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Abstract

We study the preventive maintenance scheduling problem of wind farms in the offshore wind energy

sector which operates under uncertainty due to the state of the ocean and market demand. We

formulate a fuzzy multi-objective non-linear chance-constrained programming model with newly-

defined reliability and cost criteria and constraints to obtain satisfying schedules for wind turbine

maintenance. To solve the optimization model, a 2-phase solution framework integrating the

operational law for fuzzy arithmetic and the non-dominated sorting genetic algorithm II for multi-

objective programming is developed. Pareto-optimal solutions of the schedules are obtained to form

the trade-offs between the reliability maximization and cost minimization objectives. A numerical

example is illustrated to validate the model.

Keywords: Offshore wind energy, Preventive maintenance scheduling, Fuzzy chance-constrained

programming, Fuzzy multi-objective programming, Reliability, Maintenance cost

1. Introduction

By the end of 2017, Europe leaded the global offshore energy market, with 83.9% share of the

total installed capacity of 18,814 MW from 4,149 grid-connected wind turbines of 92 offshore wind

farms in 11 countries (Global Wind Energy Council 2018; WindEurope 2018). The UK has the

largest amount representing 43.3%, followed by Germany (Schiermeier 2013). The total European

offshore wind capacity is forecast at 25 GW by 2020 and 70 GW by 2030 (by then 7-11% of
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the EU’s electricity demand is produced by offshore wind). Besides, the Chinese offshore wind

energy market began in 2016 (14.9% market share) (Cyranoski 2009; Davidson et al. 2016; Yuan

2016), followed by Vietnam, Japan, South Korea and the US (Russo 2014). With the growing

engagement in the offshore wind industry worldwide, it is natural to investigate the operations

and maintenance problems of the offshore wind farms. Given the difficulty in the techniques,

availability, and accessibility due to the uncertain ocean wind environment, the maintenance costs

for the offshore wind farms can form up to 25-30% of the energy cost, and is typically estimated

at five to ten times of the onshore maintenance cost (Pattison et al. 2016). Once a failure occurs,

a longer system downtime, and more loss in revenue follow. Therefore, it is useful to study the

maintenance problem of the offshore wind farms.

In the literature, maintenance is classified as either corrective maintenance (CM) or preventive

maintenance (PM). The former is usually performed after a system failure or breakdown while the

latter corresponds to the scheduled actions which are performed when the system is still operational.

The research question sought in this paper is to determine the best PM scheduling of the offshore

wind farms operating in an uncertain environment. The goal of PM in the offshore wind power

system is to avoid or mitigate a failure possibility caused by fatigue, cumulative damages and

corrosion resistance degradation, i.e., maintain the reliability of the system at an operationally

acceptable level. PM is also able to prevent the occurrence of faults effectively either before they

occur or before they develop into major defects. Practically, the scheduling of PM is to determine

acceptable arrangements of the downtime for the offshore wind turbines.

The maintenance scheduling problem is well studied in the electricity sector (Froger et al. 2016;

Petchrompo and Parlikad 2019; Salameh 2018). Beyond the literature of operations and mainte-

nance optimization of offshore wind energy, Zhong et al. (2018) initiated the PM scheduling study of

offshore wind farms in a deterministic setting by giving the system reliability and maintenance cost

objectives and constraints a more sound definition comparing with more conventional approaches

existing in the corresponding literature. In this regard, a non-linear multi-objective programming

model is built to optimize the two objectives simultaneously and a NSGA-II is employed to solve the

model. The paper calls for awareness of considering fully the peculiarity of maintenance in different

application scenarios (here it refers to the offshore wind farms) and redefining the maintenance

model as needed.
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In view of the uncertain nature of the marine environment, it would be insufficient if we only see

it as deterministic. The problem modeling and optimization approaches have substantial differences

when discussing in a deterministic or uncertain environment. As a natural successor, a further

extension and improvement of the Zhong et al. (2018)’s study is thereby motivated to enhance our

understanding of this real-life application. Thus, we intend to develop a method of PM scheduling

more applicable to the realistic (uncertain) operating sea environment. An immediate question

arises: “what is the way that we depict an uncertain marine environment?” We specifically consider

it as fuzzy due to the fact that the available collected, stored and manipulated data may be tainted

with imprecision and uncertainty under the impact of inherently variable and complex marine

environment. The fuzzy set theory has the strength to handle and represent such data imprecision,

which allows us to model and make decisions based on incomplete data (Baños et al. 2011; Coşgun

et al. 2014; Damousis et al. 2004; Dubois and Prade 1997).

Thus, in this paper, we aim to extend the study of the PM scheduling problem for offshore

wind farms in a fuzzy setting utilizing modeling and optimization techniques. Thus, we formulate

a novel model and design an associated solving method. Our objective is to propose a generic

approach as a guidance for decision-makers. It is easy to compare, analyze and select the expected

results of the model to support PM decisions. The main contributions of this paper include:

(i) Treating the PM scheduling problem for offshore wind farms in a fuzzy setting. It is an

upgrade and expansion comparing with Zhong et al. (2018) discussing the PM scheduling in a

deterministic framework. Specifically, a fuzzy chance-constrained programming (FCCP) approach

integrating the principles of the expected value model and the chance-constrained programming is

employed. The wind speed, power demand and generation, and the maintenance cost in the problem

are defined as fuzzy variables (Baños et al. 2011; Coşgun et al. 2014; Damousis et al. 2004), which

are better suited to the offshore wind context. Since there exist considerable uncertainty and

asperity in the marine environment and energy market which influence the accuracy of the data

collected and predicted, the credibility measure based on fuzzy set theory can leverage its strength

in estimating this type of data uncertainty.

(ii) Proposing a fuzzy multi-objective programming model to optimize the reliability and cost

objectives simultaneously. Although reliability and cost are two conventional criteria for defining

the objectives of the maintenance optimization problem, in most cases for power systems, the two
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targets are treated separately, i.e., one as objective and the other as a constraint in accordance

with the different emphases of the decision-makers. Only in Zhong et al. (2018), to the authors’

knowledge, the two goals have been considered at the same time for maintenance scheduling of

an offshore wind system handling it as a deterministic multi-objective programming problem.

Therefore, this paper transfers the previous set-up into a fuzzy framework to model uncertainty.

(iii) Formulating new definitions of the reliability and cost criteria, as well as constraints. For

the reliability criterion, Zhong et al. (2018) refined the power reserve ratio definition, which is one

of the two prevailing reliability definitions, by proposing the attainment exponent to improve the

defect of ignoring the benefits from PM. In this paper, we keep the same idea, i.e., the power reserve

ratio is adopted as the base of our new definition to measure the customer satisfaction with the

power supply, and an attainment exponent is introduced to evaluate the sustainability of a wind

farm. But not only that, therein, we innovatively consider the uncertainties in the market power

demand and the piecewise generated power as fuzzy, where the ambiguity of power production is

due to the relationship with the fuzzy offshore wind speed. The relationship between the wind

regime and the generated power has not been examined so far in the wind farm maintenance

literature.

On the cost criterion, we first refer to the maintenance cost components of the offshore wind

farms devised in Zhong et al. (2018). Then, we refine the cost definition by proposing time-

dependent fuzzy exponential weights for each cost item to depict the cost trend over time so that

the cost can be found more reasonably for a volatile marine wind environment. What is more,

in this paper, the constraints of keeping sufficient net power reserve are modified accordingly

to accommodate the uncertainties therein, by using the same fuzzification way of handling the

reliability criterion.

(iv) Developing a 2-phase solution framework to solve the proposed fuzzy multi-objective non-

linear chance-constrained programming model for the PM scheduling of offshore wind farms. In

our solution framework, Phase I employs the operational law which uses accurate fuzzy arithmetic

instead of fuzzy approximation or simulation (Zhou et al. 2016) for simplifying the FCCP in the

model so as to convert it into an equivalent deterministic programming that already has mature

solving methods. Subsequently, the treated model proceeds to Phase II, which uses the designed

non-dominated sorting genetic algorithm II (NSGA-II (Deb et al. 2002)) to deal with the remaining
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multi-objective non-linear programming (MONLP) to obtain a set of Pareto-optimal solutions to

support the decision-making on the schedule. Whereas, Zhong et al. (2018) only employed the

NSGA-II (same conception as Phase II in this paper) to solve their model which is deterministic

and less complicated.

(v) Considering the PM and CM costs integrally to obtain the optimal solution and weigh

cost performance for supporting the decision-making. We make our approach more easy-to-use

and straightforward for decision-makers, as the results derived can be well-interpreted and simply

compared. Thus, if decision-makers know what a certain reliability value or one percent improve-

ment in reliability mean in cost wise, they can select and determine a maintenance policy more

sensibly according to actual conditions given the expected outputs of the model. It is a tangible

improvement comparing with the decision-making guidance in Zhong et al. (2018).

The rest of the paper is organized as follows: Section 2 reviews the main parts of the vast

corresponding literature focusing mostly to the general class of power systems. Section 3 constructs

a fuzzy multi-objective non-linear chance-constrained programming model with reliability and cost

criteria to schedule the PM for offshore wind farms in a fuzzy environment. Section 4 builds the

2-phase solution framework integrating the operational law and NSGA-II to solve the proposed

model. Section 5 validates the effectiveness and performance of the model and solution method

by illustrating a PM scheduling case of the offshore wind farms as a numerical example. Section

6 concludes the paper. Appendix A introduces the credibility theory and the operational law

employed to handle the fuzzy programming.

2. Literature review

In this section, the literature regarding the motivation and main contributions of this paper

are carefully considered covering operations problems and maintenance of power systems except

for the offshore wind farms.

(1) Operations and maintenance optimization of offshore wind energy:

In the offshore wind energy sector, a few studies have investigated the operations optimiza-

tion problems. In particular, for the PM problem, Li et al. (2016) developed a decision support

system for maintenance planning in offshore wind farms so as to reduce the lifecycle maintenance

costs. Two optimization modules, deterministic and stochastic, are constructed for different failure
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descriptions. Pattison et al. (2016) presented a novel architecture and system comprising three

integrated modules for intelligent condition monitoring, reliability and maintenance modelling, and

maintenance scheduling that provide a scalable solution for performing dynamic, efficient and cost-

effective PM management within the offshore wind power generation sector. Irawan et al. (2017a)

proposed a mixed integer linear programming (MILP) optimiser based on the Dantzig-Wolfe de-

composition to find the optimal schedule for maintaining offshore wind turbines and the optimal

routes for the crew transfer vessels to service the turbines along with the number of technicians

required for each vessel so as to minimise the maintenance cost. Similarly, a stochastic fleet size

and mix model targeting the minimum cost for maintenance operations at the offshore wind farms

was studied in Gundegjerde et al. (2015). Sarker and Faiz (2016) formulated a maintenance cost

model for offshore wind turbine components following a multi-level opportunistic PM strategy that

considers preventive replacement and maintenance.

Further, Ursavas (2017) solved the offshore wind farm installation planning problem which

involves determining the lease period of the offshore installation vessels and the scheduling of the

operations to build a wind farm. Decisions are made under the disruptions due to the uncertain

wind condition using Benders decomposition. Irawan et al. (2017b) investigated a layout problem

for an installation port of an offshore wind farm based on minimising the transportation cost. Two

MILP models are formulated to configure the optimal port layout, whose shape can be treated as

either a convex or concave polygon.

(2) Fuzzy theories in operations and maintenance of power systems:

Fuzzy techniques have been applied to maintenance problems for general power systems (Dahal

et al. 1999; El-Sharkh et al. 2003; Leou 2001; Liu et al. 2010; Sergaki and Kalaitzakis 2002;

Volkanovski et al. 2008), and especially on the coordinated maintenance scheduling with cost

minimisation, reliability maximisation, and risk minimisation as multi-objective criteria, and fuzzy

learning-based optimisation for a composite power system (Subramanian et al. 2015).

Further, fuzzy methods have been used on other operational problems of the wind farms.

For example, Siahkali and Vakilian (2010) developed a fuzzy optimization-based approach to the

scheduling problem for wind farms, in which the load, reserve and available wind power generation

are treated as fuzzy. Thereafter, they proposed an interval type-2 fuzzy modeling approach to the

same problem for wind farms in Siahkali and Vakilian (2011). Shafiee (2015) built a fuzzy analytic
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network process (ANP) model to select the most appropriate risk mitigation strategy for offshore

wind farms. Likewise, Yeh and Huang (2014) examined the factors in determining the location of

wind farms. The fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) and ANP

approaches are applied to find the correlations among the dimensions and the relative weights

of the criteria, respectively. Wang and Singh (2008) formulated a bi-objective economic power

dispatch model considering wind penetration, which treats the operational cost and system risk as

conflicting objectives. Different fuzzy membership functions are used to indicate the security level

in terms of wind penetration and wind power cost. A multi-objective particle swarm optimization

algorithm is then designed to develop the power dispatch schemes. Similarly, Aghaei et al. (2013),

Azizipanah-Abarghooee et al. (2012), and Bahmani-Firouzi et al. (2013) investigated the multi-

objective economic emission dispatch problem which simultaneously minimizes the electrical energy

costs and emissions by incorporating wind power generators. Fuzzy-based clustering and adaptive

techniques are used to solve the optimization models.

(3) Multi-objective optimization in maintenance of power systems:

Without fuzzy consideration, some papers have already studied the maintenance scheduling

problem for general power systems using multi-objective optimization. Leou (2006) combined a

genetic algorithm (GA) with simulated annealing to solve the unit maintenance scheduling problem

with the fitness maximization objective composed by the reliability and cost indices. Yang et al.

(2008) used a Markov model to handle the reliability and cost objectives, and Yang and Chang

(2009) rebuilt the same model for the energy not served, and the operation and expected failure

cost objectives. Both models are solved by the NSGA-II, as with the imperfect PM maintenance

model optimizing system availability and cost in Wang and Pham (2011). Zhan et al. (2014) de-

signed a multi-objective generation maintenance scheduling model, in which profit maximization,

reliability maximization, and generation cost minimization are optimized by a group search opti-

mizer with multiple producers. Hadjaissa et al. (2016) conducted a modified GA based bi-objective

optimization of PM scheduling for power systems to find a trade-off between the makespan and

training time of the operators. On fuzzy multi-objective optimization, only Subramanian et al.

(2015) used the cost, reliability and risk criteria to arrange the maintenance tasks for a composite

power system.

(4) Reliability and cost criteria definitions in maintenance of power systems:
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In the corresponding literature, the reliability criterion is defined either as the net to gross

power reserve ratio (Canto 2011; Canto and Romero 2013; Conejo et al. 2005), or as the sum of

the squares of the net power reserve to assess the resource utilization (Ben-Daya et al. 2000; Dahal

et al. 1999; Dahal and Chakpitak 2007; Dahal and Galloway 2007; Ekpenyong et al. 2012). The

former is maximized and the latter minimized to pursue the highest reliability objective.

The maintenance cost components of Zhong et al. (2018) and this paper follow the commonly-

used economic targets in the maintenance scheduling literature, such as those initiated by Canto

(2008), Dahal et al. (2015), Dalgic et al. (2015), Ding and Tian (2012), Gundegjerde et al. (2015),

Zhang et al. (2013) among others.

3. Optimization model formulation

We now formulate the multi-objective non-linear FCCP model with the reliability maximization

and cost minimization objectives under realistic constraints to obtain the PM schedules for the

offshore wind farms in a fuzzy environment.

3.1. Notations

Our problem is to assign the maintenance work of the offshore wind farm containing m turbines

into n periods. The indices, parameters, and decision variables are introduced in Table 1.

3.2. Fuzzy system reliability maximization objective

By the reliability of the offshore wind farm system, we mean the customer satisfaction from suf-

ficient power reserve and the sustainability effects to the wind farm system. Although PM decreases

power generation due to the turbine downtime, it can fight against corrosion and degradation of

the turbines, and mitigates the risk of serious breakdowns in the entire grid.

In our reliability criterion, the uncertainty in the market power demand and the piecewise

generated power are considered as fuzzy, and the ambiguity of the power production is incurred

by the relationship with the fuzzy offshore wind speed. The fuzzy system reliability R̃ is defined

as the average of the fuzzy period reliabilities r̃t. In the period reliability r̃t, the fuzzy net power

reserve ẽt to the fuzzy gross power reserve Ẽt ratio is the base to measure the customer satisfaction

with the power supply, and the attainment exponent st is introduced to evaluate the wind farm
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Table 1: Notations of PM scheduling problem for offshore wind farms in fuzzy environment

m number of turbines in wind farm CFV

unit fixed cost (e) of vessels

i index of offshore wind turbines CFH

unit fixed cost (e) of helicopters

n number of periods in time horizon CSV

i unit vessel transport cost (e) for TRi

t index of time periods CSH

i unit helicopter transport cost (e) for TRi

TRi turbine i Vi vessel demand for maintaining TRi

PRt time period t Hi helicopter needed for maintaining TRi

R̃ system reliability (%) of wind farm LVt permitted moving vessels in PRt

r̃t reliability (%) in PRt LHt permitted moving helicopters in PRt

st attainment exponent affecting power
demand satisfaction in PRt, st ≥ 0

CCRM
i customer relationship management cost

(e) for TRi

Ẽt gross power reserve (MWh) in PRt λ̃Mi,t weight exponent of CM
i for TRi in PRt

ẽt net power reserve (MWh) in PRt λ̃EQ
i,t weight exponent of CEQ

i for TRi in PRt

d̃t power (MWh) required in PRt λ̃Ii,t weight exponent of CI
i for TRi in PRt

p̃i,t power (MWh) generated by TRi in PRt λ̃EM
i,t weight exponent of CEM

i for TRi in PRt

pR rated power (MW) of turbines λ̃Ti,t weight exponent of CT
i for TRi in PRt

vC cut-in wind speed (m/s) of turbines λ̃Ai,t weight exponent of CA
i for TRi in PRt

vR rated wind speed (m/s) of turbines λ̃CRM
i,t weight exponent of CCRM

i for TRi in PRt

vF cut-out wind speed (m/s) of turbines LTt turbine maintenance capacity in PRt

ṽi,t wind speed (m/s) TRi gets in PRt u time coefficient (conversion into hour)

U time period set not allowed for
maintenance

GHG greenhouse gas emission standard
regulated by industry (kg)

C̃i,t maintenance cost (e) for TRi in PRt zi distance (km) from shore to TRi

CMV

vessel manpower cost (e) qV vessel gas emission (kg/kg·km)

CMH

helicopter manpower cost (e) qH helicopter gas emission (kg/kg·km)

CML

onshore manpower cost (e) w̄ average weight of employee (kg)

MV
i vessel manpower demand for TRi EQV

i equipment (kg) on vessels for TRi

MH
i helicopter manpower demand for TRi EQH

i equipment (kg) on helicopters for TRi

ML
i onshore manpower demand for TRi AMt number of available manpower in PRt

CM
i total manpower cost (e) for TRi AVt number of available vessels in PRt

CEQ
i equipment cost (e) for TRi AHt number of available helicopters in PRt

CI
i infrastructure cost (e) for TRi Ψ−1

t inverse credibility distribution of d̃t

CT
i total transport cost (e) of TRi Υ−1

i,t inverse credibility distribution of p̃i,t

CA
i adjustment cost (e) for TRi Φ−1

i,t inverse credibility distribution of λ̃i,t

CEM
i environmental monitoring cost (e) for

TRi

αt confidence level supply and demand
chance constraints hold in PRt

Li maintenance deadline of TRi (PRLi) xi,t 0-1 decision variable denoting
maintenance status of TRi in PRt

LPi maintenance duration of TRi bi,t 0-1 decision variable denoting start state
of TRi in PRt

* Variables with tilde denote triangular fuzzy variables.
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sustainability effects as,

r̃t = (ẽt/Ẽt)
st , (1)

in which Ẽt follows from deducting the fuzzy power demand from the generated amount, i.e.,

Ẽt =
∑m

i=1
p̃i,t − d̃t, (2)

and ẽt needs to subtract the shutdown loss of the energy production due to maintenance as

ẽt =
∑m

i=1
p̃i,t(1− xi,t)− d̃t. (3)

Actually in this paper, as it was presented in details in Zhong et al. (2018), the use of an isoelastic

(power) function, Eq. (1), to model the behavioral attitude of our treatment is also incorporated.

So the expanded form of r̃t in Eq. (1) is given by (4),

r̃t =

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st
. (4)

The fuzzy offshore wind speed and the technical characteristics of the installed wind turbines

have a large impact on the power generation p̃i,t in Eq. (4) (see Fig. 1). Fig. 1 is a schematic

plot showing a typical power curve of a wind turbine generator. A wind turbine starts to generate

power at the cut-in wind speed vC and is shut down for safety and damage-prevention reasons

at the cut-out wind speed vF . The rated power pR is generated when the wind speed is between

the rated speed vR and the cut-out speed vF
1. There is a non-linear relationship between the

power generated and the wind speed while the speed is within the cut-in speed vC and the rated

speed vR (Karki et al. 2006). Hence, a fuzzy quadratic model of the power curve of wind turbine

is established to express their complex relationship based on its original definition in Pallabazzer

1The rated power, cut-in wind speed, rated wind speed and cut-out wind speed (constant parameters) are engi-
neering characteristics designed for a specific turbine model.
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(1995),

p̃i,t =



0, E[ṽi,t] ≤ vC

u · pR
ṽ2
i,t − v2

C

v2
R − v2

C

, vC < E[ṽi,t] < vR

u · pR, vR ≤ E[ṽi,t] ≤ vF

0, E[ṽi,t] > vF ,

(5)

where ṽi,t = (yLi,t, y
C
i,t, y

R
i,t) (m/s) is the wind speed, depicted by a triangular fuzzy variable because

of the difficulty in predicting the uncertain speed TRi receives in PRt, pR (MW) is the rated power

of the turbine, u is a time coefficient to convert time into hours to calculate the energy, and vC , vR

and vF (m/s) are the cut-in, rated and cut-out wind speed of the turbine, respectively. As the

fuzzy wind speed ṽi,t cannot be compared with the deterministic technical parameters vC , vR and

vF , here we specify a deterministic variable E[ṽi,t], the expected value of the wind speed ṽi,t to

segment the domain of definition. For example, when the value of E[ṽi,t] lies in the interval [vR, vF ],

the wind power output p̃i,t is equal to the energy used at the rated power pR over time.

Po
w

er
 g

en
er

at
ed

 (M
W

)

pR

vC vR v F
Wind speed (m/s)

Fig. 1: Offshore wind power output

r̃t is affected by ẽt/Ẽt, whose lower bound is that the net power generated must be enough

to meet the customer electricity requirement when some turbines are under maintenance, i.e.,

ẽt = 0, ẽt/Ẽt = 0, r̃t = 0. The upper bound is such that the net power reserve equals to the gross

power reserve when all turbines are running, i.e., ẽt/Ẽt = 1, r̃t = 1. Thus, r̃t tends to 0 from 1
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with the attainment exponent st ∈ [0,+∞) increasing, based on the properties of the exponential

function. st gives ẽt/Ẽt three effects in the different value ranges:

(1) Positive effect: E[r̃t] = E[(ẽt/Ẽt)
st ] > E[ẽt/Ẽt], when st ∈ [0, 1).

Maintenance can repair the wind farm system, recovering it from the deterioration caused by

a volatile marine environment. The relationship between the expected values in the positive effect

can be deduced from Eq. (A.9) easily, hence it is omitted here.

(2) Neutral effect: E[r̃t] = E[(ẽt/Ẽt)
st ] = E[ẽt/Ẽt], when st = 1.

The impacts of the maintenance and the degeneration are about the same. Maintenance will

not significantly enhance the mechanical properties of the system, but only prevents it from further

damage. The system in PRt only needs moderate sustainability and reliability.

(3) Negative effect: E[r̃t] = E[(ẽt/Ẽt)
st ] < E[ẽt/Ẽt], when st ∈ (1,+∞).

The damage caused is serious and cannot be resolved thoroughly though the system is main-

tained. Any performance degradation leads to the risk of a shortage in power supply, power fault

or collapse. So the system in PRt has weaker sustainability and lower reliability than usual. Thus,

R̃ can be defined by averaging r̃t as

R̃ =
∑n

t=1

1

n
r̃t, (6)

in which the weight coefficient 1/n of r̃t is used to normalize R̃ into the range [0, 1]. From Eqs. (4)

and (5), R̃ is equivalent to

R̃ =

n∑
t=1

1

n

(
ẽt

Ẽt

)st
=

n∑
t=1

1

n

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st
, (7)

where p̃i,t, and d̃t, i = 1, 2, . . . ,m, t = 1, 2, . . . , n, are defined by independent triangular fuzzy

variables.

Notably, since n period reliabilities r̃t constitute the system reliability R̃, n attainment expo-

nents st need to be settled on the basis of the above three effects. As it is difficult to collect the

exact data of the effects due to the unknown degradation status and the maintenance capability

especially for newly grid-connected offshore wind farms, a feasible scheme is to draw support from

the decision-maker’s experience. Thus, in what follows, we test some predefined behavioral atti-

tudes of the decision-makers. Obviously, the proposed four categories, “fully rational”, “optimism
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biased”, “wait-and-see attitudes” and “pessimism biased” are initiating and inspiring, rather than

exhaustive and conclusive for the research on maintenance, and more generally speaking, in the

behavioral approach of the reliability index and our multi-objective constrained optimization prob-

lem. So, let us define briefly the four categories of attitudes (for more details, see Zhong et al.

2018):

(1) When the decision-makers are fully rational, all three effects appear in sequence over time,

i.e., s1, s2, . . . , sn are selected from the three sets [0, 1), {1}, (1,+∞).

(2) When decision-makers are optimism biased, they are inclined to believe that maintenance

can overcome the deterioration in all periods, and the system reliability remains at a high level.

This suggests that all st are chosen from the interval [0, 1).

(3) When decision-makers adopt a wait-and-see attitude, they think that effort of the main-

tenance and the deterioration can be perceived as balanced, so all st equal to 1, i.e., no more

exponents exist.

(4) When the decision-makers are pessimism biased, the negative effects take up entire periods

owing to the degradation and risks in a severe marine environment, so much so that even mainte-

nance cannot guarantee or improve system stability. Now, all st can be picked from the interval

(1,+∞).

In sum, the first objective function of our model is on fuzzy system reliability maximization:

max R̃ = max
X

n∑
t=1

1

n

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st
, (8)

in which p̃i,t is further defined by Eq. (5).

3.3. Fuzzy maintenance cost minimization objective

The maintenance cost minimization objective refers to the commonly-used maintenance, start-

up, fixed, variable, and opportunity cost fitted into the offshore wind energy context to design a

new cost criterion with 7 components (Zhong et al. 2018). Next, the cost criterion is refined by

proposing time-dependent fuzzy exponential weights for each cost item to depict the cost trend

so that maintenance cost can be evaluated more reasonably in the complex and volatile ocean

environment.

The 7 cost components for the PM of the offshore wind farms are devised as follows:
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(1) Manpower cost CMi : the direct maintenance cost for technical and administrative labour,

and the indirect maintenance cost for staff welfare expressed as

CMi = CM
V
MV
i + CM

H
MH
i + CM

L
ML
i , (9)

where manpower cost for employees working on vessels, helicopters and land are calculated.

(2) Equipment cost CEQi : the direct maintenance cost for purchasing spare parts and equipment,

as well as the indirect maintenance cost for the storage and test.

(3) Infrastructure cost CIi : the start-up cost of infrastructures such as ports, docks, and helipads,

and the indirect maintenance cost of operating and maintaining.

(4) Environmental monitoring cost CEMi : the indirect maintenance cost of dynamically moni-

toring the marine environment suitability.

(5) Transportation cost CTi : the fixed cost for employing and maintaining vessels and heli-

copters, and the variable cost for shipments, i.e., the fuel cost and berthing cost at the turbine is

CTi = (CF
V
Vi + CF

H
Hi)/LPi + (CS

V

i Vi + CS
H

i Hi). (10)

(6) Adjustment cost CAi : the opportunity cost for modifying the maintenance schedule.

(7) Customer relationship management cost CCRMi : the opportunity cost for maintaining cus-

tomer relationship.

Thus, these 7 elements constitute the fuzzy maintenance cost C̃i,t of TRi in PRt as

C̃i,t = CMi e
λ̃Mi,t + CEQi eλ̃

EQ
i,t + CIi e

λ̃Ii,t + CEMi eλ̃
EM
i,t + CTi e

λ̃Ti,t + CAi e
λ̃Ai,t + CCRMi eλ̃

CRM
i,t , (11)

where each term has a deterministic cost Ci multiplying a time-dependent fuzzy cost weight co-

efficient eλ̃i,t . The fuzzy cost weight is a natural exponential function with a fuzzy exponent λ̃i,t

no less than 0. It means that the actual maintenance cost can be represented better and more

reasonably by considering it as fuzzy, instead of either deterministic or stochastic as the impreci-

sion and uncertainty of cost data pose a challenge while estimating the data based on an uncertain

ocean environment (Baños et al. 2011; Coşgun et al. 2014). The fuzzy cost weight synthesizes the

direct effects of the marine environment, e.g., waves and storms on the accessibility and operability

of the maintenance works, as well as its indirect effects on the turbines and system deterioration
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caused by marine corrosion, e.g., salt, microbes, and ocean currents. All these effects increase the

difficulty of maintenance and contribute to the cost accumulation and over-runs of each element

uncertainly. For this reason, we set the fuzzy exponent as a triangular fuzzy variable to help depict

the cost trend and make the cost criterion realistic.

Hence, the maintenance cost minimization objective function can be presented as,

min
X

n∑
t=1

m∑
i=1

C̃i,t xi,t =

min
X

n∑
t=1

m∑
i=1

(CMi e
λ̃Mi,t + CEQi eλ̃

EQ
i,t + CIi e

λ̃Ii,t + CEMi eλ̃
EM
i,t + CTi e

λ̃Ti,t + CAi e
λ̃Ai,t + CCRMi eλ̃

CRM
i,t )xi,t,

(12)

where the manpower cost CMi,t and the transportation cost CTi,t are detailed by their definitions,

respectively (see Eqs. (9) and (10)).

3.4. Constraints

We refer to the 13 sets of constraints especially applicable to the offshore wind farm environment

designed by Zhong et al. (2018), where the supply and demand constraints are modified as fuzzy

constraints in this paper:

(1) Fuzzy supply and demand constraints: the electric power virtually generated has taken out

the maintenance downtime loss, and should be able to cover the customer demand entirely. So, the

fuzzy supply and demand constraints guarantee that power shortages never occur in any period,

∑m

i=1
p̃i,t(1− xi,t)− d̃t ≥ 0, t = 1, 2, . . . , n, (13)

where p̃i,t is defined in Eq. (5). These constraints restrict ẽt to be non-negative.

(2) Maintenance necessity constraints: each turbine is maintained only once in the time horizon.

(3) Maintenance continuity constraints: maintenance work continues to completion.

(4) Duration constraints: the maintenance lasts for a fixed period of time.

(5) Period constraints: limited number of turbines can be maintained in each period.

(6) Priority constraints: maintenance of some turbines needs to be finished before others.

(7) Deadline constraints: there are deadlines for maintenance work.

(8) Weather constraints: some periods are not allowed for maintenance due to severe weather.
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(9) Manpower constraints: crew members for maintenance should be enough.

(10) Vehicle constraints: the number of vehicles for maintenance should be enough.

(11) GHG constraints: total GHG emission should meet the industrial standard.

(12) Marine ecosystem constraints: the number of navigating vessels is restricted.

(13) Bird population constraints: the number of navigating helicopters is restricted.

3.5. Fuzzy multi-objective chance-constrained programming model

Combining the two objective functions and 13 sets of constraints, a fuzzy MONLP model for

our PM scheduling problem of the offshore wind farms in a fuzzy environment is as follows2,



max
X

n∑
t=1

1

n

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st

min
X

n∑
t=1

m∑
i=1

(
CMi e

λ̃Mi,t + CEQi eλ̃
EQ
i,t + CIi e

λ̃Ii,t + CEMi eλ̃
EM
i,t

+CTi e
λ̃Ti,t + CAi e

λ̃Ai,t + CCRMi eλ̃
CRM
i,t

)
xi,t

(14a)

2Each constraint in Model (14b) has a label at the end, which maps to the constraint set label in Section3.4.
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s.t.∑m
i=1 p̃i,t(1− xi,t)− d̃t ≥ 0, t = 1, 2, . . . , n (1)∑n
t=1 bi,t = 1, i = 1, 2, . . . ,m (2)

xi,t ≥ bi,t, i = 1, 2, . . . ,m, t = 1, 2, . . . , n (3)

xi,t − xi,t−1 ≤ bi,t, i = 1, 2, . . . ,m, t = 1, 2, . . . , n (3)

xi,t + xi,t−1 + bi,t < 3, i = 1, 2, . . . ,m, t = 1, 2, . . . , n (3)∑n
t=1 xi,t = LPi, i = 1, 2, . . . ,m (4)∑m
i=1 xi,t ≤ LTt, t = 1, 2, . . . , n (5)∑t
k=1 bi,k − bj,t ≥ 0, i = 1, 2, . . . ,m, j 6= i, t = 1, 2, . . . , n (6)

xi,t + xj,t ≤ 1, i = 1, 2, . . . ,m, j 6= i, t = 1, 2, . . . , n (6)∑Li−LPi+1
t=1 bi,t = 1, i = 1, 2, · · · ,m (7)∑
t∈U xi,t = 0, i = 1, 2, . . . ,m (8)∑m
i=1(Mi

V +Mi
H +Mi

L)xi,t ≤ AMt, t = 1, 2, . . . , n (9)∑m
i=1 Vixi,t ≤ AVt, t = 1, 2, . . . , n (10)∑m
i=1Hixi,t ≤ AHt, t = 1, 2, . . . , n (10)∑m
i=1 2zibi,t[q

V (w̄MV
i + EQVi ) + qH(w̄MH

i + EQHi )] ≤ GHG, t = 1, 2, . . . , n (11)∑m
i=1 Vi(bi,t + bi,t−LPi+1) ≤ LVt, t = 1, 2, . . . , n (12)∑m
i=1Hi(bi,t + bi,t−LPi+1) ≤ LHt, t = 1, 2, . . . , n (13)

xi,t = 1 if TRi is in maintenance in PRt, = 0 otherwise,

bi,t = 1 if the maintenance of TRi begins at PRt, = 0 otherwise,

(14b)

with p̃i,t defined in Eq. (5), and xi,t and bi,t both decision variables. The optimization target is

to obtain a turbine maintenance schedule such that reliability is maximized and cost is minimized

simultaneously with all constraints satisfied.

From Model (14a, b), the two objective functions and the first set of constraints are fuzzy

quantities. In order to have an unambiguous explanation of the model, the expected values of

fuzzy objectives are used to obtain decisions with optimal expected returns, as well as to provide

confidence levels αt within which the fuzzy constraints hold. Therefore, Model (14a, b) can be
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rewritten as an FCCP by replacing the two objective functions and the first set of constraints as,



max
X

E

{
n∑
t=1

1

n

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st}

min
X

E
[ n∑
t=1

m∑
i=1

(
CMi e

λ̃Mi,t + CEQi eλ̃
EQ
i,t + CIi e

λ̃Ii,t + CEMi eλ̃
EM
i,t

+CTi e
λ̃Ti,t + CAi e

λ̃Ai,t + CCRMi eλ̃
CRM
i,t

)
xi,t

]
(15a)

s.t.

Cr
{
d̃t −

∑m
i=1 p̃i,t(1− xi,t) ≤ 0

}
≥ αt, t = 1, 2, . . . , n

constraints (2)-(13),

xi,t = 1 if TRi is in maintenance in PRt, = 0 otherwise,

bi,t = 1 if the maintenance of TRi begins at PRt, = 0 otherwise,

(15b)

with p̃i,t defined in Eq. (5). For simplicity, the 12 sets of constraints shown in Model (14a, b) are

described as constraints (2)-(13) hereafter.

4. 2-phase solution framework

A 2-phase solution framework integrating the operational law for fuzzy arithmetic and NSGA-II

for multi-objective programming is developed to solve the fuzzy multi-objective non-linear chance-

constrained programming Model (15a, b) proposed for the PM scheduling problem of offshore wind

farms in a fuzzy environment.

4.1. Phase I: Operational law

Phase I employs the operational law which applies accurate fuzzy arithmetic instead of fuzzy

approximations or simulation to simplify the FCCP in Model (15a, b), converting it to the equiv-

alent deterministic programming which has ready solution methods. Subsequently, the treated

model proceeds to Phase II.

(1) In the FCCP Model (15a), the first expected reliability objective function can be expanded

referring to Eq. (A.10) owing to the independence of the fuzzy variables. In each expected term, r̃t

is strictly decreasing w.r.t. d̃t, and its monotonicity concerning p̃i,t, i = 1, 2, . . . ,m, is determined

by the values of the corresponding decision variables xi,t, i = 1, 2, . . . ,m. Clearly, r̃t is strictly

increasing w.r.t. p̃i,t when xi,t = 0, and strictly decreasing when xi,t = 1. In addition, all d̃t and
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p̃i,t in this objective are triangular fuzzy variables which are special cases of the regular LR fuzzy

numbers. Thus, applying Eq. (A.12),

E

{
n∑
t=1

1

n

[∑m
i=1 p̃i,t(1− xi,t)− d̃t∑m

i=1 p̃i,t − d̃t

]st}
=

1

n

n∑
t=1

∫ 1

0


m∑
i=1

[
Υ−1
i,t (α)(1− xi,t) + Υ−1

i,t (1− α)xi,t

]
(1− xi,t)−Ψ−1

t (1− α)

m∑
i=1

[
Υ−1
i,t (α)(1− xi,t) + Υ−1

i,t (1− α)xi,t

]
−Ψ−1

t (1− α)


st

dα,

(16)

where Ψ−1
t is the inverse credibility distribution of d̃t for t = 1, 2, . . . , n, and Υ−1

i,t is the inverse

credibility distribution of p̃i,t for i = 1, 2, . . . ,m, t = 1, 2, . . . , n. From Eq. (5), p̃i,t is a piecewise

function evaluated at certain expected values of the triangular fuzzy wind speed ṽi,t, and is strictly

increasing w.r.t. ṽi,t, so the way to judge the monotonicity of r̃t regarding ṽi,t is the same with

that of p̃i,t. Thus, we can substitute the inverse credibility distribution of ṽi,t indirectly through

Eq. (5) into the crisp reliability objective function in Eq. (16).

(2) The second expected cost objective function in the FCCP Model (15a) can also be expanded

to the sum of expected values based on Eq. (A.10) as all fuzzy exponents λ̃Mi,t , λ̃
EQ
i,t , λ̃

I
i,t, λ̃

EM
i,t , λ̃Ti,t, λ̃

A
i,t,

λ̃CRMi,t , i = 1, 2, . . . , m, t = 1, 2, . . . , n, are independent triangular fuzzy variables. Since each ex-

panded term is strictly increasing w.r.t. the inclusive fuzzy exponents, in accordance with Eq.

(A.12),

E
[ n∑
t=1

m∑
i=1

(
CMi e

λ̃Mi,t + CEQi eλ̃
EQ
i,t + CIi e

λ̃Ii,t + CEMi eλ̃
EM
i,t + CTi e

λ̃Ti,t + CAi e
λ̃Ai,t + CCRMi eλ̃

CRM
i,t

)
xi,t

]

=

n∑
t=1

m∑
i=1

∫ 1

0

(
CMi e

ΦM
i,t

−1
(α) + CEQi eΦEQ

i,t

−1
(α) + CIi e

ΦI
i,t

−1
(α)+

CEMi eΦEM
i,t

−1
(α) + CTi e

ΦT
i,t

−1
(α) + CAi e

ΦA
i,t

−1
(α) + CCRMi eΦCRM

i,t
−1

(α))xi,t dα

=
n∑
t=1

m∑
i=1

xi,t
(
CMi

∫ 1

0
eΦM

i,t
−1

(α)dα+ CEQi

∫ 1

0
eΦEQ

i,t

−1
(α)dα+ CIi

∫ 1

0
eΦI

i,t
−1

(α)dα+

CEMi

∫ 1

0
eΦEM

i,t
−1

(α)dα+ CTi

∫ 1

0
eΦT

i,t
−1

(α)dα+ CAi

∫ 1

0
eΦA

i,t
−1

(α)dα+ CCRMi

∫ 1

0
eΦCRM

i,t
−1

(α)dα
)
,

(17)

where ΦM
i,t
−1
,ΦEQ

i,t

−1
,ΦI

i,t
−1
,ΦEM

i,t
−1
,ΦT

i,t
−1
,ΦA

i,t
−1
,ΦCRM

i,t
−1
, i = 1, 2, . . . ,m, t = 1, 2, . . . , n, are
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inverse credibility distributions of all the fuzzy exponents, respectively.

(3) With respect to the first set of chance constraints in Eq. (15b) of the FCCP model, the

constraint function for PRt is strictly increasing w.r.t. d̃t, and strictly decreasing w.r.t. p̃i,t, i =

1, 2, . . . , m. As all of the above fuzzy variables are independent triangular, in terms of Eq. (A.14),

the chance constraints hold iff

Ψ−1
t (αt)−

∑m

i=1
Υ−1
i,t (1− αt)(1− xi,t) ≤ 0, t = 1, 2, . . . , n, (18)

in which for a certain t, Ψ−1
t are inverse credibility distributions of d̃t, and Υ−1

i,t are the inverse

credibility distributions of p̃i,t for i = 1, 2, · · · ,m as specified in the reliability objective in Eq.

(16). Also, Υ−1
i,t needs to be substituted by the inverse credibility distribution of ṽi,t by virtue of

Eq. (5).

Therefore, integrating the above three conversions in the same way as Model (A.15), the equiv-

alent deterministic model of the FCCP Model (15a, b) is shown as,



max
X

1

n

n∑
t=1

∫ 1

0


m∑
i=1

[
Υ−1
i,t (α)(1− xi,t) + Υ−1

i,t (1− α)xi,t

]
(1− xi,t)−Ψ−1

t (1− α)

m∑
i=1

[
Υ−1
i,t (α)(1− xi,t) + Υ−1

i,t (1− α)xi,t

]
−Ψ−1

t (1− α)


st

dα

min
X

n∑
t=1

m∑
i=1

xi,t
(
CMi

∫ 1

0
eΦM

i,t
−1

(α)dα+ CEQi

∫ 1

0
eΦEQ

i,t

−1
(α)dα+ CIi

∫ 1

0
eΦI

i,t
−1

(α)dα+

CEMi

∫ 1

0
eΦEM

i,t
−1

(α)dα+ CTi

∫ 1

0
eΦT

i,t
−1

(α)dα+ CAi

∫ 1

0
eΦA

i,t
−1

(α)dα+

CCRMi

∫ 1

0
eΦCRM

i,t
−1

(α)dα
)

(19a)
s.t.

Ψ−1
t (αt)−

∑m
i=1 Υ−1

i,t (1− αt)(1− xi,t) ≤ 0, t = 1, 2, . . . , n

constraints (2)-(13),

xi,t = 1 if TRi is in maintenance in PRt, = 0 otherwise,

bi,t = 1 if the maintenance of TRi begins at PRt, = 0 otherwise,

(19b)

in which Υ−1
i,t needs to be substituted by the inverse credibility distribution of ṽi,t according to Eq.

(5). The equivalent crisp programming Model (19a, b) can replace the FCCP Model (15a, b), and

we proceed to the next phase to develop appropriate algorithms.
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4.2. Phase II: NSGA-II

Phase II designs a nondominated sorting genetic algorithm II (NSGA-II) based algorithm to

deal with the remaining deterministic MONLP Model (19a, b) to obtain a set of Pareto-optimal

solutions.

In NSGA-II, the fast nondominated sorting procedure, the fast crowding distance estimation

procedure, and the simple crowded-comparison operator negate significantly any weakness of the

former NSGA. As none of the Pareto-optimal solutions are better than any solution, each of them

is acceptable. They can provide various trade-off solutions for decision-makers to determine a

satisficing schedule for the PM of an offshore wind project. The entire procedure of the NSGA-II

for solving the crisp MONLP Model (19a, b) is presented in Algorithm 1.

Algorithm 1 NSGA-II for PM scheduling model of offshore wind farms in a fuzzy environment

1: Set t=1;
2: Initialize parent population P0 and set it as Pt with pop size feasible solutions after checking all con-

straints.
3: Calculate values of objective functions Eqs. (16) and (17) in Model (19a) for all solutions in Pt.
4: Rank solutions in Pt based on the fast nondominated sorting approach. So each solution i is assigned

with a nondomination rank irank.
5: Calculate the crowding distance idistance of each solution i in Pt based on the density estimation metric.
6: Select pop size solutions by the binary tournament selection utilizing the crowded comparison operator

which is based on the nondomination rank irank and the crowding distance idistance. The selected
solutions are used to create an offspring population.

7: Update solutions by crossover and mutation operations. The feasibility of offspring population Qt should
be checked by constraints (1)-(13) in Model (19b).

8: Execute the elitist strategy containing the combination and comparison of Pt and Qt. t ← t + 1, and
the new Pt with pop size solutions is output for the next iteration.

9: Repeat Steps 6-8 for a given number of iterations.
10: Collect Pareto-optimal solutions to support the decision-making.

5. Numerical example

We design a numerical example to validate the effectiveness and performance of the pro-

posed fuzzy multi-objective non-linear chance-constrained programming Model (15a, b) for the

PM scheduling of offshore wind farms in the fuzzy environment and the 2-phase solution frame-

work. The background and parameters of the illustrative case and algorithm are given in the

supplementary material.
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5.1. Effect of decision-maker attitudes

As there are four types of decision-maker attitudes towards the offshore wind project over the

time horizon, i.e., fully rational, optimism biased, wait-and-see, and pessimism biased preferences,

we discuss their different effects on the final solution sets in this section.

First, we use four sets of 52 attainment exponents to present the four attitudes by allocating

them with positive, neutral or negative effects in Table 2. As to the fully rational attitude (columns

2 and 7), we select s1, s2, . . . , s18 randomly from [0, 1), make s19, s20, . . . , s34 all equal to 1, and

choose s35, s36, . . . , s52 randomly from (1, 50), which can be approximately equivalent to the interval

(1,+∞). For the optimism biased attitude (columns 3 and 8), s1, s2, . . . , s52 are entirely from [0, 1).

For the wait-and-see attitude (columns 4 and 9), all st equal to 1. For the pessimism biased attitude

(columns 5 and 11), st are selected from (1, 50).

Then, four crisp multi-objective programming models (19a, b) with different decision-maker

attitudes are implemented for 5,000 iterations, respectively, and the final solution sets are displayed

in Fig. 23 by four point types and in Table 3. It can be seen that the results on the basis of the fully

rational attitude (blue asterisks in Fig. 2 and row 2 in Table 3) have the lowest maintenance cost

(e21.8696∼23.5552m) and good system reliability (96.6390∼98.5896%) attainments, as well as the

best spread of Pareto-optimal solutions which does not contain big gaps among solutions as the

other three solution sets do. Hence, a rational attitude is more appropriate for decision-makers to

hold as it contributes to more reasonable and high-performance outputs. They can better support

the subsequent decision-making of selecting one or several satisfying solutions from the solution

set as the schedules to execute maintenance jobs. In the following analyses, we will focus on this

attitude.

5.2. Decision-making guidance under different strategic preferences

We analyse the Pareto-optimal solutions of the crisp Model (19a, b) to guide the decision-

making on the PM scheduling problem of offshore wind farms in the fuzzy environment. The

values of st are assigned according to the fully rational attitude, i.e., the columns 2 and 7 of

Table 2. In Fig. 3, the asterisks represent 100 Pareto-optimal solutions after 5,000 iterations. We

3In Fig. 2, one set of points is one solution set, comprising 100 Pareto-optimal solutions representing 100 satisfying
maintenance schedules with their cost and reliability goal values indicated in x-axis and y-axis.
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Table 2: Assignment of st according to decision-maker attitudes

st Rational Optimism W&s Pessimism st Rational Optimism W&s Pessimism

s1 0.21 0.58 1 47.50 s27 1 0.03 1 2.06

s2 0.29 0.12 1 19.21 s28 1 0.24 1 17.95

s3 0.70 0.41 1 9.78 s29 1 0.97 1 23.91

s4 0.71 0.67 1 15.47 s30 1 0.15 1 2.22

s5 0.72 0.68 1 4.85 s31 1 0.84 1 7.84

s6 0.23 0.01 1 3.44 s32 1 0.48 1 39.87

s7 0.84 0.81 1 10.17 s33 1 0.07 1 8.92

s8 0.93 0.70 1 32.29 s34 1 0.40 1 5.05

s9 0.41 0.17 1 35.85 s35 14.04 0.66 1 40.52

s10 0.69 0.61 1 27.68 s36 40.11 0.78 1 27.84

s11 0.25 0.29 1 38.26 s37 23.70 0.33 1 22.65

s12 0.79 0.37 1 4.26 s38 19.45 0.74 1 28.53

s13 0.96 0.72 1 6.63 s39 49.97 0.44 1 43.74

s14 0.53 0.27 1 11.81 s40 39.96 0.02 1 22.35

s15 0.95 0.11 1 24.01 s41 3.63 0.23 1 27.27

s16 0.01 0.06 1 18.02 s42 45.28 0.86 1 40.59

s17 0.12 0.06 1 18.60 s43 46.61 0.79 1 5.31

s18 0.40 0.04 1 47.53 s44 23.06 0.07 1 7.99

s19 1 0.06 1 16.15 s45 36.72 0.48 1 4.51

s20 1 0.16 1 20.32 s46 28.96 0.91 1 40.40

s21 1 0.78 1 14.56 s47 36.90 0.82 1 9.90

s22 1 0.19 1 40.26 s48 15.47 0.60 1 35.70

s23 1 0.17 1 1.45 s49 9.09 0.48 1 4.38

s24 1 0.44 1 29.57 s50 6.96 0.07 1 35.08

s25 1 0.97 1 10.37 s51 42.39 0.87 1 30.01

s26 1 0.69 1 47.58 s52 21.46 0.56 1 46.84

extract decision instructions under different strategic preferences of an offshore wind project as

follows:

(1) If the offshore wind project follows a cost priority strategy, it means that the decision-

makers are inclined to optimize the maintenance cost by sacrificing the achievement on reliability.

So long as the reliability does not exceed the tolerance which would influence the basic stability,
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Fig. 2: Effect of decision-maker attitudes on Pareto-optimal solutions

the decision-makers are willing to adopt a lower cost solution albeit with not high but acceptable

reliability.

For example, the solution with the lowest cost e21.8696m and the reliability 96.6390% (the

asterisk on the bottom right corner in Fig. 3), can be chosen as a maintenance policy of cost

priority. The corresponding schedule is displayed in Fig. 4a, in which the colour blocks refer to the

periods in maintenance and it summarizes in the last row the amount of turbines in maintenance

in each period. The maintenance works are highly assembled (78% workload completed) in the

Table 3: Bounds of the two objectives with different decision-maker attitudes

Attitude CostL(me) CostU (me) ReliabilityL(%) ReliabilityU (%)

Rational 21.8696 23.5552 96.6390 98.5896

Optimism 21.9351 26.6912 98.6020 99.5978

Wait-and-see 22.3641 27.1397 95.8669 98.3111

Pessimism 22.5800 24.5500 71.9563 79.8157
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Fig. 4: Maintenance schedule examples in different strategic priorities
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(c) Pareto-optimal solutions for compromise strategy

21 918 97.0044

21 9011 96.9385

6 23 33 98.57913 23 44 98.5864

3 22 50 98.1013 6 22 46 97.9356

2 22 49 98.0770 5 22 46 97.9758

1 22 48 98.0061 4 22 52 98.1316

23 3689 98.58022 23 502 98.5869 5

97.066721 92

(a) Pareto-optimal solutions for cost priority strategy

1 23 55 98.5896 4

96.7017 5

23 4153 98.5844

(b) Pareto-optimal solutions for reliability priority strategy

6

21 86

21 88

1

2

96.87583

496.6390

21 88

Fig. 5: Pareto-optimal solution examples in different strategic priorities

first third of the time horizon, especially from PR14 to PR18, which is consistent with the principle

of the cost saving strategy, implying that maintenance should be done as early as possible to avoid

the exponential increase in cost over time. Besides, five other cost priority solutions are given in

Fig. 5a, as well as their cost and reliability objective trends over time with the respective extrema

shown.

(2) If the offshore wind project implements a reliability priority strategy, i.e., satisfying customer

power demand is more important to decision-makers and there is sufficient maintenance budget,

the Pareto-optimal solutions in the top left corner of Fig. 3 are the best choices for maintenance
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policies. As long as the maintenance cost is not over budget, a higher reliability level can be

expected.

The upper bound decision with the highest reliability 98.5896% and the cost e23.5552m can

be found in Fig. 5b, as well as five other reliability priority solutions. Since the highest reliability

solution is the extreme case among all Pareto-optimal solutions just like the lowest cost solution,

we place their objective (gap and cumulation) trends over time in Fig. 6 for comparison.

Fig. 6 shows why the maintenance of the highest reliability solution in Fig. 4b is scheduled less

concertedly than that of the lowest cost solution in Fig. 4a (there are turbines in maintenance from

PR4 to PR34). It is to ensure the reliability of wind farm remains high stably (Figs. 6c-6d versus

Figs. 6a-6b reveal). The reliability of the highest reliability solution almost always keeps ahead in

the time horizon (see Fig. 6e). Also, the highest reliability solution results in lower cost in early

periods and higher cost in late periods, finally leading to overtaking in the cumulative cost since

PR28 (see Fig. 6f). Moreover, early maintenance contributes more to the reliability achievement

than mid-stage maintenance. Therefore the number of turbines in maintenance from PR4 to PR18

is (54%) larger than that from PR19 to PR34.

(3) If reducing maintenance cost and increasing system reliability are both crucial strategies for

the offshore wind project, compromise policies which attempt to satisfy both targets are needed.

The compromise solutions are marked by the circle in Fig. 3, and six of them are listed in Fig. 5c.

The maintenance schedule of the first solution is indicated in Fig. 4c. It shows that the compromise

solutions fall in between the cost priority and reliability priority solutions.

In sum, no matter what strategic preferences decision-makers have for the offshore wind project,

Pareto-optimal solutions obtained from the optimization can provide adequate alternative satisfy-

ing solutions: maintenance schedules of the cost priority solutions are distributed in early short

periods intensively, while those of the reliability priority solutions are arranged in longer peri-

ods more dispersedly. In the future, decision-makers can apply our framework to their cases by

inputting real data, and choose suitable policies according to our guidance.

The rationality of the approach proposed in this paper to formulate and solve the PM problem

provides a novel direction comparing with that of Zhong et al. (2018). As we are not in a position

to make numerical comparisons between the results derived here with those of Zhong et al. (2018),

therefore we appraise the approaches by evaluating the results regarding the significance levels of
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their characteristics. Comparing the PM schedule results shown in Fig. 4 with that of Zhong et al.

(2018), we can see that in this paper the PM works in the schedules of the lowest cost (Fig. 4a)

and the highest reliability solution (Fig. 4b) have distinctly different distribution patterns as sum-

marized above, while in Zhong et al. (2018) we cannot find and extract that the two same objects

(Figs. 4a-4b) have much difference in distribution. This comparison supports us to justify that

the PM scheduling problem for offshore wind farms being discussed in the fuzzy environment and

its associated approach in this paper outperform it being addressed in the deterministic environ-

ment in Zhong et al. (2018). Studying the problem in a more practical and reasonable (fuzzy)

environment contributes to more realistic and rational results.

5.3. Considering CM cost to get optimal solution and analyse cost performance

In this section, we will give decision-makers a more intuitive idea of what a specific system

reliability and its improvement standing for in terms of cost, so as to further support the decision-

making of one best choice from the solution set. Hence, we first employ a Risk-Based-Failure

Mode and Effect Analysis (RB-FMEA) approach proposed by Kahrobaee and Asgarpoor (2011) to

estimate the failure cost (i.e., CM cost) of offshore wind farm. CM cost is the value embodiment of

the system failure rate (i.e., 1 − reliability). Then we aggregate the PM and CM costs to form the

overall maintenance cost, which comprehensively includes the information of the proactive PM cost

to achieve a certain reliability and the reactive CM cost to handle the possible failure occurring in

that reliability level. Finally, we can obtain a solution with the lowest overall maintenance cost as

the optimal choice. We implement the processes above as follows:

(1) Estimate the CM cost using the RB-FMEA method4. Given that CMC: CM cost (failure

cost), PF : failure occurrence chance, PUD: failure undetected chance, CF : cost consequence of

failure, and NF : failure frequency,

CMC = (PF · PUD · CF ) ·NF , (20)

where PF = 1−E[R̃], PUD = 0.89, CF = e39.3191m, NF = 2.17/year. It implies that the CM cost

CMC maps the reliability R̃. We use the same solution set in Section 5.2 to analyse. The CM

4We refer to the RB-FMEA method in Kahrobaee and Asgarpoor (2011). We take some essential result parameters
came out of their case study and properly adjust them to be valid for our illustrative case. Here we omit the
detailed steps and present directly. Interested readers can find the original parameter table we mainly refer to in the
supplementary material.
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Fig. 7: PM cost, CM cost and overall maintenance cost

costs CMC of the 100 Pareto-optimal solutions are calculated by inputting the reliability values

to Eq. (20), and the solution set showing CM cost is denoted by the green dots in Fig. 7. The CM

cost decreases as the reliability increases.

(2) Sum up the PM and CM costs as the overall maintenance cost. In Fig. 7, the blue dots refer

to the solution set showing PM cost and the yellow dots represent overall maintenance cost. The PM

cost, on the contrary, increases as the reliability increases. Thereby, the overall maintenance cost

can have a minimum e23.8573m, where the PM cost is e22.5871m and the CM cost is e1.2702m

with the reliability at 98.3211%. Decision-makers can see this solution as the final optimal choice.

(3) Cost-benefit analysis between the PM and CM costs. Since the CM cost saving reflects

the benefit from reliability improving by investing more PM cost, we observe the ratio change of

the CM cost saving to the PM cost investment with the reliability increasing. It can be seen from

Fig. 7 that for the solutions with reliability lower than 98.5802%, less PM cost investment can lever
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more CM cost saving; while for those with reliability equal or higher than 98.5802%, more PM

cost needs to be invested but less CM cost can be saved. Having an understanding of the leverage

between the PM and CM costs can also assist decision-makers to weigh the cost performance.

6. Conclusion

This paper, on the basis of Zhong et al. (2018), successfully extends the study of the PM

scheduling problem for offshore wind farms in a fuzzy setting by formulating a novel model and

designing an associated solving method. Our approach works as a guidance for decision-makers. It

is easy to compare, analyze and select the expected results of the model to support PM decisions.

Particularly, this paper contributes in the following five aspects:

(i) We consider the PM scheduling problem for offshore wind farms in the fuzzy setting which

is a more realistic thought given the uncertain nature of the marine environment.

(ii) We propose a fuzzy multi-objective non-linear chance-constrained programming model to

optimize the reliability and cost objectives simultaneously. The two conflicting objectives are

discussed to make a reasonable trade-off. It can be summarized from the experiments that main-

tenance schedules of the cost priority solutions are distributed in early short periods intensively,

while those of the reliability priority solutions are arranged in longer periods more dispersedly.

(iii) We formulate new definitions for the reliability and cost criteria, as well as constraints for

the offshore wind energy scenario.

(iv) We develop a 2-phase solution framework integrating the operational law for fuzzy arith-

metic and the NSGA-II for multi-objective programming to solve the proposed model.

(v) We bring CM cost (which maps the reliability) into an overall consideration with PM cost

to obtain the optimal solution and weigh cost performance for supporting the decision-making. For

example, if decision-makers know what a certain reliability value or one percent improvement in

reliability mean in cost wise, they can make more sensible decisions of maintenance policies.

In the future, we can refine our maintenance policy design for offshore wind farms continuously

by discussing in stochastic or mixed set-ups to find which is more reasonable; further improving

the definitions of reliability and cost criteria; combining PM and CM (such as Byon (2013), Duan

et al. (2018), Ghamlouch et al. (2017), Luce (1999) and Mo et al. (2018) do) and improving their

formulations based on the respective features. Further, we plan to perform the grid optimization of
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offshore wind energy coordinating with other power systems to cope with the global energy crisis.

Acknowledgements

We are extremely grateful to the anonymous reviewers and the associate editor who have

afforded us considerable assistance in enhancing both the quality of the findings and the clarity

of their presentation. The authors acknowledge the kind support of the Recruitment Program of

High-end Foreign Experts (Grant No. GDW20163100009). We would like to thank Michael Beer,

Zhe Song, Qing-Chang Zhong and Hans-Jörg von Mettenheim for helpful comments.

Appendix A. Credibility theory and operational law

We introduce the notion of credibility theory and the operational law, which are applied to our

problem for refining and solving the fuzzy programming model.

Definition 1. Let Θ be a nonempty set, P(Θ) the power set of Θ, and Pos a possibility measure.

Then, the tuple (Θ,P(Θ),Pos) is called a possibility space.

Based on possibility space, a fuzzy variable and its membership function can be defined.

Definition 2. A fuzzy variable is defined as a function from a possibility space (Θ,P(Θ),Pos) to

the set of real numbers, R.

Definition 3. Let ξ be a fuzzy variable defined on the possibility space (Θ,P(Θ), Pos). Then its

membership function is derived from the possibility measure given by

µ(x) = Pos{θ ∈ Θ
∣∣ ξ(θ) = x}, x ∈ R. (A.1)

W.r.t. a triangular fuzzy variable, a type of fuzzy variable commonly used in uncertain problems,

the fuzzy variable fully determined by the tuple (r1, r2, r3) of crisp numbers with r1 < r2 < r3,

whose membership function is given by

µ(x) =



x− r1

r2 − r1
, if r1 ≤ x ≤ r2

x− r3

r2 − r3
, if r2 ≤ x ≤ r3

0, otherwise.

(A.2)
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Let ξ be a fuzzy variable with membership function µ, and r ∈ R. Extending to a fuzzy event

{ξ ≤ r}, its possibility, necessity, and credibility which measure the chances of the event can be

presented as

Pos{ξ ≤ r} = sup
x≤r

µ(x),

Nec{ξ ≤ r} = 1− sup
x>r

µ(x),

Cr{ξ ≤ r} =
1

2
(Pos{ξ ≤ r}+ Nec{ξ ≤ r}) =

1

2

(
sup
x≤r

µ(x) + 1− sup
x>r

µ(x)

)
.

(A.3)

The credibility distribution of a fuzzy variable is defined below.

Definition 4. (Liu 2002) The credibility distribution Φ : R→ [0, 1] of a fuzzy variable ξ is

Φ(x) = Cr
{
θ ∈ Θ

∣∣ ξ(θ) ≤ x} . (A.4)

Φ(x) is the credibility that ξ takes a value no more than x. Liu (2007) proved that the credibility

distribution Φ is nondecreasing on R with Φ(−∞) = 0 and Φ(+∞) = 1. Then the inverse function

Φ−1 is the inverse credibility distribution of ξ. For example, the inverse distribution of a triangular

fuzzy number ξ ∼ T (r1, r2, r3) is

Φ−1(α) =


(2r2 − 2r1)α+ r1, if α < 0.5

(2r3 − 2r2)α+ 2r2 − r3, if α ≥ 0.5.
(A.5)

Thereafter, the LR fuzzy number will be applied in the following theorems. It is initialized

by Dubois and Prade (1978), which contains the triangular fuzzy number mentioned above as a

regular LR fuzzy number acting as a particular case. We now supply the operational law for the

regular LR fuzzy numbers.

Theorem 1. (Zhou et al. 2016) Let ξ1, ξ2, . . . , ξn be independent regular LR fuzzy numbers with

credibility distributions Φ1,Φ2, . . . ,Φn, respectively. If the function f(x1, x2, . . . , xn) is strictly

increasing w.r.t. x1, x2, . . . , xm and strictly decreasing w.r.t. xm+1, xm+2, . . . , xn, then

ξ = f(ξ1, . . . , ξm, ξm+1, . . . , ξn) (A.6)
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is a regular LR fuzzy number with an inverse credibility distribution

Ψ−1(α) = f(Φ−1
1 (α), . . . ,Φ−1

m (α),Φ−1
m+1(1− α), . . . ,Φ−1

n (1− α)). (A.7)

We now provide the definition of the expected value operator of a fuzzy variable, and its properties.

While there are many ways to define an expected value operator of fuzzy variables, Liu and Liu

(2002) provides the most general definition of the expected value operator of a fuzzy variable

(continuous and discrete).

Definition 5. (Liu and Liu 2002) Let ξ be a fuzzy variable. Then, the expected value of ξ is defined

as

E[ξ] =

∫ +∞

0
Cr {ξ ≥ r} dr −

∫ 0

−∞
Cr {ξ ≤ r} dr (A.8)

provided that at least one of the two integrals is finite.

An equivalent form of the expected value for the regular LR fuzzy numbers by virtue of the inverse

credibility distribution is proposed as follows.

Theorem 2. (Zhou et al. 2016) Suppose ξ is a regular LR fuzzy number. If E[ξ] exists, then

E[ξ] =

∫ 1

0
Φ−1(α)dα, (A.9)

where Φ−1 is the inverse credibility distribution of ξ.

Next, the linearity of the expected value operator for fuzzy variables is stated.

Theorem 3. (Liu and Liu 2003) Let ξ and η be independent fuzzy variables with finite expected

values. Then for any a and b ∈ R, we have

E[aξ + bη] = aE[ξ] + bE[η]. (A.10)
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To formulate the decision systems with fuzzy parameters, we call on the following FCCP model

which is a conventional type of fuzzy programming,


min
x

E[f(x, ξ)]

s.t.

Cr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, . . . , p.

(A.11)

Model (A.11) aims to achieve a decision with the minimum expected objective E[f(x, ξ)] subject

to a set of chance constraints. If the fuzzy vector ξ consists of regular LR fuzzy numbers, then a

crisp equivalent form can be obtained using the following two theorems.

Theorem 4. (Zhou et al. 2016) Suppose the objective function f(x, ξ1, ξ2, . . . , ξn) is strictly in-

creasing w.r.t. ξ1, ξ2, . . . , ξm and strictly decreasing w.r.t. ξm+1, ξm+2, . . . , ξn. If ξ1, ξ2, . . . , ξn are

independent regular LR fuzzy numbers, then the expected objective function E[f(x, ξ1, ξ2, . . . , ξn)]

in Model (A.11) is:

∫ 1

0
f(x,Φ−1

1 (α), . . . ,Φ−1
m (α),Φ−1

m+1(1− α), . . . ,Φ−1
n (1− α))dα (A.12)

where Φ−1
i is the inverse credibility distribution of ξi for i = 1, 2, . . . , n.

Theorem 5. (Zhou et al. 2016) Suppose the constraint function gj(x, ξ1, ξ2, . . . , ξn) is strictly

increasing w.r.t. ξ1, ξ2, . . . , ξkj and strictly decreasing w.r.t. ξkj+1, ξkj+2, . . . , ξn. If ξ1, ξ2, . . . , ξn

are independent regular LR fuzzy numbers, then the chance constraint

Cr {gj(x, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ α (A.13)

holds iff

gj(x,Φ
−1
1 (α), . . . ,Φ−1

kj
(α),Φ−1

kj+1(1− α), . . . ,Φ−1
n (1− α)) ≤ 0 (A.14)

where Φ−1
i is the inverse credibility distribution of ξi for i = 1, 2, . . . , n.
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As a result, we can convert the fuzzy programming Model (A.11) to the crisp model as,
min
x

∫ 1

0
f(x,Φ−1

1 (α), . . . ,Φ−1
m (α),Φ−1

m+1(1− α), . . . ,Φ−1
n (1− α))dα

s.t.

gj(x,Φ
−1
1 (αj), . . . ,Φ

−1
kj

(αj),Φ
−1
kj+1(1− αj), . . . ,Φ−1

n (1− αj)) ≤ 0, j = 1, 2, . . . , p

(A.15)

where Φ−1
i is the inverse credibility distribution of ξi for i = 1, 2, . . . , n. The deterministic Model

(A.15) can be solved as a linear or non-linear programming by the traditional methods, for which

solutions are readily available.
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