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Abstract—Bluetooth Low Energy (BLE) beacons are attractive
for indoor location due to their ease of deployment, wide support
on consumer devices and low cost. Co-ordinate location can
be estimated using radio fingerprinting techniques applied to
Received Signal Strength (RSS) values from BLE beacons. Earlier
work on BLE fingerprinting has noted that the separate BLE
advertising channels can exhibit different RSS values, although
modern consumer devices do not provide channel information
and therefore report a composite RSS with artificially inflated
variance that can lead to reduced positioning accuracy.

In this work we quantify how often this channel dispersion
occurs in typical environments, what the extent of the dispersion
is, and what impact it has on positioning. Furthermore we explore
how to obtain channel information when using today’s consumer
devices.

We find that the dispersion is both common and significant
and leads to significantly reduced positioning accuracy; in our
experiments only 10% of composite variances were within 1 dBm
of an individual channel’s variance, and 40% of composite
variances were at least 4 dBm greater. We also show that
the behaviour of the channels is sufficiently distinct that a
fingerprinting scheme that uses a signal map for each achieves
significantly increased positioning accuracy (up to 3 m).

I. INTRODUCTION

Much of the research into indoor positioning systems aims
to produce a system that is robust, accurate and scalable.
Unfortunately robust, accurate systems have tended to rely
on extensive infrastructure support that hinders scalability.
Similarly, scalable systems typically suffer from robustness
issues since they are based on opportunistic signals over which
there is, by definition, no control. Fingerprinting systems fall
into the latter category, whereby a spatially-variant quantity is
measured and compared to a previously-captured map of that
same quantity in that space.

The ubiquity of WiFi has seen it dominate fingerprint-
based systems, mostly using Received Signal Strength (RSS)
as the spatially-variant quantity. However, the opportunistic
use of WiFi has a number of serious shortcomings. Firstly,
the access points are deployed for optimal communications
rather than positioning. This means access point ranges overlap
only as much as is necessary and the access points themselves
are rarely deployed with good positioning geometry in mind.
Secondly, continuous WiFi scanning is both power hungry and
disruptive on the mobile device (an active scan limits other
communications). Thirdly, devices are not optimised to scan
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for positioning. They often report the observed access points
at the end of the scan, which can take anywhere between
0.5 s and 5 s (the latter associated with scanning the larger
5 GHz band). The effect of this is that a moving device can
only output fingerprints at a low rate and those readings are
associated with a large spatial range rather than at a single
location—the fingerprints are ‘smeared’ across space.

Bluetooth Low Energy (BLE) is emerging as an answer
to these issues. BLE features an advertising mode whereby a
message is regularly broadcast to surrounding devices. A BLE
beacon simply broadcasts its identity in a locality, traditionally
providing proximity-based location. However, a set of BLE
beacons can be used for fingerprinting just as with WiFi. The
advantages of BLE include wide consumer device support;
lower power continuous background scanning; simple, low
power beacons that can be battery powered for years on a
single battery and deployed anywhere; support for high density
deployments with minimal interference; and instantaneous
beacon reporting at the handset (no fingerprint smearing).

Although BLE uses the same 2.4 GHz ISM radio band
as WiFi, it does so in a very different way. It divides the
allocated spectrum into a series of narrow radio channels, three
of which are used for advertising. Consumer BLE devices do
not report the channel a particular beacon is heard on, and
so BLE beacon fingerprinting to date has not tended to use
the channel information. However, these channels are widely
spaced in the frequency domain and we show that they often
experience very different propagation characteristics in indoor
environments. In this paper we advocate the use of per-channel
signal maps rather than the composite channel map that it used
presently. We argue that the latter often leads to artificially
high variances in the survey map and we show this leads to
sub-optimal positioning.

In this paper we make the following contributions:
• we investigate how to obtain BLE advertisement channel

information in a device-agnostic and standards-compliant
manner;

• we quantitatively assess how often and by how much
the RSS values between advertising channels separate in
typical indoor environments; and

• we quantitatively assess the impact on positioning accu-
racy.

The remainder of the paper is structured as follows. Sec-
tion II discusses related work, while Section III describes the
BLE advertising process in detail. Section IV shows how to
adapt BLE beacons to allow the extraction of channel informa-
tion at a consumer listener. Section V describes our evaluation
of the value of using channel information, analysing the raw



RSS data and the resultant positioning. Finally, Section VI
concludes.

II. RELATED WORK

Indoor positioning is a mature research field—
comprehensive overviews can be found in [14], [13],
[1]. In this work we focus on radio positioning using
empirical fingerprinting techniques such as those developed
in [2], [11], [16], [12]. These involve positioning by pattern
matching current observations to a previously-obtained survey
of a space. Although applied to different radio technologies,
these techniques have been developed primarily with WiFi in
mind.

Positioning with Bluetooth prior to version 4.0 (so-called
Bluetooth Classic) has used various techniques from proxim-
ity [9], [4] to trilateration [6], [15] to fingerprinting [5], [15].
The limiting factor of these techniques has been the slow scan
rate of 10 s or more. Such latencies are not present in BLE [3].

We have previously looked at fingerprinting with BLE [7],
where we noted the channel separation and the issues it might
give. However, we did not look at how common the separation
problem is in common environments, nor how pronounced.
These issues were also noted by Zhuang et al. [17], who devel-
oped a statistical model combining per-channel fingerprinting
with a regression model and extended Kalman filtering. They
showed that channel information improved positioning when
the channels diverge. However, they did not investigate how
often or to what extent the individual signal differs from the
composite signal. Furthermore they relied on Apple’s now-
obsolete iOS 8 to obtain channel information.

III. BLE ADVERTISING

A. Specification

BLE supports both message broadcast (one to an unspecified
many) and direct communication between device pairs. All
transmissions are in the 2.4 GHz ISM radio band, which BLE
splits into forty 2 MHz channels. In the current specification
(4.x) three of these channels are dedicated broadcast chan-
nels for BLE advertisements. These are nominally labelled
37 (centre frequency 2402 MHz), 38 (2426 MHz) and 39
(2480 MHz). Since advertisements are broadcast there is no
opportunity to use interference mitigation schemes such as
the frequency hopping BLE uses once in a connection with
another device. Similarly, no channel sensing occurs prior to
a transmission. Instead, the advertising channel frequencies are
chosen to avoid the dominant WiFi channels (1, 6 and 11, see
Figure 1) and the system gains redundancy by broadcasting
each advertisement on each of the three advertisement chan-
nels in quick succession.

A BLE beacon will send out advertisements on a regular
basis. To prevent multiple in-range beacons accidentally syn-
chronising and repeatedly interfering, each beacon period is
jittered randomly. Between advertisements the hardware enters
a deep sleep mode to conserve energy.

B. Device Listening Schemes

A device scanning for BLE device advertisements does so
by cycling over the three advertising channels, pausing on
each and reporting any packets it observes. The length of
the pause on each channel is device-specific. In the case of
consumer smartphones, manufacturers have adopted a range
of listening strategies. At one extreme we have observed a
consumer device that listened on each channel for 5 s before
switching to the next. However, a more common strategy is to
cycle through the channels tens of times per second: the iPhone
6 and iPad Pro, for example, spend only a few milliseconds
on each channel in their current incarnations.

To complicate matters, some devices apply a duty cycle to
their scanning, whereby they turn off listening altogether for
limited periods in order to conserve energy. Current versions
of iOS, for example, listen continuously (i.e. a 100% duty
cycle) for 60 s, before throttling back to a much lower duty
cycle. Crucially, the BLE specification does not provide a
mechanism for a BLE controller to report the channel on
which it received a given message. Non-standard extensions
may make this possible (for example, iOS 8 supplied this
information) but we are not aware of any current smartphones
that give access to the channel information. Collecting a
sequence of advertisements at one location is then a random
sampling of the three channels. Properties of the sequence such
as RSS values can be viewed as samples from a composite
signal.

C. Implications For Positioning

The three BLE advertisement channels have well-spaced
centre frequencies and may therefore have very different
propagation characteristics, which translates to drawing RSS
measurements from distinct distributions. Composite measure-
ments will exhibit a higher variance whenever distributions
have poor overlap since the measurement will be a sampling
from a random choice of distribution. As an example, Figure 2
shows an example RSS capture for a specific beacon taken
from the survey we describe later in this paper. We observe
that the three advertising channels are exhibiting reasonably
constant outputs, while the composite (in purple) appears far
noisier as it jumps between them randomly.

To use such a composite signal for positioning with radio
maps requires care. More readings are required to account for
the increased noise and to make it more likely that a fingerprint
is formed from packets broadcast on each channel, capturing
a full profile of the signal. Even then, the higher noise will
limit the spatial locality of the signal and adversely impact
positioning accuracy.

Conversely, if full channel information is available then
separate radio maps can be created for each channel. We
hypothesise that each map would have the same or (more
likely) smaller variance than the composite map at any given
position. We expect this to improve positioning accuracy since
the map for a single channel would be of a higher quality
than the composite. In fact, we expect that the single channel
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Fig. 1: The 40 BLE radio channels in the 2.4 GHz ISM band. Advertising channels (37, 38 and 39) are shown in green;
common WiFi channels in red.
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Fig. 2: An example capture to illustrate the effect of channel
RSS dispersal on the composite signal

maps might be sufficiently distinct to improve positioning even
further by using all three in one scheme.

IV. OBTAINING CHANNEL INFORMATION

The BLE specification does not include an API by which
a listening BLE chip can report the channel it received an
advertisement on. Previous work using BLE channel informa-
tion such as Zhuang et al. [17] depended on using Apple’s
iOS 8 operating system, which provided this information.
This version is now outdated and Apple have removed the
channel information from current versions. Other devices such
as Android handsets have never made channel information
available. Our listening device-agnostic approach is to adapt
the beacon to broadcast on only one channel.

In an ideal world each beacon would add the channel
information to the advertisement message at the point of
transmission. Although technically feasible, BLE performs
the advertisement process in hardware and manufacturers do
not provide access to the low level firmware to make this
modification to off-the-shelf devices. It is, however, likely that
a manufacturer seeking to produce a beacon optimised for
positioning would do this.

In the absence of this capability it is possible to create
similar behaviour using channel maps in BLE. This allows
blacklisting of specific transmission channels, ostensibly to

Value Parameter Description
00000000b Reserved for future use
xxxxxxx1b Channel 37 shall be used
xxxxxx1xb Channel 38 shall be used
xxxxx1xxb Channel 39 shall be used
00000111b Default (all channels enabled)

TABLE I: Advertising_Channel_Map specification in
Bluetooth 4.0 (Volume 2, Part E, Section 7.8.5)

avoid channels suffering strong interference during frequency
hopping communications. In practice, this capability is used
primarily for data connections, although the specification does
have provision for blacklisting advertising channels. As such
a standard transmitter can be set to broadcast on a single
advertisement channel by manually setting a bit field such that
only one of the channels is enabled.

The Bluetooth 4.x standard defines a command
HCI_LE_Set_Advertising_Parameters that provides
this functionality. One of the arguments to this function,
Advertising_Channel_Map, is a bit field that indicates
which of the channels 37, 38, and 39 are to be used for
transmitting advertising packets. This channel map can be set
at the time of device configuration to enable/disable channels
before advertising begins (it cannot be changed during an
ongoing advertisement cycle). The specification’s description
of the map is reproduced in Table I.

In this work we create beacons from Raspberry Pis fitted
with a BLE USB dongle. The advertising frequency was set
at 31.25 Hz1. The multi-channel scheme identification in [7]
involved using three beacons stacked on top of each other, with
the composite signal formed by simply concatenating the three
channels. However, this may introduce artificial differences:
different hardware, different antennas and slightly different
locations could all imply channel differences that would not
be observed in a single piece of hardware. Instead, we used a
single BLE chip and antenna and cycled through four modes:
one that transmitted only on 37, one only on 38, one only on
39 and one with no restrictions (i.e. all channels in use as per
the default). Each mode was associated with a unique payload
to allow the receiver to identify the channel being used. The
beacons continuously cycled through the four modes, pausing
on each for a preset time, T .

1This high advertising rate helped us to collecting statistically significant
measurements at each survey point quickly. In practice fewer samples would
be needed and/or the data collection time at each point could be longer.
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Fig. 3: Typical RSS observations for a beacon cycling through
the advertising channels with T=0.8 s

The choice of T in this model is an important one. Too long
and the user will have moved significantly; too short and the
beacon may not have had time to complete even one cycle.
Note that a switch requires stopping the current advertisement
and starting a new one so can be time-costly. We advocate
using a long cycle for surveying to minimise the lost time
associated with mode switching—in our surveying we used
T =10 s. However, it is not reasonable to expect a user to
wait 40 s to get enough data to start positioning in the online
scenario.

Figure 3 shows what happens for T = 0.8 s on our beacons.
We observe a mean mode switch time of 0.29 s. In the case
of 31.25 Hz beaconing, this corresponds to 7–9 RSS samples
per channel. (Note that, since a typical listening device has
one antenna, on which it rotates between channels, the single
channel frequency it reports is approximately a third of the
actual transmission frequency.)

V. EVALUATING THE VALUE OF CHANNEL INFORMATION

A. Experimental Setup

We investigated the differences between single-channel and
composite advertising by performing surveys of advertising
RSS in three rooms. Room 1 was a computer room at the
Computer Laboratory in Cambridge, approximately 18 m
by 12 m, containing four large circular desks housing 10
desktop computers, and a thick divider cordoning off an area
approximately 6 m by 12 m. Room 2 was the living area in
a small flat, and part of the corridor leading up to it. The
room contained a glass dining table, a large sofa, armchair,
coffee table, and a television standing atop a small table. The
room measured approximately 6 m by 4 m. Room 3 was the
open plan living space in the ground floor of a small house.
It measured approximately 7 m by 3 m, and contained two
sofas, a stone and wood dining table, a number of chairs, and
a snake enclosure.

Four beacons were placed in each location, widely spaced
apart. The placement of beacons was chosen to emulate how
such a system might realistically be deployed in the environ-
ment (an office or a home). We expected that by investigating

a naturalistic deployment—on walls, desks, and shelves—
we would be able to properly characterise the differential
behaviour of each advertising channel.

The listening device was an iPhone 6 with iOS 10 running
a custom app that logged BLE advertisements to file. It was
placed atop a non-metallic stand of height 1.3 m. As mentioned
in Section IV we used a mode cycle time of T=10 s. To ensure
all channels were observed, the app recorded 43 s of data at
each site. In total we surveyed at 93 points in Room 1, 35
in Room 2, and 31 in Room 3. Ground truth location was
obtained in Room 1 by alignment with the 0.6 m square floor
tiles; and using a Google Tango device in Room 2 and Room 3.

B. Single-channel vs. Composite Raw Data

We computed the RSS mean and standard deviation at each
survey position for each test site, separating the results by
channel or composite and plotting the values as empirical
cumulative distribution functions. The CDFs of the mean RSS
values (Figures 4(a), 4(c) and 4(e)) do not clearly distinguish
the composite channel from the others. This is to be expected:
the composite channel should exhibit a mean that lies between
the mean range of its constituent channels. The CDFs of the
standard deviations (Figures 4(b), 4(d) and 4(f)), however,
clearly distinguish between the separate channels and the
composite. The lines indicate higher variances are significantly
more likely for the composite channel. Taking the larger Room
1 as an example, the three separate channels exhibit standard
deviations of around 2 dBm at the 90th percentile. In contrast,
2 dBm is at the 20th percentile for the composite channel
(around 6 dBm at the 90th percentile).

These graphs capture the overall distribution of variances,
showing that there must be survey points where the variance
of the composite differs from the separate signals. They do
not, however, quantify how often there is a difference. To this
end we computed the differences between the composite mean
(C̄) and the individual channel means (c̄i for channel i) for
each survey position:

|C̄ − c̄i|. (1)

Similarly, the difference in standard deviations was com-
puted as:

σc − σi, (2)

where σc is the composite signal deviation and σi is the
variance for channel i at that survey position. We retain the
sign information for the deviation differences to emphasise
that the composite variance is increased.

Figure 5(a) shows the CDFs for the difference in means in
the larger Room 1 (results for the other rooms were similar
but omitted to save space). They illustrate that around 80%
of the composite mean values differed from the individual
channel means by over 1 dBm, while 90% had a difference of
up to 6 dBm. Figure 5(b) shows the CDF for the difference
in deviations. It shows that around 10% of the composite
deviations were comparable (within 1 dBm) to the individual
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(a) Room 1: CDF of means
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(b) Room 1: CDF of standard deviations

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40

Mean (dBm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Channel 37

Channel 38

Channel 39

Composite

(c) Room 2: CDF of means
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(d) Room 2: CDF of standard deviations
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(e) Room 3: CDF of means
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(f) Room 3: CDF of standard deviations

Fig. 4: Summary of raw RSS survey data
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Fig. 5: Difference CDFs for Room 1 survey data.

channel deviations at the same point. Thus almost every survey
point was exhibiting a significantly higher variance for the
composite than the individual channels.

Figure 5(b) also has a small number of survey sites where
the difference was negative. Further investigation revealed
these cases were associated with periods of large outliers in
the RSS during one period of data collection—see Figure 6
for an example. Such outliers are consistent with a short-
lived change to the environment, such as a person moving
around (which did occur during the surveys). Because we
measured the channel RSS values in series rather than parallel,
a transient effect such as this would only affect the channel
that was currently being measured, giving it an unexpectedly
high variance. We include these results for completeness, but
stress that they are irregular outliers—negative differences
were observed for only 39 of 1,196 survey readings (3%) and
all displayed short-lived disruption on one channel.

Overall the three rooms exhibited remarkably similar be-
haviour in terms of the dispersal of the channel RSS values.
Taken together these results validate our hypothesis that not
only can the three BLE advertising channels disperse, but this
is a common occurrence in real world environments. Moreover
the dispersal is of a non-negligible magnitude.

C. Regression-based Comparison

Regression techniques are commonly used to generate more
comprehensive RSS signal maps from raw survey data. Gaus-
sian Process (GP) regression has emerged as the preferred
regression scheme for this domain. GP regression is a non-
parametric technique that models the signal at each location
using a Normal distribution. As such, locations are associated
with a mean level and a variance, and the latter can be used to
further emphasise the value in separating channels. Figure 7
gives an example GP output for a specific beacon in Room
1. We observe that the variances for the composite channel

0 5 10 15 20 25 30 35 40 45

Time (s)

-85

-80

-75

-70

-65

-60

-55

R
S

S
I 
(d

B
m

)

Channel 37

Channel 38

Channel 39

Composite

Fig. 6: An example capture with a channel outlier producing
negative values for σc − σi. Channel 37 has a short-lived
interruption at around 15 s.

(Figure 7(i)) are notably higher than the variances for the
individual channels (Figure 7(j), 7(k) and 7(l)).

We have previously developed a metric, named RSS90, to
quantitatively compare two GP maps. We give an overview
here—full details are in [10]. Within two GP maps covering
the same area, the RSS90 value for a given point represents
the value within which the two maps would agree 90% of the
time. If the maps match at that point, the RSS90 value will be
small. Larger values indicate disagreement between the maps
at that point.

We evaluated the RSS90 value at each survey point for
each pair of channels. Figure 8 visualises the results for two
pairs. We found that the maps exhibited RSS90 values in the
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Fig. 7: Sample GP maps for Beacon 3 in Room 1. Please note that on the bottom row, the red areas (where the variance values
are much higher than else where) correspond to the areas where no signal samples were made (because of table areas etc.)
during the data collection.

range 15–20 dBm, which indicates a statistical difference as
expected.

D. Positioning Comparison

We evaluated the positioning using the signal strength-
based location estimation method described in [8]. A standard
Bayesian localisation algorithm was used to incorporate both
the mean and variance estimate at each GP map location. To
estimate a location, x, conditioned on observation of a set of
signal strength measurements (fingerprints), z, we used:

p(x|z) ∝ p(x)p(z|x) (3)

where p(x) is the prior probability of x and we set p(x) to a
uniform distribution over the whole space to simulate one-shot
positioning; and p(z|x) is the likelihood of observing a set of
signal strength measurements at location x. p(z|x) is given
directly by the GP regression (where channel information was
used, we formed a separate GP map for each channel). We
divided the environment into a grid of square cells of length
0.5 m. For each positioning request we computed p(x|z) at
each cell and selected the cell with the maximum as the
location estimate. Signal strength measurements lower than
−90 dBm were discarded.
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Fig. 8: RSS90 maps and CDFs. The results for other channels
are similar so are omitted here for brevity.
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Fig. 9: CDF of positioning results

TABLE II: Statistics of CDFs in Figure 9 (all in metres).

50% 75% 95% mean
No channel info 8.1 10.9 15.1 8.0

With channel info 3.8 7.8 13.2 5.2

Figure 9 gives the CDF of the positioning results for
Room 1, which are also summarised in Table II. We found
that the use of the channel information and its lower-variance
maps produced a significant improvement in accuracy—
around 3 m—at all percentiles.

VI. CONCLUSIONS

Our results have shown that the different RSS behaviour
of the three BLE advertising channels almost always has a
significant effect on the composite signal, as well as significant
implications for positioning.

We have shown that channel dispersion occurs frequently
and to great extent in typical environments: 80% of composite
mean values differed from the individual channel values by at
least 1 dBm in our experiments. Furthermore the variance of
a beacon’s RSS value is artificially increased by taking the
composite channel: in our experiments only around 10% of
composite variances were within 1 dBm of an individual chan-
nel’s variance, and 40% of composite variances were at least
4 dBm greater. This raw data analysis indicates that a single
channel signal is highly preferable to a composite signal, and
this is borne out by our positioning results. Beyond simple
dispersion, we have also shown that the three channels behave
distinctly in typical environments. Thus by constructing three
signal fingerprints, we arrive at a greatly improved positioning
scheme.

We hope this work will motivate addition of the channel
information in future BLE standards. In the interim, however,
we have outlined a standards-compliant scheme for beacons
to cycle through the channels via channel maps.

In further work, we intend to investigate the use of beacons
that use multiple beacons, as an alternative to the channel
switching scheme we have outlined. We also hope to further
characterise dispersion and its implications for positioning
using larger testbeds and by investigating the effect of varying
beacon parameters, such as transmission power.
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