharose beads, though it cannot be excluded that they do so associated with Lsm 

proteins of the lysate. Both M and PatC regions in yeast Pat1 independently promote this 

poly(U)-binding activity (Pilkington and Parker 2008; Marnef et al. 2010). In an extension of 

the interactome approach, RBDmap was recently developed to determine the RNA-binding 

sites of native RBPs on a proteome-wide scale (reviewed (Hentze et al. 2018)). This 

approach involves UV-crosslinking, subsequent capture of mRNP with oligo(dT), their 

proteolytic digestion, a second oligo(dT) purification and ultimately the mass spectrometry 

analysis of RNA-bound peptides and those released initially. In HeLa and cardiomyocytic HL-

1 cells, crosslinks were identified in two neighbouring peptides in the Pat1 Mid domain, as 

well as a peptide corresponding to the basic patch in PatC (Liao et al. 2016; Castello et al. 

2017). The Mid domain thus binds RNA directly and may also participate in stable 

interaction with the PatC domain and the Lsm1-7 complex (Braun et al. 2010; Lobel et al. 

2019).

Altogether, both Pat1 proteins and the Lsm1-7 ring collaborate to interact with 

RNAs, with a preference for those ending in oligo(A), nearby a stretch of uridine residues.
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Identifying the role of Pat1 proteins in mRNA decay 

Early studies in yeast showed that deletion of Pat1p led to the stabilization of deadenylated/ 

oligoadenylated but capped mRNAs, leading to its functional definition as an enhancer of 

decapping (Bonnerot et al. 2000; Bouveret et al. 2000; Tharun et al. 2000). These 

observations also suggested that Pat1 bound mRNAs undergoing deadenylation, in line with 

its RNA-binding preference. Two reporter mRNAs were typically used in these studies, the 

unstable MFA2 and stable PGK mRNAs, engineered with a 3’UTR polyG-tract to trap decay 

intermediates as it effectively blocks exonucleases (Decker and Parker 1993). Pat1p deletion 

reduced the level of the 5’ truncated intermediate leading to the accumulation of intact 

mRNA and increased its half-life approx. 4 fold (Bonnerot et al. 2000; Bouveret et al. 2000; 

Tharun et al. 2000). Moreover, Pat1p enhances the enzymatic activity of Dcp2 in vitro 

(Nissan et al. 2010). Similar observations in deletion strains were made for Lsm1-7, though 

not Lsm8 (Boeck et al. 1998; Bouveret et al. 2000; Tharun et al. 2000), indicating that Pat1p 

acts in concert with Lsm1-7. Indeed, the interaction between Pat1 and Lsm1-7 (mediated by 

Lsm2 and 3) is required for optimal rates of decay of MFA2pG mRNA in vivo (Wu et al. 

2014). The decapping role of Pat1p is conserved in S. pombe as deadenylated mRNA was 

also stabilized in fission yeast Pdc2 mutant strains (Wang et al. 2017).

Most studies of metazoan Pat1 proteins addressing their role in mRNA decay were 

performed with the tether function approach, whereby a tagged version of the protein of 

interest is tethered to the 3’UTR of a reporter mRNA via phage hairpin motifs that are 

recognized by the tag peptide. These experiments showed that Pat1 reduced the level of 

bound luciferase mRNA, with minimal effects on their translation in mammalian and fruitfly 

cells (Haas et al. 2010; Ozgur et al. 2010; Totaro et al. 2011; Kamenska et al. 2014). 

Moreover, tethered Pat1b/HPat both deadenylates and decaps bound mRNAs in cells (Haas 

et al. 2010; Ozgur et al. 2010; Totaro et al. 2011). However, HPat is not required for 

deadenylation activity per se as its depletion leads to the accumulation of deadenylated 

reporter mRNA (Haas et al. 2010). Thus the apparent additional deadenylation activity of 

tethered metazoan Pat1 proteins may reflect their ability to stably recruit CCR4/NOT 

factors. Interestingly, tethered Pat1a, not expressed in mammalian tissue culture cells, was 

inert in such assays (Ozgur et al. 2010), pointing to a fundamental difference between the 

paralogs. Taking a different approach, Braun et al. 2010 showed that Pat1b 
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immunoprecipitated from HEK293 cells was active in decapping assays in vitro, presumably 

due to its interactions with Dcp2.

Altogether, evidence from a variety of approaches, including deletion, depletion and 

tether function assays accompanied by use of dominant negative mutants of decapping and 

deadenylase enzymes indicates that Pat1 proteins act as decapping enhancers in fungi, 

fruitflies and man, and its involvement in deadenylation in metazoa is supported by tether 

function assays and the presence of the CCR4/NOT complex it its interactome. 

In our recent studies of the transcriptome following Pat1b silencing in HEK293 cells, 

which stabilized 60% of significantly changed mRNAs (Vindry et al. 2017), we found no 

evidence for the decay of the most up-regulated mRNAs from the 5’ end (Courel et al. 

2018). Indeed, genome-wide rather than reporter mRNA evidence in yeast too suggests that 

following decapping a significant fraction of the transcripts up-regulated in cells lacking 

Pat1p or Lsm1 is efficiently decayed 3’-5’, rather than by the 5’-3’ Xrn1 exonuclease, leading 

to a considerable revision of the decay mechanism for these transcripts (He et al. 2018). The 

3’-5’ decay may be mediated by the exosome or by Dis3L2 as this nuclease recognizes 3’ 

uridine tracts bound by Lsm1-7 and other decapping components in S. pombe and human 

cells (Song and Kiledjian 2007; Malecki et al. 2013; Łabno et al. 2016). In the case of S. 

cerevisae which lack terminal uridyltransferases, 3’-5’ decay will result presumably just from 

exosome activity.

To summarize, we propose that Pat1 proteins together with Lsm1-7 recognize and 

bind mRNAs 3’ ends in the process of deadenylation, and those that terminate in uridine 

residues, and recruit Dcp1/2 to remove 5’ caps. Then, we speculate that these uncapped 

mRNAs may be  subsequently principally decayed from the 3’ rather than from the 5’ end by 

the exosome and/or Dis3L2. This model is built on the considerable binding and decapping 

data and the more recent, albeit incomplete, evidence of Pat1-mediated 3’-5’ decay in yeast 

and man.

mRNA targets of Pat1 proteins

Recent studies have provided insights into the mRNA targets of Pat1 proteins. The CLIP 

approach revealed that yeast Pat1 binds at the very 3’ ends of mRNAs. Secondly, as 

expected, there was a substantial overlap between Pat1- and Lsm1-bound mRNAs, and this 

overlap extended to Dhh1 targets (Mitchell et al. 2013). In agreement, the transcriptomic 
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analysis of yeast deletion strains, showed a considerable overlap between up-regulated, 

stabilized, mRNAs in Pat1 and Lsm1 cells. However, unexpectedly, the overlap between 

Pat1 or Lsm1 and Dhh1 up-regulated mRNAs was considerably less, indicating that 

Pat1/Lsm1 and Dhh1 largely target specific sub-sets of mRNAs. Interestingly, too, almost as 

many mRNAs were down-regulated in levels as up-regulated in these three strains, 

suggesting indirect deletion effects (He et al. 2018). Some particular transcripts, not 

normally bound, were found to interact with the Pat1/Lsm1-7 complex In budding yeast 

cells subject to osmotic stress or nitrogen depletion, to effect their translational repression 

or stabilization (Garre et al. 2018; Gatica et al. 2019).

Depletion of Pat1b from HEK293 cells also resulted in a substantial down-regulation 

of mRNAs (40%) as well as the up-regulation (60%) expected of a decay factor (Vindry et al. 

2017). The up-regulated transcripts tended to be AU-rich, in both CDS and 3’UTR, with 

binding sites for the ARE-binding proteins TTP and HuR. Furthermore, these transcripts 

largely overlapped with those accumulating in P-bodies in untreated cells (Fig. 4A). Yet, 

Pat1b silencing, which leads to the stabilization of these mRNAs, reduces P-body numbers 

(Hubstenberger et al. 2017; Vindry et al. 2017; Courel et al. 2018). As also seen in yeast (He 

et al. 2018), mRNAs up-regulated in Pat1b-depleted cells were largely distinct from those 

up-regulated in DDX6-depleted cells, which tended to be GC-rich and cytosolic (Fig. 4B). 

Thus, these two enhancers of decapping are not universal factors and act with some target 

specificity in both species. However, mRNAs up-regulated in Pat1b-depleted cells largely 

overlapped with those translationally activated by DDX6-depletion, suggesting a link 

between Pat1b-dependent mRNA decay and DDX6-dependent translation repression 

(Courel et al. 2018). In contrast, some mRNAs are particularly down-regulated after Pat1b 

silencing and remain excluded from P-bodies in normal conditions. Interestingly, these 

include most TOP and histone mRNAs, confirming that they are regulated by a distinct post-

transcriptional mechanism, most likely related to the terminal oligopyrimidine motif present 

in TOP mRNA leader sequences and the unique 3’ termination mechanism of histone mRNAs 

which produces non-adenylated mRNAs (Fig. 4C). GO analysis of Pat1b up-regulated targets 

revealed the enrichment of mRNAs involved in RNA metabolic processes and RNA-binding 

functions. In contrast, the transcripts whose levels decreased upon Pat1b knockdown 

encoded proteins involved in developmental processes (Vindry et al. 2017). Altogether then, 

Pat1 and Dhh1/DDX6 proteins, though directly interacting in yeast and man (Sharif et al. 
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2013; Ozgur et al. 2015), target distinct mRNAs for decay. In human cells, Pat1 targets are 

distinguished by being AU-rich, translationally repressed by DDX6 and enriched in P-bodies. 

Next, we discuss the pre-mRNA targets of human Pat1b.

The role of Pat1b in alternative splicing

Our mass spectroscopy studies revealed that nuclear Pat1b co-purifies with trisnRNP 

(U4/U6.U5), a spliceosome sub-complex which recycles after each splicing event (see Box 2). 

Pat1b stabilized the interactions between Lsm2-8 and the U6-associated protein SART3, 

setting up the Pat1b/Lsm2-8/U6 snRNA/SART3 axis, altogether suggesting that the role of 

Pat1b in the nucleus involves the splicing process (Vindry et al. 2017). These biochemical 

experiments were supported by a recent report which showed that Pat1p binding to U6 

snRNP, specifically to Lsm2-8/U6 snRNA/Prp24 (yeast homologue of SART3) is structurally 

feasible (Montemayor et al. 2018). Additional support came from immunofluorescence 

experiments showing that Pat1b co-localizes with splicing speckles and with Cajal bodies, 

the sites of tri-snRNP assembly (Marnef et al. 2012; Vindry et al. 2017).  

RNA-seq data obtained following Pat1b depletion identified 189 alternative splicing 

events, with more than 80% at the level of inclusion or skipping of cassette exons. As judged 

by the low frequency of intron retention events, global splicing efficiency was not affected. 

The relatively modest number of alternative splicing changes upon Pat1b silencing possibly 

reflected the minor proportion of nuclear Pat1b in proliferating HEK293 cells. Of the 

regulated casette exons, 85% showed decreased inclusion upon Pat1b depletion. 

Interestingly, they had weak donor and acceptor splice sites compared to constitutive 

exons, suggesting that Pat1b enhances the inclusion of casette exons with sub-optimal 

donor and acceptor splice sites (Vindry et al. 2017). Our biochemical data indicated that 

Pat1b enhances a step in tri-snRNP assembly. We suggest that when these are abundant, 

the regulated exons are included, despite their weaker splice sites, possibly because the 

weak binding of early splicing factors including U2AF, U1 and U2 snRNPs is rapidly stabilized 

by subsequent binding of tri-snRNP. Consistent with this possibility, the Pat1b-regulated 

exons are flanked by particularly short introns, which would therefore be transcribed faster 

than normal, leading to reduced recognition of weak splice sites when tri-snRNP levels are 

reduced. Our model proposes that Pat1b, which by virtue of its interactions with tri-snRNP 

likely acts late in splicing cycle, can nevertheless affect splice site choice (Fig.5). 
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Pat1’s role in splicing is also suggested by a recent study investigating the reduced 

spliceosome in Cyanidioschyzo merolae, an organism with only 27 introns (Reimer et al. 

2017). Interestingly, the sole Lsm complex in the red alga, Lsm1-7, copurifies with Pat1 and 

tri-snRNP components including proteins and snRNAs. Whether yeast Pat1p participates in 

splicing is not known, though as mentioned earlier, it is a shuttling protein (Teixeira and 

Parker 2007) and co-isolates with the penta-snRNP (Stevens et al. 2002). Pat1p may have 

additional nuclear roles as S. cerevisae has relatively reduced splicing and no alternative 

splicing events have been described. Indeed, in view of the yeast Lsm2-8 functions in pre-

tRNA and rRNA processing (Kufel et al. 2002; Kufel et al. 2003), Pat1p may participate in the 

latter as reported recently (Muppavarapu et al. 2016), though a prior study did not find 

evidence for Pat1p’s involvement in ribosome biogenesis (Bonnerot et al. 2000).     

Additional roles of Pat1 proteins: translation inhibition

In yeast, Pat1p co-deletion together with Dhh1 prevents the inhibition in protein synthesis 

seen following glucose starvation, while the single deletion mutants showed modest 

impairment in polysome profiles (Coller and Parker 2005). When overexpressed in vivo and 

in vitro, Pat1p repressed translation, largely mediated by M and PatC domains (Fig. 2) which 

limit the interaction of the 43S pre-initiation complex with mRNA, thus at or prior to the 

initiation step (Coller and Parker 2005; Pilkington and Parker 2008; Nissan et al. 2010). 

The tethered function approach in Xenopus oocytes indicated that both xPat1a and 

xPat1b repress translation of the reporter mRNA, without resulting in its decay (Marnef et 

al. 2010; Nakamura et al. 2010). This was not altogether surprising as decapping activity is 

very low or absent in Xenopus as well as in mouse oocytes (Gillian-Daniel et al. 1998; Zhang 

et al. 1999; Ma et al. 2013).

However, the same approach in human cell lines, with robust decapping, did not 

show any evidence of significant translational repression by hPat1b (Ozgur et al. 2010; 

Kamenska et al. 2014), suggesting that this function may only be revealed when decapping 

is absent. It would be very insightful to perform polysome profiling assays in Pat1b-depleted 

cells to reveal the extent of its translational repressive activity. Surprisingly, tethered 

hPat1a, normally not expressed in cell lines, was inert in these tests, suggesting that it could 

neither repress nor decay the bound mRNA in contrast to xPat1a’s repression in oocytes 

(Ozgur et al. 2010; Kamenska et al. 2014). This could reflect the difference in cellular context 
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or a difference in protein partners - for example DDX6 binds the Xenopus but not the human 

Pat1a protein. The hypothesis that Pat1’s repressive activity requires, at least in part, its 

ability to bind DDX6 is supported by the yeast deletion studies. Moreover, while M and PatC 

were the most effective domains in repression, the N-terminal domain which binds 

Dhh1/DDX6 was also inhibitory (Nissan et al. 2010). 

Yeast Pat1p affects translation initiation, and intriguingly, we noted that human 

Pat1b co-purifies with eIF4B and several eIF2 and eIF3 subunits associated with mRNA and 

the 43S complex, but no other initiation factors (Vindry et al. 2017). While the exact 

mechanism underlying Pat1 translational repression activity remains to be clarified, it is 

tempting to propose that Pat1 proteins act in steps to down-regulate gene expression – first 

by inhibiting translation initiation in association with DDX6, releasing eIF4F from the cap and 

hence allowing the decapping enzyme access, leading to cap removal, and as indicated 

earlier, subsequently to 3’-5’ decay. 

Evolutionary aspects of the Pat1/Lsm1-7 complex

Yeast and human Pat1 proteins mediate mRNA decay, translational repression and nuclear 

RNA processing events including splicing and rRNA maturation. The mRNA decay and 

splicing processes in man are orchestrated in association with Lsm heptamer complexes, 

Lsm1-7 and Lsm2-8 respectively.

However, some organisms only have seven Lsm proteins altogether and their 

association with Pat1 proteins does not appear to be obligatory. Thus, C. merolae, 

mentioned earlier, only possess the Lsm1-7 heptamer which interacts with Pat1 and U6 

snRNA, and additional tri-snRNP components, and is thus likely to fulfil the splicing role. In 

addition, C.m. Lsm1-7 bind mRNA decay proteins including Dcp1/2 and Xrn1. As there is 

evidence that the C.m. Lsm proteins are not only nuclear but shuttle to the cytoplasm, they 

may therefore also participate in mRNA decay (Reimer et al. 2017). Kinetoplastids have a yet 

further reduced Lsm/Pat1 complex, in that they lack both Lsm1 and Pat1. The Lsm2-8 

proteins are restricted to the nucleus, and likely mediate trans-splicing, as they interact with 

U6 snRNA (Tkacz et al. 2008; Tkacz et al. 2010; Kramer et al. 2012). The lack of a cytoplasmic 

Pat1/Lsm complex may be related to the entirely distinct decapping enzyme that operates 

in trypanosoma. In the place of the nudix hydrolase Dcp1/2 enzyme, T. brucei rely on the 
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ApaH-like phosphatase TbALPH1 to remove the highly methylated caps from mRNA 

((Kramer 2017); reviewed (Kramer and McLennan 2019)). 

The Pat1/Lsm complex is thus relatively flexible in composition and spans multiple 

functions. Indeed, in stark contrast to the negative effects of Lsm1-7/Pat1 on mRNA stability 

for example, this cellular complex sequentially promotes viral translation and replication, as 

shown for Bromo Mosaic Virus in S. cerevisiae cells. It appears that the positive effect of the 

complex on viral translation requires its RNA-binding activity, but how this mediates BMV 

RNA circularization to faciliate translation is not clear. Regarding replication, at least four 

positive strand viruses infecting plants, insects and humans rely on the Pat1/Lsm1-7 

complex (Jungfleisch et al. 2015); reviewed (Jungfleisch et al. 2016)). Interestingly, the 

bacterial Lsm1 homologue, Hfq, which forms hexameric rings, has been characterized as the 

host factor for RNA bacteriophage Qb replication. Significantly, Its principal role is to 

chaperone RNA–RNA interactions between regulatory small RNAs and target mRNAs, to 

alter mRNA translation and/or stability (Updegrove et al. 2016). Altogether, Lsm and related 

proteins, in the form of hexa/hepta rings, universally mediate RNA-protein, and RNA-RNA 

interactions to principally regulate mRNA levels, and other processes, and in yeasts and 

metazoa, they do so in complex with Pat1 proteins.

Conclusion

Yeast Pat1p and human Pat1b RNA-binding proteins have been extensively characterized, 

and largely share protein co-factors and a common role in decapping and subsequent 

cytoplasmic mRNA decay, in concert with the heptameric ring Lsm1-7. Interestingly, their 

mRNA targets do not overlap with the targets of another decapping co-factor, the 

conserved Dhh1/DDX6 RNA helicase. In man, Pat1b susceptible mRNAs are AU-rich in 

general and indeed many bear ARE elements, presumably reflecting the preference of this 

RNA-binding protein family for U and A tracts. At steady state, the large majority of Pat1 

proteins are cytoplasmic, and found enriched in P-bodies. They also shuttle between the 

nucleus and cytoplasm in a Crm1-dependent manner, and are components of several types 

of nuclear RNP granules including Cajal bodies, splicing speckles and PML bodies. Nuclear 

Pat1b influences splice site choice together with Lsm2-8, illustrating the wide range of 

functions that can be mediated by paralogous complexes. However, there is essentially no 

overlap between Pat1b targets in the cytoplasm and nucleus. This is not surprising, as Pat1 
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proteins bind mRNAs at their 3’ ends in the cytoplasm while nuclear Pat1b interacts 

indirectly with U6 snRNA and SART3 to influence splice site choice. Furthermore, Pat1 

proteins inhibit translation, and this may precede their participation in mRNA decay. Pat1 

proteins act in collaboration with Lsm heptamer rings in both mRNA decay and alternative 

splicing, but whether this is also true for their translational repression function is not 

known. The close association between Pat1 and the Lsm ring and their function in mRNA 

decay and splicing appear to be evolutionarily conserved as illustrated by its presence in the 

red alga C. merolae, though interestingly this organism only possesses a total of seven Lsm 

proteins, indicating a degree of plasticity in the roles of the complex. 

Among the important questions that remain to be addressed, some concern the 

principal role of the Pat1/Lsm1-7 complex in mRNA decay. Does the complex activate Dcp2 

or just recruit it to mRNA? Indeed, considerable recent insight has been gained from 

structural and biochemical studies of fungal Dcp1/2 enzymes together with enhancers of 

decapping and cap analogs reviewed (Valkov et al. 2017). For example, S. pombe Edc3 has 

been shown to alleviate the autoinhibition of the catalytic step of Dcp1/2 and to promote its 

RNA binding (Paquette et al. 2018). Indeed, S. pombe Pat1 also alleviates this autoinhibition, 

and enhances substrate binding of Dcp1/2 (Lobel et al. 2019). However, as there are notable 

differences between yeast and human Dcp1/2 enzymes, do they impact Pat1 function? Or 

did Pat1 co-evolve with Dcp1/2, giving rise to the differences between yeast and human 

Pat1 proteins? In this regard, it is interesting to note that the HLM of fungal Dcp2 has been 

transferred to a long C-terminal extension of metazoan Dcp1 (Jonas and Izaurralde 2013). 

Secondly, following decapping, do Pat1 proteins simulate mRNA decay 3’-5’ only or 

both 3’-5’ and 5’-3’? Do both the exosome and Dis3L2 mediate the 3’-5’ pathway? 

Moreover, where are Pat1b/Lsm1-7 mRNA targets decayed? Purified P-body mRNAs are 

intact (Hubstenberger et al. 2917) and ARE reporter mRNAs are not degraded in P-bodies 

(Horvathova et al. 2017), so these targets are stored rather than decayed in P-bodies. Is this 

due to the absence of the exosome? Or to an excessive molecular crowding in P-bodies? 

While the fraction of the Pat1b protein present in P-bodies has not been quantified, 

immunofluorescence studies suggest that it is low, so that the fraction active in decay may 

reside in the cytosol. 
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Turning now to its nucleocytoplasmic shuttling, does it result in a cross-talk between 

Pat1b cytoplasmic and nuclear functions that is important for the coherence of the gene 

expression program? Does it also result in a cross-talk between cytosolic P-bodies and 

nuclear Cajal bodies? Are there particular conditions, physiological or pathological, where 

Pat1b is massively imported in the nucleus to impact splicing more than mRNA decay? 

Altogether, while substantial knowledge and understanding of the architecture, co-factors 

and functions the Pat1 RNA-binding protein family has been reached, manifestly future 

investigations along these lines will be insightful and of considerable interest.
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Figure and Table Legends

(Wurm et al. 2016)

Figure 1

Pat1 proteins. A. Table of Pat1 proteins with names and length in amino acids. B. Cartoon 

indicating the differential expression of xPat1a and xPat1b during Xenopus oogenesis and 

embryogenesis.

Figure 2

Domain architecture and binding partners of yeast and human Pat1 proteins. Structures of 

portions of N-ter and C-ter domains of yeast Pat1p with Dhh1 (PDB 4brw; (Sharif et al. 

2013)), Lsm1-7 (PDB 4C8Q; (Sharif and Conti 2013)) and Dcp2 (PDB 5LM5; (Charenton et al. 

2017)) are shown.

Figure 3

Cellular distribution of human Pat1b in granules. Schematic cartoon indicating sub-cellular 

localization of GFP-Pat1b and GFP-Pat1b-NES* (with inactivated NES) in cytoplasmic P-

bodies and nuclear Cajal bodies, splicing speckles and PML bodies in HeLa cells.

Figure 4

Pat1b tends to degrade AU-rich mRNAs which are resident in P-bodies, unlike DDX6 which 

decays GC-rich mRNAs. A. mRNA enrichment in P-bodies purified from non-stressed 

HEK293 cells (Hubstenberger et al. 2017) was expressed as a function of mRNA fold-changes 

after PAT1B silencing (Vindry et al. 2017). All mRNAs (14730) are in grey, while mRNAs with 

a GC content lower than 40% (2124) are in red. B. mRNAs were subdivided into six classes 

depending on the GC content of their gene (from <40 to >60%). The boxplots represent the 

distribution of their respective fold-changes after PAT1B (in orange, (Vindry et al. 2017)) or 

DDX6 (in green, (Hubstenberger et al. 2017)) silencing. The boxes represent the 25-75 

percentiles and the whiskers the 10-90 percentiles. rS is the Spearman correlation 

coefficient. C. Same as A with TOP (left panel) and histone (right panel) mRNAs in red 

(Courel et al. 2018).
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Figure 5

Summary model of Pat1b’s functions in cytoplasmic mRNA decay and nuclear alternative 

splicing, via Lsm1-7 and Lsm2-8 respectively.

Table 1

 Table of Pat1 protein interacting proteins in fungi, flies, Xenopus and man
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