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Variational study of polarons and bipolarons in a one-dimensional Bose lattice gas
in both the superfluid and the Mott-insulator regimes
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We use variational methods to study a spin impurity in a one-dimensional Bose lattice gas. Both in the strongly
interacting superfluid regime and in the Mott regime we find that the impurity binds with a hole, forming a
polaron. Our calculations for the dispersion of the polaron are consistent with recent experiments by Fukuhara
et al. [Nat. Phys. 9, 235 (2013)] and give a better understanding of their numerical simulations. We find that
for sufficiently weak interactions there are ranges of momentum for which the polaron is unstable. We propose
experimentally studying the stability of the polaron by measuring the correlation between the impurity and the
hole. We also study two interacting impurities, finding stable bipolarons for sufficiently strong interactions.
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I. INTRODUCTION

Using single-site imaging techniques [1–6] it is now
possible to track the motion of spin impurities in a gas of
cold atoms trapped in an optical lattice [7–11]. Such a direct
probe is unprecedented in condensed matter physics [12–15]
and has stimulated a rich body of theoretical work [16–21].
These experimental and theoretical studies are motivated in
part by connections between the physics of a spin impurity
and larger questions in quantum magnetism [22], high-Tc

superconductivity [23], and transition-metal oxides [24]. Here
we present a theoretical study of the properties of spin
impurities in a one-dimensional (1D) Bose lattice gas.

In a typical experiment of this type, one first prepares an
array of spin-polarized atoms on a lattice. Then Raman lasers
flip one or more of these atomic spins, creating spin impurities.
The excitations of the spin-polarized bath can dress such
an impurity, producing a composite particle called a polaron
[25–29]. In one recent experimental study involving a bosonic
spin impurity in 87Rb, Fukuhara et al. found preliminary
evidence of polaronlike behavior within the superfluid regime
[10]. They observed a suppression of the bath density near
the impurity, and a strong renormalization of the impurity’s
hopping rate. In the Mott phase, their results are understood
by mapping the system to a Heisenberg chain [30–33],
whereas in the superfluid phase, they find good agreement with
numerical time-dependent density-matrix renormalization
group simulations [34]. Here we use simple variational
arguments to explain the underlying physics.

We model this system by the two-species Bose-Hubbard
Hamiltonian [35–37]. In Sec. II A, we analytically study the
limiting cases of very strong and very weak coupling. Guided
by these limiting behaviors, in Sec. II B, we propose a simple
variational model that captures the physics in both limits,
extending those descriptions to all interaction strengths. Our
model begins with the Gutzwiller mean-field wave function
[38–41] and adds correlation between a single impurity and
a hole. We find that our ansatz provides a rich picture
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of the physics of a spin impurity, and we believe it fully
captures all the relevant physics. It is exact in the strongly and
weakly interacting limits, but, like the underlying Gutzwiller
mean-field theory, we do not believe that it is quantitatively
accurate for intermediate coupling [42,43].

In terms of the single-particle hopping rate J and the
on-site interaction U [see Eq. (1)], we find stable polarons
for all momenta when J/U � 2.3. This agrees with the
experimental observation of a stable polaron at J/U = 0.47
[10]. We fully characterize the polaron, calculating its energy,
spatial structure, and dispersion. From the dispersion we
calculate the rate of expansion for a wave packet and find
qualitative agreement with experimental and numerical studies
in Ref. [10]. At weaker coupling (J/U � 2.3), our ansatz
predicts that the energy for a total momentum k may be lowered
by unbinding the hole from the impurity. For J/U ≈ 2.3,
this instability only occurs for k ≈ 2π/3a, where a is the
lattice spacing. As J/U is increased, the instability window
grows. Future experiments can map out such a “polaron phase
diagram” by studying the correlations between the impurity
and the density of the bath. We provide detailed predictions
for such measurements.

Adding a second impurity to the system admits the possibil-
ity of a bound state of two polarons, a bipolaron. Such bound
states are of intrinsic interest for a variety of reasons, including
their possible role in high-Tc superconductivity [11,44,45]. In
a recent experiment, two-magnon bound states were observed
in the Mott phase [11]. The measurements are consistent with
analytical predictions of the Heisenberg model. The study
of polaron binding in the superfluid phase is much more
challenging [44,46]. We study a simple generalization of our
original variational model for the case of two impurities with
zero total momentum. Our results indicate the formation of
stable bipolarons in the superfluid phase for sufficiently strong
interactions.

The rest of this article is organized as follows. In Sec. II,
we introduce the physical system and describe our proposed
variational model. We analyze the system’s properties in the
Mott and the deep superfluid regime, with emphasis on how the
correlation length of the impurity-hole binding changes with
interaction strength. In Sec. III, we discuss several physical
predictions of our model and present numerical results. In
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particular, we identify two qualitatively distinct regions in
the superfluid phase, polaronic and “two particle”. We show
how the crossover can be detected experimentally from
correlation measurements. Our variational model is extended
to incorporate two impurities in Sec. IV, where we infer the
existence of stable bipolarons at adequately large interactions.
Finally, we summarize our findings and indicate possible
directions of future research in Sec. V. The Appendices contain
derivations of key analytical results.

II. FORMALISM

A. The Bose lattice gas and its limiting behaviors

We consider a one-dimensional chain of bosonic atoms in an
optical lattice with a single spin impurity. Such a system can be
experimentally realized by initially preparing the atoms (e.g.,
87Rb) in a definite hyperfine state (such as |F = 1,mF = −1〉),
and then changing the hyperfine state of one atom by the single-
site addressing technique (for example, to |F = 2,mF = −2〉)
[10]. The system is described by the two-species single-band
Bose-Hubbard Hamiltonian at unity filling [35,36]:

Ĥ = −J
∑

(l1,l2),σ

b̂
†
l1,σ

b̂l2,σ + U

2

∑
l,σ,σ ′

n̂l,σ n̂l,σ ′ − μ
∑
l,σ

n̂l,σ .

(1)

Here (l1,l2) varies over all neighboring sites l1 and l2, σ

denotes the spin index (↑ or ↓), J represents the single-particle
hopping amplitude, and U is the on-site repulsion energy.
As is appropriate for models of 87Rb, the interactions only
depend on the total density on a site, and not the density of
each spin component. b̂

†
l,σ (b̂l,σ ) and n̂l,σ denote the creation

(annihilation) and number operators for the boson of spin σ

at site l. The chemical potential μ should be chosen so that
the ground state is at unity filling. Although the experiment
includes an additional trap along the chain, we do not model
it here, as all observations are made near the center of the trap
where the potential is roughly constant. The system undergoes
a Mott-superfluid phase transition as J/U is increased beyond
a critical value, (J/U )c ≈ 0.086 within mean-field theory [35].
In comparing with experiments it is useful to note that the
Gutzwiller ansatz overestimates the stability of the superfluid,
and the Mott transition actually occurs at J/U ≈ 0.29 [47].

1. Mott regime

For J � U , single-particle hopping is energetically
expensive, as it changes the on-site populations. This results in
an interaction-driven “Mott” insulator. However, the impurity
is able to move through a second-order process, and the
system can be mapped onto the isotropic spin-1/2 Heisenberg
chain [30–33]

Ĥeff = −Jex

2

∑
(i,j )

(Ŝ+
i Ŝ−

j + Ŝ−
i Ŝ+

j ) − Jex

∑
(i,j )

Ŝz
i Ŝ

z
j , (2)

where Ŝ+
i = |↑〉i |↓〉i and Ŝ−

i = |↓〉i |↑〉i are the spin-flip
operators, Ŝz

i = (n̂i,↑ − n̂i,↓)/2, and Jex = 4J 2/U is the su-
perexchange coupling. Here the impurity has dispersion

εMott(k) = εMott(0) + Jex(1 − cos k) (3)

corresponding to eigenstates

|kMott〉 =
∑

j

eikj

[
|↓〉j + J

U
{(1 + eik)|+〉j

+ (1 + e−ik)|−〉j }
]
, (4)

where |↓〉j is the state where the ↓ impurity is localized
at site j , and |±〉j = b̂j±1,↑b̂

†
j,↑|↓〉j (see Appendix A for a

derivation). We see from Eq. (4) that the correlation hole is
mostly localized at the impurity site, with a spread of order
(J/U )2 into the neighboring sites.

2. Deep superfluid regime

In the weak-coupling limit (U � J ), one can study
the system within the Bogoliubov approximation [48–51],
where one takes quadratic fluctuations about a state where
b̂0,σ = b̂

†
0,σ = √

Nσ , Nσ being the number of particles in the
condensate of spin σ . The single-impurity physics emerges in
the limit N↓ → 1.

The Bose-Hubbard Hamiltonian [Eq. (1)] can be expressed
in momentum space as (N denotes the total number of lattice
sites)

Ĥ = −
∑
p,σ

(
2J cos p + μ − U

2

)
b̂†p,σ b̂p,σ

+ U

2N
∑

p1,p2,q,σ1,σ2

b̂†p1,σ1
b̂
†
p2,σ2

b̂p1+q,σ1 b̂p2−q,σ2 , (5)

where the momenta are summed over 2πm/N with integer
m. To quadratic order in fluctuations (see Appendix B for
derivation),

Ĥ = E0 +
∑
p 
=0

[εc(p) ĉ†pĉp + ε0(p) d̂†
pd̂p], (6)

where

ε0(p) = 2J (1 − cos p), (7)

εc(p) =
√

[ε0(p)]2 + 2 ε0(p) U (n↑ + n↓), (8)

are the excitation spectra, nσ denote the average particle
densities of the condensates, and E0 is a constant. ĉp and d̂p

are the annihilation operators of the Bogoliubov quasiparticles,
defined by the canonical transformation

b̂p,↑/↓ =
√

n↑/↓

n↑ + n↓ (upĉp + vpĉ
†
−p) ∓

√
n↓/↑

n↑ + n↓ d̂p, (9)

with

up,vp = 0.5[
√

ε0(p)/εc(p) ±
√

εc(p)/ε0(p)]. (10)

In the limit n↓ → 0, the d̂p operators simply correspond to
the impurity annihilation operators, and the ĉp’s reduce to
the standard single-component Bogoliubov operators. More
generically, ε0(p) corresponds to the energy of the Goldstone
mode associated with the SU(2) rotational symmetry between
the ↑ and ↓ spins.

In the limit n↓ → 0 and n↑ → 1, we wish to calculate nh,j ,
the hole density at a distance j from the impurity. We relate
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FIG. 1. (Color online) Correlation-hole density in the Bogoliubov
approximation for zero total momentum, plotted with N = 101. The
impurity-hole binding weakens at lower U/J , leading to a flatter
profile.

nh,j to a correlation function by noting that, in the limit of
small n↓,

Cj ≡ 〈b̂†j,↑b̂j,↑b̂
†
0,↓b̂0,↓〉 = n↓(1 − nh,j ). (11)

Direct calculation of Cj then yields

nh,j = 1

N
∑
p 
=0

(
1 − ε0(p)

εc(p)

)
cos pj. (12)

As shown in Fig. 1, there is a strong tendency to have a hole
near the impurity.

As indicated by the strength of the correlations at short
distances, the impurity-hole binding becomes weaker at lower
interaction. The areas under the curves in Fig. 1 are constant.
In fact, summing Eq. (12) over all j yields

∑
j nh,j = 0. The

impurity “pushes away” the bath atoms, causing an excess of
particles far away.

B. The variational wave function

Guided by the limiting properties of the impurity-hole
binding discussed above, we propose the following variational
wave function for the system with momentum k:

|k〉 =
∑

j

|j 〉 eikj ,

where

|j 〉 = Ab̂
†
j,↓|MF〉 +

∑
i

fi b̂i+j,↑b̂
†
j,↓|MF〉. (13)

Here |MF〉 = ∏
l

∑
n βn|n〉l denotes the Gutzwiller mean-field

ground state of the bath, where the amplitudes βn for having n

bath atoms on a site are determined by minimizing the energy.
Variational parameters A and fi encode whether and how
strongly the impurity binds with a hole at different distances.

In the Mott phase, the impurity is strongly bound to a
localized hole with a small spread, as seen from Eq. (4). Thus in
this limit we expect A → 0, f±1 → (J/U )(1 + e±ik)f0, and
fi � O((J/U )2) for |i| � 2, whereas for weak coupling, the
fi’s should approach uniform magnitudes as the interactions
are lowered, since the correlation length ought to increase.
These conjectures are confirmed in our numerical studies. In
the next section, we present several physical predictions of our

model. For our numerical calculation we use 101 lattice sites
with a maximum of 20 bath atoms at one site. Throughout the
remainder we set h̄ = 1 and a = 1. We label the optimized
energy of the variational state as Evar(J/U,k).

III. RESULTS

A. Polarons

We find that the system exhibits stable polaronic excitations
for all momenta at sufficiently strong repulsive interactions
(U/J � 0.44). Here the impurity displaces bath atoms around
it, as illustrated by the correlations plotted in Fig. 2. The
polaron becomes more spread out as U/J is lowered. The
momentum dependence of the polaron’s size is more compli-
cated. For a given U/J , the healing length increases with k

for small k, reaches a maximum for k ≈ 2π/3, then decreases
rapidly. At finite k we observe decaying oscillations in the
correlations with wavelength λ ≈ 4π/k.

In Ref. [10] the experimentalists measure the speed of
propagation of an initially localized spin impurity. As a first
step toward understanding such transport, in Fig. 3(a) we plot
the polaron group velocity vg = ∂Evar(J/U,k)/∂k for several
points in the Brillouin zone. We see that the velocities (in
units of J ) rapidly grow for small J/U , then reach plateaus
when J � 0.5U . The maximum velocity is much smaller than
the maximum speed of propagation of a free particle with a
tight-binding dispersion, vf = 2J .

To model the propagation of an initially localized impurity
we project the initial state |ψ(0)〉 = b̂0,↑b̂

†
0,↓|MF〉 into our

variational subspace to find its time evolution:

|ψ(t)〉 =
∑

k

〈k|ψ(0)〉
〈k|k〉 |k〉e−iEvar(k)t . (14)

The probability distribution of the impurity is calculated as
P (j,t) = 〈ψ(t)|b̂†j,↓b̂j,↓|ψ(t)〉/〈ψ(t)|ψ(t)〉. In Fig. 3(b) we
plot the speed of propagation, vσ , defined by taking the
slope of σ (t), where σ (t) = ∑

j j 2P (j,t). We find that for
sufficiently large t , σ increases linearly, and this speed is well
defined. In the Mott phase we find excellent agreement with
the Heisenberg model, which predicts P (j,t) = [Jj (Jext)]2,
where Jj denotes the Bessel function of the first kind [52]
[see Fig. 3(c)]. The distribution deviates more and more from
this shape as J/U increases [Fig. 3(d)]. In addition to vσ ,
we calculate the speed of propagation of the leading edge by
fitting a Bessel function to the tail of the wave packet. We plot
this speed in Fig. 3(b), finding that it closely follows the group
velocity of the dispersion at k = π/2. This correspondence is
consistent with the idea that the speed of the edge is constrained
by the maximum group velocity (which is approximately the
group velocity at k = π/2) [53]. Both vσ and vedge grow
linearly with J/U in the Mott regime and become fairly
flat well inside the superfluid regime, in agreement with the
experimental and simulation studies in Ref. [10]. We find a
kink at the phase-transition point. We do not know if this kink
is an artifact of the mean-field theory. No such feature is seen in
the experiments. We find that the localized impurity state has
less overlap with the variational subspace at larger J/U . This
becomes especially important for J/U � 2.3 when polarons
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FIG. 2. (Color online) Correlation-hole density in the vicinity of
the impurity located at 0 for (a) k = 0, (b) k = 0.25π , (c) k = 0.66π ,
and (d) k = 0.88π , from our variational wave function. At strong
interactions, we see polaronic excitation for all values of k. Here
the impurity displaces nearby bath atoms, creating a (symmetric)
bath density oscillation of period ≈ 4π/k within the healing length.
The healing length increases with decreasing U/J and is largest for
k ≈ 2π/3. For nonzero k, the system crosses over to the particle-
hole continuum below a certain interaction strength, where the bath
distribution becomes essentially independent of the impurity location.
This crossover occurs at U/J ≈ 0.16, 0.44, and 0.29 for k = 0.25π ,
0.66π , and 0.88π , respectively. Such a crossover does not happen for
k = 0 (compare with Fig. 1).

become unstable for some momenta. Beyond this point the
impurity dynamics are not well described by a single velocity.

B. Crossover to the particle-hole continuum

As illustrated in Fig. 2, for weaker interactions the corre-
lations between the impurity and the bath no longer decay.
This indicates that the impurity and the hole are not bound. To
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FIG. 3. (Color online) (a) Polaron group velocity at different
momenta. After a rapid growth for small J/U , these saturate for
J/U � 0.5. (b) Propagation speed of an initially localized impurity
in |ψ(0)〉 = b̂0,↑b̂

†
0,↓|MF〉 projected into our variational subspace. vσ

and vedge denote expansion speeds of the standard deviation and the
leading edges of the impurity distribution, respectively. vedge closely
mimics the group velocity at k = π/2. For J/U � 0.5, both speeds
level off at values much smaller than the free-particle tunneling 2J .
(c, d) Impurity distribution for J/U = 0.05 and 2, respectively. In the
Mott phase the distribution is described by a squared Bessel function,
as predicted by the Heisenberg model, whereas for large J/U it has
a distinctly different shape.

investigate this physics we study the wave function

|k ; p〉 = b̂p,↑b̂
†
p−k,↓|MF〉, (15)

where p is a variational parameter. This represents an uncor-
related impurity and hole. It is a special case of Eq. (13).
For a given k, we have a continuum of energies Etwo(k,p)
found by varying p. In Fig. 4 we plot this continuum and our
variational ground-state energy for U/J = 0.37. For small
and large values of k, the ground-state energy is below the
continuum, representing a stable polaron. At intermediate k,
our variational approach finds the state at the bottom of the
continuum, which does not correspond to a polaron. If the
polaron exists at these momenta, its energy would be within
the continuum. We expect that due to Landau damping it
would have a short lifetime [49]. We find that at small and
large k, the polaron dispersion Evar(k) is well approximated by
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FIG. 4. (Color online) Energy of states with one impurity and one
excess hole for U/J = 0.37. Solid line denotes the variational ground
state, Evar(k); shaded region denotes the independent particle-hole
continuum; dashed line denotes the approximate polaron dispersion
E(k) = E0 − 2Jeff cos(k), where E0 and Jeff are chosen so that
E(0) = Evar(0) and E(π ) = Evar(π ). At small and large k, Evar(k)
describes a stable polaron. For intermediate k, the polaron energy
lies within the particle-hole continuum. Thus we expect it to be short
lived due to Landau damping.

the free-particle form E(k) = E0 − 2Jeff cos(k), which Fig. 4
shows entering the particle-hole continuum.

We denote the bottom of the particle-hole continuum as
Emin

two (J/U,k). In Fig. 5 we estimate the region of the stability
of the polaron by plotting the difference between the energies
Emin

two and Evar. The unstable region is to the left of the dark
contour in Fig. 5, where these two energies are nearly equal.
The instability window starts from k ≈ 2π/3 at U/J ≈ 0.44
and grows as the interaction is reduced.

To further illustrate this physics, in Fig. 6 we plot nh,0,
the excess-hole density at the impurity site. We again see
two distinct regions: the polaronic regime where nh,0 is
finite, and a two-particle regime where nh,0 vanishes. The
crossover location coincides with the dark curve in Fig. 5.
These correlations could readily be measured in an experiment.

FIG. 5. Contour plot of the energy difference between our
variational state in Eq. (13) and the bottom of the uncorrelated
particle-hole continuum of states from Eq. (15). Dotted lines show
constant energy contours for Evar. For U/J � 0.44, the variational
ground state is lower in energy and describes a stable polaron. The
two energies coincide to the left of the dark contour. Thus at weaker
interactions there exists a growing range of momenta where the
polaron is unstable, and the ground state belongs to the particle-hole
continuum.

FIG. 6. Correlation-hole density at the impurity site. As the
system crosses over from the polaronic to the two-particle regime,
the hole density rapidly falls toward zero. These correlations can be
measured in experiments.

Throughout the two-particle regime, the lowest-energy
continuum state has p ≈ k/2, leading to the small-amplitude
(∼1/N ) density oscillations of period 4π/k in Fig. 2. We can
analytically calculate this optimal p in the limit U/J → 0.
Here the Bogoliubov quasiparticle spectra reduce to the
free-particle spectrum, ε0(p) = 2J (1 − cos p), and the quasi-
particle operators are simply the particle and hole operators
[Eqs. (7)–(10)]. Since cos p + cos(k − p) is maximized when
p = k/2, it becomes energetically favorable to divide the total
momentum equally between the impurity and the hole.

IV. TWO IMPURITIES AND BIPOLARONS

A recent experimental study observed two-magnon bound
states in the Mott regime [11]. Here the attraction arises
from the fact that two flipped spins lower energy by sitting
next to one another in the Heisenberg model. The stability
of bipolarons in the superfluid phase is not obvious, though
related studies have found regimes of stable bipolarons in
superfluids [44,46]. Here we find that bipolarons are stable for
J/U � 0.15, but unstable for weaker interactions.

We study the following variational wave function for the
case of zero total momentum, which is a simple extension of
our model in Eq. (13):

|ψ〉 =
∑

d�0, j

[
A(d) +

∑
l

g(d,l) b̂j+l,↑

]
b̂
†
j,↓b̂

†
j+d,↓|MF〉,

(16)

where A(d) and g(d,l) are variational parameters that control
how the two impurities bind with holes and with each other.
In Fig. 7 we plot

P (d) =
∑

j

〈ψ | b̂†j+d,↓b̂
†
j,↓b̂j,↓b̂j+d,↓|ψ〉/〈ψ |ψ〉 (17)

for optimal parameter values, which gives the separation
probability of the two impurities.

For sufficiently strong interactions, the probability peaks
at unity separation, falling off rapidly for greater distances.
This indicates that the two polarons are bound. As J/U

is raised, the distribution becomes flatter, so the average
distance between the two polarons grows. For J/U � 0.15, the
average separation scales with the system size. We interpret
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FIG. 7. (Color online) Separation probability of the two impuri-
ties, as predicted by the variational wave function in Eq. (16) on a
lattice with 40 sites. In the Mott and the strongly interacting superfluid
phase, the most probable separation of the impurities is one site, and
the probabilities fall roughly exponentially with distance. For weaker
interactions, the probabilities do not decay.

this to mean that the polarons are no longer bound, and we
are studying scattering states. Note that the Mott-superfluid
transition occurs at J/U ≈ 0.086 in our model, and our model
gives stable polarons at all k for J/U � 2.3. Thus we have
four regions: (i) Mott (where polarons and bipolarons are
stable), (ii) superfluid with stable polarons and bipolarons,
(iii) superfluid with stable polarons but no bipolarons, and
(iv) superfluid where polarons are stable only for a narrow
momentum range.

V. SUMMARY AND OUTLOOK

In this work we have studied spin impurities in a 1D
Bose lattice gas through a computationally tractable variational
ansatz. This ansatz provides an intuitive picture of phenomena
seen in recent experiments and simulations. Our method
reproduces the correct analytic results at strong and weak
coupling.

For the case of a single impurity, we find stable polarons
for all momenta when U/J � 0.44. The polaron becomes
larger with decreasing U/J . A moving polaron is bigger than
a static one, attaining maximum size for k ≈ 2π/3. We find
that the impurity-hole correlations oscillate with wavelength
≈ 4π/k. We calculate the impurity mobility from the polaronic
dispersion. In the Mott phase, it increases linearly with J/U ,
as predicted by the Heisenberg model, whereas well inside
the superfluid phase, it saturates at a value much smaller than
the free-particle hopping, as was experimentally observed in
Ref. [10]. At weaker interactions our model suggests that the
polaron energy lies within the particle-hole continuum for
intermediate k. Here we expect the polaron to be short lived
due to Landau damping. For the two-impurity system with zero
total momentum, we find stable bipolarons for J/U � 0.15.

Future experiments can probe the transition from
the polaronic to the two-particle regime by studying impurity-
hole correlations. As was illustrated in Ref. [10], one can
measure the density at the impurity site and compare it
with the average density. This crossover should also show
up in momentum-resolved rf spectroscopy or other tech-
niques which probe the single-particle spectral function. The

spectrum should be bimodal, with one peak coming from
the polaron and the other from the particle-hole continuum.
This intuition is confirmed by explicit calculations in related
systems [29]. The techniques in Ref. [11] can be extended
to study the stability of bipolarons in the superfluid phase.
On the theoretical side, it would be interesting to study the
system at higher dimensions and at filling factors different
from unity [54], as well as the effects of disorder on the polaron
dynamics [55]. One of the most intriguing results we find is a
kink in the polaron spread velocity when one crosses the Mott
transition. It would be valuable to learn if this is an artifact or
a real physical feature.
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APPENDIX A: EIGENSTATES OF THE HAMILTONIAN
IN THE MOTT PHASE FROM SECOND-ORDER

PERTURBATION THEORY

For completeness, in this Appendix we calculate the polaron
states in the Mott limit to leading order in J/U [30–33]. The
Bose-Hubbard Hamiltonian in Eq. (1) can be expressed as
Ĥ = Ĥ0 − (J/U )Ĥ1, where

Ĥ0 = U

2

∑
l,σ,σ ′

n̂l,σ n̂l,σ ′ , (A1)

Ĥ1 = U
∑

(l1,l2),σ

b̂
†
l1,σ

b̂l2,σ . (A2)

We treat Ĥ1 as a perturbation. A chemical potential is unnec-
essary as we are working with states of fixed particle number.
The eigenstates of the Heisenberg Hamiltonian [Eq. (2)] are
given by |keff〉 = ∑

j eikj |↓〉j , where |↓〉j is the state where
the impurity is localized at site j , and all other sites have one ↑
spin. We write the eigenstates of Ĥ as |k〉 = |keff〉 + ∑

α dα|α〉,
where |α〉 denotes states of the form

|β〉ij = b̂j,↑b̂
†
i,↑|↓〉i (i 
= j ), (A3)

|γ 〉ijk = b̂j,↑b̂
†
k,↑|↓〉i (i 
= j 
= k), (A4)

which are parametrized by indices ij and ijk. From degenerate
second-order perturbation theory,

|k〉 = |keff〉 + J

U

∑
j

eikj
∑

α

|α〉 〈α|Ĥ1|↓〉j
〈α|Ĥ0|α〉 − j 〈↓|Ĥ0|↓〉j

= |keff〉 + J

U 2

∑
j

eikj
∑

α

|α〉〈α|Ĥ1|↓〉j

=
∑

j

eikj

[
|↓〉j + J

U
{(1 + eik)|+〉j + (1 + e−ik)|−〉j }

]

+
√

2
J

U

∑
j

eikj
∑

l 
=j,j−1

(|γ 〉j (l+1)l + |γ 〉j l(l+1)), (A5)

where |±〉j = b̂j±1,↑b̂
†
j,↑|↓〉j . The k dependence in the dis-

persion comes from the matrix element of the Hamiltonian
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between |keff〉 and the states |±〉j which represent impurity
hopping. The other correction states only contribute a constant
term.

APPENDIX B: BOGOLIUBOV WEAK-COUPLING
ANALYSIS

In this Appendix we calculate the correlation-hole density
around an impurity within the Bogoliubov approximation
[50,51]. Using b̂0,σ = b̂

†
0,σ = √

Nσ in the Bose-Hubbard
Hamiltonian [Eq. (5)] and retaining quadratic fluctuations, we
obtain the mean-field Hamiltonian:

Ĥ = H0 −
∑

p 
=0,σ

(
2J cos p + μ̃ − U

N

N

)
b̂†p,σ b̂p,σ

+ U

2

∑
p 
=0,σ1,σ2

[√
nσ1nσ2 b̂†p,σ1

(
b̂p,σ2 + b̂

†
−p,σ2

) + H.c.
]
,

(B1)

where nσ = Nσ/N , N = ∑
σ Nσ , μ̃ = μ − U/2, and H0 =

−(2J + μ̃)N + U
2N N2. The constant H0 is minimized when

μ̃ = −2J + U (N/N ). (B2)

Substituting this back into Eq. (B1) yields

Ĥ = −1

2

U

N N2 +
∑

p 
=0,σ

ε0(p) b̂†p,σ b̂p,σ

+ U

2

∑
p 
=0,σ1,σ2

[√
nσ1nσ2 b̂†p,σ1

(
b̂p,σ2 + b̂

†
−p,σ2

) + H.c.
]
,

(B3)

where ε0(p) = 2J (1 − cos p). We wish to diagonalize this
Hamiltonian to produce

Ĥ = E0 +
∑
p 
=0

(εc(p) ĉ†pĉp + εd (p) d̂†
pd̂p), (B4)

where the quasiparticle operators ĉp and d̂p are related to b̂p,σ

by a Bogoliubov transformation. A convenient way to find
this transformation is to analyze the Heisenberg equations of
motion:

i∂t b̂p,σ = ε0(p)b̂p,σ

+U
√

nσ
∑
σ ′

√
nσ ′(b̂p,σ ′ + b̂

†
−p,σ ′ ), (B5)

i∂t ĉp = εc(p)ĉp, (B6)

i∂t d̂p = εd (p)d̂p. (B7)

These can be written more succinctly as

i∂t B̂
+
p,σ = ε0(p)B̂−

p,σ , (B8)

i∂t B̂
−
p,σ = ε0(p)B̂+

p,σ + 2U
√

nσ
∑
σ ′

√
nσ ′

B̂+
p,σ ′ , (B9)

i∂t Ĉ
±
p = εc(p)Ĉ∓

p , (B10)

i∂t D̂
±
p = εd (p)D̂∓

p , (B11)

where B̂±
p,σ = 1√

2
(b̂p,σ ± b̂

†
−p,σ ), Ĉ±

p = 1√
2
(ĉp ± ĉ

†
−p), and

D̂±
p = 1√

2
(d̂p ± d̂

†
−p). We define the transformation

B̂±
p,σ = �±

p,σ Ĉ±
p + �±

p,σ D̂±
p . (B12)

From bosonic commutation relations it follows that

�+
p,σ�−

p,σ + �+
p,σ �−

p,σ = 0. (B13)

In addition, using Eqs. (B10)–(B12) in Eqs. (B8) and (B9)
yields

�+
p,σ εc(p) = �−

p,σ ε0(p), (B14)

�−
p,σ εc(p) = �+

p,σ ε0(p) + 2U
√

nσ
∑
σ ′

√
nσ ′

�+
p,σ ′ , (B15)

and similar equations for �. These equations, along with
Eq. (B13), can be solved to obtain

εc(p) =
√

(ε0(p))2 + 2 ε0(p) U (n↑ + n↓), (B16)

εd (p) = ε0(p), (B17)

�+
p,↑/↓ =

√
f ↑/↓ ε0(p)/εc(p), (B18)

�−
p,↑/↓ =

√
f ↑/↓ εc(p)/ε0(p), (B19)

�±
p,↑/↓ = ∓

√
f ↓/↑, (B20)

where f σ = Nσ/N .
In the limit n↓ → 0 and n↑ → 1, we can calculate the

correlation-hole density as [Eq. (11)]:

nh,j = (〈n̂j,↑〉〈n̂0,↓〉 − 〈n̂j,↑n̂0,↓〉)/n↓

= 1

N 2n↓
∑

p,q,s,t

[〈b̂†p,↑b̂q,↑〉〈b̂†s,↓b̂t,↓〉 − 〈b̂†p,↑b̂q,↑b̂
†
s,↓b̂t,↓〉]

× ei(p−q)j . (B21)

Replacing the zero-momenta operators by
√

Nσ and keeping
the quadratic terms,

nh,j = −
√

N↑N↓

N 2n↓
∑

p,q 
=0

〈(b̂p,↑ + b̂
†
−p,↑)(b̂q,↓ + b̂

†
−q,↓)〉 e−ipj

= −2
√

N↑N↓

N 2n↓
∑

p,q 
=0

〈B̂+
p,↑B̂+

q,↓〉 e−ipj . (B22)

Substituting Eq. (B12) in the above equation and using the fact
that ĉp|MF〉 = d̂p|MF〉 = 0, we get

nh,j = −
√

N↑N↓

N 2 n↓
∑
p 
=0

(�+
p,↑�+

p,↓ + �+
p,↑�+

p,↓)

= (1/N )
∑
p 
=0

(1 − ε0(p)/εc(p)) cos pj. (B23)
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