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Abstract 
 
We select three word segmentation models with psycholinguistic foundations – transitional probabilities, the 
diphone-based segmenter, and PUDDLE – which track phoneme co-occurrence and positional frequencies in 
input strings, and in the case of PUDDLE build lexical and diphone inventories. The models are evaluated on 
caregiver utterances in 132 CHILDES corpora representing 28 languages and 11.9m words. PUDDLE shows 
the best performance overall, albeit with wide cross-linguistic variation. We explore the reasons for this 
variation, fitting regression models to performance scores with linguistic properties which capture lexico-
phonological characteristics of the input: word length, utterance length, diversity in the lexicon, the 
frequency of one-word utterances, the regularity of phoneme patterns at word boundaries, and the 
distribution of diphones in each language. These properties together explain four-tenths of the observed 
variation in segmentation performance, a strong outcome and a solid foundation for studying further 
variables which make the segmentation task difficult. 
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Introduction 
 
The ability of the human infant to acquire language from the “great blooming, buzzing confusion” they are 
confronted with in their linguistic input (James, 1890) is a remarkable feat. At the very least there is the 
question of how they manage to identify words in a stream of speech in which words are not consistently, 
overtly delimited (the same question applies to the identification of signs in sign language, though we do not 
address it here). It has been shown that infants start to use familiar names for speech segmentation at the age 
of six months (Bortfield, Morgan, Golinkoff & Rathbun, 2005) and acquire at least a receptive lexicon of 
frequently heard words by the age of one, even if they may not yet know the meaning of all those words and 
are not able to produce them properly (Hallé & de Boysson-Bardies, 1994; Vihman, dePaolis, Nakai & 
Hallé, 2004). But how have they managed to pick these words out of the speech stream? This is the word 
segmentation problem, and the subject of our paper. Evidently, children are simultaneously acquiring 
knowledge of phonology, morphology, syntax, semantics, pragmatics, and more, but here we isolate the task 
of vocabulary identification and acquisition using text-based transcriptions of speech, as others have done 
(e.g. Larsen, Cristia & Dupoux, 2017). 
 
Computational word segmentation involves an input transcription in which the speech stream is represented 
in phonemic form (‘phonemized’) in some way – for instance using the International Phonetic Alphabet 
(IPA). Basic units are delimited (with spaces in the example below) and presented to the model, which is 
required to insert hypothesised word boundaries between the basic units where appropriate. The success of 
the segmentation model is judged by evaluation of these proposed word boundaries against the true gold-
standard boundaries in the original transcription. 
 
INPUT: t w ɒ z b r ɪ l ɪ g a n d ð ə s l ɪ ð i t o v z 
OUTPUT: twas brill lig and the slithytoves 
GOLD: twas brillig and the slithy toves 
 
We evaluate several computational models of word segmentation which have a cognitive basis, operate with 
phonemes as the basic unit, and are cross-linguistically implementable. We select three approaches – firstly a 
model which inserts word boundaries on the basis of transitional probabilities between sound sequences 
(Saksida, Langus & Nespor, 2017), secondly DiBS, the Diphone-Based Segmenter (Daland & 
Pierrehumbert, 2011), which tracks diphone (phoneme pair) co-occurrence probabilities – and thirdly a 
frequency-based approach which builds diphone and lexicon inventories, ‘Phonotactics from Utterances 
Determine Distributional Lexical Elements’, or PUDDLE (Monaghan & Christiansen, 2010).  
 
These models essentially learn language-specific information without pre-specifying what that information 
should be, as some have done (Brent & Cartwright, 1996; Gambell & Yang, 2005; Mattys, White & 
Melhorn, 2005). Instead the bottom-up approach is grounded in work showing that infants eventually learn to 
use language-specific stress patterns alongside statistical cues, and develop a proto-lexicon in the first year 
(Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003; Vihman et al 2004; Ngon, Martin, Dupoux, Cabrol, 
Dutat & Peperkamp, 2013). Our three chosen approaches (transitional probabilities, DiBS, PUDDLE) all 
make use of phoneme pair co-occurrence frequencies in some way and thereby extract language-specific 
phonotactic regularities. This choice is grounded in child psychology studies showing that infants are 
sensitive to bigram frequencies (Goodsitt, Morgan & Kuhl, 1993) and develop an early awareness of 
phonotactic cues (Mattys & Jusczyk, 2000). 
 
In total we process 132 corpora representing 28 language varieties and 11.9 million word tokens. The data 
come from the CHILDES database (MacWhinney, 2000) and are freely available for research use. To the 
best of our knowledge this is the largest and most multilingual word segmentation experiment to date. Of our 
three target models, PUDDLE shows the best performance as measured by type (vocabulary), token (strict) 
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and boundary (lax) metrics, albeit with considerable cross-linguistic variation. To account for this variation, 
we examine linguistic properties which could make a language more or less straightforward to learn to 
segment: mean word length, mean utterance length, type-token ratio, the proportion of one-word utterances, 
word boundary diphone entropy, and the ‘Zipfian-ness’ of diphone distributions. These quantitative 
measures are to some extent representative of the quality of the linguistic input children encounter: they 
represent the diversity of the lexicon, the regularity of the phonotactic system, and the difficulty of the task. 
They indicate how an input’s quality may be scored for properties relating to learnability – our assumption 
that not all information sources and systems are equally easy to decode and to learn. They speak to the 
orderliness of the input and the ways in which starter hints are given to the child as stepping stones towards 
full decoding. 
 
We use these six linguistic properties as fixed effects in a mixed-effects regression model with each 
individual corpus as a random effect and token segmentation as the dependent variable. The model explains 
91% of the variation seen, albeit with the majority accounted for by the random language, speaker and topic 
idiosyncrasies of the corpora. This demonstrates why cross-linguistic work matters – namely that models 
proposed and evaluated with certain languages may not apply equally well to other languages. Basque, for 
instance, proves to be particularly hard for PUDDLE to segment, while showing by far the best performance 
on Mandarin. We attribute this difference to the orderliness of each language’s diphone systems, or the 
strength of signal given by each diphone with regards its juxtaposition to a word boundary. In Mandarin, 
there is a smaller diphone system than in Basque, and the vast majority of diphones have a clear role as 
boundary or non-boundary signalling: 97% of diphones have a probability of at least 90% or 10% of 
occurring next to a boundary. For Basque, on the other hand, the equivalent statistic is 53%, and the number 
of diphones is almost 1.5 times as many as are found in Mandarin. 
 
Meanwhile there appears to be a positive bias in previous work towards Germanic languages, albeit with a 
small sample of different language families generally. However, this provisional finding suggests that 
diphones matter more as segmentation cues in Germanic languages than others. Hence, the quality of the 
speech stream in terms of typological differences is shown to affect model performance and present 
challenges to theory-building going forward. 
 
We also introduce a temporal dimension in our assessment of the segmentation models, exposing them to 
increasing amounts of data as a proxy for time. PUDDLE is again the outstanding model in this setting, 
showing improvement with increasing amounts of input data, whereas the other models deteriorate in 
performance. This aspect of the experiment demonstrates the benefit of PUDDLE’s inventory-based 
approach, and suggests that purely statistical approaches are not sufficient for fully functioning word 
segmentation. We conclude that distributional cues combined with memory devices to accumulate 
knowledge are a successful method for the segmentation of phonemic transcriptions of speech.  
 
Ideally of course we would have access to the original recordings so that we could make use of further 
prosodic features such as word stress and rhythm, as infants have been shown to also pay attention to these 
cues (Jusczyk, Cutler & Redanz, 1993; Curtin, Mintz & Christiansen, 2005; Curtin, 2009), or to accurate 
automatic syllabifiers so that the model can learn from syllables as well as phonemes. However, with only 
transcriptions to work with at this stage, we can still perform statistical sequence analyses, following the 
proposal that for infants the strategy of frequency tracking and probabilistic calculation can act as a 
successful initial approach to word segmentation before more accurate language-specific cues are learned 
(Thiessen & Saffran, 2003). It is likely that allowing the models to additionally learn from suprasegmental, 
semantic and multimodal information would further boost performance and be closer to full ecological 
validity. 
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Related Work 
 
Many have attempted to explain word segmentation on the basis of various probabilistic cues available in the 
input speech stream, such as lexical stress and prosodic patterns (Cutler & Carter, 1987; Johnson & Jusczyk, 
2001), transitional probabilities between syllables (Saffran, Aslin & Newport, 1996), and phonotactic 
constraints of the target language (Mattys, White & Melhorn, 2005). Computational models of word 
segmentation have so far tended to take an approach based on detection of frequent sequences (e.g. 
Goldwater, Griffiths & Johnson, 2009), transitional probabilities (e.g. Saffran, Aslin & Newport, 1996), or a 
combination of the two (e.g. Swingley, 2005). This is based on the repeated observation that infants are 
sensitive to distributional information in the input (Aslin, Saffran & Newport, 1998; Thiessen & Saffran, 
2003; Pelucchi, Hay & Saffran, 2009a).  
 
A seminal, purely probabilistic approach was that of Saffran and colleagues, who demonstrated that 8-
month-old infants could learn to segment an artificial bisyllabic language (Saffran, Aslin & Newport, 1996). 
They accounted for the infant’s segmentation abilities on the basis of transitional probabilities (TPs) between 
syllables, grounded in experimental evidence of children’s statistical learning abilities (Goodsitt, Morgan & 
Kuhl, 1993; Krogh, Vlach & Johnson, 2012). This model did not transfer successfully to an artificial 
language which varied in the number of syllables per word (Johnson & Tyler, 2010) but Saksida and 
colleagues (2017) then demonstrated good segmentation performance on natural language child corpora by 
using absolute thresholding to determine word boundaries per Gervain & Guevara Erra (2012) and Swingley 
(2005), rather than the relative thresholding approach used by Saffran and colleagues. With this 
modification, the mean bigram co-occurrence probability (where a gram may be either a syllable or a 
phoneme) in the corpus is used as a threshold below which word boundaries are posited, whereas with the 
relative TP method boundaries are proposed wherever a bigram’s co-occurrence probability is less than both 
its neighbours. Further support for the TP approach comes from studies of Italian (Pelucchi, Hay & Saffran, 
2009b; Hay et al, 2011). 
 
Others have incorporated more than input frequencies in their model – for instance, prosodic or phonotactic 
information – with some success. A unique stress constraint was added to transitional probabilities in 
Gambell & Yang's model, stating that there should only be one primary stress per word in English (Gambell 
& Yang, 2005). As a result segmentation accuracy improved from a baseline of 41.6% to 73.5%, but the 
model has been criticised on the grounds that a pronouncing dictionary provides idealised representations of 
stress and moreover the constraint is not cross-linguistically generalisable (Phillips, 2015). 
 
Previous work has focused mainly on artificial languages or on English (Saffran, Aslin & Newport, 1996; 
McCauley, Monaghan & Christiansen, 2015; Larsen, Cristia & Dupoux, 2017), understandably, since the 
former offers greater control, and the latter is by far the best-resourced in corpus terms. Exceptions include 
segmentation of Sesotho (Johnson, 2008), French (Boruta et al, 2011), Hungarian and Italian (Gervain & 
Erra, 2012), Japanese (Fourtassi et al, 2013), and eight languages besides English (Saksida et al 2017). We 
extend the cross-linguistic evaluation of word segmentation models, covering as many languages as our 
chosen instruments allow – the CHILDES database and the phonemizer toolkit to convert the corpora into 
phonemic form. The languages in our study include the nine from Saksida et al’s with the exception of Tamil 
and Polish. 
 
First Cairns and colleagues (1997) then Hockema (2006) introduced DiBS, the Diphone-Based Segmentation 
model, which was initially considered unlearnable since the original DiBS algorithm relied on a supervised 
approach transcriptions in which boundaries were explicitly marked – an unrealistic scenario for infants who 
are in fact attempting to discover these boundaries in an unsupervised fashion. As a tractable solution, and in 
common with much work in the computational literature, Daland & Pierrehumbert (2011) incorporated 
Bayes’ theorem to estimate parameters on the basis of distributional information. This model learns a 
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combination of word-edge phone probabilities, overall boundary probability and diphone transitional 
probabilities in order to make segmentation decisions, which fits with evidence that infants are aware of 
phonotactic regularities by the age of one (Mattys & Jusczyk, 2000). Another model to make use of diphone 
sequences, though this time through frequency counts and inventory building, is PUDDLE (Monaghan & 
Christiansen, 2010). This approach tallies with experimental work showing that infants have a receptive 
lexicon by the age of one, listening longer to words frequently found in child-directed speech (e.g. ballon 
‘ball’, canard ‘duck’) than rare words such as busard ‘harrier’ (Hallé & de Boysson-Bardies, 1994; Vihman, 
dePaolis, Nakai & Hallé, 2004). We made our selections as they offer alternative probabilistic and 
frequency-based approaches and are grounded in behavioural work. We discuss the three chosen models 
further below. 
 
 
 
Word segmentation models 
 
Here we describe and detail the word segmentation models employed in this study. The models are 
implemented with the wordseg library (Bernard et al, in press) and represent contrasting probabilistic and 
frequentist approaches. 
 
 
Baselines 
 
The baseline models in wordseg insert word boundaries with a given probability P(#), implementing the 
proposal by Lignos (2012). Variations include the utterance baseline in which whole utterances are treated 
as words, i.e. P(#)=0, and the basic unit baseline in which every phoneme (or syllable, if that is the basic 
unit) is treated as a word, i.e. P(#)=1. We also use a random baseline, in which P(#)=0.5, so that boundaries 
are inserted by chance, and an oracle baseline which is informed with the probability of a boundary in each 
corpus (P(#) = n.boundaries / n.phonemes). Our basic unit is the phoneme rather than syllable. We include 
the baselines as another way to evaluate the performance of our three chosen models by comparison with the 
random segmentation approach. 
 
 
Transitional probabilities 
 
The idea of the transitional probabilities approach (TPs) is to identify complex units of relatively high 
probability, given the distribution of unit sequences in the data. To calculate TPs, we firstly use the forward 
TPs model in wordseg according to which the transitional probability of a sequence XY is the count of XY 
divided by the count of X (Frank, Goldwater, Griffiths & Tenenbaum, 2010). We also use the backward TP 
and mutual information model variants: the former calculates transitional probabilities as the count of XY 
divided by the count of Y (Pelucchi et al 2009a); the latter is the binary logarithm of the count of XY over the 
product of count(X) and count(Y) (Gervain & Guevara Erra, 2012). For instance if the sequence /ba/ occurs 5 
times, while /b/ occurs 100 times and /a/ occurs 500 times, the forward TP will be 5/100, the backward TP 
will be 5/500=1/100, and mutual information is log2(5/(100*500))=log2(5/50000)=-13.29. 
 
In our implementation of TP models, word boundaries are inserted between basic units where TPs fall below 
an absolute threshold – where the transitional probability of XY is less than the mean TPs of all phoneme 
pairs in the corpus – an unsupervised method introduced by Swingley (2005). This is instead of a relative 
threshold used in classic TP work, where a boundary would be inserted wherever the TP of XY falls below 
that of both its neighbours WX and YZ (Saffran, Aslin & Newport, 1996), since it has been shown that 
absolute thresholding consistently outperforms relative thresholding (Saksida et al 2017). TPs were 
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introduced with a focus on syllables, but here we use phonemes as our basic unit to allow for comparison 
across models. Note that the wordseg toolkit employs the TP code and refinements implemented by Saksida 
and colleagues (2017).  
 
 
DiBS 
 
DiBS models the word segmentation process as a matter of learning diphone collocations, leading to a 
bottom-up acquisition of phonotactic constraints. That is, the learner observes that, in English for example, 
[b] and [a] often co-occur within a word whereas [p] and [d] only co-occur across word boundaries. This 
proposition is founded on multiple reports in the literature (Friederici & Wessels, 1993; Jusczyk, Luce & 
Charles-Luce, 1994; Mattys & Jusczyk, 2001). 
 
DiBS assigns a value between 0 and 1 to utterance-medial diphones indicating the probability that there is a 
word boundary between that pair of phonemes. The probabilistic information comes from a training corpus 
which provides frequencies of phonemes in word-initial and word-final positions, as well as their overall 
counts.  
 
In our case the training data are the transcribed CHILDES corpora, filtered down to the utterances of non-
child speakers only. We opt not to use the so-called DiBS-gold setting which gives access to the word-
delimited corpora as training data, on the grounds that this is ecologically far from reality: it is precisely 
because children are not ‘fed’ one word at a time that they are faced with the word segmentation problem. 
Nor do we use DiBS-lexical, which involves a seed lexicon – even if children may have learned one by the 
age of 2 years – because it is not clear what that lexicon should be without individual testing of each of the 
children involved. Instead we use DiBS-phrasal which gives the learner access to utterance boundaries as 
training data, as this is ecologically a more valid scenario and does not give DiBS an unfounded advantage. 
 
Phoneme frequencies are used to calculate the joint probability of a given phoneme X occurring in word-final 
position and another phoneme Y occurring in word-initial position; in other words occurring either side of a 
word boundary # in the sequence X#Y. This is expressed as P(#|XY) and defined by applying Bayes’ rule as 
below: 
 
EQUATION 1 HERE 
 
Since P(#) over P(XY) is constant, the learner needs only calculate P(XY|#), which approximates formally to 
the following: 
 
EQUATION 2 HERE 
 
Note the independence assumption taken here: that the probability of word-initial Y is not conditioned by a 
preceding word-final X. Testing this assumption through n-gram models where the grams are phonemes and 
where n≥2 is a matter for future work. In wordseg, as in Daland & Pierrehumbert (2011), word boundaries 
are placed where probabilities are greater than 0.5. 
 
 
PUDDLE 
 
In the PUDDLE model utterances are initially treated as whole lexical items but are broken down into 
smaller units if any already-stored lexical items are encountered, consistent with what adults are known to do 
when faced with a novel artificial language (Dahan & Brent, 1999). There is an implicit reliance on the 
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occurrence of single-word utterances for this approach to be at all successful, but these are used as a way to 
bootstrap a lexicon rather than a sole learning strategy. This is based on the observations that (a) many 
utterances in child-directed speech contain one word only, this being a strategy caregivers use to introduce 
novel objects and concepts, and (b) single-word utterances alone are insufficient for fully-functional speech 
segmentation (Brent & Cartwright, 1996). 
 
As an example, consider the following three utterances: 
 
1. kitty 
2. thatsrightkittyyes 
3. lookkitty 
 
We see that the first utterance is a single word, kitty, which is stored as a lexical entry along with its initial 
and final diphones: kɪ, ti (we phonemize words here according to a southern British English standard). An 
activation function keeps count of word occurrences since the lexicon is frequency ranked. The lexical entry 
kitty allows us to segment utterance 2, giving us a second instance of kitty, as well as new entries thatsright 
and yes. The same process segments look and kitty in utterance 3, and by now we have three instances of kitty 
a list of hypothesised word-initial diphones (kɪ, ða, jɛ, lʊ), and another list for word-final diphones (ti, ait, ɛs, 
ʊk). 
 
PUDDLE builds phonotactic awareness in a bottom-up fashion, collecting word-initial and word-final 
diphones (two adjacent phonemes) for any item added to the lexical inventory. In this way the model learns 
lists of permitted word beginnings and endings from the input but does not need a fully specified phonotactic 
rule set. This knowledge is put to use to prevent over-segmentation: a matching lexical entry in the input is 
only accepted and processed if the diphone preceding the given segment also ends at least one word in the 
lexicon, and the diphone following the given segment also begins at least one word in the lexicon. As a 
consequence, whole utterances tend to be added to the lexicon holistically in the early stages of input 
processing. Subsequently, a single-word utterance may be encountered which enables the bootstrapping 
effect to kick in.  
 
Obvious issues here include (a) rare words which the infant only hears once or twice in their early years, and 
(b) formulaic multi-word utterances (such as ‘thank you’, ‘bath time’, ‘eat up’, etc) whose unity is preserved 
by their frequency of occurrence. These outcomes are problematic only if perfect word segmentation is the 
target; however, in reality word segmentation is an imperfect skill, for adults as well as children, and indeed 
one might question whether it is important to segment words so rare in the input that they only occur a few 
times in a few years (of language samples), while also acknowledging that children do treat some frequent 
collocations as whole items, at least in the early stages of language acquisition (MacWhinney, 1982; 
Tomasello, 2000) – and perhaps long after (Siyanova-Chanturia et al, 2017).  
 
The incremental design of PUDDLE, along with the activation function, means that over time only frequent 
collocations continue to play a role in segmentation. Indeed we can imagine that beyond these first three 
utterances the child might encounter examples which allow her to properly segment thatsright, so that 
eventually real words overtake its current activation of 1 in the lexicon. A decay parameter can be introduced 
to simulate learner forgetfulness over time. Pilot studies with PUDDLE did not clarify what the optimal 
value for this parameter should be. Therefore, Monaghan & Christiansen set the decay parameter to zero, as 
we do here. 
 
 
 
Corpora 
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To test the efficacy of the four word segmentation models cross-linguistically, we obtained as many suitable 
corpora from the CHILDES database as were found to meet the following four criteria, which are justified in 
detail below: 
 
a. The corpus is monolingual; 
b. The corpus contains at least 10,000 speech utterances spoken by conversation participants other than the 
target child; 
c. The target child is aged 2 years or younger at the start of the corpus; 
d. The corpus language can be processed by the eSpeak Next Generation (NG) speech synthesizer 
(https://github.com/espeak-ng/espeak-ng) or segments grapheme-to-phoneme transformer 
(https://github.com/cldf/segments). 
 
We do not attempt to process multilingual corpora – even though the multilingual environment is a highly 
frequent setting for children in reality – as it requires word-by-word language identification at scale; we see 
this as a challenge to be undertaken in future work. Previously it has been shown that word segmentation 
models, using PUDDLE with English data at least, stabilise after 10,000 input utterances (McCauley, 
Monaghan & Christiansen, 2015). We therefore set this as a minimum size for corpus selection. For reasons 
of practicality, we define our test and training data as all non-child utterances in CHILDES corpora, based on 
the assumption that the child could be paying attention, and therefore trying to segment, all of it. This may be 
an exaggeration, but there is a case for children learning from overheard speech (Mani & Patzold, 2016) and 
therefore, rather than manually identifying which of the transcribed utterances are indeed child-directed 
(which in itself will be error-prone without access to video recordings), we make this simplifying 
assumption. Note that we exclude diary corpora as they are usually focused on child utterances rather than 
child-directed speech. 
 
The reason to control the starting age of the target child is that if children are much older than 2 years, they 
have normally begun using 2-word utterances (at least) and therefore learning to segment words, while still 
relevant, is confounded with the acquisition of multi-word constructional frames or schema (which may 
begin sooner than 2 years but is not apparent until then). 
 
Finally, the current version of eSpeak NG (1.49.3) is capable of handling 100 languages (where ‘language’ 
in this context includes varieties such as different Englishes, Belgian-French, north and south Vietnamese, 
etc), while segments uses grapheme-to-phoneme rules to process languages such as Japanese which have 
been transcribed in the Roman script, as is the case with the CHILDES corpora. At least 37 languages are 
represented by the corpora contained in CHILDES at the time of writing. The true figure is likely to be 
greater than 37, as various languages may be concealed in the multilingual corpora contained in CHILDES. 
The effect of applying these criteria is that we are able to represent 28 language varieties, as listed in Table 1 
along with the source corpora, the number of child participants represented, the range of their ages at the start 
of recording, and the number of word tokens in the corpora at their biggest (i.e. at 10,000 utterances). In 
total, we have data from 66 studies constituting 132 child corpora and 11.9 million word tokens. 
 
 
Table 1: List of CHILDES corpora used in this study; ages are expressed as years;months. 
 

Language  N. studies N. corpora Child age at 
start 

N. other 
participants 

N. 
utterances 

Word 
tokens 

Basque 1 1 2;0 60 10,000 117,255 
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Cantonese 1 6 1;10-1;11 49 60,000 420,836 

Croatian 1 2 0;10-1;10 35 20,000 217.453 

Danish 1 2 0;8-0;11 14 20,000 131,075 

Dutch 3 10 0;11-1;9 52 100,000 841,863 

English 
(N.Am.) 

16 28 0;6-1;11 241 280,000 2,296,785 

English 
(U.K.) 

6 18 0;1-2;0 95 180,000 1,411,017 

Estonian 2 2 1;3-1;7 8 20,000 285,143 

Farsi 1 2 2;0 11 20,000 217,358 

French 1 2 1;9-1;11 28 20,000 151,966 

German 5 10 0;1-1;11 288 100,000 1,072,694 

Greek 1 1 1;7 6 10,000 82,150 

Hungarian 3 3 1;5-2;0 38 30,000 330,200 

Icelandic 1 1 2;0 12 10,000 106,253 

Indonesian 1 4 1;6-2;0 230 40,000 301,847 

Irish 1 1 1;5 3 10,000 106,648 

Italian 1 1 1;5 2 10,000 108,926 

Japanese 3 7 0;6-1;5 65 70,000 590,789 

Korean 2 3 1;3-2;0 11 30,000 501,680 

Mandarin 2 2 0;1-1;7 14 20,000 364,552 

Norwegian 1 1 2;0 5 10,000 94,410 

Portuguese 
(Br.) 

1 1 1;8 9 10,000 98,624 

Portuguese 
(Pt.) 

1 3 1;5-1;6 22 30,000 276,743 

Romanian 1 1 1;5 7 10,000 76,147 

Serbian 1 8 1;6 186 80,000 720,024 

Spanish 6 7 0;10-1;10 61 70,000 628,713 

Swedish 1 4 1;3-1;11 24 40,000 244,877 

Turkish 1 1 2;0 11 10,000 140,462 

Total 66 132 - 1587 1,320,000 11,936,490 
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As noted above, we opt to use the phoneme as our basic unit, rather than the syllable as some have done (e.g. 
Saksida et al 2017), either because the syllable is a requisite part of their segmentation model, or for 
theoretical reasons. There is a debate as to the validity of the syllable in perceptual and learning terms 
(Mehler, Dommergues, Frauenfelder & Segui, 1981; Ladefoged, 2003; Ziegler & Goswami, 2005; Räsänen, 
Doyle & Frank, 2018), which we do not address here but instead fall back on a structurally less complex unit 
– the phoneme, which we understand to be meaningful abstractions over clusters of similarly-realised phones 
– and leave comparison between phoneme and syllable inputs as a matter for future work. On a more 
practical note, reliable automated syllabifiers are not available for many of the languages in our sample, if 
any, and manual syllabification is infeasible for the size of data we work on without many-labs type 
collaboration: Saksida and colleagues (2017) did it for 3300 utterances in each of the nine languages they 
work with, and make their annotated data available, whereas we work with 10,000 utterances for each of 132 
corpora. 
 
Note also that the phonemic representations we work with are idealised speech productions based on 
dictionary pronunciation of words. We assume that the human transcribers have successfully recognised the 
words produced by participants in corpus recordings, though we acknowledge that there is likely to have 
been some degree of error in the recognition and transcription stages. In addition, human speakers of course 
produce phonemes with great variability from prototypical dictionary forms, whether for reasons of 
idiosyncrasy, dialect, reduction in connected speech, allophonic variation and errors. Listeners are adept at 
‘repairing’ speech inputs according to their expectations, despite such variation and despite extraneous 
factors such as background noise (Dupoux et al 2011). Therefore it should be made clear that our analyses of 
word segmentation based on the speech transcriptions we extract from CHILDES are an idealisation of the 
natural scenario. However, in mitigation we emphasise that the transcriptions are a tiny sample of a child’s 
language input, and that these utterances can reasonably be considered as a representation of ‘good’ 
exemplars they might encounter. In addition it has been shown that caregivers make an extra effort to 
produce speech in a clear fashion where possible (Hartman, Bernstein Ratner & Newman, 2017). Besides 
word segmentation, the child of course has to learn to group phone realisations as phonemes, though this is 
not a task we tackle here, as we do not have access to all the original recordings of the target corpora. 
 
 
Language properties 
 
We do not assume that all languages are equally easy to learn to segment. Therefore we hypothesise that 
there are properties intrinsic to each language which make word segmentation more or less straightforward. 
The properties we consider here – though we do not claim this to be an exhaustive list – are mean word 
length, mean utterance length, type-token ratio, the proportion of one-word utterances, word boundary 
diphone entropy, and the ‘Zipfian-ness’ of diphone distributions. 
 
The first variable to some extent represents the difficulty of the word segmentation task in each language. 
Mean word length, expressed as the number of phonemes per word token in the corpus, indicates how much 
phoneme agglomeration occurs in the language: we hypothesise that the closer this value to one, the more 
straightforward segmentation will be as words will be phonologically simpler. On the other hand, the mean 
number of word tokens per utterance in each corpus indicates how much segmentation tends to be required 
for utterances in a given language. 
 
Type-token ratio (TTR) is a size-normalised measure of lexical diversity in language samples. It is calculated 
by dividing the number of unique word types found in a corpus by the number of word tokens in that corpus. 
The outcome lies between 0 and 1, with a higher TTR indicating greater lexical diversity in the corpus 
relative to its size (i.e. many different words with low repetition). We hypothesise that TTR has a changing 
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role over time, with high TTR in early phases of language acquisition serving to expose the child to more 
lexical items more quickly, followed by decreasing TTR in later stages moving the input closer to everyday 
discourse, with greater repetition of a few word types and a long tail of infrequent words. Therefore we 
model TTR in interaction with the size of the corpus, as a proxy for developmental stage. 
 
The proportion of one-word utterances (OWU) – the count of one-word utterances over the count of all 
utterances in the corpus – is a measure of the salience given to words in speech directed to children. Word 
boundaries do not need to be identified in one-word utterances (though they still might be) and are 
potentially a rich source of lexicon entries for the learning child. We might expect that a high frequency of 
OWUs helps the child in the task of word segmentation, and of our models, aids PUDDLE in particular since 
it is specifically designed to absorb the information provided by utterance boundaries, along with DiBS since 
we have opted for its training setting based on utterance boundaries alone. 
 
We can think of entropy (H) as the amount of uncertainty in a random variable, with higher values of H for a 
probability distribution D representing greater disorder (3). 
 
EQUATION 3 HERE 
 
In our case D is a vector of probabilities for each diphone in our corpus occurring at a word boundary (i.e. 
the count of XY# and #XY, over the count of XY). Thus we can assume that a higher entropy word boundary 
diphone system, H(D), is harder to learn because the diphones are more randomly distributed. A lower 
entropy diphone system, on the other hand, represents a more ordered phonotactic system in which certain 
diphones are highly indicative of word boundaries. That is, imagine a scenario where every diphone is 
equally likely to occur at a word boundary or not: the high amount of uncertainty as the learner encounters 
each diphone means that there are no straightforward cues to word segmentation. This scenario would have a 
high entropy value. Now imagine that there are certain diphones which are highly likely to occur at word 
boundaries, and there are some which hardly ever occur at word boundaries. This would be quite an orderly 
diphone system, in which there is less uncertainty, better cues, and lower entropy. We expect that our models 
will favour such systems, as they appeal directly to the phonotactics represented by diphones (Fourtassi et al, 
2013).  
 
Finally, we use the zipfR library for Large-Number-of-Rare-Events modelling (LNRE), designed for the 
analysis of power law distributions of the kind found in natural language corpora (Zipf, 1949; Baayen, 2001; 
Evert & Baroni, 2007). For each corpus we extracted ranked lists of diphone counts and constructed a Zipf-
Mandelbrot LNRE model (Evert, 2004). We store the shape parameter (ZM.α) and goodness-of-fit values 
from a chi-squared test (ZM.X2) as representations of the Zipfian-ness of each distribution. We presume that 
the better the fit of the LNRE model to a diphone distribution, the more learnable the phonotactic system will 
be (Kurumada, Meylan & Frank, 2013; Bentz et al, 2017; Hendrickson & Perfors, 2019). Higher values of α 
and lower values of X2 are indicators of a better Zipf-Mandelbrot fit. 
 
 
 
Evaluation 
 
We report each segmentation model’s performance using precision, recall and F-measure measured in three 
ways: type, token and boundary. The type metric assesses the lexicon accumulated by the model at the end of 
corpus processing, and compares it to the expected lexicon (the true set of word types in each corpus). The 
token metric indicates how many whitespace-delimited character strings (tokens) have been correctly 
segmented. This is the strictest measure, as it requires precise placement of boundaries both at the start and 
end of words. 
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The boundary metric, on the other hand, is more forgiving. It measures how many delimiters have been 
correctly placed, whether a word has been correctly segmented or not; thus it is a laxer performance measure 
than the token metric, as it rewards correct word boundaries even where the word token has not been 
correctly segmented. Furthermore every utterance gives two boundary matches for free, at the start and end, 
a matter addressed by an alternative ‘no edges’ metric which does not score utterance initial or final 
boundaries. We do not use this as it cannot be appropriately used for the utterance baseline model.  
 
To calculate precision (P) and recall (R) we require three measures obtained by comparing segmentation 
hypotheses and ground-truth transcriptions. Firstly, true positives (tp) are hypothesised predictions in accord 
with the ground-truth. False positives (fp), on the other hand, are predictions in conflict with the ground-
truth. False negatives (fn) are those boundaries in the ground-truth transcriptions which were not predicted 
by the model. Precision is then, tp / ( tp + fp ), a measure of positive predictive value – in our case how often 
the model correctly hypothesises a word boundary. Recall is, tp / ( tp + fn ), a measure of sensitivity, affected 
by the coverage of the model’s predictions compared to the ground-truth. Finally, the F-measure represents 
both precision and recall by taking the harmonic mean of the two; that is, F = 2 x (( P x R ) / ( P + R )). 
 
As an example of how each metric works, consider again the example utterance from the introduction, now 
extended along with a proposed segmentation, true segmentation, and various evaluation scores. 
 
INPUT: t w ɒ z b r ɪ l ɪ g a n d ð ə s l ɪ ð i t o v z d ɪ d g aɪ ə a n d g ɪ m b l ɪ n ð ə w eɪ b 
OUTPUT: twas brill lig and the slithytoves didgyre and gimblein the wabe 
GOLD: twas brillig and the slithy toves did gyre and gimble in the wabe 
 
Here, the model proposes 9 word types (twas, brill, lig, and, the, slithytoves, didgyre, gimblein, wabe) of 
which 4 are correct. Therefore type precision is 4/9=0.44. The model has returned 4 of the 11 true word types 
and thus type recall is 4/11=0.36. The F-measure is 0.4. 
 
Only 6 tokens have been correctly segmented (twas, and, the, and, the, wabe). The model proposes 11 tokens 
in total, therefore token precision is 6/11=0.54, and there are 13 tokens in the gold utterance so token recall is 
6/13=0.46. The F-measure is 0.5. 
 
Finally, the laxer boundary evaluation metric counts 11 correct delimiters out of 12 proposed delimiters: 
precision is 11/12=0.92. There are 14 true delimiters, thus boundary recall is 11/14=0.79. Boundary F is 
0.85. It should be clear from this example that these measures, applied at scale to whole corpora, give an 
indication of vocabulary learning (type scores), strict segmentation performance (token scores) and lax 
segmentation performance (boundary scores). 
 
 
 
Method 
 
For each language listed in Table 1 we processed the identified CHILDES corpora using the following steps: 
 
i. Downloaded the corpora in XML format from http://childes.talkbank.org/data-xml and loaded the corpora 
using NLTK’s CHILDES reader (Bird, Klein & Loper, 2009); 
ii. Filtered any utterances spoken by the target child (marked CHI); 
iii. Removed name anonymisers (‘xxx, yyy, zzz’), filled pauses and paralinguistic speech tokens such as 
‘hm+, mm+, pft, uh+uh’; transformed all words to lower case; 
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iv. Passed the resultant text to the phonemizer with the appropriate language flag and eSpeak or 
segments backend speech synthesizer (Bernard, 2018); 
v. Applied each word segmentation algorithm to the phonemized texts using wordseg, retrieving corpus 
statistics and evaluation metrics at 1000-utterance increments up to a limit of 10,000. 
 
Our code is freely available for others to use at https://github.com/ANON/wordsegmentation 
 
We note here that a child might begin to address the problem of word segmentation gradually, paying 
attention to the speech signal now-and-then rather than continuously. Researchers conventionally idealise the 
process by assuming that there is a moment from which the child begins to pay perfect attention to the 
available speech stream. Thus we can incrementally count the incoming utterances, and model word 
segmentation with the child as a perfect learner. This idealisation is no doubt far-fetched, but it is the best 
way to work with the data at present. 
 
 
 
Results & Discussion 
 
In Table 2 we report mean evaluation metrics for our nine segmentation models averaged across the 132 
child corpora after 10,000 utterances. We show the four baseline models – utterance, random, unit and oracle 
– three implementations of TPs, along with DiBS and PUDDLE. The metrics are type, token and boundary 
with the highest-scoring model for each measure being highlighted in bold type. 
 
 
Table 2: Performance of nine word segmentation models after 10,000 utterances: mean type, token and 
boundary precision (P), recall (R) and F-measure (F), where the first four models are the baselines, TP_FTP 
uses forward transitional probabilities, TP_BTP uses backward transitional probabilities, and TP_MI uses 
mutual information. 
 
 

Model Type Token Boundary 

P R F P R F P R F 

Utterance .230 .066 .102 .068 .178 .095 1.00 .423 .592 

Random .070 .122 .088 .075 .275 .115 .439 .712 .541 

Unit .018 .056 .027 .232 .005 .010 .356 1.00 .523 

Oracle .099 .118 .108 .064 .329 .106 .522 .599 .557 

TP_FTP .252 .297 .271 .102 .160 .119 .664 .756 .704 

TP_BTP .220 .241 .229 .070 .144 .092 .631 .692 .657 

TP_MI .294 .172 .216 .094 .308 .141 .848 .564 .676 

DiBS .445 .285 .346 .148 .421 .215 .914 .649 .758 

PUDDLE .579 .616 .592 .360 .431 .378 .825 .902 .854 
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It is apparent from Table 2 that two of the naive baseline strategies by definition show perfect boundary 
precision (the utterance baseline) and boundary recall (the unit baseline) since they were set to only place 
boundaries at utterance boundaries and after every unit, respectively. Conversely, they suffer for lack of 
recall and precision, as reflected in their boundary F scores. Otherwise, PUDDLE shows the best 
performance, out-scoring the other models on all remaining measures. The fact that it performs so much 
better on the type scores – a comparison of proposed and observed vocabularies – is a reflection of its 
specific lexical storage device. Its token scores are relatively high though still indicate that this is the strictest 
measure, since these are the metrics on which it performs worst. Finally, it has the best boundary scores 
overall (F), indicating that 8 times out of 10 it correctly places a boundary (P), and that it recovers 9 in 10 of 
all true boundaries (R). 
 
Aside from the anomalous boundary scores for the utterance and unit approaches, the baselines are on the 
whole the lowest scoring models, as expected given their naive and random methods. The TP models do not 
perform much better than the baselines on token scores, but are much better for type and boundary scores. Of 
the three, the forward transitional probability and mutual information variants outperform the backward 
transitional probability variant, with FTP out-scoring MI on type and boundary F but the reverse being true 
for token F. This indicates firstly that the frequency information from the first phoneme in a diphone gives a 
slightly better cue to segmentation than the second, at least in the languages examined here; and secondly 
that the information from both phonemes helps more with the higher standards of exact token segmentation. 
DiBS is intermediate to TPs and PUDDLE in performance terms, though out-scoring PUDDLE on boundary 
precision, performing almost as well on this score as the utterance baseline. Recall that DiBS learns diphone 
boundary probabilities from utterance-delimited corpora and the high score on this measure, but low 
boundary recall, suggests it is relatively conservative in attempting to segment beyond utterance boundaries. 
 
Pairwise Welch’s t-tests (with Bonferonni adjustment for multiple comparisons) between the set of scores for 
each model and each of the three evaluation F-measures return a very low probability that the scores come 
from the same distribution (p < 0.001). We infer from the means in Table 2 that the overall performance 
ranking of our models is therefore [PUDDLE > DiBS > TPs > baselines]. 
 
Note that the mean values reported in Table 2 disguise a lot of inter-corpus variation, with standard 
deviations of .194, .111 and .081 for the type, token and boundary F-measures respectively. Moreover, 
seventy percentage points separate the maximum and minimum type F scores, 52% separate maximum and 
minimum token F, and there is 32% between top and bottom boundary F. Figure 1 illustrates this variation 
with boxplots representing F-measures for each of the nine models. 
 
 
FIGURE 1 APPROX HERE 
 
Figure 1: F-measure boxplots for each of nine word segmentation models showing performance on 132 
CHILDES corpora, where the thick horizontal bar is the median, the upper and lower limits of the box 
represent the 3rd and 1st quartiles respectively, the whiskers extend as far as 1.5 times the inter-quartile 
range (3rd minus 1st quartile) from the box limits, and any other points are outliers beyond this range 
(plotted with an alpha of 0.25, meaning that it requires 4 points to be overlaid before they appear as solid 
black). 
 
 
It is clear from Figure 1 that the model with the most performance variation is PUDDLE, which may be a 
symptom of its multi-part architecture – with accumulating inventories dependent on lexical and diphone 
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frequencies, order of presentation, and corpus or speaker idiosyncrasies. In other words, the knowledge it 
accumulates is more sensitive to language-specific corpus distributions than the other models. Otherwise the 
points are relatively tightly packed, with TP backward transitional probabilities and DiBS showing the next 
most variance after PUDDLE. 
 
Meanwhile performance variation by corpus language is another focus of these experiments, and thus in 
Table 3 we report mean F-measures from PUDDLE averaged for the corpora in each language, with 
language family classifications from Glottolog (Hammarström, Forkel & Haspelmath, 2018), using the first 
or second classification level, whichever is the more specific1. The table is presented in descending order by 
token F-measure since it is the strictest evaluation metric. 
 
 
Table 3: Mean PUDDLE type, token and boundary F-measures per language after 10,000 utterances, with 
the number of corpora per language and standard deviations in parentheses for languages with multiple 
corpora. 
 

Language Family N.Corpora Type F Token F Boundary F 

Mandarin Sinitic 2 .901 (.030) .697 (.051) .970 (.009) 

German Germanic 10 .787 (.026) .497 (.016) .927 (.012) 

Danish Germanic 2 .788 (.014) .494 (.024) .936 (.002) 

Swedish Germanic 4 .625 (.019) .477 (.032) .876 (.006) 

Icelandic Germanic 1 .652 (-) .477 (-) .879 (-) 

Greek Graeco-Phrygian 1 .581 (-) .426 (-) .861 (-) 

Norwegian Germanic 1 .603 (-) .420 (-) .854 (-) 

Dutch Germanic 10 .659 (.028) .418 (.034) .882 (.011) 

English 
(N.Am.) 

Germanic 28 .716 (.026) .414 (.034) .902 (.011) 

English 
(U.K.) 

Germanic 18 .702 (.098) .411 (.054) .897 (.043) 

Farsi Indo-Iranian 2 .539 (.048) .394 (.049) .848 (.027) 

Estonian Finnic 2 .534 (.006) .392 (.015) .821 (.001) 

Serbian Balto-Slavic 8 .412 (.025) .362 (.017) .797 (.008) 

Romanian Italic 1 .476 (-) .360 (-) .829 (-) 

Cantonese Sinitic 6 .848 (.018) .351 (.024) .950 (.006) 

Turkish Common Turkic 1 .377 (-) .350 (-) .780 (-) 

                                                
1 For instance, we opt to label German as Germanic (its 2nd level classification) rather than Indo-European (its 1st level 
classification); Hungarian on the other hand has Uralic as its 1st level classification but no further sub-classifications. 
Basque meanwhile is of no known family grouping: https://glottolog.org/resource/languoid/id/basq1248 
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Irish Celtic 1 .544 (-) .337 (-) .831 (-) 

Croatian Balto-Slavic 2 .380 (.008) .324 (.004) .761 (.002) 

Indonesian Malayo-Polynesian 4 .275 (.033) .303 (.027) .763 (.023) 

Italian Italic 1 .362 (-) .302 (-) .767 (-) 

French Italic 2 .556 (.016) .294 (.010) .840 (.004) 

Portuguese 
(Br.) 

Italic 1 .497 (-) .265 (-) .826 (-) 

Portuguese 
(Pt.) 

Italic 3 .478 (.021) .261 (.023) .819 (.010) 

Spanish Italic 7 .359 (.024) .239 (.018) .770 (.016) 

Hungarian Uralic 3 .295 (.031) .236 (.030) .720 (.020) 

Korean Koreanic 3 .212 (.030) .233 (.047) .675 (.042) 

Japanese Japanesic 7 .272 (.058) .210 (.044) .711 (.040) 

Basque Unknown 1 .173 (-) .174 (-) .650 (-) 

 
 
It is apparent from Table 3, for PUDDLE at least, that Mandarin Chinese stands out as the most successfully 
segmented after 10,000 utterances, by all three measures, whereas Basque is segmented least successfully. 
By examining the diphone systems of these two languages, we find that Mandarin has a smaller (n=351) set 
of diphones which are almost completely organised into those which do and do not occur next to a word 
boundary: 255 of those diphones have a boundary probability greater than 0.9; 87 have a probability less 
than 0.1, leaving just 9 in the intermediate zone. Basque, on the other hand, has a larger (n=503) set which is 
organised in a more variable way as concerns boundary juxtaposition: 88 have a boundary probability greater 
than 0.9, 179 have a boundary probability less than 0.1, meaning 236 have probabilities intermediate to those 
two thresholds. We propose that much of the performance difference between these two language may be 
ascribed to these two very different diphone systems, as PUDDLE accumulates a frequency list of boundary-
occurring diphones as it encounters them. To further verify this proposal, we would need to undertake 
psycholinguistic work with infants to see if they can learn novel words positioned between diphones varying 
in their strength of boundary cue, and in languages varying in orderliness of diphone systems. 
 
Another notable outcome is how Danish can be segmented relatively well, given the literature indicating that 
it is hard to segment because of its high ‘vocoid’ content (Basbøll, 2005). Vocoids are segments produced 
without vocal tract constriction: i.e. vowels, semi-vowels and non-lateral approximants. They are contrasted 
with ‘contoids’ which do involve vocal tract constriction: obstruents, nasals and lateral approximants. 
Vocoid-only utterances are not uncommon in Danish (e.g. jeg er ude, [jɑ ɑ u:ðə] ‘I am out’) and it has been 
suggested that contoids are stronger cues for segmentation than vocoids, thereby making Danish hard to 
segment (Nespor, Peña & Mehler, 2003; Bleses et al, 2008; Basbøll, 2012). Trecca and colleagues (in press) 
simulate a high vocoid artificial language only to find that human subjects do not show the expected 
difficulty with segmentation of such a speech stream. We remain agnostic but intrigued by this matter, and 
anticipate that vowel-consonant and vocoid-contoid annotation of the corpora will offer new insight in future 
work. We do note, however, that phonemic transcriptions and artificial languages offer an idealised version 
of the stimulus in which all units are equally and independently recognisable to the learner. It may be that the 
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renowned difficulty of human speech recognition and learning in, for instance, Danish (Bleses, Basbøll & 
Vach, 2011; Schüppert, Hilton & Gooskens, 2016; Trecca, Bleses, Madsen & Christiansen, 2018) is a result 
of phonetic or suprasegmental factors, or the accumulatve effect of vocoid sequences. According to one 
observer, Danish is characterised by “an abundance of vowels, weak syllable codas, unstressed syllables 
without any vowel sound, and fairly inexpressive prosody”; perceptually, then, Danish is a “hard nut to 
crack” (Grønnum, 2003). In these experiments, phonemes and diphones are treated independently: a 
sequence of six contoids or vocoids is dealt with as any other sequence of six units, even if in reality they 
may be difficult to perceive, or unlicensed in the language. 
 
The Germanic and Italic languages cluster around separately-similar levels of performance. This could 
simply be symptomatic of the high number of languages from these families in our set of corpora, but it does 
seem to indicate that the segmentation algorithms particularly favour the Germanic family – whether as a 
result of their design or the properties of this language family is open to debate. The Italic languages cluster 
to a fairly similar level of performance as well, though less successfully than the Germanic group. As 
explained above, our sample of corpora from CHILDES was opportunistic, though maximal, and therefore 
we did not control for language family, nor do we have sufficient representatives of families other than 
Germanic or Italic to come to strong conclusions. However, it does appear that language families group 
together, even if the performance of PUDDLE on Mandarin and Cantonese offers an obvious counter-
example. 
 
We also investigated how model performance varies over time – where the number of input utterances acts 
as a proxy for time (since we maintain the temporal order in the transcriptions) – by carrying out 
segmentation experiments for each of our nine models at every 1000 utterance increase in corpus size. We 
opt to use the token F-measure to illustrate change over time, since this is the strictest comparison with the 
gold standard. Figure 2 illustrates how token F changes for each segmentation model as they are exposed to 
the corpora in one thousand token increments, with boxplots summarising all scores. What becomes apparent 
from this visualisation is that the models on the whole deteriorate in token segmentation with increasing 
amounts of input, with the exception of PUDDLE which takes advantage of its knowledge accumulation 
device – its diphone and lexical inventories – and improves with increasing amounts of input. Similar 
improvements over time may be found in type and boundary F-measures. 
 
 
FIGURE 2 APPROX HERE 
 
Figure 2: Token F-measures for nine word segmentation models on 1000-utterance CHILDES corpus 
increments, with boxplots summarising scores as explained in Figure 1. 
 
 
For the baseline and TP models, their purely probabilistic approaches do not benefit from exposure to 
increasing amounts of data. Instead their deteriorating performance may be accounted for by the increasing 
number of word types presented to the learner as corpus size increases, as shown in Figure 3, which prompts 
a higher number of errors in statistics-based approaches. DiBS, on the other hand, does have the opportunity 
to learn over time thanks to its training device which encounters utterance-delimited data in order to learn its 
set of probabilities. However, the serendipity involved in the diphones which will occur in utterance initial 
and final positions in any given language sample in fact means that improvements are empirically hard to 
come by even if in principle they are feasible with the DiBS architecture. 
 
 
FIGURE 3 APPROX HERE 
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Figure 3: Type (vocabulary) size, type-token ratios, the proportion of one-word utterances, word boundary 
diphone entropy (H), the shape (α) of a Zipf-Mandelbrot model of diphone frequencies, and the mean (µ) 
number of phonemes per word in the 132 CHILDES corpora in 1000-utterance increments, with boxplots 
summarising values as explained in Figure 1. 
 
 
In Figure 3 we show how the corpora change as they grow, in terms of our six chosen language properties – 
mean number of phonemes per word, mean tokens per utterance, type-token ratio, the proportion of one-
word utterances, word boundary diphone entropy, and the Zipfian-ness of diphone distributions. Firstly we 
see that the average length of words in phonemes remains fairly stable as the corpora grow, with the high 
word length outlier points being the Korean and Turkish datasets. Utterance length tends to increase slowly 
with most corpora having utterance lengths lower than 10. 
 
TTR rapidly falls away after the first 1000 utterances – that is, relative lexical diversity reduces over time. 
The proportion of one-word utterances is fairly stable throughout, but note that the outliers with high 
proportions are consistently the Japanese and Swedish corpora. This could be an idiosyncrasy of the speakers 
involved but given the consistency of the effect it could be culture or language specific; a matter for further 
investigation. 
 
The entropy of the word boundary diphone system – a measure of uncertainty in the distribution of diphones 
at word boundaries – increases as the corpora grows, indicating that there is more certainty about the 
diphones occurring at word edges in the early stages, which gradually becomes more disordered as the 
vocabulary size grows. Meanwhile the shape of the Zipf-Mandelbrot model fit to diphone frequencies drops 
sharply, showing that the fit deteriorates as the corpora grow: that is, the frequency of diphones becomes 
decreasingly distributed in a Zipfian way.  
 
 
Error analysis 
 
As referred to above, it may be that segmentation of the speech stream does not have to be word-perfect, but 
could involve some under- or over-segmentation which is not necessarily harmful – for example, 
undersegmenting multi-word expressions or oversegmenting compound nouns. Here we undertake some 
small post-hoc analysis of the different models’ segmentation of the opening ten lines of the English (U.K.) 
corpus, Lara (Rowland & Fletcher, 2006). In Table 4 we show the gold-standard transcription in 
orthographic and phonemic form, alongside outputs from our three target models. We select TP_MI to 
represent the TPs approach since it was the most successful of the three TP models in terms of token F.  
 
 
Table 4: Segmentation of the first ten utterances from the Lara corpus by TP_MI, DiBS and PUDDLE; 
under-segmentation is marked by a tilde (~) and over-segmentation is marked by a reference mark (※). 
 

Lara Corpus Gold TP_MI DiBS PUDDLE 

that’s the machine ðats ðə məʃiːn  ðats~ðə~m ※ əʃiːn 
 

ðats ðə~mə ※ ʃiːn ðats ðə~məʃiːn 

you can listen if 
you're good 

juː kan lɪsən ɪf jɔː 
ɡʊd  

juː~kan lɪs ※ 
ən~ɪf~jɔː~ɡʊd 

juː~kan 
lɪsən~ɪf~jɔː~ɡʊd 

juː kan lɪsən ɪf~jɔː 
ɡʊd 

that ðat ðat ðat ðat 
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oh dear əʊ diə  əʊ~diə əʊ diə əʊ diə 

never mind nɛvə maɪnd  n ※ ɛvə~maɪnd nɛvə~maɪnd nɛvə maɪnd 

grandma will wipe 
that off in a minute 

ɡɹandmɑː wɪl waɪp 
ðat ɒf ɪn ɐ mɪnɪt  

ɡɹandmɑː 
wɪl~waɪp ðat 
ɒf~ɪn~ɐ~mɪnɪt 

ɡɹandmɑː wɪl waɪp 
ðat~ɒf~ɪn~ɐ~mɪnɪt 

ɡɹandmɑː wɪl waɪp 
ðat ɒf ɪn ɐ~mɪnɪt 

you do your jigsaw juː duː jɔː dʒɪɡsɔː  juː~duː~jɔː~dʒɪɡ & 
sɔː 

juː~duː~jɔː~dʒɪɡsɔː juː duː jɔː dʒɪɡsɔː 

grandma will wipe 
it in a minute 

ɡɹandmɑː wɪl waɪp 
ɪt ɪn ɐ mɪnɪt  

ɡɹandmɑː 
wɪl~waɪp~ɪt~ɪn~ɐ~
mɪnɪt 

ɡɹandmɑː wɪl 
waɪp~ɪt~ɪn~ɐ~mɪnɪ
t 

ɡɹandmɑː wɪl waɪ 
& p~ɪt ɪn ɐ~mɪnɪt 

shall i go and get a 
cloth and wipe it 

ʃal aɪ ɡəʊ and ɡɛt ɐ 
klɒθ and waɪp ɪt  

ʃal~aɪ~ɡəʊ 
and~ɡɛt~ɐ~klɒθ~a
nd~waɪp~ɪt 

ʃal~aɪ~ɡəʊ 
and~ɡɛt~ɐ~klɒθ~a
nd waɪp~ɪt 

ʃal~aɪ ɡəʊ and ɡɛt 
ɐ~klɒθ and waɪ ※ 
p~ɪt 

alright then ɔːlɹaɪt ðɛn ɔːlɹaɪt~ðɛn ɔːlɹaɪt ðɛn ɔːl ※ ɹaɪt ðɛn 

 
 
The differing levels of success of the three approaches may be seen in this small sample of their 
segmentation outputs. TP_MI’s errors are mainly ones of undersegmentation, though there are some 
damaging oversegmentations of the words machine, listen, never and jigsaw. Some of the 
undersegmentations are more problematic than others: for instance, you can being run together is a feasible 
collocation, but and get a cloth and wipe it is not. 
 
For DiBS there is again an oversegmentation of machine, which combines with undersegmentation of the to 
produce an utterance like, ‘that’s thema sheen’. Otherwise there are again undersegmentation sequences 
which produce extraordinary conglomerated strings: that off in a minute, you do your jigsaw, for example. 
PUDDLE is also guilty of undersegmentation, but omitting only one boundary at a time, in these utterances 
at least. For example there is the_machine, if_you’re, a_minute, and a_cloth. These are reasonable 
collocations of determiners and nouns, or two grammatical items (‘if you’re’). Meanwhile the effect of the 
accumulating lexicon is seen in real word oversegmentations such as ‘all right’ for alright and ‘why pit’ for 
wipe it.  
 
It seems then that our type, token and boundary evaluation measures do fairly represent the performance of 
each model. Examination of the severity of errors, however, does sometimes offer mitigation and indicate 
how the models fail or can be improved. Phillips and Pearl (2015) have proposed ‘utility-based’ evaluation 
metrics which take into account how useful the segmentations are in facilitating further language acquisition, 
or which tally with known prosodic patterns. With sufficient annotation of these corpora and the output of 
the segmentation models, utility-based evaluation metrics may reveal further performance differences 
between TPs, DiBS, PUDDLE – and any other approach for that matter – in further work. 
 
 
 
The effect of language properties on word segmentation models 
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To account for the observed cross-linguistic variance in word segmentation performance, we turn to  
regression modelling of token F-measures for PUDDLE using our defined linguistic properties (mean word 
length, mean utterance length, type-token ratio, the proportion of one-word utterances, word boundary 
diphone entropy, and the Zipfian-ness of diphone distributions) as independent variables. We opt to use 
performance measures for PUDDLE as it is our best model, and we choose token rather than type or 
boundary F as the dependent variable because it is the strictest of the three evaluation methods.  
 
At first we fit a linear regression model in R (R Core Team, 2018) with fixed effects: the six language 
properties listed above, instantiated as six variables (representing Zipfian fit as the alpha and chi-squared 
values from Zipf-Mandelbrot models), and scaled to values between 0 and 1. This model has an R-squared 
value of .252, meaning that it accounts for 25.2% of the variance in the performance measures. For this first 
model, the Akaike Information Criterion (AIC), a measure of goodness-of-fit for which lower values are 
better (Akaike, 1974), is -3055. 
 
On the basis that we expect TTR to have a changing role over time, given that it decreases with increasing 
corpus size (Figure 3), we next fit a model with TTR as an interaction term with corpus size. This new model 
has an R2 of .310 and an AIC of -3160, meaning it has more explanatory power than our initial model.  
 
Having observed that there appears to be some kind of association between segmentation performance and 
language family (Table 3), we now introduce a typological factor. However, there are too few examples of 
most families in our sample, therefore to avoid overfitting we only add logical true/false variables for the 
Germanic and Italic families, ignoring the others. The addition of these two variables (‘is Germanic’ and ‘is 
Italic’) sees R2 increase to .377 and AIC decrease to -3290. 
 
Finally, recognising that there are likely to be idiosyncrasies in each corpus, whether through the selection of 
topics and vocabulary, or through speaker variation, we add an identifier for each of our 132 corpora as a 
random effect, based on literature showing such mixed-effects models to be preferable to ones in which 
speaker and corpus variation is averaged over (Baayen et al, 2008; Winter & Wieling, 2016). We used lme4 
for R to fit this fourth model (Bates, Maechler, Bolker & Walker, 2015), which has a marginal pseudo-R2 of 
.423 (taking only the fixed effects into account) and a conditional pseudo-R2 of .905 (taking both fixed and 
random effects into account), calculated with the R library MuMIn (Bartoń, 2018). The mixed-effects model 
has an AIC of -4714 and is found to be significantly better than the other three models according to analyses 
of variance. A summary of the model is given in Table 5, showing coefficients, standard error and t-tests for 
each effect, mean-centred with jtools in R (Long, 2018). 
 
 
Table 5: Mixed-effects model of PUDDLE token F, showing coefficients and standard errors for the fixed 
effects: mean word length (phonemes/token), mean utterance length (tokens/utterance), type-token ratio 
(TTR), number of utterances, proportion of one-word utterances (OWU proportion), word boundary diphone 
entropy (H(boundary diphones)), and the Zipfian-ness of diphone distributions (shape parameter α, 
goodness-of-fit χ2), member of Germanic and Italic families. 
 

Effect Coefficient Standard error 

(Intercept) 0.47 0.02 

phonemes/token -0.02 0.01 

tokens/utterance 0.03 0.01 
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TTR 0.37 0.03 

n.utterances 0.25 0.02 

TTR*n.utterances 0.20 0.01 

OWU proportion 0.01 0.01 

H(boundary diphones) -0.10 0.01 

Zipf-Mandelbrot α -0.02 0.00 

Zipf-Mandelbrot χ2 0.00 0.00 

is Germanic 0.04 0.02 

is Italic -0.07 0.02 

 
 
As Table 5 shows, the strongest positive effects on segmentation performance are type-token ratio and the 
size of the corpus, an interaction between these two effects, and whether or not the language is of the 
Germanic family. Utterance length and the proportion of one-word utterances show small but positive effects 
on token F. The strongest negative effects are word boundary diphone entropy and whether the language is 
in the Italic family. The negative effect of increasing H(boundary diphones) confirms our hypothesis that 
higher entropy diphone systems are harder to learn as there is more uncertainty about the ‘outcome’, or the 
word boundary status, of each diphone. Note that these factors are analysed in order to account for inter-
corpus differences in PUDDLE word segmentation performance rather than to explain why PUDDLE 
outperforms the other models. For instance, differences in OWU proportions do not correlate with per-corpus 
token F variation, but the facility to learn word boundaries from one-word utterances remains a crucial part 
of the PUDDLE algorithm. Or in other words, PUDDLE learns from the OWUs present in each corpus, 
rather than being affected by how many there are. 
 
 
 
Conclusions & Future Work 
 
We have evaluated three word segmentation models cross-linguistically and over time and found that (a) 
PUDDLE performs best overall; (b) there is wide linguistic variation with differences of 70% between 
minimum and maximum token F scores; (c) PUDDLE is the only model to show improvement over time. 
We went some way to accounting for cross-linguistic variation using six linguistic properties: word length, 
utterance length, type-token ratio, the proportion of one-word utterances, word boundary diphone entropy, 
and parameters from Zipf-Mandelbrot models of diphone distributions. These properties encode qualitative 
features of the child’s linguistic input. How often words are presented ‘as is’ in a single utterance (OWU 
proportion), how many boundaries need to be identified per phoneme and per utterance (word and utterance 
lengths), and how much lexical repetition there is in the input (type-token ratio). The orderliness of the 
diphone system at word edges is represented by its entropy, and Zipfian parameters indicate how skewed the 
distribution of diphones is, our hypothesis being that the more Zipf-like the better for learnability though this 
was not upheld by the study. 
 
This work has focused on the computational models of word segmentation as described in the literature and 
implemented in the wordseg toolkit. We have taken the perspective that the interaction between each model 
and properties of the input languages underpins the performance measures reported above. However, it is not 



Cross-linguistic word segmentation 

necessarily the case that all models hold equal cognitive validity. Firstly, even though phonemes were the 
basic unit used here, TPs in its original formulation actually opts for syllables as the basic unit. The correct 
choice of unit is a debate we do not directly address here, primarily because syllabification resources are not 
available for all the languages in our sample. Therefore the development of such resources and the 
comparison of phonemes and syllables as the basic unit remains a matter for future work. 
 
Moreover, as has been discussed, DiBS either infers diphone probabilities from segmented training data or 
bootstraps them from a supplied lexicon. We did not experiment with the latter setting, but instead tested the 
utterance-delimited training mode only, on the grounds that it is ecologically preferable to a fully word-
delimited training setting. Meanwhile PUDDLE recognises the importance of one-word utterances as a 
means to build and confirm a lexicon which in turn aids subsequent speech segmentation. This, combined 
with its inventory of word-edge diphones, allows PUDDLE to out-perform the other models and furthermore 
show improvement over time. However, this does not mean that PUDDLE is a total representation of how 
infants learn to segment words. Rather, it is the best performing of the statistically-based models we test 
here.  
 
Using mixed-effects regression modelling with our six language properties plus corpus size and language 
families as fixed effects, and the corpora as random effects, we find that we can account for 91% of the 
observed variation in PUDDLE’s performance across corpora. But since only 42% of the explanation is 
assigned to the fixed effects it is clear that the majority of variance remains unexplained other than that it is 
on a per-corpus basis. We surmise that further explanation for variation in word segmentation success must 
come from speaker idiosyncrasies, topic selection and language factors other than the ones we have 
examined in this work. These are likely to be linguistic properties beyond the immediate scope of 
orthographic transcriptions – for instance, prosodic, multimodal and semantic cues which might combine 
with the lexico-phonological features we already consider. 
 
It is likely that distributional information is one of many cues infants attend to in early language input, and 
what we learn from these experiments is that this strategy can at least offer a foothold in breaking down the 
speech stream. As the performance of this approach asymptotes, the learner needs to take account of other 
information sources in order to continue learning to segment words – for instance speech rhythm, as has been 
shown to be useful in the segmentation task (Saksida et al 2017). Such a model might then mimic the switch 
from statistical to stress based cues which has been observed (Johnson & Jusczyk, 2001; Thiessen & Saffran, 
2003). We do not propose that the switch is a matter of one or the other, with prosody ignored until it is 
needed – we know for instance that neonatals are alert to suprasegmental information (Moon, Panneton 
Cooper & Fifer, 1993; Mampe, Friederici, Christophe & Wermke, 2009; May, Byers-Heinlein, Gervain & 
Werker, 2011) – more that all available cues are attended to and processed in different ways at different 
developmental stages. A ‘lexical shift’ in processing skills towards the end of the first year has been 
observed in neurological work, for example, though its onset varies by individual (Kidd, Junge, Spokes, 
Morrison & Cutler, 2018). Word segmentation models accounting for individual differences is another area 
for exploration. 
 
We already highlighted several potential areas for future work. These include but are not limited to: testing 
the models on additional CHILDES corpora and languages as they become available, and accessing 
multimodal files in order to incorporate suprasegmental and paralinguistic cues which might aid in word 
segmentation – at least prosody, gesture and semantics would be psycholinguistically grounded information 
sources to make available to the learner. Furthermore we would like to test whether the predicted order of 
acquisition of words from a given corpus correlates with observed orders in child language corpora 
(Braginsky et al, 2018), polysemous semantic networks learned from that input (Amatuni & Bergelson, 
2017; Casas et al, 2018), how it interacts with the acquisition of morphology and syntax (Frank, Keller & 
Goldwater, 2013), and phonotactic knowledge (Linzen & Gallagher, 2017). In addition, how does the 
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acquisition of a lexicon through learning to segment words facilitate further learning in turn? Since the 
precision and recall metrics are designed for single-point rather than time series reporting, we will need 
adapted or alternative metrics to address this pertinent question (Phillips & Pearl, 2015). We would also like 
to return to the matter of the decay parameter in PUDDLE, as humans are not perfect memorisers, and the 
decay parameter in these experiments was set to zero; instead we should find a set of values for the 
parameter which best reflects observed rates of forgetting. 
 
Overall it remains a challenge to architects of word segmentation models to incorporate observations from 
human performance, especially relating to memory and resource limitations (Frank et al, 2010), prediction 
(Çöltekin, 2017), the tension between learnability and confusability (Dautriche et al, 2017), sensitivity to 
prosody and word location within prosodic structures (Graf Estes & Hurley, 2013; Butler & Frota, 2018), 
and a special role for input strategies such as reduplication (Ota & Skarabela, 2018), vowel harmony (Mintz 
et al, 2018) and sonority sequencing (Ettlinger, Finn & Kam, 2012). In addition we see promise in looking at 
high-frequency sound sequences which are in fact non-words, as these have been shown to be stored by 
infants in a ‘protolexicon’ along with real words (Ngon et al, 2013). If we can collaborate with native 
speakers of the many languages in our dataset, we can in future explore the role of non-words in the input 
and in segmentation. There are also extensions of this work in the area of second language acquisition, where 
it has been shown that learners may acquire a second phonological system in different ways depending on 
exposure to formal instruction or not (Shoemaker & Wauquier, 2019). 
 
Finally, we note that the data are at the same time impoverished and idealised – impoverished because we 
have access to minimal samples of the linguistic input infants are exposed to, and idealised because we 
assume that the speech is perfectly produced, perceived and analysed. Ideally, we would have access to more 
data, and be able to test model predictions with research on vocabulary acquisition over time. The 
availability for research of more naturalistic and comprehensive child language corpora can only improve 
and accelerate our understanding of acquisition in general and word segmentation specifically (Tamis-
LeMonda et al, 2017; Chin et al, 2018; Bergelson et al, 2019).  
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