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Abstract 
Advances in single cell technologies are transforming our understanding of cellular identity. For 

instance, the application of single cell RNA sequencing and mass cytometry technologies to the 

study of immune cell populations in blood, secondary lymphoid organs and the renal tract is 

helping researchers to map the complex immune landscape within the kidney, define cell ontogeny 

and understand the relationship of kidney-resident immune cells with their circulating counterparts. 

These studies also provide insights into the interactions of immune cell populations with 

neighbouring epithelial and endothelial cells in health, and across a range of kidney diseases and 

cancer. These data have translational potential and will aid the identification of drug targets and 

enable a better prediction of off-target effects. The application of single cell technologies to clinical 

renal biopsy samples, or even cells within urine, will improve diagnostic accuracy and assist with 

personalised prognostication for patients with various kidney diseases. A comparison of immune 

cell types in peripheral blood and secondary lymphoid organs in healthy individuals and in patients 

with systemic autoimmune diseases that affect the kidney will also help unravel the mechanisms 

that underpin the breakdown in self-tolerance and propagation of autoimmune responses. 

Together, these immune cell atlases have the potential to transform nephrology.  
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[H1] Introduction  
Advances in single cell technologies are revolutionising our understanding of cellular identity 

across biological disciplines. In the field of immunology, single cell transcriptomic studies have 

revealed an unappreciated complexity of immune cells subsets, identified new cell types, redefined 

cellular ontogeny, and enabled inference of cell fate trajectories and function 1,2. In parallel, a 

heightened awareness that some immune cell populations exist almost exclusively within non-

lymphoid organs3 (Fig. 1), highlights an obvious application for single cell RNA sequencing 

(scRNAseq) to study the identity and function of tissue-resident immune cells. These cells are 

found in small numbers relative to the overall cell composition of individual organs, presenting a 

challenge to standard methods of transcriptional characterisation. In kidneys, this issue is 

particularly problematic due to the limited availability of samples for study, which is in part related 

to the risks associated with percutaneous biopsy. Hence, our understanding of kidney-resident 

immune cells in humans is still fairly rudimentary. This knowledge gap has disease relevance, 

since almost all conditions that affect the kidney involve some level of activation of the immune 

system, either systemically or locally. For example, systemic autoimmune diseases, such as 

systemic lupus erythematosus (SLE), involve peripheral immune dysfunction with the generation of 

autoantibodies, as well as local inflammation in response to the deposition of IgG immune 

complexes in the kidney. Similarly, pyelonephritis and primary glomerulonephritides, such as IgA 

nephropathy, involve overt activation of the immune system. However, tissue-resident cells within 

the kidney can respond to tissue damage that arises from any insult, including ischaemia, toxins 

and renal calculi, and the outcome of this response, in terms of injury resolution or progression to 

chronic inflammation, is likely to determine whether progression to fibrosis occurs4,5 

In this Review, we focus on scRNAseq, reflecting the relative abundance of available publications 

that have used this technology, but also discuss how scATACseq [G], and mass cytometry are 

being applied to study immune cell populations in blood, secondary lymphoid organs, and tissue-

resident cells. These efforts are beginning to map the complex immune landscape within organs, 

and reveal the relationship of tissue-resident immune cells with their circulating counterparts and 

their interaction with neighbouring epithelial and endothelial cells under physiologic conditions and 

across a range of diseases including inflammatory diseases and cancer. These studies are 

relatively new, and many efforts to date lack orthogonal experimental validation. However, the 

application of single cell technologies to the study of immune cells in the kidney holds promise to 

enable better understanding of the role of the immune system in kidney health and in disease 

pathogenesis, as well as facilitate the identification of novel treatment strategies.  

 

 

[H1] Single cell technologies  
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The immune system has evolved to provide defence against microbial pathogens but can also 

respond to tissue damage and to cells that have undergone malignant transformation 6-8. It 

comprises an innate and adaptive system, each with cellular and soluble components. The innate 

arm provides an immediate response with a range of cell types functioning as sentinels and rapid 

effectors distributed throughout the tissues of the body. These cells, including dendritic cells, 

macrophages, neutrophils, and a range of innate lymphocytes have key roles in defence, but also 

in tissue homeostasis and repair. The adaptive arm of the immune system takes time to develop 

and can generate highly specific responses following antigen recognition. Central to these 

responses are B and T lymphocyte receptors that are extremely diverse, and in the case of the B 

cell receptor, can evolve a higher affinity for antigen during the course of an immune response9,10. 

Adaptive immune responses take place in a network of specialised secondary lymphoid organs 

(that is, spleen, tonsils, and lymph nodes), and require the migration of immune cells into these 

structures from blood and lymph11 (Fig. 1).  

 

The earliest efforts of immunologists to understand this complex system involved categorisation of 

different immune cell subsets by virtue of their morphological characteristics, and as technology 

enabled, their expression of different molecular markers. These phenotypically and molecularly 

defined cell subsets were then assigned specific functions and anatomical locations on the basis of 

imaging studies and on in vitro and in vivo perturbation studies — the latter frequently using mice 

as a model system. Flow cytometry, the simplest single cell technology, has been used for several 

decades to assess the molecular composition of immune cells by measuring a handful of markers 

(typically less than 15) on individual cells, with extremely high throughput. Before the widespread 

availability of single cell transcriptomics techniques, transcriptomic studies of immune cells largely 

relied on the measurement of RNA (using gene microarrays or RNA sequencing12,13 (Box 1) in 

heterogeneous, mixed cell populations, for example, in circulating peripheral blood mononuclear 

cells (PBMCs), or in aggregated subsets isolated by flow cytometry, magnetic bead selection or 

density gradient centrifugation. Developments in single cell technologies over the past decade 

have ushered a revolution in our ability to assess immune cell heterogeneity and function in a 

marker-free, unbiased manner1,2. Such approaches generate high-dimensional data [G] that 

enables cells to be grouped according to their expression of a large number of surface markers 

(>40 in mass cytometry, Box 2), or transcriptional signatures (via scRNAseq), or chromatin 

accessibility profiles (via scATACseq, Box 3). Emerging single cell technologies permit multiple 

sources of biological information to be uncovered in parallel, for example, simultaneous high-

dimensional measures of transcript and protein abundance14, or simultaneous measurement of 

transcript abundance and DNA sequence15,16, or chromatin accessibility17. These approaches allow 

regulatory interactions to be probed and enable data-rich definitions of cell type and state. 
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Around 5 years ago, scRNAseq experiments began to probe the cellular constituents of tissues. 

These studies using cell sorting and droplet microfluidic-based methods allowed transcriptionally 

distinct murine splenic immune cell populations and lipopolysaccharide-induced transcriptional 

changes to be delineated18, and highlighted the capability of this technique to characterise the 

temporal development of epithelial cell lineages in murine lung19. The evolution of droplet 

microfluidics [G] and cellular barcoding [G] methods enabled the population structure of 

developing and mature murine tissues to be dissected in an unbiased manner20,21. In the past 

couple of years these methods have paved the way for massive throughput scRNAseq 

experiments capable of generating cell atlas [G]-scale datasets of human and murine tissues 

containing in excess of 100,000 cells22-25. Currently available scRNA sequencing methodologies 

enable cellular or nuclear RNA of single cells to be isolated and profiled using multi-well plates or 

microfluidics (Fig. 2), and have been reviewed in depth elsewhere 23,26.  

 

In addition to facilitating higher throughout scRNAseq methodologies, technological advances have 

enabled simultaneous single-cell surface protein and cellular transcriptome measurements using 

protocols such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)14 or 

RNA expression and protein sequencing (REAP-Seq)27. These methods label cells with antibodies, 

in an analogous way to flow cytometry, however, the antibody is labelled with a DNA barcode 

rather than a fluorophore. This DNA barcode is captured at the same time as the RNA from the 

target cell, separated following the reverse transcription step, and used to prepare a separate cell 

surface protein-specific library. The DNA barcode of the antibody is captured along with the 

barcode that uniquely identifies each cell, enabling single cell quantification of cell surface protein 

expression. The major advantage of this technique over flow cytometry is that it can measure a 

much larger number of proteins. In flow cyometery, the spectral overlap of fluorophores limits the 

number of markers to around 15 proteins; mass cytometry experiments are limited by isotope 

availability to around 40 markers; however, a DNA barcode composed of 8 base pairs, yields up to 

65,536 unique combinations, theoretically permitting thousands of proteins to be measured. To 

date, around a hundred proteins have been measured in a single experiment, and current 

experience suggests that the combined assessment of surface protein and cellular transcriptome 

data can facilitate cell clustering [G]14. Future advances should see the development of barcoded 

epitopes, to enable investigation of antigen-specific B and T cells.  

 

These high-throughput approaches require tissue samples to be dissociated into single cell 

suspensions, often using both physical disaggregation and enzymatic digestion. This approach has 

a number of disadvantages. Firstly, the dissociation process can change the transcriptome and 

proteome of cells, for example, by upregulating stress response genes such as those that encode 

heat shock proteins 28. Secondly, disaggregation of an organ results in loss of information relating 

to the spatial arrangement of cells and their anatomical localisation. The spatial arrangement of 
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cells is uniquely adapted to enable each organ to optimally function. For example, the cortex and 

medulla of the kidney contain different segments of the nephron, and have differing tissue 

environments, with the medulla providing both a hypersaline and hypoxic milieu for resident 

immune cells 29. Therefore, the precise anatomical location of each cell in a single cell 

transcriptomic study must be considered in order to fully appreciate the effect of the local tissue 

environment. Two broad approaches can be used to marry spatial and transcriptional information 

in single-cell analyses (Fig. 2). The first is to link a cellular barcode to the spatial position of the cell 

using spatial transcriptomic protocols30 (Box 4). Alternatively, standard confocal microscopy can 

be used to identify transcripts on tissue sections using RNA probes31 (Box 5).  

 
Alongside developments in spatial and high-throughput methodologies, the field has also seen 

rapid advances in the development of powerful and scalable computational methods to enable 

analysis of large single cell data sets generated by mass cytometry32,33 and scRNAseq 

experiments34. These methods include tools to cluster data, computationally reconstruct 

developmental trajectories, and infer cell-cell communication networks35. Methods have also been 

developed to integrate analysis of single cell transcriptomic datasets generated in distinct 

experimental batches or using differing protocols36-39. Such methods will allow faithful alignment of 

cell types through removal of technical batch effects, and permit sensible comparisons of distinct 

experimental conditions and biological replicates.  

Immunologists have been quick to apply medium and high-throughput scRNAseq approaches to 

human samples to address questions around immune cell heterogeneity, ontogeny, polarisation, 

and fate as well as to identify rare, previously unidentified cell subsets1,40,41. Although these 

experiments have focused on the most easily accessible immune cells — those within the 

circulation — improvements in tissue processing are now enabling investigators to extend their 

remit to relatively rare tissue-resident immune cells42, and to the study of developmental and 

disease states43,44. In the following sections we discuss studies that have used single-cell 

technologies to define immune cells across different cellular compartments, with a focus on human 

studies. These experiments illustrate the potential of these methodologies to address specific 

questions about the immune system and its role in kidney homeostasis and disease. 

 

[H1] Mapping immune cells in blood  
Peripheral blood represents the most easily accessible immune compartment in humans. Most 

immune cells, with the exception of T lymphocytes, develop in the bone marrow and migrate into 

the circulation once mature. As such, blood provides a readily available but incomplete view of 

whole organism immune status. As outlined in the below sections, the application of single-cell 

technologies to study peripheral blood leukocytes has the potential to deliver a number of insights 

into immune cell biology (Fig. 3). Moreover, since many kidney diseases arise from perturbations 

in systemic immune cell populations, better profiling of circulating immune cells might aid disease 
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diagnosis and prognostication, improve understanding of disease mechanisms and facilitate the 

development of biomarkers of disease activity.  

 

[H2] Unbiased mapping of blood  
Before the advent of scRNAseq, efforts to probe heterogeneity within circulating cell subsets relied 

on the use of known markers to identify and profile cell frequency, cell transcripts, and cell 

function. The availability of scRNAseq approaches allows researchers to profile circulating cells in 

an unbiased manner — an approach that has the potential to improve our understanding of the 

heterogeneity and relationships of circulating cells. One example is a study that performed 

scRNAseq of 68,000 PBMCs to delineate the global structure of lymphoid and myeloid cell 

populations in peripheral blood, highlighting the ability of this approach to characterise rare 

subsets, and providing a useful reference dataset to enable comparisons with disease states22.  

 

[H2] Identification of novel cell types  

In addition to its ability to profile large volumes of cells in an unbiased manner, scRNAseq can 

provide insights into cellular heterogeneity within the circulating compartment, and identify novel 

cell subsets (Figure 3a). If the novel subsets are rare their identification may require pre-

enrichment of a specific immune cell population of interest using known markers to ensure a 

reasonable number of cells are available for analysis. Once enriched, scRNAseq can be applied to 

a cell population to assess whether additional diversity, or indeed, rare novel immune cell subsets, 

exist. Much of the effort to date in this regard has focused on conventional dendritic cells (cDCs), 

which are important antigen presenting cells (APCs) that have a critical role in initiating adaptive 

immune responses by activating CD4+ T cells45. Two major subsets of cDCs exist: cDC1 express 

CLEC9A and CD141 and cross-present antigen, whereas cDC2 express CD1c and function as 

classical APCs. A study that performed plate-based scRNAseq on 2,400 sorted mononuclear 

phagocytes (MNPs), including monocytes, cDCs and plasmacytoid dendritic cells (pDCs), to better 

understand cDC heterogeneity without relying on surface marker expression, identified dendritic 

cells corresponding to the previously described cDC2 and cDC1 subsets, as well as an additional 

inflammatory population of cDC2 cells46. This approach enabled the researchers to distinguish 

pDCs from a novel population of dendritic cells that expressed AXL and SIGLEC6 (termed ‘AS’ 

dendritic cells). These AS dendritic cells were functionally and morphologically distinct from 

pDCs,.underscoring the ability of single cell technologies to identify rare novel immune cell 

subsets. 

 

[H2] Characterisation of cell precursors  
Immune cell precursors can be identified by assessing transcriptional similarities between 

immature immune cells in bone marrow and mature immune cells in blood, and by plotting 

transcriptional trajectories between developmental stages (Figure 3b). Most studies that have used 
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scRNAseq in this context have attempted to characterise the precursors of cDCs (pre-cDCs). 

cDCs arise from a bone marrow-derived progenitor cell — the common DC progenitor — that 

differentiates into a pre-cDC, which is the direct precursor of cDCs. A study that sought to address 

whether pre-cDCs were already polarized towards a cDC1 or cDC2 fate by performing scRNAseq 

on isolated cDC1 and cDC2 from peripheral blood and pre-cDCs from cord blood found that pre-

cDCs consist of two distinct precursor populations that are committed to becoming either cDC1 or 

cDC2 47. A separate study that performed scRNAseq of flow cytometry-sorted cDCs identified a 

rare cDC progenitor in adult peripheral blood, which was proposed to give rise to pre-DC1 and pre-

DC246. The nature of circulating DC precursors was further refined by another study48, which 

combined mass cytometry [G] (CyTOF) and scRNAseq to identify a human blood DC precursor, 

characterized by the markers CD123, CD33 and CD45RA. These pre-DCs shared surface markers 

with pDCs and had distinct functional properties that were previously attributed to pDCs. Moreover, 

tracing the differentiation of DCs from bone marrow to peripheral blood led to the identification of 

distinct lineage-committed subpopulations of pre-DCs48. 

 

[H2] Ex vivo perturbation studies  
It is well established that immune cells within a specific subset do not respond homeogeneously to 

stimuli. Single cell technologies are ideal tools with which to delineate the mechanisms that 

underlie this heterogeneous response (Figure 3c). For example, transcriptional changes that occur 

in response to a stimulus can be analysed in single cells, as has been done in studies of 

lipopolysaccharide-stimulated murine splenocytes18. A more sophisticated approach used an 

innovative droplet-based microfluidic platform that combined single-cell cytokine analysis with 

scRNA-seq profiling to investigate the production of type I interferon by human peripheral blood-

derived pDCs in response to stimulation with toll-like receptor ligands 49. By modulating the droplet 

microenvironment, the researchers showed that production of type I interferon was limited to a 

small subpopulation of individually stimulated pDCs, and that this function was controlled by 

stochastic gene regulation. In fact, the pDC cytokine response was driven by a cell-autonomous 

type I interferon amplification loop49. 

 

[H2] Understanding cellular function  
Early attempts to understand the nature and mechanisms of immune cell dysfunction in patients 

with systemic autoimmune diseases, including those that affect the kidney, predominantly involved 

transcriptional profiling of bulk PBMCs. These studies provided some insights into the molecular 

changes that occur in the context of immune cell dysfunction, for example, with the identification of 

a type 1 interferon signature in patients with systemic lupus erythematosus 50. Further insights into 

the exact cell subset(s) that mediate disease-associated transcriptional changes were achieved by 

profiling populations in bulk after they had been isolated using flow cytometry. For example, one 

2015 study showed that a CD8+ T cell exhaustion signature identified patients with a better 
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prognosis and lower rate of relapse across multiple autoimmune diseases51. These studies 

generally included hundreds of cases and controls — a scale that currently prohibits the 

application of scRNAseq technologies to study peripheral blood samples, owing to the expense of 

this approach. However, as the cost of these technologies fall and throughput increases, it will 

become feasible to perform scRNAseq studies of peripheral blood samples from patients and 

healthy controls, with the potential to further resolve causative cell subsets and pathways (Figure 

3d). 

The first steps in this direction have already been taken. For example, a high throughput 

scRNASeq study of PBMCs leveraged the sequence variation present in transcriptomic data to 

differentiate host-derived and donor-derived cells amongst bone marrow mononuclear cells before 

and after allogeneic bone marrow transplantation22. This example highlights the potential of this 

approach to improve our understanding of the fates of host and donor-derived cells in the context 

of stem cell and bone marrow transplantation, or in the context of solid organ transplantation.  

 

 

 
[H1] Immune cells in secondary lymphoid organs  
 

Secondary lymphoid organs represent the sites at which adaptive immune responses are 

generated. This process requires precise spatial localisation of B and T lymphocytes and APCs in 

a dynamic manner that is orchestrated by stromal cells within the lymph nodes and spleen11. High 

dimensional single cell studies in secondary lymphoid organs in humans are sparse, although 

studies in mice illustrate the potential utility of these technologies to track antigen-specific B and T 

cell clones; to study immune cell subsets that do not circulate, but are limited to peripheral organs 

and secondary lymphoid tissues; and to probe interactions between the immune and stromal 

compartments of lymph node (Fig. 4). 

 
[H2] Antigen-specific lymphocyte clones  
B and T lymphocyte receptors are central to the generation of adaptive immune responses. The 

genomic regions that encode the antigen recognition domains of these receptors undergo 

extensive reorganisation events in a process termed V(D)J recombination, to generate extremely 

diverse repertoires of receptors that are capable of specific binding to self and non-self antigen. 

Over the course of an adaptive immune response, selection and expansion of antigen-specific 

lymphocytes ensures that the response is robust and specific. Specificity in antibody responses 

are further refined by the evolution of increased antigen affinity of B cell receptors and their 

secreted antibodies over the course of an immune response10. Clonal diversity at the single cell 

level can be assessed by RNA sequencing (Figure 4a)40,52,53, and has been used to track the fates 

of distinct T lymphocyte clones through the time-course of salmonella and malaria infection in 
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murine models40,54. These methods have also gained traction for the study of immune system 

development. For example, T memory lymphocytes in human fetal gut exhibit clonal expansion 

when compared to their naïve counterparts, suggesting the existence of a tissue-resident adaptive 

immune architecture that is primed for post-natal colonisation55. Further application of these 

techniques is likely to assist our understanding of the clonal landscape of tissue-resident 

lymphocytes in immune development, homeostasis, infection, and in the context of allograft 

tolerance and rejection. 
 

[H2] Profiling non-circulating immune cells  
Some immune cell subsets are present in very small numbers within the circulation, or do not 

circulate, remaining within tissues or secondary lymphoid organs. Therefore, studying secondary 

lymphoid organs directly represents a useful strategy to better understand the biology of these 

cells (Figure 4b). These non-circulating immune cells include subsets of resident macrophages 

that have specialised functions within lymph nodes and spleen, such as lymph node subcapsular 

sinus macrophages [G], splenic red pulp macrophages [G] and marginal zone macrophages [G]. 
In addition, many innate lymphocytes have a very limited presence in the circulation, which has 

prompted investigators to focus their efforts on lymphoid organs. One study mapped the 

transcriptional profile of natural killer (NK) cells and the three canonical subsets of non-cytotoxic 

innate lymphoid cells [G] (ILCs) among flow-sorted lymphocytes that expressed CD127 but not 

antigen-specific T cell receptors from human tonsils,.and demonstrated heterogeneity amongst 

ILC3 cells56. Another study that applied scRNAseq to splenic and blood NK cells reported 

substantial transcriptional heterogeneity within blood and splenic NK cell populations from both 

mice and humans, but identified two broad NK cell subsets that were conserved across organs and 

species57. These NK populations exhibited divergent functional profiles, with ‘NK1’ cells 

demonstrating enrichment for a cytotoxic profile, and ‘NK2’ cells enriching for a chemokine 

expression profile, expressing the conserved dendritic cell chemokine gene XCL1 57.  
 

[H2] Immune-stromal cell interactions  
Stromal cells within lymph nodes and spleen have a critical role in organising immune cells into 

specific niches to enable the sequential immune cell interactions that are required to generate an 

effective immune response58. The positioning of B cells within follicles is orchestrated by follicular 

dendritic cells and marginal reticular cells — a stromal cell subset that produces B cell-attracting 

chemokines such as CXCL13, and cytokines such as BAFF, which promote B cell survival59. In the 

T cell zone, CCL21-expressing and CCL19-expressing stromal cells, termed T-zone reticular cells 

(TRCs), attract CCR7-expressing lymphocytes60. One study that used droplet-based scRNAseq to 

study sorted CD45 and CD31 double-negative murine lymph node stromal cells under homeostatic 

conditions and following viral challenge, identified nine clusters of stromal cells61. These clusters 

included known subsets, but also included several novel subsets. Specifically, the researchers 
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noted heterogeneity within the TRCs, with a population of CCL19low TRCs located at the perimeter 

of the T cell zone and CXCL9-positive TRCs within the T-zone and interfollicular region, as well as 

CD34-expressing stromal cells in the capsule and medullary vessels, indolethylamine N-

methyltransferase-positive stromal cells in the medullary cords, and a population of Nr4a1-positive 

stromal cells that were more broadly distributed. Their work further refines our understanding of 

stromal cells within the lymph node, and suggests that some subsets seem to be in an activated 

state, even in homeostasis (Figure 4b)61. Extending these studies to human lymph node and 

spleen will improve our understanding of how to promote or inhibit different elements of the 

adaptive immune response, potentially those that contribute to autoimmune or allo-immune 

responses. 

 

 

[H1] Immune cells in non-lymphoid organs  
All organs, including the kidney, contain a network of immune cells that mediate responses to 

damaged tissue and microbial challenge and contribute to the maintenance of organ homeostasis. 

Much of our knowledge of tissue-resident immune cells has been obtained from studies in mice62; 

much less is known about human tissue-resident immune cells owing to the limited availability of 

fresh tissue samples. An additional challenge is presented by the small number of tissue-resident 

immune cells relative to those in epithelial and endothelial compartments. Therefore studies that 

measure the transcriptome of bulk tissue samples are likely to miss important immune cell-specific 

transcriptional signatures, as these are dominated by the strong signal obtained from the more 

numerous epithelial cells. scRNAseq can overcome this problem. Studies in mice indicate that the 

non-immune compartment of organs that interface with the environment, such as gut and skin, 

might also contribute to pathogen sensing and tissue defense63. Moreover, cross-talk also occurs 

between epithelial cells and immune cells, for example, to orchestrate the specific anatomical 

positioning of immune cells via chemokine production, as observed in the kidney29. Indeed, local 

immune responses and subsequent tissue repair are the consequence of the coordinated 

interaction between immune and non-immune cells64. scRNAseq studies of organs, such as the 

kidney, under homeostatic conditions have potential to reveal the true heterogeneity of immune 

cell populations within non-lymphoid organs, aid our understanding of immune cell ontogeny and 

adaptation to tissue environment, and their interactions with non-immune cells within the organ 

environment (Fig. 5). 

 
[H2] Immune cell heterogeneity 
Studies of immune cells in human organs have frequently relied on the application of microscopy 

to biopsy or post-mortem samples. However, this approach is limited in its ability to assess the 

heterogeneity of immune cells within a sample by the number of markers (<4) that can be 

simultaneously assessed. Microscopy also relies on the availability of specific antibodies for known 
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immune cell markers that bind to fixed tissue sections. Inevitably, this limitation has resulted in an 

incomplete appreciation of the heterogeneity of immune cell subsets that are resident within 

human organs. scRNAseq has the potential to deliver an unbiased assessment of tissue-resident 

immune cells, but might require a selection step, for example, using flow sorting, magnetic bead 

selection, or density gradient centrifugation to enrich for rarer populations within a sample (Figure 

5a).  

A good example of the power of this technology to generate a comprehensive map of immune cells 

within an organ is provided by a 2019 study of human lungs65. By performing scRNAseq on biopsy 

samples from different parts of the airways, the researchers were able to identify neutrophils, mast 

cells, macrophages, dendritic cells, NK cells and B and T lymphocytes, as well as a novel subset 

of migratory CD4+ T cell with features of both circulating memory cells and tissue-resident memory 

cells. The study also confirmed the presence of the pulmonary ionocyte, a lung epithelial cell 

population previously identified by scRNAseq studies that uniquely expresses the CFTR gene (that 

is, the gene mutated in cystic fibrosis)66,67. This small population of cells are now thought to 

represent the major source of physiological CFTR activity in the airway epithelium, with important 

implications for cystic fibrosis research. 

Similarly, a study of five healthy human liver samples that sequenced 8,444 cells led to the 

identification of 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, 

hepatic stellate cells, B cells, plasma cells, conventional αβ CD4+ and CD8+ T cells, γδ T cells, NK-

like cells, and distinct intrahepatic mononuclear phagocyte populations68. The latter included two 

CD68-expressing macrophage populations, one with a more pro-inflammatory and the other a 

more tolerogenic transcriptional identity.  

Together these studies illustrate the potential of scRNAseq to describe immune cell heterogeneity 

in healthy tissues, and provide a platform to investigate how these cells contribute to organ 

homeostasis, and how they change in disease. 

  

[H2] Immune cell ontogeny  

Fate-mapping studies in mice have established that tissue macrophages can originate from yolk-

sac or fetal liver progenitors that are seeded pre-natally or from haematopoetic stem cells and are 

continually replenished from the circulating monocyte pool69,70. As described for circulating cells, 

quantification of transcriptional similarities and trajectories between potential precursors and 

differentiated tissue macrophages based on scRNAseq data can enable macrophage ontogeny to 

be inferred (Figure 5b).  

 

[H2] Tissue specification  

The environment generated by the homeostatic function of each organ in the body is unique, and 

affects the basal activation state and transcriptome of immune cells resident within the organ. For 

example, immune cells in the gut must adapt to their close proximity to trillions of microbes within 
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the intestinal lumen, whereas those within the medulla of the kidney are exposed to a markedly 

hypersaline environment. Studies of mouse macrophages show that tissue-specific transcriptional 

signatures are adopted by macrophages residing within different organs as a consequence of cues 

from the local cellular neighbourhood and by sampling of the surrounding milieu71. A comparison of 

immune cell subsets in different organs using scRNAseq will provide even greater insights into the 

granularity of organ-specific signatures of tissue-resident immune cells (Figure 5c). Moreover, the 

ability to perform such studies on cells from human organs is now a realistic prospect, since the 

infrastructure to take multiple samples from organ donors has been established in a number of 

centres72. 

 

[H2] Immune cell interactions 
Tissue-resident immune cells occupy a specific niche, in which surrounding cells produce the 

chemokines required to attract and contain them, as well as the survival factors needed to stay 

viable. Immune cells that arrive from the circulation must also interact closely with the vascular 

endothelial cells within the organ. In addition, murine studies over the last few years have shown 

that some tissue resident immune cells interact closely, and may even directly connect, with 

electrically excitable tissue. For example, cardiac macrophages form gap junctions with the 

specialised cardiomyocytes of the cardiac conducting system to facilitate electrical conduction 73. 

In the gut, macrophages interact with enteric neurons to promote peristalsis [G]74,75, with some 

transcriptionally distinct macrophage subsets in close apposition with the tissue vasculature75. 

scRNAseq provides a means to interrogate the basis for these interactions, since a catalogue of 

receptor and ligand expression can be generated for every cell type, and interactions inferred from 

these data (Figure 5d). A number of investigators have now used this approach to study the nature 

of immune cell interactions within tissues. For example, use of scRNAseq to explore ligand–

receptor cross-talk within developing mouse lung tissue demonstrated that lung-resident basophils 

are primed by signals (IL-33 and GM-CSF) produced within the lung environment, whereupon the 

basophils adopt a distinct resident transcriptional signature, which enables them to support 

alveolar macrophage development76. Another study that used using scRNAseq to characterise the 

murine intestine epithelium within the gastrointestinal tract demonstrated a variety of subtypes of 

cells and shed light on how these cells maintain homeostasis and interact with pathogens 77. 

Furthermore, this study identified two specific subsets of tuft cells, one of which expressed Tslp, a 

key molecule that promotes T helper (Th) 2 responses by Th2 CD4+ T cells and ILC2s77, which 

mediate epithelial-immune cross-talk.  

Other large-scale profiling studies are poised to deliver analogous insights into the signalling 

networks that operate other organs. To date, the most comprehensive effort to interrogate cell-cell 

communication in a human organ system was done using human placental tissue. Use of 

scRNAseq to map signalling networks within human placenta at single cell resolution distinguished 

an array of maternal and fetal, as well as immune and non-immune cell types 35. The researchers 
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involved in that study also generated a tool, called CellPhoneDB (https://www.cellphonedb.org/), 

to interrogate the expression of ligand-receptor pairs on different cell types to facilitate the analysis 

of immune cell interactions with other tissue-resident cell types. . This tool is now publically 

available for application to scRNAseq datasets. 

 

[H2] Anatomical localisation 
As detailed earlier, high-throughput scRNAseq and mass cytometry experiments utilise 

disaggregated tissue samples, with inevitable loss of information regarding the anatomical location 

of cells within organs (Figure 5e). Numerous examples show that specific positioning of immune 

cells within organs is needed to optimise organ defence and function. In the skin, for example, DCs 

are located adjacent to hair follicles to enable optimal sampling of skin commensals 78 whilst 

kidney macrophages with a high phagocytic capability are located in the medulla and pelvis, 

poised to deal with bacteria ascending from the bladder29. Experiments using dissociated tissue 

samples can be resolved at the macro-anatomical scale through reference to the biopsy position; 

however, spatial transcriptomic methods will be required to understand how specific cell 

populations interact in three dimensional space.  

 

[H2] Immunity in ageing and disease  
scRNAseq also has the potential to address a number of important questions about how immune 

cells within tissues change during ageing and disease. Several examples exist in which 

investigators have compared the transcriptome of single cells from diseased or aged tissues with 

that of cells from healthy or young tissues. A 2019 study that used paired mass cytometry and 

scRNAseq to explore the cellular landscape of inflammed and non-inflamed ileum from patients 

with Crohn’s disease demonstrated an enrichment of inflammatory macrophages and mature 

dendritic cells in inflamed tissue, with organisation of a module of pathogenic cells through putative 

signalling from inflammatory macrophages79. The expression of genes associated with this cellular 

module was associated with resistance to anti-TNF therapy, potentially providing a framework for 

stratifying patients at diagnosis79. A separate study of patients with rheumatoid arthritis performed 

scRNAseq on more than 20,000 synovial cells taken at the time of arthoplasty. This approach 

identified 13 cell clusters, including CD4+ and CD8+ T cells, B cells, plasma cells, NK cells, 

macrophages, dendritic cells and mast cells, as well as several different types of fibroblasts. 

Inflammatory cytokine gene modules were enriched in immune cells, and a subcluster of NK cells 

was found to have high expression of XCL1 and XCL2 — chemokines that have previously been 

shown to regulate matrix metalloproteinase secretion by fibroblasts43, suggestive of cell-cell 

interactions that potentially drive disease.  

In contrast to tissues with mucosal, external facing environments, the central nervous system 

(CNS) represents a sterile, immune privileged site. Microglia represent the resident mononuclear 

phagocyte population in the human CNS, and are thought to have a variety of roles in health and 
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disease. scRNAseq has been used to profile mouse and human brain cells, allowing the 

identification and characterisation of microglia and perivascular macrophages25,80,81. This approach 

has been extended to a mouse model of Alzheimer’s disease, enabling the identification of a 

distinct population of microglia associated with neurodegeneration termed ‘disease associated 

microglia’ (DAM)82. These cells are postulated to sense and respond to neurodegeneration, and 

elicit a protective response 82. Interestingly, scRNAseq of immune cells within cerebrospinal fluid of 

patients with HIV infection identified a rare population of microglia that were enriched for the same 

DAM signature identified in mice with Alzheimer’s disease 44. Efforts to better characterise the 

diverse microglial populations within the human brain, and their association with disease are on-

going. For instance, one study used massively parallel scRNAseq [G], single-molecule 

fluorescence in-situ hybridization, and immunohistochemistry to interrogate the transcriptional and 

protein profile of microglia in mice and humans, in development, health and disease83. In an 

analysis of cortical microglia from healthy human brain and from the brains of patients with multiple 

sclerosis, researchers identified seven clusters of microglia, including two that were enriched in, 

and one that was exclusive to, the brains of patients with multiple sclerosis83. These data show that 

even in health, there is heterogeneity within the microglial compartment in humans as well as 

transcriptionally distinct disease-associated subsets. A separate study, published in preprint form, 

that profiled microglial populations from healthy brains and from brains of patients affected by a 

number of diseases including Alzhiemer’s disease and multiple sclerosis, demonstrated disease-

associated diversity in microglial transcriptomes, consistent with the DAM expression profiles 

identified in mice82,84. The same research group also examined microglia from elderly individuals 

and identified a set of genes that are preferentially expressed by microglia in the aged human brain 

and enriched in susceptibility genes for Alzheimer's disease and multiple sclerosis 42. 

 
Tumours represent unique disease states and alter the tissue milieu to create an environment that 

suppresses immune cell activation. There is a great deal of interest in using single cell 

technologies to better understand the mechanisms that underpin this phenomenon. For instance, a 

number of groups have combined scRNAseq with T cell receptor reconstruction [G] to better 

understand the mechanisms that regulate tumour-associated T cell clonality and dysfunction in 

various cancers, including in hepatocellular carcinoma, ovarian and colorectal cancers85-87. 

 

These studies together illustrate the potential of single cell technologies to provide important 

insights into tissue immunity in health and disease, and provide interesting concepts that can be 

applied to the study of human kidney immunity. 

 

 

[H1] Kidney immunity and disease  
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[H2] Kidney immune populations in health  

The kidneys have a critical role in the maintenance of whole-body homeostasis, by excreting waste 

and acid and maintaining electrolyte and water balance. They also produce a hormone 

(erythropoietin) that stimulates the production of red blood cells to prevent anaemia, and an 

enzyme (1α-hydroxylase) that generates the active form of vitamin D to preserve levels of calcium 

and phosphate, and bone health. A variety of cells in the kidney — including epithelial, mesangial, 

endothelial and neuronal cells, as well as a network of immune cells — interact to maintain normal 

kidney function. Within the kidney tissue environment,.substantial regional differences exist as a 

result of its homeostatic functions (Fig. 5E). In particular, a high interstitial sodium concentration is 

established within the medulla and inner regions of the kidney, primarily as a result of ion transport 

within the loop of Henle, which is required for the kidney to achieve its homeostatic function of 

water reabsorption88. The kidney is also a dynamic environment, with modulation of the intrarenal 

sodium gradient depending on physiological need. For example, in response to dehydration and 

elevated serum osmolality, vasopressin secreted by the posterior pituitary increases the 

reabsorption of free water by the kidney and generates a further increase in interstitial sodium 

concentration in the medulla89,90. As well as differences in salinity, marked regional differences in 

oxygenation are also evident. The blood supply to the distal nephron varies according the degree 

of vasoconstriction in the afferent glomerular arteriole, and this supply, together with the high 

metabolic demands of the tubular cells as they transport electrolytes, glucose and amino acids 

from the tubular space to the interstitium, leads to varying levels of hypoxia in the medulla. These 

environmental conditions are likely to have powerful roles in shaping the immune architecture of 

the organ, either through direct effects on immune cells, or mediated by epithelial, endothelial, or 

stroma cells.  

The first attempt to provide a transcriptional map of cells within the kidney was performed in 

healthy mouse kidneys. Using unbiased scRNAseq approach, Park and colleagues identified major 

subtypes of nephron epithelial cells, including podocytes, proximal tubule epithelial cells, Loop of 

Henle, distal tubule, and collecting duct cells91. The collecting duct cell populations contained a 

novel transitional cell type that was capable of interconverting between intercalated and principal 

cells, confirming findings in a preceding small-scale scRNAseq study of murine collecting duct 

cells92. Importantly this study highlighted the diversity of immune cells present in the murine 

kidney, including resident macrophages, neutrophils, B and T lymphocytes, and natural killer 

cells91. These findings were complemented by a further study that used scATACseq to assess the 

chromatin accessibility profiles of approximately 100,000 single cells from 13 murine tissues, 

including epithelial, endothelial and immune cells in the kidney93. This study showed that tissue 

macrophages from kidney, heart, and liver demonstrated common patterns of chromatin 

accessibility, which were distinct from those of alveolar macrophages and microglia. 
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To date, efforts to comprehensively map immune populations in the kidney in health are limited. 

One study published in preprint form, that aimed to provide a census of cell types in the human 

kidney by generating transcriptional data from 22,000 cells, reported a heterogeneous set of 

immune cells, including B cells and plasma cells, two subsets of myeloid cells, T cell, NK cells, and 

mast cells94. Our group has also undertaken a large-scale study of human kidneys, using 

scRNAseq to profile more than 67,000 cells from 14 kidneys across the human lifespan, as well as 

6 fetal human kidneys 95. Our findings confirm the presence of a complex immune landscape within 

the human kidney, with dominant representation of MNPs, NK cells and T cells. Fine clustering of 

the myeloid compartment demonstrated two populations of monocyte-derived macrophages — one 

with transcriptional similarity to CD14+ classical monocytes, and the other to CD16+ non-classical 

monocytes, as well as a distinct tissue-macrophage population, which is enriched for an anti-

inflammatory M2 transcriptome expressing CD206. DCs in the human kidney predominantly 

expressed markers consistent with a cDC2 phenotype, such as CD1C. We also considered the 

macro-anatomical localisation of immune cells within the kidney by referencing it to publically 

available bulk RNAseq data generated from biopsy samples taken from known regions of the 

kidney. This analysis showed a differential distribution of immune cell subsets between cortex 

versus the medulla and pelvis. Analysis of ligand–receptor interactions predicted pelvic enrichment 

of neutrophils and anti-bacterial mononuclear phagocytes due to the pattern of chemokine 

expression in the pelvic epithelial cells. Using a mouse model, we confirmed that these interactions 

specifically localised neutrophils to the region of the kidney first encountered by ascending 

bacterial infection95. Thus, our study shows that the human kidney represents a highly organised 

immune environment, with different regions demonstrating functional specialisation, which are 

likely adapted to the dominant immunological challenge.  

 

Another group used mass cytometry to profile immune cells in human kidney samples 96. Although 

this study focused on renal cell carcinoma (RCC), the researchers also performed mass cytometry 

on healthy renal tissue as a comparator. Use of a complementary set of marker panels enabled 

dissection of T cell and myeloid cell heterogeneity. The study findings demonstrated an enrichment 

of CD4+ central memory T cells, CD4+ and CD8+ effector memory T cells in normal kidney 

samples; however regulatory T cells and T cells that expressing the exhaustion marker PD-1 were 

absent from normal samples, suggesting an enhanced degree of immunosuppression in the 

cancer microenvironment. The researchers also observed classical and non-classical monocytes 

in normal kidney tissue, and mirroring our single cell transcriptional census, a population of 

CD206-expressing, M2 polarised tissue-resident macrophages in healthy tissue 96. 

 
Studies of the human developing kidney have revealed not only patterns of epithelial cell 

development, but also populations of tissue resident immune cells — which likely represent 

mononuclear phagocytes — with high expression of MHCII genes, at 87-132 days gestation97. 
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Consistent with studies showing early colonisation of the fetal kidney with macrophages, studies in 

human fetal kidneys show a cluster of immune cells that express the MHC class II genes, IL1B, 

and FCER1G98,99. Our scRNAseq study shows that macrophages dominate the resident immune 

cell compartment of human fetal kidneys in the first trimester, but that from post-conception week 9 

onwards, other immune cell subsets, including DCs and lymphocytes, increase95. These findings 

are consistent with data from mouse studies, which suggest that tissue-resident macrophages in 

the kidney do not solely originate from colonisation by bone marrow-derived monocytes, but might 

be seeded early in embryonic development from erythromyeloid precursors in the fetal yolk sac or 

liver 69,70,100. 

 

[H2] Kidney immune populations in disease  
The kidneys can be affected by a number of prevalent and serious conditions including acute 

kidney injury (AKI), glomerulonephritis, ascending infection (pyelonephritis), and cancer. In each of 

these conditions, recognition and response by the immune system to pathogenic or danger 

signals, or to malignant cells is critical. Furthermore, in the context of kidney transplantation, 

donor-derived tissue-resident immune cell populations in the kidney can be replaced by recipient 

cells, particularly during rejection 101. Maintenance immunosuppression can also affect the 

phenotype, transcriptome and function of resident immune cells.  

 
Renal biopsies play a central part in nephrology diagnostics, and represent a potentially useful 

source of tissue with which to interrogate intra-parenchymal populations of immune cells and 

determine how cell states and frequencies change with disease onset and progression. One 

challenge presented by this approach is that percutaneous biopsy obtains only a relatively small 

sample of tissue and only the outer kidney cortex is routinely sampled. Despite these caveats, a 

number of groups have begun to optimise methodologies to enable scRNAseq to be performed on 

clinical biopsy samples (summarised elsewhere102).  

 

[H3] Lupus nephritis 
One early effort to perform scRNAseq on kidney biopsy samples used kidney (n=16) and skin 

(n=12) biopsy samples from patients with lupus nephritis, as well as 5 skin biopsy samples from 

healthy individuals, generating data on 899 cells103. In the epithelial compartment, the researchers 

uncovered the expression of a type 1 interferon signature in both renal tubular cells and skin 

keratinocytes from patients with active lupus nephritis, highlighting the potential utility of using 

more easily accessible skin samples to assess systemic disease activity103. The number of 

immune cells identified in these kidney samples was very limited, but included a handful of T cells 

and myeloid cells.  

Efforts are now underway to create a detailed map of immune infiltrates in kidneys of patients with 

lupus nephritis, using strategies to enrich for immune cells prior to sequencing. Data from the 
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Accelerating Medicines Partnership network, suggest that kidneys of patients with lupus nephritis 

contain a rich landscape of immune cells, including inflammatory and phagocytic macrophages, 

DCs, NK cells and a range of memory T cells104,105. A subset of B cells and plasma cells – the 

sources of autoantibody – expressed a type 1 interferon signature, implicating these cells as 

central players of disease pathogenesis104. Further studies may enable stratification of patients 

based on the dominant features of their single-cell transcriptomic profiles, and provide insights into 

whether particular B cell clones become expanded at the site of tissue injury, which would affect 

the ability to target these cells therapeutically.  

The Accelerating Medicines Partnership network has also demonstrated the feasibility of 

performing scRNAseq on cells, including immune cells, from urine samples104, providing a 

potentially attractive means of assaying kidney immune cells in a non-invasive manner. Mirroring 

the methodological approach used by Park et al.91, the Accelerating Medicines Partnership 

network have attempted to integrate information on disease susceptibility genes identified from 

genome wide association studies (GWAS) of patients with SLE, with information on the expression 

of these genes in cells obtained through scRNAseq of biopsy samples from patients with lupus 

nephritis104. Similarly, Park and colleagues mapped susceptibility genes identified from GWAS and 

other genetic studies to gene expression profiles of single cell clusters obtained by scRNAseq of 

mouse kidneys, finding cell type-specific expression of disease-associated genes91. This approach 

therefore provides an additional means by which scRNAseq data can be leveraged to better 

understand the cell subsets that underlie disease pathogenesis. 

 

 

[H3] Transplantation 
A different study compared the efficacy of two high-throughput scRNAseq systems, Drop-Seq [G]20 

and inDrop [G] 21, to generate single-cell transcriptomes from human kidney biopsy samples. 

Superior results were ultimately generated with inDrop, which the researchers then used to 

perform scRNAseq of 4,487 single cells obtained from a biopsy sample of a kidney allograft with 

acute antibody-mediated rejection (ABMR), and nuclear RNA sequencing of 4,259 single cells 

obtained from a healthy control kidney106. In the allograft sample, the researchers identified three 

distinct clusters of endothelial cells, two of which seemed to be activated, with upregulation of Fc 

receptor pathway [G] components consistent with the diagnosis of ABMR. Monocytes, B cells, 

plasma cells and T cells were evident in the immune compartment, with a gene expression pattern 

in CD16-negative monocytes suggestive of dendritic cell maturation106. The presence of plasma 

cells is compatible with the local generation of donor-specific antibodies, which has therapeutic 

implications. Lymphoid aggregates or tertiary lymphoid follicles have been previously described in 

transplant biopsy samples in the context of AMBR107, and these immune cell aggregates might be 

refractory to systemically-administered monoclonal antibodies due to poor accessibility into the 

local niche, and the presence of local pro-survival factors108. Notably, immune cells were not 
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identified in the healthy control kidney sample used in this study; the absence of these cells could 

relate to the differing platforms (nuclear sequencing versus cell sequencing) used to generate 

these data, and the relatively modest number of nuclei sampled. 

 

[H3] Kidney cancer 
Immune infiltrates are also present within kidney tumours, but their phenotype and function might 

be altered by the tumour microenvironment. The extent of immune cell infiltration is an 

independent predictor of poor prognosis in patients with RCC109, emphasising the importance of 

tumour-immune cell interactions. One study used a mass cytometry approach to identify exhausted 

and regulatory T cells within RCCs, as well as an assortment of macrophages that expressed 

markers associated with pro-tumour and anti-tumour phenotypes96. The frequencies of exhausted 

T cells correlated with the frequencies of CD38+ tumour-associated macrophages, and associated 

with progression-free survival, highlighting the opportunity to use single cell technologies to further 

understand how tumours manipulate immunity in progression and metastasis. We have used 

scRNAseq to compare the transcriptional profiles of cells within kidney tumours to those of tubular  

epithelial cells in normal paediatric, adult and fetal kidneys, and identified the likely cells of origin 

that lead to development of Wilm’s tumour and RCC110. This study also revealed a population of 

RCC-associated macrophages that express VEGFA, the protein product of which promotes and is 

a target of modern treatment regimens for this malignancy110. This study illustrates the ability of 

scRNAseq to address questions of tumour ontogeny, as well as identify putative 

pathophysiological mechanisms and cell signalling networks that may be amenable to 

pharmacological treatment.   

 
[H1] Conclusions 
Single cell technologies are poised to transform our understanding of immunology and of human 

biology more broadly. The data generated by studying human blood, secondary lymphoid organs 

and tissues throughout the body, including the renal tract, could potentially form part of the Human 

Cell Atlas, an international effort that aims to produce a comprehensive and systematic reference 

map of human cells of the human body, across age, in health and disease, that will be freely 

accessible to researchers 111. Ultimately, such a resource will provide a reference of cell states that 

the biomedical research community can apply to a range of biological questions. In nephrology, the 

translational potential is obvious. A better understanding of kidney cell heterogeneity and how this 

heterogeneity changes through development and disease will assist with drug target identification, 

and improve prediction of off-target effects. The application of single cell technologies to clinical 

renal biopsy samples, or to cells in urine, will improve diagnostic accuracy in nephrology and 

transplantation and assist with personalised prognostication. In systemic autoimmune diseases 

that affect the kidney, analysis of peripheral blood and secondary lymphoid organs will yield similar 

insights and help unravel the cause and nature of the breakdown in self-tolerance. Finally, in 
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regenerative medicine, single cell analyses will enable a better understanding of how in vitro cell 

differentiation compares to the state of cells in vivo, facilitating the development of replacement 

tissues or even organs. Together, these data will have the potential to transform biology and 

medicine in an analogous way to the Human Genome Project, ushering in a new era of 

understanding of the processes underlying physiology and disease.  
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Key points  

 

• Single cell technologies have enabled the mapping of immune cell populations in the kidney, 

the circulation, and secondary lymphoid tissues in unprecedented detail. 

• A variety of single cell technologies have become mainstream over the last 5 years, including 

high-throughput single-cell RNA sequencing (scRNAseq), single cell chromatin accessibility 

assays, and mass cytometry. 

• scRNAseq has enabled researchers to interrogate the transcriptional diversity present in 

specific cell populations, for example in circulating dendritic cells and monocytes, and create 

large scale atlases profiling the landscape of tissues. 

• Using trajectory analysis, single cell methods can reveal snapshots of dynamic processes such 

as cellular differentiation and responses to different immune stimuli. 

• Analysis of scRNAseq data enables an assessment of how antigen-specific B and T lymphocyte 

clones expand in vivo in different tissue and disease states. 
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• scRNAseq data also enables ligand–receptor interactions to be explored in an unbiased 

manner, allowing novel cell signalling networks to be identified. 

• Single cell studies have also uncovered disease-associated cell states and gene expression 

profiles, deepening our understanding of disease mechanisms and potential identifying 

therapeutic targets. 
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Box 1 – Principles of RNA sequencing  
There are over 20,000 genes in the human and mouse genome, but not all are transcribed in any 

given cell. RNA sequencing (RNA-Seq) estimates the expression levels of different genes by 

measuring the abundance of RNA transcripts. This is achieved by first converting the RNA to 

cDNA. This RNA can be derived from whole tissue, sorted cell subsets or even single cells. 

Adapters are added to the cDNA to enable sequencing and indexes added for multiplexing of 

samples during the preparation of the cDNA library. The resulting cDNA is amplified by PCR 

before being pooled and sequenced on high throughput platforms such as the Illumina platform. 

These systems use the ‘sequencing by synthesis’ method, whereby complementary fluorescently 

tagged base pairs are added to the target to be sequenced during the sequencing reaction. After 

each round of addition, the base pair that has been incorporated is revealed by its fluorescent tag, 

and over many cycles the sequence of the cDNA is identified. The addition of the index barcodes 

and the fixation of each cDNA library to a flow cell within the sequencer enables multiple 

sequences to be read simultaneously. This process generates millions of short sequencing reads 

(50–250 basepairs), which are then computationally aligned to the genome. These aligned reads 

are counted with the number of reads for each gene corresponding to the original level of 

expression of RNA for that gene within a given sample (see figure). 

RNASeq studies of tissues or sorted cell populations usually generate data on around 20,000 gene 

transcripts, but due to the lower amount of RNA available and the reduced transcriptional 

complexity of single cells, single cell RNASeq (scRNAseq) technologies detect only 500-5000 

transcripts per cell. In addition, all current droplet-based single cell sequencing approaches do not 

sequence the full length of the transcript so alternative transcripts cannot be measured. Full length 

transcript sequencing can be performed in plate-based single cell protocols such as smart-seq2; 

however, these protocols have a lower throughput than droplet-based approaches. Finally, due to 

the lower RNA abundance within a single cell compared to larger cell numbers or whole tissue and 

the stochastic nature of RNASeq, scRNAseq does not capture all the available transcripts for each 

cell, resulting in different transcripts being present or absent — a phenomenon known as drop-out. 

As scRNAseq technologies continue to develop, the number of genes detected per cell is 

increasing.  

 

 

Box 2 – Principles of mass cytometry   
Mass cytometery, or CyTOF, replaces the fluorophore tag present on antibodies bound to target 

proteins on the cells of interest with a heavy metal tag. The labelled single cells are then 

segregated into droplets using a nebulizer and ionised and atomised using an inductively coupled 
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plasma (ICP) torch to yield a mix of heavy reporter ions and lighter ions derived from the cell and 

contaminants. These lighter ions are removed using a quadrupole before being passed to a time of 

flight mass spectrometer. Here, dependent on the time of flight, both the heavy reporter ion tags 

from the labelled antibodies along with a heavy tagged DNA intercalation agent (used to identify 

single cells) are identified. The abundance of each tag within each collection of heavy ions 

originating from a single cell is used to measure the expression of each target protein (see figure). 

This readout is used for downstream analysis taking both a classic analysis approach similar to low 

dimensional flow cytometer but also a higher dimensional approach similar to that used for single 

cell RNA sequencing. 

Advantages:  
The use of heavy metal tags eliminates the problem of spectral overlap, greatly increasing the 

number of parameters that can be simultaneous measured in a single cell (40-50 markers, 

theoretically, up to 100), compared with flow cytometry (5-15 markers). 

Disadvantages:  
The mass spectrometer is expensive, requires specialist maintenance, and allows lower 

throughput than a flow cytometer. 

 

 

 
Box 3 – Principles of ATAC sequencing 
 
ATAC-sequencing identifies accessible regions in the genome. DNA is packed in a complex three-

dimensional structure, wrapped around nucleosomes, and condensed to form chromatin. The 

genome in any given cell is organized into regions accessible to transcription machinery, and 

condensed, inaccessible regions. 

Initially nuclei are isolated, with chromatin structure intact. ATAC-seq utilizes the prokaryotic Tn5 

transposase to insert sequencing adapters and fragment DNA at accessible regions. Fragments of 

DNA, which are ligated to adapters are then isolated, undergo PCR amplification, and are 

sequenced. Sequencing data is then aligned to a reference genome, enabling peaks to be called 

at discrete sites in the genome. 

In a similar fashion to scRNAseq, single-cell ATAC-seq (scATACseq) can be performed in small 

volume reaction chambers (plate or microfluidic devices), or using a barcode-droplet microfluidics 

approach. These methods generate barcoded DNA fragments allowing the cellular origin of each 

read to be ascertained (see figure). 
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Box 4 – High dimensionality spatial transcriptomics 
Frozen tissue is sectioned and placed onto a barcode matrix. Each barcoded area measures 

10x10 µm, which will include several cells. The slide is imaged and then cells are lysed onto this 

matrix and the barcodes incorporated into the cDNA. Following further library preparation and 

sequencing, the resulting data can then be tracked back to the original image thus providing the 

spatial data.  

Advantages: Transcriptional artefacts introduced by the tissue disaggregation process are 

avoided. 

Limitations: This technology is not yet at a single cell resolution, but provides transcriptional 

information on 100 µm2 regions. Due to the lysis of the tissue onto the slide the transcriptome is 

only viewed in 2 dimensions and any z-information is lost. 

 
 
Box 5 – Low dimensionality spatial transcriptomics 
These methods use standard confocal microscopy to identify RNA transcripts on tissue sections 

using RNA probes. This can be achieved through fluorescence in-situ hybridisation (FISH) based 

methods, where multiple probes bind to a target RNA of interest along its length. Multiple methods 

are suitable for low dimensional spatial transcriptomics such as RNAScope, which can detect 3-6 

transcripts simultaneously, or ‘strip and probe’ methods including osm-FISH. In the latter method, 

around 4 different RNA transcripts can be detected after each round of probe application, and 

multiple rounds can be performed, increasing the potential number of RNA targets that can be 

detected. The initial paper describing osm-FISH used the strip and probe methods to sequentially 

detect 33 different transcripts in in a single image compilation of the mouse somatosensory 

cortex31.  

Advantages: By combining a probe-based approach with high throughput scRNA methods, 

specific cell markers identified by the latter can be interrogated on sections to determine the 

physical location of cells using unique marker genes. This approach also provides information of 

cellular or even subcellular resolution in three dimensions. 

Limitations: Limited number of markers and low throughput.  
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Figure 1 - Localisation of immune cells in the circulatory system, secondary lymphoid 
organs and non-lymphoid organs. Leukocytes comprising cells from the innate and adaptive 

arms of the immune system circulate in the blood and lymph, and traffic to secondary lymphoid 

organs (that is, the spleen and lymph node). Tissue-resident leukocytes are found in non-immune 

organs such as the kidney where they have roles in organ defense, homeostasis, and disease. 

These cells may infiltrate tissues from the circulation, self-renew in situ, and traffic to secondary 

lymphoid organs on activation. 
 

Figure 2 - Single cell RNA sequencing technologies. Samples of tissue (for example, kidney 

biopsy samples), can be disaggregated into a suspension of single cells or single nuclei before 

being subjected to scRNAseq by either a droplet-based approach in which single cells or nuclei are 

encapsulated within droplets that contain barcoded beads and the reaction mix, prior to RT-PCR 

and sequencing, or a plate-based sequencing approach whereby isolated cells or nuclei undergo 

reactions within the wells of a large microwell plate. Single cells can either undergo a reaction in 

each well, or a split-pool barcoding approach is used (eg SPLIT-seq). Disaggregation of tissue 

destroys the three-dimensional tissue architecture. High or low dimensional spatial transcriptomics 

methods can be used to assay the transcriptional heterogeneity of cells while preserving their 

spatial information. High dimensional spatial transcriptomics approaches assay a large number of 

genes across small spatially associated aggregates of cells, whereas low dimensional spatial 

transcriptomics can generate smaller scale data on single cells. 
 
Figure 3 - Mapping immune cells in peripheral blood. a. scRNAseq has been used to identify 

new or novel subsets of cells in peripheral blood. For example, plate-based scRNAseq of sorted 

myeloid populations has been used to identify a novel subset of dendritic cell (DC5; see upper 

approach)46. Another study used massively parallel droplet-based scRNAseq to obtain data on 

>68,000 peripheral blood mononuclear cells, demonstrating the capacity of this method to uncover 

rare cell populations (coloured)22. Such data can be used to generate heatmaps that show cell 

type-specific marker genes. b. scRNAseq can also be used to reconstruct developmental 

trajectories, for example to assess changes that occur in the transcriptional profile of progenitor 

cells during haematopoeisis. c. scRNAseq can also reveal transcriptome-wide divergent responses 

of leukocytes to perturbations or stimuli such as lipopolysaccharide (LPS) or IFNγ d. Ultimately 

scRNAseq will be an important tool for investigating cellular disease states at high resolution, 

identifying disease specific cell subsets or activation states, and cell-type specific disease 

signatures. 
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Figure 4 - Mapping immune cells in lymphoid organs. a. Using paired-end single cell 

sequencing data in which both the 3’ and 5’ end of a cDNA fragment is sequenced, the clonotype 

of a T or B lymphocyte can be inferred in parallel with the transcriptome. Through the course of an 

immune response, lymphocytes undergo clonal selection and expansion, alongside the reshaping 

of the transcriptome through differentiation. b. Various immune cells in the lymph node have 

specific anatomical arrangements. For example, under homeostatic conditions (left-hand panel) 

subcapsular sinus macrophages, natural killer (NK) and innate lymphoid (ILC) cells are arranged in 

the interfollicular space. These cells are found exclusively or predominantly within secondary 

lymphoid organs. Spatial transcriptomics techniques may aid our understanding of this spatial 

patterning. During the course of an immune response (right-hand panel), leukocytes undergo 

compartmentalized interactions with stromal cells, for example marginal reticular cells and T zone 

reticular cells. Single cell technologies will enable the dynamic heterogeneity of these important 

subsets to be probed. 
 

Figure 5 - Mapping immune cells in the kidney. a. scRNAseq can be used to dissect the 

transcriptional identities of kidney cell types in a marker-free manner. Cells from human or mouse 

kidney samples are initially dissociated before scRNAseq is performed. Resulting data can be 

clustered to identify the landscape of cell types, and to identify their defining transcriptional profiles. 

b. Tissue-resident macrophages arise from either common myeloid precursors (CMP) in the 

mature bone marrow or from erythromyeloid progenitors (EMP) in the fetal yolk sac and liver, with 

seeding early in life. Single cell transcriptional profiles may reflect developmental heterogeneity 

among kidney-resident immune cells. c. Resident leukocytes in different organs adapt to their 

tissue environment, and have tissue-specific roles. This heterogeneity is reflected in the 

transcriptional circuitry of the cells, and a comparison of cells from different organs may uncover 

shared and specific residency signatures. d. Cell–cell signaling is essential for proper organ 

function, and crosstalk between immune cells and non-immune cells contributes to host defense. 

Such signaling networks can be inferred using scRNAseq data, for example using the 

CellphoneDB tool. e. Solid organs such as the kidney contain distinct microenvironments; for 

example, the hypoxic and hypersaline environment of the medulla and the pelvis, which is exposed 

to ascending pathogens. Local cues guide leukocyte positioning and can be interrogated using 

single cell technologies. 

 
 
Glossary  
 
scATACseq 
Cell assay for transposase accessible chromatin with high-throughput sequencing is a sequencing-
based assay that detects open regions of chromatin. 
 
High dimensional data  
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Data characterised by a high number of simultaneous measurements (dimensions) measured for 
each sample. In the case of scRNAseq, a large number of genes is measured for each cell.  
 
Droplet microfluidics  
Formation of individual droplets though combination or reagents within an oil suspension to form 
individual barcoded reaction vessels. 
 
Cellular barcoding  
Labelling the cDNA or RNA originating from a single cell with a DNA barcode which once 
sequenced enables the tracing back of each individual sequenced transcript to the cell of origin. 
 
Cell atlas  
A large scale census of cell types and states found in a tissue, or a collection of tissues. Typically, 
such datasets contain tens or hundreds of thousands of cells and are powered to detect minority 
populations (<1% of total). 
 
Cell clustering  
An approach to partition sets of cells into communities with similar gene or protein expression 
profiles.  
 
Mass cytometry  
Use of a modified mass spectrometer to measure the binding of heavy metal tagged antibodies 
attached to target cells to infer protein expression levels at single cell resolution.  
 
Subcapsular sinus macrophages  
A layer of macrophages positioned in the subcapsular sinus of the lymph node, where they are 
poised to sample antigens in lymph. 
 
Splenic red pulp macrophages  
Macrophages within the red pulp regions of the spleen with specialised roles in phagocytosis of 
senescent and damaged erythrocytes, and iron recycling. 
 
Marginal zone macrophages  
Macrophages positioned within the marginal zone of the spleen, where they are poised to sample 
antigens in the blood. 
 
Innate lymphoid cells  
Lymphocytes that lack somatically rearranged antigen specific receptors. 
 
Peristalsis  
Rhythmic contraction and relaxation of the smooth muscle lining a viscus, resulting in wave like 
propulsion of its contents.  
 
Massively parallel scRNAseq  
A method of scRNAseq in which cells are first sorted into individual wells, before undergoing lysis 
and reverse transcription. 
 
T cell receptor reconstruction  
A method for identifying the specific rearranged sequences of T cell receptors in scRNAseq data. 
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DropSeq  
Early microfluidics-based droplet sequencing method where the microfluidics were assembled by 
the end user. 
 
inDrop  
A droplet microfluidics scRNAseq approach in which cells are encapsulated into droplets and 
combined with oligonucleotide labelled hydrogel microspheres. 
 
Fc receptor pathway  
Intracellular signaling cascade downstream of ligation of Fc receptors by the Fc portion of 
immunoglobulin. 
 
 
 
Blurb: 
In this Review, Stewart and colleagues describe how single cell technologies, in particular single 
cell RNA sequencing, can be used to map the complex immune landscape within organs, and how 
such technologies might provide insights into the role of the immune system in kidney health and 
disease pathogenesis. 
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