Supporting Information

Photoreforming of non-recyclable plastic waste over a carbon nitride/nickel phosphide catalyst

Taylor Uekert, Hatice Kasap, Erwin Reisner*

Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. *e-mail: reisner@ch.cam.ac.uk

List of abbreviations

- CN_x cyanamide-functionalized carbon nitride
- $^{H_2N}CN_x$ unfunctionalized carbon nitride
- EG ethylene glycol
- LA lactic acid
- Ni₂P nickel phosphide
- PE polyethylene
- PET polyethylene terephthalate
- PLA polylactic acid
- PP polypropylene
- PR photoreforming
- PS polystyrene
- PUR polyurethane
- Rubber polystyrene-block-polybutadiene

Thermodynamic calculations

Gibbs free energies were obtained or calculated from data in the cited references:

$$PET \text{ hydrolysis: } C_{10}H_8O_4 + 2 H_2O \xrightarrow{KOH} C_2H_6O_2 + C_8H_6O_4, \Delta G^{\circ} = 66 \text{ kJ mol}^{-1}$$
 [S1]¹

PR of EG:
$$C_2H_6O_2 + 2H_2O \xrightarrow{hv, CNx} 5H_2 + 2CO_2, \Delta G^{\circ} = 9.2 \text{ kJ mol}^{-1}, E^{\circ}_{cell} = -0.01 \text{ V} [S2]^2$$

PLA hydrolysis:
$$C_3H_4O_2 + H_2O \xrightarrow{KOH} C_3H_6O_3$$
, $\Delta G^{\circ} = 82 \text{ kJ mol}^{-1}$ [S3]³

PR of LA:
$$C_3H_6O_3 + 3H_2O \xrightarrow{hv, CNx} 6H_2 + 3CO_2, \Delta G^\circ = 27 \text{ kJ mol}^{-1}, E^\circ_{cell} = -0.02 \text{ V} [S4]^4$$

Supplementary Tables

Table S1. Inductively coupled plasma optical emission spectrometry (ICP-OES) quantification of Ni and P content of several catalysts. Samples (typically ~ 3mg) were dissolved in 2 mL of 2:1 H₂O₂:H₂SO₄ overnight, diluted with H₂O and then submitted for measurement.

Catalyst	Ideal Ni content (mg _{Ni} gc _{Nx⁻¹})	Measured Ni content (mg _{Ni} g _{CNx} ⁻¹)	Ideal P content (mg _P g _{CNx} ^{−1})	Measured P content (mgp gcNx ⁻¹)
CN _x Ni ₂ P	15.9	15.3	4.2	52.2
CN _x Ni₂P post-PR	15.9	15.1	4.2	8.8
solution post-PR ^[a]	0.00	0.14	n.m.	n.m.
CN _x -P ^[b]			5.0	40.3
CNx-POx ^[c]			4.9	35.4
H2NCNx-P ^[b]			5.0	14.0

n.m. = not measured

^[a] The photocatalyst was removed *via* centrifugation, and only the supernatant was submitted for ICP analysis.

^[b] CN_x -P and ^{H2N} CN_x -P were synthesized according to the $CN_x|Ni_2P$ procedure, but *without* the addition of the Ni precursor.

^[C] CN_x-PO_x was prepared by replacing NaH₂PO₂·H₂O with Na₃PO₄ in the above synthesis.

			Atomic conc	entration (%)		
Sample	O 1s	C 1s	N 1s	K 2s	Ni 2p _{3/2}	Р 2р
CN _x area 1	12.54	34.33	41.38	5.89		
CN _x area 2	23.37	27.85	30.89	5.08		
CN _x area 3	17.75	33.63	34.79	5.24		
Average	17.89	31.94	35.69	5.40		
Ni₂P area 1	47.82	20.21			4.67	17.90
Ni₂P area 2	41.26	30.02			4.18	16.74
Ni₂P area 3	46.59	20.55			5.50	21.50
Average	45.22	23.59			4.78	18.71
CN _x Ni ₂ P area 1	13.09	35.18	39.17	3.80	0.37	1.93
CN _x Ni₂P area 2	18.76	31.46	34.90	3.94	0.25	1.38
CN _x Ni₂P area 3	14.73	33.74	38.48	4.01	0.30	1.75
Average	15.53	33.46	37.52	3.92	0.31	1.69
Post-PR CN _x Ni ₂ P area 1	29.07	26.06	24.81	1.15	0.19	
Post-PR CN _x Ni ₂ P area 2	27.65	27.36	25.90	1.84	0.18	
Post-PR CN _x Ni ₂ P area 3	23.95	29.01	29.89	1.62	0.28	
Average	26.89	27.48	26.87	1.54	0.22	
CN _x P area 1	7.59	40.66	42.76	3.91		1.54
CN _x P area 2	6.71	41.10	43.48	4.20		1.88
Average	7.15	40.88	43.12	4.05		1.71

Table S2. X-ray photoelectron spectroscopy (XPS) survey quantification of CN_x , Ni_2P , $CN_x|Ni_2P$ (2 wt%), post-catalysis $CN_x|Ni_2P$ (2 wt%), and $CN_x|P$. All powders were dispersed in ethanol and drop-cast on FTO glass slides prior to characterization.

Table S3. Comparison of the synthesized $CN_x|Ni_2P$ catalyst to reported $H^{2N}CN_x|Ni_2P$ catalysts for H_2 evolution with triethanolamine as hole scavenger. All cited samples were irradiated with 300 W Xe lamps with $\lambda > 420$ nm cutoff filters (no temperatures cited). Samples labelled as "this work" were irradiated with a 1000 W Xe lamp (AM 1.5G, 100 mW cm⁻², 25 °C) with a $\lambda > 420$ nm cutoff filter.

Catalyst	[Catalyst] (mg mL⁻¹)	[Substrate] (mg mL ^{−1})	Reactor Volume (mL)	Time (h)	Yield $\pm \sigma$ (µmol _{H2} g _{sub} ⁻¹)	Activity $\pm \sigma$ (µmol _{H2} g _{cat} ⁻¹ h ⁻¹)	Ref
CN _x Ni ₂ P 2% ^[a]	1.2	113	7.91	20	33.4 ± 1.7	118 ± 6.0	*
H ₂ NCN _x Ni ₂ P 2%	0.83	113	60	20	29.5	200	5
H ₂ NCN _x Ni ₂ P 2%	1.2	113	7.91	20	27.4 ± 1.4	96.7 ± 4.9	*
H ₂ NCN _x Ni ₂ P 3%	1.0	226	100	4	26.6	1503	6
H ₂ NCN _x Ni ₁₂ P ₅ 2%	1.0	113	80	20	14.6	82.5	7
H2NCNx Ni2P 3.5%	0.45	103	250	4	8.39	474	8
H ₂ NCN _x Ni ₂ P 0.48%	1.0	113	37	2	10.2	575	9
H2NCNx Ni2P 2%	0.5	170	100	3	1.12	127	10

^[a] Percentages indicate wt%.

* This work.

Table S4. Optimisation of photoreforming conditions with $CN_x|Ni_2P$. Conditions (unless stated otherwise below): ultra-sonicated $CN_x|Ni_2P 2$ wt% (3.2 mg), pre-treated PET (50 mg), aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (20 h AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples, unless stated otherwise.

Description	Ni₂P loading (wt %)	Yield $\pm \sigma$ (µmol _{H2} g _{sub} ⁻¹)	Activity ± <i>σ</i> (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
Ni ₂ P concentration	0.5	2.11 ± 0.13	1.59 ± 0.10
optimisation	2	27.6 ± 3.4	21.6 ± 2.7
opunneauen	5	29.4 ± 1.5	23.0 ± 1.2
Description	[CN _× Ni₂P] (mg mL ^{−1})	Yield (µmolн₂ g _{sub} ⁻1)	Activity (µmol _{H₂} g _{cat} ⁻¹ h⁻¹)
	0.2 ^[a]	0.980 ± 0.300	6.12 ± 1.87
CN _x concentration	0.5 ^[a]	1.45 ± 0.25	3.62 ± 0.62
optimisation	1 ^[a]	7.30 ± 0.36	9.12 ± 0.46
optimioation	1.6	27.6 ± 3.4	21.6 ± 2.7
	2 ^[a]	22.1 ± 1.1	13.8 ± 0.7
Description	[KOH] (M)	Yield (mmol _{H2} g _{sub} ⁻¹)	Activity (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
	0	0.0 ± 0.0	0.0 ± 0.0
OH concentration	0.5	0.800 ± 0.007	0.625 ± 0.005
optimisation	1	27.6 ± 3.4	21.6 ± 2.7
opinnouton	5	83.8 ± 5.3	65.4 ± 2.2
	10	111 ± 8	86.5 ± 6.2

^[a] σ calculated from 2 samples.

Table S5. Comparison of photoreforming with pre-treated versus non-treated PET. Conditions: ultrasonicated $CN_x|Ni_2P 2$ wt% (3.2 mg), PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (μmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
	4	5.00 ± 0.34	19.5 ± 1.3
No pre-treatment	20	17.1 ± 0.9	12.8 ± 0.6
	22	18.8 ± 1.7	12.8 ± 1.1
	4	5.06 ± 0.34	19.8 ± 1.3
With pre-treatment	20	27.6 ± 3.4	21.6 ± 2.7
	22	30.6 ± 6.1	21.7 ± 4.3

Sample	Components	Ideal quantity of component (mg)	Measured quantity of component (mg)	% solubilization
PET	ethylene glycol	2.1	1.3	62
FEI	terephthalate	5.7	2.9	51
PLA	lactate	6.0	4.3	72
PET bottle	ethylene glycol	1.2	0.7	58
FEIDOLLE	terephthalate	3.1	1.3	42
Dolyoptor fibor	ethylene glycol	1.2	0.3	25
Polyester fiber	terephthalate	3.1	0.8	26

Table S6. Quantification (by ¹H-NMR spectroscopy) of polymer solubilization after pre-treatment (before photocatalysis).

Table S7. Comparison of photoreforming with ultra-sonicated versus un-sonicated $CN_x|Ni_2P$. Conditions: $CN_x|Ni_2P$ 2 wt% (3.2 mg), pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (μmol _{H2} g _{sub} ⁻¹)	Activity ± <i>σ</i> (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
No sonication	4	3.86 ± 0.19	15.1 ± 0.7
No someanon	20	6.34 ± 0.44	4.95 ± 0.35
ith ultra-sonication	4	5.06 ± 0.34	19.8 ± 1.3
	20	27.6 ± 3.4	21.6 ± 2.7

Table S8. Control experiments for photoreforming of polymers over $CN_x|Ni_2P$. Conditions (unless stated otherwise below): ultra-sonicated $CN_x|Ni_2P 2$ wt% (3.2 mg), pre-treated polymer (50 mg), aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description		Time (h)	Yield ± σ (μmol _{H2})	Activity (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
		2	0.049 ± 0.021	7.66 ± 3.28
		4	0.053 ± 0.044	4.14 ± 3.44
		20	0.132 ± 0.065	2.06 ± 1.01
		25	0.134 ± 0.011	1.67 ± 0.14
		27	0.145 ± 0.013	1.68 ±0.15
		44	0.171 ± 0.016	1.21 ± 0.11
No substrate ^[a,b]		46	0.175 ± 0.016	1.19 ± 0.11
		50	0.180 ± 0.017	1.12 ± 0.11
		24	0.071 ± 0.003	0.924 ± 0.046
		48	0.074 ± 0.011	0.482 ± 0.072
		72	0.140 ± 0.010	0.608 ± 0.043
		96	0.208 ± 0.023	0.677 ± 0.075
		120	0.269 ± 0.059	0.700 ± 0.153
Description	Orchastrata	Time	Yield	Activity
Description	Substrate	(h)	(µmol _{H2} g _{sub} ⁻¹)	(µmol _{H2} g _{cat} ⁻¹ h ⁻¹)
	PET	4	0.0 ± 0.0	0.0 ± 0.0
No light	PEI	20	0.0 ± 0.0	0.0 ± 0.0
NO ligiti	51.4	4	0.0 ± 0.0	0.0 ± 0.0
	PLA	20	0.0 ± 0.0	0.0 ± 0.0
	DET	4	0.0 ± 0.0	0.0 ± 0.0
	PET	20	0.0 ± 0.0	0.0 ± 0.0
No catalyst		4	0.0 ± 0.0	0.0 ± 0.0
	PLA	20	0.0 ± 0.0	0.0 ± 0.0
	DET	4	0.0 ± 0.0	0.0 ± 0.0
No co-catalyst	PET	20	0.687 ± 0.034	0.537 ± 0.027
(CN _x only)		4	0.0 ± 0.0	0.0 ± 0.0
	PLA	20	1.24 ± 0.22	0.969 ± 0.172
	DET	4	0.0 ± 0.0	0.0 ± 0.0
No light-absorber	PET	20	0.0 ± 0.0	0.0 ± 0.0
(Ni₂P only)		4	0.0 ± 0.0	0.0 ± 0.0
	PLA	20	0.0 ± 0.0	0.0 ± 0.0
	PET	4	3.96 ± 0.54	15.5 ± 2.1
Irradiated with λ > 420 nm filter		20	5.52 ± 0.74	4.31 ± 0.58
	PLA	4	4.76 ± 0.24	18.6 ± 0.9

^[a] Different samples were used for the 2-50 h and 24-120 h timescales.

^[b] The high initial activity is likely due to remnant NaH₂PO₂ from Ni₂P co-catalyst synthesis.

Table S9. Screening of noble-metal-free co-catalysts with CN_x for photoreforming of PET. Conditions: ultra-sonicated CN_x (3.2 mg), co-catalyst, pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photo-reactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields are cumulative values. σ is the standard deviation calculated from 3 samples.

Co-catalyst	Time (h)	Yield ± σ (μmol _{H₂} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
$N_{i} = \sum_{i=1}^{N_{i}} (N_{i} (N_{i}) \wedge C_{i} = 0)$	4	0.0 ± 0.0	0.0 ± 0.0
Ni, 5 wt% (Ni(NO ₃) ₂ ·6H ₂ O) ^[a]	20	11.8 ± 2.5	9.19 ± 1.96
	4	0.00	0.00
Ni, 5 wt% (Ni(BF ₄) ₂ ·6H ₂ O) ^[a,b]	20	9.34	7.30
Ni, 2 wt% (Ni(acac ₂) ₃) ^[c]	4	0.0 ± 0.0	0.0 ± 0.0
$N_{1}, Z W_{10} (N_{1}(ACAC_{2})_{3})^{-1}$	20	9.44 ± 0.49	7.37 ± 0.38
lio E weth/[d]	4	0.0 ± 0.0	0.0 ± 0.0
NiO, 5 wt% ^[d]	20	0.0 ± 0.0	0.0 ± 0.0
liO NPs, 5 wt% ^[d]	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0
	4	0.0 ± 0.0	0.0 ± 0.0
li(OH) ₂ , 5 wt% ^[e]	20	16.5 ± 2.3	12.9 ± 1.80
1. D. 2. 1149/	4	5.06 ± 0.34	19.8 ± 1.3
li₂P, 2 wt%	20	27.6 ± 3.4	21.6 ± 2.7
e, 5 wt% (Fe(NO ₃) ₃ ·9H ₂ O) ^[a]	4	0.0 ± 0.0	0.0 ± 0.0
e, 5 wt% (Fe(NO3)3'9H2O)	20	0.0 ± 0.0	0.0 ± 0.0
Fe, 5 wt% (Fe(BF ₄) ₂ .6H ₂ O) ^[a,b]	4	0.0	0.0
e, 5 wi% (Fe(BF4)2.6H2O) ^[4,5]	20	1.76	1.37
e ₂ O ₃ , 5 wt% ^[d]	4	0.0 ± 0.0	0.0 ± 0.0
·e2O3, 5 W1% ¹³	20	0.0 ± 0.0	0.0 ± 0.0
e ₃ O ₄ NPs, 5 wt% ^[d]	4	0.0 ± 0.0	0.0 ± 0.0
e304 NFS, 5 wt% ¹⁻³	20	0.933 ± 0.144	0.729 ± 0.112
^F e _x P, 2 wt% ^[a,f]	4	0.0	0.0
$e_x P$, 2 Wl $\frac{1}{2}$	20	0.620	0.484
	4	0.0 ± 0.0	0.0 ± 0.0
CuO NPs, 5 wt% ^[d]	20	0.0 ± 0.0	0.0 ± 0.0
$\sum E_{\rm virt} \left(C_{\rm o} \left({\rm DE} \right) + {\rm ett} - {\rm O} \right) \left[a b \right]$	4	0.00	0.00
Co, 5 wt% (Co(BF ₄) ₂ ·6H ₂ O) ^[a,b]	20	4.54	2.95

^[a] Metal salts were simply dissolved in H₂O and added to CN_x.

^[b] Single run measurements.

^[c] $CN_x|Ni$ was synthesized as previously reported.⁵ Ni(II) acetylacetone (11 mg) and CN_x (150 mg) were mixed in a minimum of water and stirred and sonicated for 1 h each. After drying under vacuum at 60 °C, the powder was heated for 1 h at 200 °C under Ar (ramp rate 5 °C min⁻¹). The solid was cooled, washed with water (3×) and ethanol (3×), and dried under vacuum.

^[d] Metal oxides were ground with CN_x with a pestle and mortar.

^[e] A literature procedure was modified slightly.¹¹ CN_x (40 mg), Ni(NO₃)₂·6H₂O (5 mg) and 0.05 M NaOH (10 mL) were combined and stirred for 20 h. The mixture was centrifuged at 7000 rpm for 5 min. The precipitate was then washed with water (3×) and ethanol (3×), and dried under vacuum.

^[f] The Ni₂P synthesis procedure was adapted to produce $CN_x|Fe_xP$. FeCl₃·6H₂O (10 mg), NaH₂PO₂·H₂O (50 mg), and CN_x (150 mg) were mixed in a minimum of water, stirred for 1 h and sonicated for 1 h. The mixture was dried under vacuum at 60 °C and heated for 1 h at 200 °C under Ar (ramp rate 5 °C min⁻¹). After cooling, the powder was washed with water (3×) and ethanol (3×), and dried under vacuum.

Table S10. Photoreforming of a variety of substrates with $CN_x|Ni_2P$. Conditions: ultra-sonicated $CN_x|Ni_2P \ 2 \ wt\%$ (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. Single measurements only.

Substrate Time (h)		Yield (µmol _{H₂} g _{sub} ⁻¹)	Activity (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)	
PE	4	1.76	6.87	
. –	20	6.88	5.37	
PET	4	3.62	14.1	
PEI	20	39.9	31.2	
	4	4.22	16.5	
PLA	20	42.1	32.9	
	4	1.74	6.80	
PP	20	7.72	6.03	
DO	4	2.32	9.06	
PS	20	6.14	4.80	
	4	1.22	4.76	
PUR	20	7.74	6.05	
Dubbar	4	1.54	6.01	
Rubber	20	5.56	4.34	

Table S11. Photoreforming of PET and PLA with $CN_x|Ni_2P$. Conditions: ultra-sonicated $CN_x|Ni_2P 2$ wt% (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (μmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
	2	3.90 ± 0.19	30.5 ± 1.5
	4	6.52 ± 0.33	25.5 ± 1.3
	20	33.1 ± 1.7	25.8 ± 1.3
Long-term photoreforming of	25	42.1 ± 3.4	26.3 ± 2.1
pre-treated PET	27	45.4 ± 2.3	26.3 ± 1.3
	44	72.0 ± 6.9	25.6 ± 2.5
	46	73.5 ± 7.5	25.0 ± 2.5
	50	82.5 ± 7.3	25.7 ± 2.3
	2	5.50 ± 0.27	43.0 ± 2.1
	4	9.92 ± 0.50	38.7 ± 1.9
	20	59.7 ± 6.0	46.6 ± 4.7
Long-term photoreforming of	25	77.8 ± 6.8	48.6 ± 4.3
pre-treated PLA	27	86.4 ± 6.4	50.0 ± 3.7
	44	156 ± 12	55.4 ± 4.2
	46	164 ± 15	55.8 ± 5.1
	50	178 ± 12	55.7 ± 3.7

Table S12. External quantum yield (EQY) measurements from photoreforming of polymers. Conditions: ultra-sonicated $CN_x|Ni_2P 2$ wt% (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), all in a sealed quartz cuvette (path length 1 cm, internal volume 3.83 mL) under anaerobic conditions. Samples were irradiated with monochromatic light (λ = 430 nm, full-width at half maximum: 5, intensity taken as the average of the intensities measured at the beginning and end of the experiments) over an area of 0.28 cm². σ is the standard deviation calculated from the 3 listed samples.

Substrate	Substrate Conditions	Time (h)	Light Intensity (mW cm ⁻²)	H₂ (µmol)	EQY (%)	Average ± σ EQY (%)
PLA	25 mg mL ^{−1} , pre-treated	24	0.64 ± 0.10 0.95 ± 0.07 0.90 ± 0.01	0.022 0.043 0.052	0.078 0.097 0.128	0.101 ± 0.018
PET	25 mg mL ^{−1} , pre-treated	24	0.50 ± 0.08 0.75 ± 011 0.90 ± 0.01	0.009 0.009 0.014	0.041 0.028 0.036	0.035 ± 0.005

Table S13. Stoichiometric H₂ conversion calculations. Conditions: ultra-sonicated CN_x|Ni₂P 2 wt% (3.2 mg), polymer (5 mg), aq. KOH (1 M or 10 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Substrate	<i>N</i> 100% (mol _{H2} mol _{sub} ⁻1)	Time (h)	N _{yield} ± σ (mol _{H2} mol _{sub} ⁻¹)	Conversion $\pm \sigma$ (%)
			72	0.027 ± 0.003	0.54 ± 0.06
	PET,	5.0 ^[a]	96	96 0.040 ± 0.004 0.80	0.80 ± 0.08
	26.0 µmol	5.043	144	0.121 ± 0.015	2.42 ± 0.30
H ₂ Conversion in			192	0.219 ± 0.029	4.38 ± 0.58
1 M KOH			72	0.016 ± 0.002	0.27 ± 0.03
	PLA,		96	0.026 ± 0.004	0.43 ± 0.07
	69.4 µmol	6.0	144	0.061 ± 0.012	1.02 ± 0.20
			192	0.097 ± 0.015	1.62 ± 0.25
			72	0.284 ± 0.014	5.68 ± 0.28
	PET,		96	0.385 ± 0.037	7.70 ± 0.74
	26.0 µmol	5.0 ^[a]	144	0.932 ± 0.114	18.6 ± 2.3
H₂ Conversion in 10 M KOH [—]			192	1.23 ± 0.16	24.5 ± 3.3
			72	0.079 ± 0.005	1.32 ± 0.08
	PLA,		96	0.135 ± 0.012	2.25 ± 0.20
	69.4 µmol	6.0	144	0.295 ± 0.033	4.92 ± 0.55
			192	0.401 ± 0.048	6.68 ± 0.80

^[a] This number assumes that only the ethylene glycol component of PET is oxidized.

Table S14. Photoreforming with other photocatalysts. $CN_x|Ni_2P$ is included for ease of comparison. Conditions: catalyst (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Catalyst	Substrate	Time (h)	Yield ± σ (μmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
			4	6.52 ± 0.33	25.5 ± 1.3
		PET	20	33.1 ± 1.7	25.8 ± 1.3
			25	42.1 ± 3.4	26.3 ± 2.1
	CN _x Ni ₂ P,		44	72.0 ± 6.9	25.6 ± 2.5
	2 wt%		4	9.92 ± 0.50	38.7 ± 1.9
		PLA	20	59.7 ± 6.0	46.6 ± 4.7
		1 677	25	77.8 ± 6.8	48.6 ± 4.3
			44	156 ± 12	55.4 ± 4.2
	2 wt% Ni ₂ P	PET	4	0.24 ± 0.013	0.937 ± 0.051
	powder + CN _x		20	10.5 ± 0.7	8.22 ± 0.55
			4	10.5 ± 2.1	41.1 ± 8.2
		PET	20	34.3 ± 3.1	26.8 ± 2.4
		1 - 1	25	39.5 ± 3.2	24.7 ± 2.0
	^{H2N} CNx Ni2P,		44	42.5 ± 5.5	15.1 ± 2.0
	2 wt%	PLA	4	21.1 ± 2.8	82.5 ± 10.9
			20	81.2 ± 6.1	63.4 ± 4.7
Alternative			25	98.6 ± 7.8	61.6 ± 4.8
photocatalysts			44	141 ± 18	50.2 ± 6.4
		PET PLA	4	0.900 ± 0.105	3.52 ± 0.41
	TiO₂ Ni₂P,		20	13.8 ± 2.4	10.8 ± 1.9
	2 wt%		4	8.48 ± 5.12	33.1 ± 20.0
			20	54.1 ± 9.4	42.3 ± 7.4
		PET	4	29.7 ± 6.1	116 ± 24
	CN _x Pt, 2 wt%		20	96.2 ± 4.8	75.2 ± 3.7
			4	20.0 ± 1.3	156 ± 10
		PLA	20	180 ± 17	281 ± 26
	CN _x -P Pt,	PET	4	16.5 ± 0.8	64.5 ± 3.2
	2 wt%		20	92.6 ± 11.5	72.4 ± 9.0
		PET	4	0.0 ± 0.0	0.0 ± 0.0
	TiO ₂ Ni ₂ P,		20	0.0 ± 0.0	0.0 ± 0.0
Alternative photocatalyst	2 wt%	PLA	4	0.0 ± 0.0	0.0 ± 0.0
		FLA	20	0.0 ± 0.0	0.0 ± 0.0
radiated with $λ$		PET	4	0.0 ± 0.0	0.0 ± 0.0
> 420 nm filter	H2NCNx Ni2P,	1 - 1	20	0.720 ± 0.480	0.562 ± 0.374
	2 wt%		4	0.320 ± 0.016	0.205 ± 0.010
		PLA	20	7.20 ± 0.36	3.25 ± 0.30

Catalyst	Substrate ^[a]	[base] ^[b]	Time (h)	Yield $\pm \sigma$ (µmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)	Ref
TiO ₂ Pt, 5% ^[c,d]	PE	5 M	10	620	31.0	12
TiO ₂ Pt, 5%	PVC	5 M	10	300	28.7	12
TiO2 Pt, 5%	PET	10 M	20	1220 ± 110	153 ± 14	13
CdS/CdO _x ^[e]	PET	10 M	20	460 ± 58	4810 ± 600	13
^{H₂NCN_x Ni₂P, 2%^[f]}	PET	10 M	20	141 ± 16	110 ± 12	*
TiO2 Ni2P, 2%	PET	10 M	20	119 ± 8	93.0 ± 6.6	*
CN _x Ni ₂ P, 2%	PET	10 M	20	111 ± 8	83.2 ± 6.0	*
CN _x Pt, 2%	PET	10 M	20	104 ± 4	81.1 ± 3.4	*
CdS/CdO _x	PET	1 M	20	132 ± 6	2210 ± 110	13
CN _x Pt, 2%	PET	1 M	20	96.2 ± 4.8	75.2 ± 3.7	*
^{H₂N} CN _x Ni₂P, 2%	PET	1 M	20	34.3 ± 3.1	26.8 ± 2.4	*
CN₄ Ni₂P, 2%	PET	1 M	20	33.1 ± 1.7	25.8 ± 1.3	*
TiO ₂ Ni ₂ P, 2% ^[f]	PET	1 M	20	13.8 ± 2.4	10.8 ± 1.9	*
CdS/CdO _x	PLA	10 M	20	2590 ± 690	63000 ± 16800	13
^{H₂N} CN _x Ni₂P, 2%	PLA	10 M	20	427 ± 21	333 ± 17	*
TiO ₂ Pt, 5%	PLA	10 M	20	358 ± 53	89 ± 13	13
CN _x Pt, 2%	PLA	10 M	20	314 ± 16	491 ± 24	*
TiO2 Ni2P, 2%	PLA	10 M	20	220 ± 28	173 ± 22	*
CN _x Ni ₂ P, 2%	PLA	10 M	20	211 ± 10	165 ± 8	*
CN _x Pt, 2%	PLA	1 M	20	180 ± 17	281 ± 26	*
^{H₂N} CN _x Ni₂P, 2%	PLA	1 M	20	81.2 ± 6.1	63.4 ± 4.8	*
CN _x Ni ₂ P, 2%	PLA	1 M	20	59.7 ± 6.0	46.6 ± 4.7	*
CdS/CdO _x	PLA	1 M	20	56.6 ± 8.9	839 ± 132	13
TiO ₂ Ni ₂ P, 2%	PLA	1 M	20	54.1 ± 9.4	42.3 ± 7.4	*

Table S15. Comparison of the current work to other reported catalysts for polymer photoreforming. Samples referenced as [12] were irradiated with a 500 W Xe lamp. Samples referenced as * or [13] were irradiated with a 1000 W Xe lamp (AM 1.5G, 100 mW cm⁻², 25 °C).

^[a] All polymer substrates *except* for PE and PVC were pre-treated prior to use (25 mg mL⁻¹).

^[b] PE and PVC were run in 30 mL of base, whereas all other samples were run in 2 mL of base.

^[c] Percentages indicate wt% of the co-catalyst.

^[d] 300 mg TiO₂|Pt used per sample.

^[e] 1 nmol CdS/CdO_x used per sample.

^[f] 3.2 mg $^{H_2N}CN_x|Ni_2P, CN_x|Ni_2P, CN_x|Pt \text{ or } TiO_2|Ni_2P \text{ used per sample.}$

* This work.

Table S16. Photoreforming of oxidation intermediates with $CN_x|Ni_2P$. Conditions: $CN_x|Ni_2P$ 2 wt% (3.2 mg), substrate (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples, unless stated otherwise.

Substrate	Time (h)	Yield ± <i>σ</i> (μmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
Acetate ^[a]	4	1.12 ± 0.14	4.37 ± 0.56
/1001010	20	3.22 ± 0.40	2.51 ± 0.31
Ethylono alvool	4	12.9 ± 0.6	50.5 ± 2.5
Ethylene glycol	20	58.9 ± 7.1	46.0 ± 5.6
Formata ^[a]	4	4.30 ± 1.80	16.8 ± 7.0
Formate ^[a]	20	17.7 ± 1.3	13.8 ± 1.0
	4	3.58 ± 0.85	14.0 ± 3.32
Glycolate ^[a]	20	14.6 ± 2.1	11.4 ± 1.7
Chronola	4	10.6 ± 0.5	41.3 ± 2.1
Glyoxal ^[a]	20	50.2 ± 6.2	39.2 ± 4.9
Lastata	4	6.20 ± 0.77	24.2 ± 3.0
Lactate	20	40.4 ± 3.4	31.6 ± 2.7
Taranhthalata	4	0.0 ± 0.0	0.0 ± 0.0
Terephthalate	20	0.0 ± 0.0	0.0 ± 0.0

^[a] σ obtained from two samples.

Table S17. Re-use of CN_x|Ni₂P for photoreforming of PET. Conditions: previously used CN_x|Ni₂P 2 wt% after centrifugation, washing and drying (3.2 mg), pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Time (h)	Yield ± σ (μmol _{H2} g _{sub⁻¹)}	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
4	0.60 ± 0.03	2.34 ± 0.12
20	14.6 ± 0.7	11.4 ± 0.6

Table S18. Quantification of the organic oxidation products formed from glyoxal and formate after 24 h of photoreforming. Maleic acid in D_2O was used as an internal standard.

Organic compound	Quantity (nmol)
Acetate	260 1640
Glycolate	6550
Acetate	115
	Acetate Formate Glycolate

Table S19. Photoreforming of different quantities of polyester microfibers. Conditions: $CN_x|Ni_2P 2 wt\%$ (3.2 mg), pre-treated fibers, aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. Single measurements only.

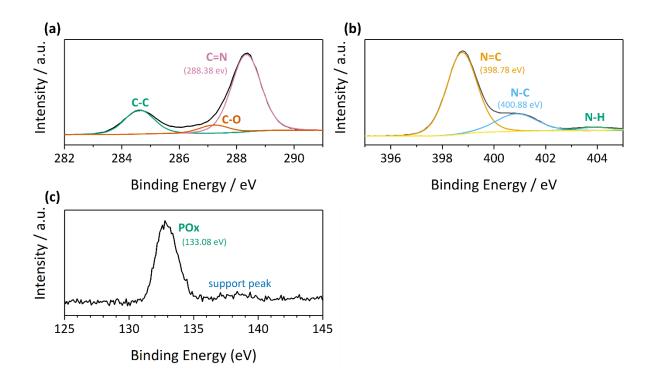
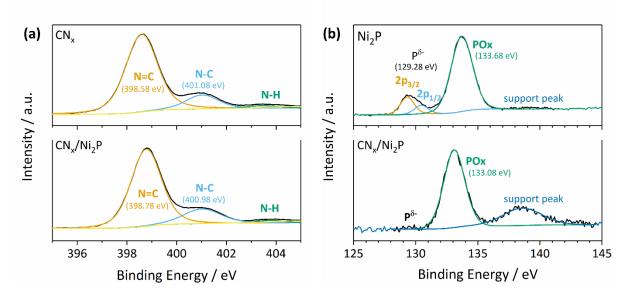

Substrate Concentration (mg mL⁻¹)	Time (h)	Yield (µmol _{H₂} g _{sub} ⁻¹)	Activity (µmol _{H₂} g _{cat} ⁻¹ h⁻¹)
2.5	4	0.0	0.0
2.0	20	0.0	0.0
0.5	4	0.0	0.0
0.5	20	0.0	0.0
0.05	4	0.0	0.0
0.25	20	0.0	0.0

Table S20. Long-term photoreforming of real-world waste at small and large scales. Conditions: $CN_x|Ni_2P \ 2 \ wt\%$ (3.2 mg for small scale, or 170 mg for up-scaled), pre-treated polymer (5 mg mL⁻¹ microfibers, 25 mg mL⁻¹ bottle, 5 mg mL⁻¹ oil), aq. KOH (1 M, 2 mL for small scale, or 120 mL for up-scaled), sealed photoreactor (internal volume 7.91 mL for small scale, 190 mL for up-scaled) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.


Description	Time (h)	Yield ± σ (μmol _{H2} g _{sub} ⁻¹)	Activity ± σ (μmol _{H2} g _{cat} ⁻¹ h ⁻¹)
	24	17.6 ± 2.3	2.29 ± 0.30
Long-term photoreforming of pre-	48	31.2 ± 3.5	2.03 ± 0.23
treated microfibers	72	43.4 ± 2.9	1.88 ± 0.12
	96	63.3 ± 4.4	2.06 ± 0.14
	120	104 ± 10	2.67 ± 0.25
	24	4.38 ± 0.54	2.85 ± 0.35
ong-term photoreforming of pre-	48	8.64 ± 0.43	2.81 ± 0.14
treated bottle	72	11.6 ± 0.5	2.52 ± 0.12
	96	16.1 ± 1.0	2.61 ± 0.17
	120	22.0 ± 1.3	2.87 ± 0.16
	24	2.40 ± 0.16	1.87 ± 0.12
Long-term photoreforming of pre-	48	5.23 ± 1.08	2.04 ± 0.42
treated bottle + oil	72	6.47 ± 0.32	1.68 ± 0.08
	96	8.27 ± 0.55	1.61 ± 0.11
	120	11.4 ± 1.2	1.78 ± 0.19
	24	18.3	2.69
Up-scaled photoreforming of pre-	48	28.5	2.09
treated microfibers ^[a]	72	37.7	1.85
	96	46.1	1.69
	120	53.5	1.57

^[a] Values from a single experiment.

Supplementary Figures

Figure S1. X-ray photoelectron spectroscopy (XPS) spectra of the (a) C_{1s} , (b) N_{1s} , and (c) P_{2p} edges of CN_x -P. CN_x -P was produced according to the same synthesis procedure utilized for $CN_x|Ni_2P$, but without the addition of the Ni precursor. These data (along with ICP results in Table S1), suggest that excess P content in the $CN_x|Ni_2P$ photocatalyst can be attributed to residual PO_x from the co-catalyst synthesis that adheres to the CN_x surface.

Figure S2. X-ray photoelectron spectroscopy (XPS) spectra of the **(a)** N_{1s} edge of CN_x and $CN_x|Ni_2P$ (2 wt%), and **(b)** P_{2p} edge of Ni_2P and $CN_x|Ni_2P$ (2 wt%).

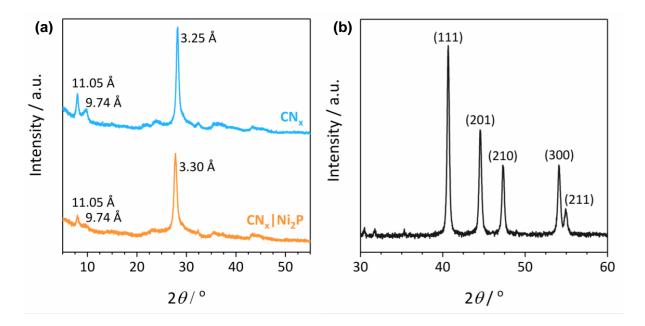
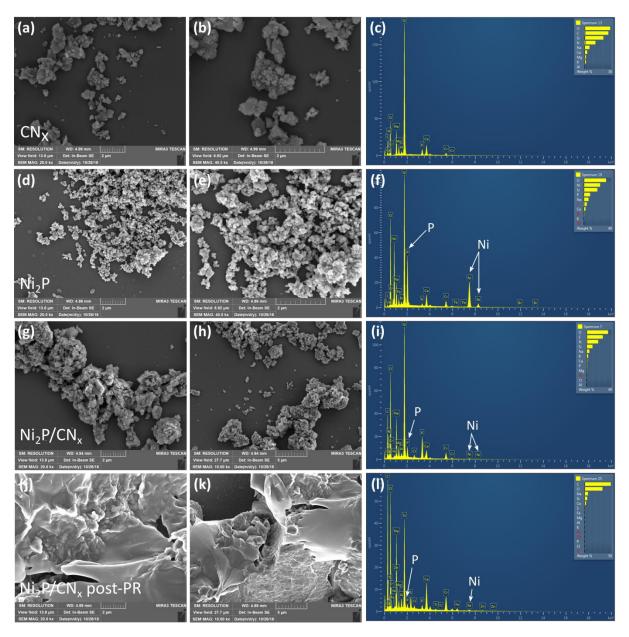
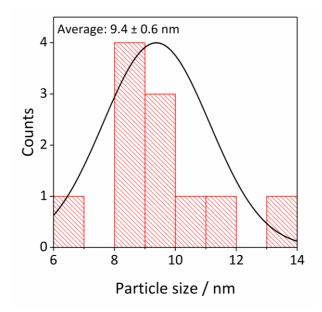
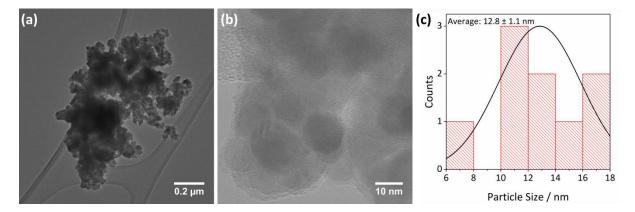
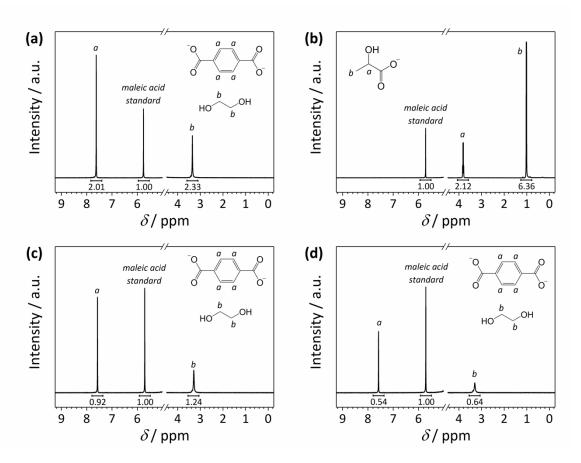
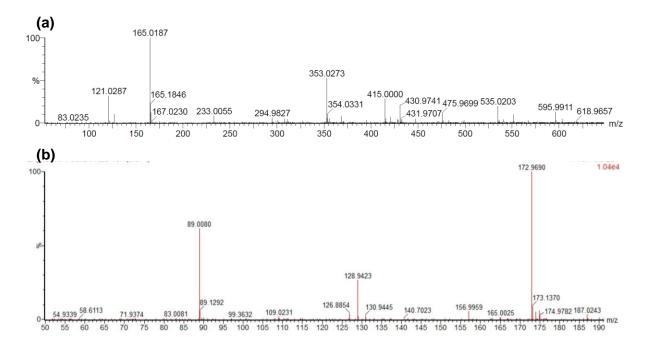
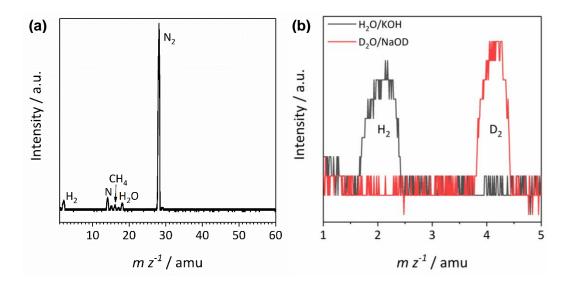




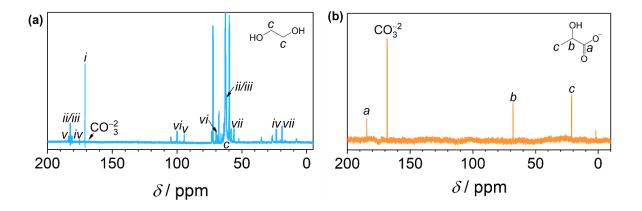
Figure S3. Powder X-ray diffraction (XRD) patterns of (a) CN_x and CN_x|Ni₂P (2 wt%) and (b) Ni₂P.

Figure S4. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDX) spectra of **(a-c)** CN_x, **(d-f)** Ni₂P, **(g-i)** CN_x|Ni₂P (2 wt%), and **(j-l)** CN_x|Ni₂P (2 wt%) after photoreforming. Samples were sputtered with 10 nm of Cr prior to imaging. Photoreforming conditions: $CN_x|Ni_2P$ (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 50 h).

Figure S5. Particle size analysis of Ni_2P nanoparticles annealed with CN_x , as measured from transmission electron microscopy (TEM) images.


Figure S6. (a-b) TEM images of Ni₂P nanoparticles. (c) Particle size analysis of the Ni₂P nanoparticles.


Figure S7. ¹H-NMR quantification of polymer solubilisation after pre-treatment. (a) PET, (b) PLA, (c) PET bottle and (d) polyester microfiber in 1 M NaOD in D₂O with maleic acid as a standard.

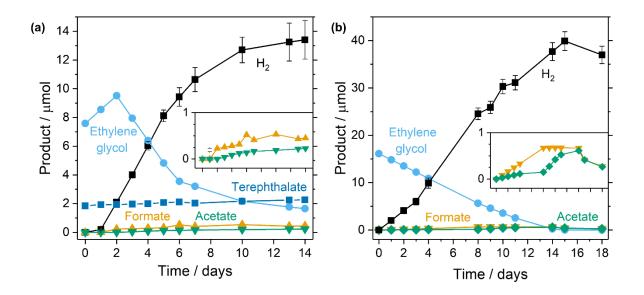
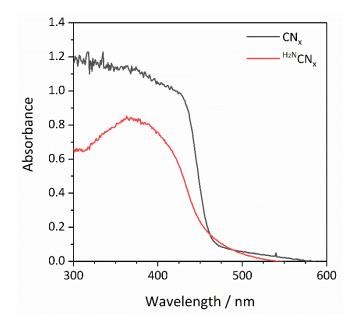
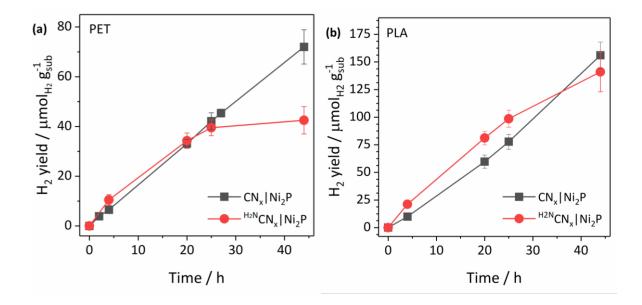
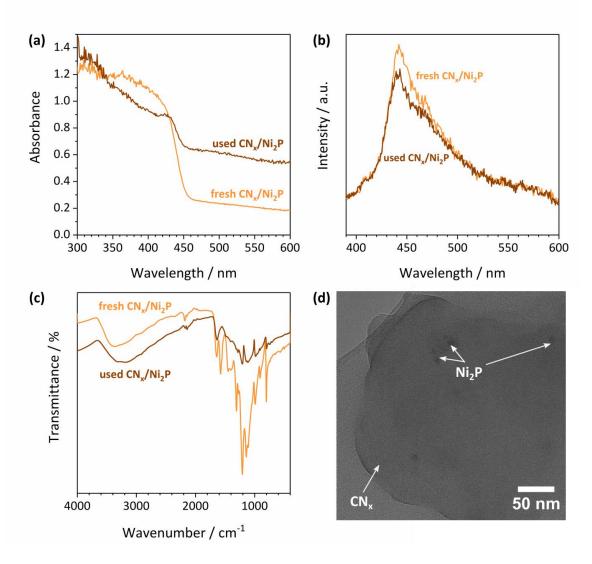
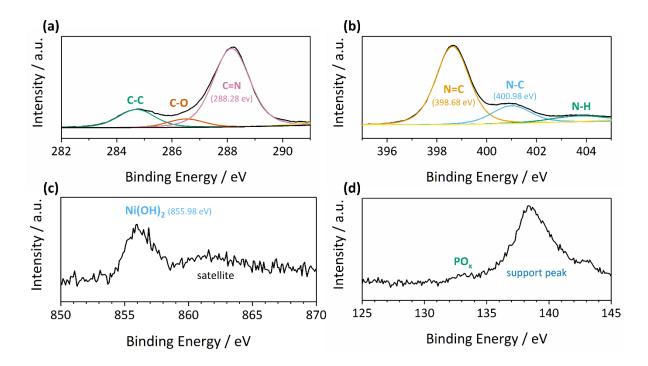

Figure S8. Liquid chromatography-mass spectrometry (LC-MS, negative ion mode) of solubilized (a) PET and (b) PLA components after pre-treatment. Samples were hydrolysed in 1 M aq. KOH and then diluted with methanol to 0.01 M KOH for analysis, with measurements recorded up to 1000 m/z. In (a), The peak at 165 m/z corresponds to terephthalate and the peak at 121 m/z is a fragment of terephthalate (benzoate); no peaks are observed for common PET hydrolysis products such as mono(2hydroxyethyl) terephthalate (MHET, 210 g mol⁻¹) or bis(2-hydroxyethyl) terephthalate (BHET, 254 g mol⁻¹), but peaks at 121, 353, 451, etc. m/z may be from oligomer fragments. In (b), the peak at 89 m/z corresponds to lactate, while the peaks at 129 and 173 m/z are likely oligomer fragments.

Figure S9. Mass spectra of the gas evolved after photoreforming (AM 1.5G, 100 mW cm⁻², 72 h) of PET (25 mg mL⁻¹) over $CN_x|Ni_2P$ (3.2 mg) in **(a)** 1 M aq. KOH and **(b)** 1 M aq. KOH or 1 M NaOD in D₂O (2 mL).

Figure S10. ¹³C-NMR spectrum of **(a)** ¹³C-labelled ethylene glycol (100 mg) and **(b)** PLA (3 mg) after photoreforming (AM 1.5G, 100 mW cm⁻², 25 °C, 5 days) over $CN_x|Ni_2P 2$ wt% (3.2 mg) in 1 M NaOD in D₂O (2 mL). The labels are attributed as follows: *(i)* formate, *(ii)* glycoxal, *(iii)* glycolate, *(iv)* acetate, *(v)* glycoylate, *(vi)* glycoaldehyde, *(vii)* ethanol.

Figure S11. Long-term photoreforming of **(a)** PET (3 mg) and **(b)** ethylene glycol (1 mg) over CN_x|Ni₂P (1.6 mg mL⁻¹). Conditions: 5 M aq. KOH or 5 M NaOD in D₂O (2 mL), simulated sunlight (AM 1.5G, 100 mW cm⁻², 25 °C). Aqueous products were analyzed using ¹H-NMR with maleic acid as an internal standard. Insets show a zoomed-in view of the formate and acetate curves. The observed mass imbalance is due to unidentified oxidation products.


Figure S12. Comparison of the diffuse reflectance UV-Vis spectra of CN_x and H₂NCN_x.

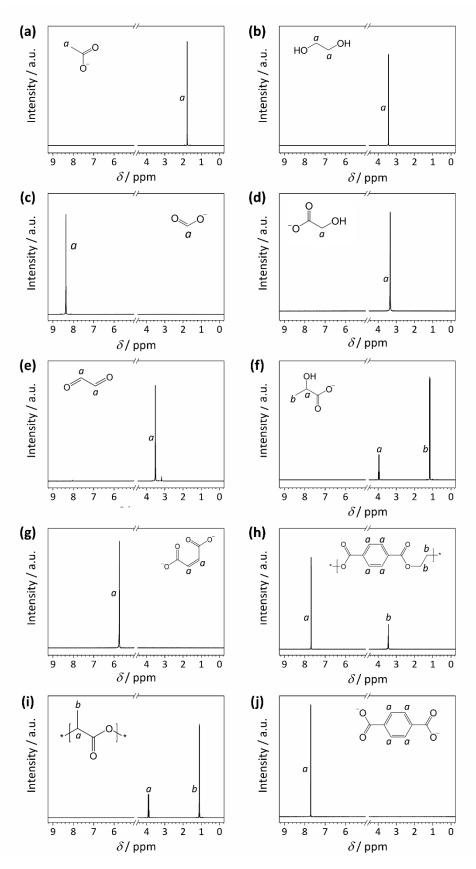
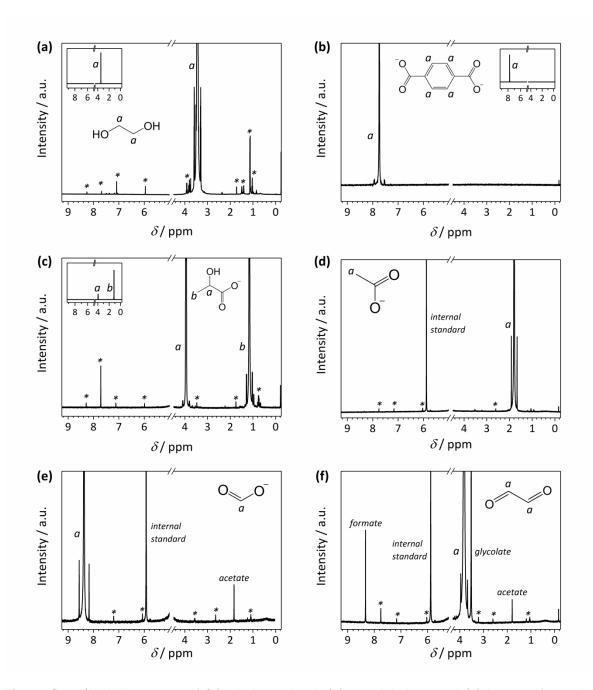
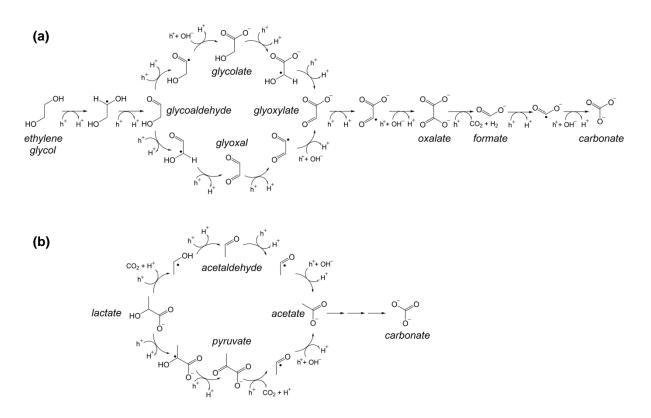
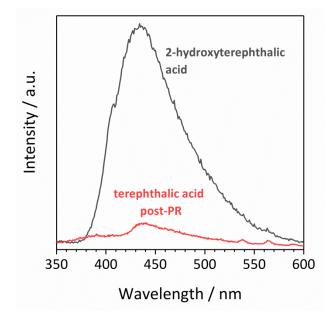
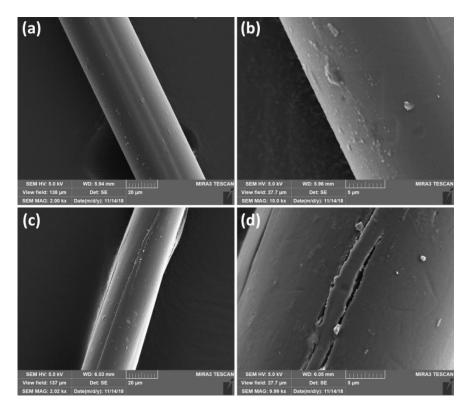

Figure S13. Comparison of photoreforming of **(a)** PET and **(b)** PLA over CN_x|Ni₂P and H_{2N}CN_x|Ni₂P. Conditions: photocatalyst (3.2 mg), pre-treated polymer (25 mg mL⁻¹), aqueous KOH (1 M, 2 mL), irradiation (AM 1.5G, 100 mW cm⁻², 25 °C).

Figure S14. Post-photoreforming characterization of the $CN_x|Ni_2P$ (2 wt%) photocatalyst. (a) UV-Vis, (b) emission (λ_{ex} = 360 nm, λ_{em} = 450 nm), and (c) FTIR spectra. (d) TEM image. Photoreforming conditions: $CN_x|Ni_2P$ (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 50 h).

Figure S15. XPS spectra of the (a) C_{1s} , (b) N_{1s} , (c) Ni_{2p} , and (d) P_{2p} edges of used $CN_x|Ni_2P$ (2 wt%) after photoreforming. Photoreforming conditions: $CN_x|Ni_2P$ (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 50 h).

Figure S16. ¹H-NMR spectra of **(a)** acetate, **(b)** ethylene glycol, **(c)** formate, **(d)** glycolate, **(e)** glyoxal, **(f)** lactate, **(g)** maleate (used as a standard), **(h)** PET, **(i)** PLA, and **(j)** terephthalate in 1 M NaOD in D₂O. PET and PLA were pre-treated in 1 M NaOD in D₂O for 24 h before data collection.


Figure S17. ¹H-NMR spectra of (a) ethylene glycol, (b) terephthalate, and (c) lactate after 5 days simulated solar light irradiation. ¹H-NMR spectra of (d) acetate, (e) formate and (f) glyoxal after 24 h simulated solar light irradiation. Maleic acid was used as an internal standard. Photoreforming conditions: $CN_x|Ni_2P 2$ wt% (3.2 mg), NaOD (1 M) in D₂O (2 mL), substrate (25 mg mL⁻¹), irradiation (AM 1.5G, 100 mW cm⁻², 25 °C).

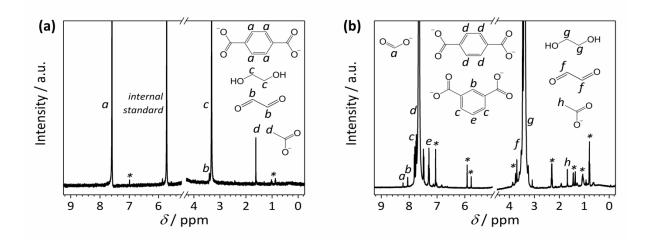

Figure S18. Proposed reaction scheme for the photo-oxidation of **(a)** ethylene glycol and **(b)** lactate. The mechanism is adapted from [14] and based on ¹H-NMR analysis and comparison to literature.^{15–19}

Figure S19. Emission spectra ($\lambda_{ex} = 315 \text{ nm}$, $\lambda_{em} = 430 \text{ nm}$) of pure 2-hydroxyterephthalic acid in 1 M aqueous KOH and terephthalic acid (50 mg) after photoreforming (AM 1.5G, 100 mW cm⁻², 25 °C, 20 h) with CN_x|Ni₂P (3.2 mg) in 1 M aqueous KOH (2 mL). Terephthalic acid does not exhibit the characteristic $\lambda_{em} = 430 \text{ nm}$ of the OH scavenger 2-hydroxyterephthalic acid, indicating that OH does not play a major role in the photoreforming mechanism.

Figure S20. SEM images of a polyester microfiber **(a-b)** before photoreforming and **(c-d)** after photoreforming. Photoreforming conditions: $CN_x|Ni_2P$ (3.2 mg), 1 M KOH (2 mL), microfibers (10 mg), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 24 h). Reformed microfibers were washed with H₂O and dried under a stream of N₂. Both samples were sputter-coated with Pt (10 nm) prior to imaging.

Figure S21. ¹H-NMR spectra of **(a)** polyester microfibers and **(b)** a PET water bottle after photoreforming. Photoreforming conditions: $CN_x|Ni_2P$ (3.2 mg), 1 M NaOD in D₂O (2 mL), pre-treated polymer (10 mg microfibers or 50 mg PET bottle), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 24 h).

References

- (1) Kawahara, Y.; Yoshioka, T.; Takarada, W.; Kikutani, T.; Tsuji, M. Alkaline Hydrolysis Kinetics of Poly (Ethylene Terephthalate) Fibers. *J. Fiber Sci. Technol.* **2016**, *72*, 9–16.
- (2) NIST Chemistry WebBook. 1,2-Ethanediol https://webbook.nist.gov/cgi/cbook.cgi?ID=C107211&Mask=2 (accessed Dec 4, 2018).
- (3) Diane Sylvie Chauliac. Development of a Thermochemical Process for Hydrolysis of Polylactic Acid Polymers to L-Lactic Acid and Its Purification Using an Engineered Microbe, University of Florida, 2013.
- (4) Emel'yanenko, V. N.; Verevkin, S. P.; Schick, C.; Stepurko, E. N.; Roganov, G. N.; Georgieva, M. K. The Thermodynamic Properties of S-Lactic Acid. *Russ. J. Phys. Chem. A* **2010**, *84*, 1491–1497.
- (5) Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Boosting Visible-Light-Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide-Carbon Nitride System. *Angew. Chem. Int. Ed.* 2017, *56*, 1653–1657.
- (6) Lu, Z.; Li, C.; Han, J.; Wang, L.; Wang, S.; Ni, L.; Wang, Y. Construction 0D/2D Heterojunction by Highly Dispersed Ni₂P QDs Loaded on the Ultrathin g-C₃N₄ Surface towards Superhigh Photocatalytic and Photoelectric Performance. *Appl. Catal. B Environ.* **2018**, 237, 919–926.
- (7) Ye, P.; Liu, X.; locozzia, J.; Yuan, Y.; Gu, L.; Xu, G.; Lin, Z. A Highly Stable Non-Noble Metal Ni₂P Co-Catalyst for Increased H₂ Generation by g-C₃N₄ under Visible Light Irradiation. *J. Mater. Chem. A* 2017, 5, 8493–8498.
- (8) Zeng, D.; Xu, W.; Ong, W.-J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D.-L. Toward Noble-Metal-Free Visible-Light-Driven Photocatalytic Hydrogen Evolution: Monodisperse Sub–15 Nm Ni₂P Nanoparticles Anchored on Porous g-C₃N₄ Nanosheets to Engineer 0D-2D Heterojunction Interfaces. *Appl. Catal. B Environ.* **2018**, *221*, 47–55.
- (9) Zhao, H.; Sun, S.; Jiang, P.; Xu, Z. J. Graphitic C₃N₄ Modified by Ni₂P Cocatalyst: An Efficient, Robust and Low Cost Photocatalyst for Visible-Light-Driven H₂ Evolution from Water. *Chem. Eng. J.* **2017**, *315*, 296–303.
- (10) Wen, J.; Xie, J.; Shen, R.; Li, X.; Luo, X.; Zhang, H.; Zhang, A.; Bi, G. Markedly Enhanced Visible-Light Photocatalytic H₂ Generation over g-C₃N₄ Nanosheets Decorated by Robust Nickel Phosphide (Ni₁₂P₅) Cocatalysts. *Dalt. Trans.* **2017**, *46*, 1794–1802.
- Yu, J.; Wang, S.; Cheng, B.; Lin, Z.; Huang, F. Noble Metal-Free Ni(OH)₂–g-C₃N₄ Composite Photocatalyst with Enhanced Visible-Light Photocatalytic H₂-Production Activity. *Catal. Sci. Technol.* 2013, *3*, 1782.
- (12) Kawai, T.; Sakata, T. Photocatalytic Hydrogen Production from Water by the Decomposition of Poly-Vinylchloride, Protein, Algae, Dead Insects, and Excrement. *Chem. Lett.* **1981**, 81–84.
- (13) Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic Waste as a Feedstock for Solar-Driven H₂ Generation. *Energy Environ. Sci.* **2018**, *11*, 2853–2857.
- (14) Puga, A. V. Photocatalytic Production of Hydrogen from Biomass-Derived Feedstocks. *Coord. Chem. Rev.* **2016**, *315*, 1–66.
- (15) Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene Glycol: Properties, Synthesis, and Applications. *Chem. Soc. Rev. Chem. Soc. Rev* 2012, 41, 4089–4380.
- (16) Rossiter, W. J.; Brown, P. W.; Godette, M. The Determination of Acidic Degradation Products in Aqueous Ethylene Glycol and Propylene Glycol Solutions Using Ion Chromatography. *Sol. Energy Mater.* **1983**, *9*, 267–279.
- (17) Chauhan, N. L.; Dameera, V.; Chowdhury, A.; Juvekar, V. A.; Sarkar, A. Electrochemical Oxidation of Ethylene Glycol in a Channel Flow Reactor. *Catal. Today* **2018**, *309*, 126–132.
- (18) Lomate, S.; Katryniok, B.; Dumeignil, F.; Paul, S. High Yield Lactic Acid Selective Oxidation into Acetic Acid over a Mo-V-Nb Mixed Oxide Catalyst. *Sustain. Chem. Process.* **2015**, *3*, 5.
- (19) Harada, H.; Sakata, T.; Ueda, T. Effect of Semiconductor on Photocatalytic Decomposition of Lactic Acid. *J. Am. Chem. Soc.* **1985**, *107*, 1773–1774.

End of Supporting Information