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Origami (paper folding) is an effective tool for
transforming two-dimensional materials into three-
dimensional structures, and has been widely applied
to robots, deployable structures, metamaterials, etc.
Rigid origami is an important branch of origami
where the facets are rigid, focusing on the kinematics
of a panel-hinge model. Here we develop a theoretical
framework for rigid origami, and show how this
framework can be used to connect rigid origami
and its cognate areas, such as the rigidity theory,
graph theory, linkage folding and computer science.
First, we give definitions regarding fundamental
aspects of rigid origami, then focus on how to
describe the configuration space of a creased paper.
The shape and 0-connectedness of the configuration
space are analyzed using algebraic, geometric and
numeric methods. In the algebraic part we study
the tangent space and generic rigid-foldability based
on the polynomial nature of constraints for a panel-
hinge system. In the geometric part we analyze
corresponding spherical linkage folding and discuss
the special case when there is no cycle in the
interior of a crease pattern. In the numeric part we
review methods to trace folding motion and avoid
self-intersection. Our results will be instructive for
the mathematical and engineering design of origami
structures.

1. Introduction
This article develops a general theoretical framework for
rigid origami, and shows how rigid origami is linked
with other related areas, such as the rigidity theory, graph
theory, linkage folding, and computer science.

Origami has been used for many different physical
models, as a recent review [1] shows. Sometimes a "rigid"
origami model is required where all the deformation is
concentrated on the rotation along creases. A rigid
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origami model is usually considered to be a system of rigid panels that are able to rotate around
their common boundaries, which has been applied to many areas across different length scales
[2]. These successful applications have inspired us to focus on the fundamental theory of rigid
origami. Ultimately, we are considering two problems: first, the forward problem, which is to
find useful sufficient and necessary conditions for a creased paper to be rigid-foldable; second,
the inverse problem, which is to approximate a target surface by rigid origami.

The paper is organized as follows. In Sections 2 and 3 we will clarify the definitions of relevant
concepts, such as what we mean by paper and rigid-foldability. In Sections 4, 5 and 6 we will
show three methods that can be applied to study rigid origami. Specifically, an algebraic method
(linked to rigidity theory and graph theory), a geometric method (linked to linkage folding), and
a numerical method (linked to computer science). Some comments and a brief discussion on some
important downstream open problems on rigid origami conclude the paper.

2. Modelling
In this section we start with some basic definitions for origami. Although the idea of folding can
be precisely described by isometry excluding Euclidean motion, the definition of paper needs to
be carefully considered: we want our mathematical definition to correspond with the commonly
understood properties of a paper in the physical world. A paper should not just be a surface in
R3. At any point, there might be contact of different parts of a paper, although crossing is not
allowed. We introduce the idea of a generalized surface in Definition 1 that allows multiple layers
local to a point, and in Definition 4 exclude all the crossing cases with the help of an order function
in Definition 3. The definitions we make in this section are based on Sections 11.4 and 11.5 in [3]
with appropriate modifications and extensions – for example, we don’t require a paper to be
orientable, and we allow contact of different parts of a paper.

Definition 1. We first consider a connected piecewise-C1 2-manifold M (possibly with boundary,
defined in Sections 12.3 and 15.2, [4]). Here “piecewise-C1” means that countable piecewise-C1

curves can be removed from M in such a way that the remainder decomposes into countable C1

open 2-manifolds, and M is required to be a closed set. Every point on each piece has a well-
defined tangent space, and a Euclidean metric is equipped such that the length of a piecewise-C1

curve connecting two points on M can be measured.
A generalized surface g(M) is a subset of R3, where g :M→R3 is a piecewise immersion. A

piecewise immersion is a continuous and piecewise-C1 function whose derivative is injective on
each piece ofM . Hence g(M) is still connected and a closed set. The distance of two points g(p) and
g(q) on g(M) (p, q ∈M ) is defined as the infimum of the lengths of g(γ), where γ is a piecewise-C1

curve connecting p and q on M .

The definition on a generalized surface is an extension of how we usually define a connected
piecewise-C1 surface in R3 (Section 12.2, [4]). As stated above, Definition 1 is still not enough
to prevent crossing of different parts of a paper, for which we introduce the definition of crease
pattern and order function.

Definition 2. A crease pattern G is a simple graph embedding on a generalized surface g(M),
that contains the boundary of those pieces. Each edge of G is a C1 curve on g(M). Note that the
boundary of g(M) is also part of the graphG, which is written as ∂g(M) = g(∂M)⊂G. A crease is
an edge of G without the endpoints, and those endpoints are called vertices. A vertex or crease is
inner if it is not on the boundary ∂g(M), otherwise outer; and a piece as inner if none of its vertices
is on ∂g(M), otherwise outer.

To introduce the order of stacking on different parts of a paper, we need the information of
normal vector on g(M). Now considering a point p∈M and g(p) /∈G, there are two coordinate



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

frames of the tangent space (left-handed and right-handed) of g(p), which have opposite
orientation. Therefore the orientability and orientation of g(M) can be defined in the same way
as a piecewise-C1 surface in R3, which are described in Section 12.3, [4]. The following definition
on order function depends on the orientability of g(M).

Definition 3. If p, q ∈M , g(p), g(q) /∈G and g(p) = g(q), an order function λ is defined on p, q that
describes the order of stacking of layers locally. If g(M) is orientable, all the tangent spaces have
a consistent orientation, then let λ(p, q) = 1 if p is in the direction pointed to by the normal vector
ng(q) (on the “top” side of q); and λ(p, q) =−1 if p is in the direction pointed to by−ng(q) (on the
“bottom” side of q). If g(M) is non-orientable, it can always be divided into countable orientable
generalized surfaces (called parts) that abut along some of their boundaries. The reason is the
range of charts together {Ui} cover g(M), and g(M) has countable topological bases, hence {Ui}
has a countable subcover {Uj}. EachUj in this subcover can be assigned an orientation, then g(M)

can be described as the union of some subsets of {Uj} that abut along some of their boundaries.
For example, a Möbius band is the union of two orientable surfaces (Section 12.3, [4]) that abut
along two components of their boundaries. By assigning a specified orientation of each part, the
order of stacking can still be described using the order function, since now each non-crease point
is assigned a normal vector, which is consistent inside each part. Each boundary of parts can be
allocated to one of its adjacent parts, so there is no difficulty if the contact point is on the boundary
of parts. Note that g(M) is still not orientable because the parts altogether will have inconsistent
orientation.

Definition 4. A generalized surface S is a paper if there exists a crease pattern G, such that S
makes the order function λ satisfy the four conditions described in Section 11.4 of [3], which
prevent the crossing of paper.

Remark 1. A generalized surface is required to be a closed set since it is physically reasonable for
a paper to contain its boundary. A generalized surface is required to be connected since otherwise
it is the union of countable connected generalized surfaces (also called its components), and in
that case each component is a paper. Definition 4 prevents crossing of different parts of a paper
when they contact with each other. The contact of a point with a crease point is allowed, but the
conditions for order function can not be satisfied if there is a crossing. A paper does not need to
be developable or bounded.

Figure 1 shows some examples of objects which are, and are not, papers.

Definition 5. Here the folded state and folding motion are defined for a creased paper. A creased paper
(S,G) is a pair of a paper S and a crease patternG. A folded state of a creased paper (S,G) is a pair
(f, λ), where f is an isometry function excluding Euclidean motion that maps (S,G) to another
creased paper (f(S), f(G)) and preserves the distance; λ is the order function of (f(S), f(G)).
A folded state is free when the domain of the order function is empty. The identity map with its
order function (I, λ) is the trivial folded state.

A folding motion is a family of continuous functions mapping each time t∈ [0, 1] to a folded
state (ft, λt). The continuity of ft is defined under the supremum metric, ∀t∈ [0, 1], ∀ε > 0, ∃δ > 0

s.t. if |t′ − t|< δ

sup
p∈S
||ft′(p)− ft(p)||< ε (2.1)

If S is orientable, the continuity of λt with respect to t is described in Section 11.5 of [3]. If S is not
orientable, when its order function is defined, S is divided into orientable parts and each part is
assigned an orientation. Then at each non-crease contact point, the continuity of λt with respect
to t should follow Section 11.5 of [3].
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

Figure 1. Examples of objects that do, or do not, conform to the definition of “paper” used in this article. (a)–(e) are

papers with unusual shapes. (a) is a sphere, which can be regarded as a paper. (b) is a folded state of (a) with a curved

crease, generated by the intersection of two identical spheres. (c) is a piecewise-planar paper with two dough-nut holes

(Euler Characteristic -2). (d) is a Möbius band, an example of non-orientable surface, which is the union of two orientable

surfaces that abut along two components of their boundaries. (e) shows the case where there is contact between different

parts of a paper. (f)–(h) are “paper-like” objects that are not papers even though they might be physically “foldable”. (f) is

similar to (e), but the two layers intersect with each other, hence it does not satisfy the condition on the order function.

Part of (g) is 1-dimensional. It can be regarded as a foldable mechanism with a spherical joint and a bar (colored red). (h)

is an example of the stacking meta-material, where the contact points are crease points. It is not connected following the

requirement of a paper, instead it can be regarded as the union of five papers (plotted by Freeform Origami [5]).
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If there is a folding motion between two different folded states (f1, λ1) and (f2, λ2), (f1, λ1)
is foldable to (f2, λ2), and the creased paper is foldable. If (f, λ) is not foldable to any other folded
state, this folded state is rigid.

Remark 2. Mapping a creased paper to another creased paper requires the isometry function f
to be a piecewise immersion. When excluding the self-intersected configurations and defining the
folding motion of a creased paper, we rely on the technical statements on order function provided
in Sections 11.4 and 11.5 of [3].

Based on the definitions above, now we start to discuss rigid origami. The only difference
between origami and rigid origami is the restriction of f on each piece.

Definition 6. A rigidly folded state is a folded state where the restriction of the isometry function
f on each piece is a combination of translation and rotation. A rigid folding motion is a folding
motion where all the folded states are rigidly folded states.

Remark 3. Reflection is not included in the isometry function of rigid origami restricted to a
piece.

From Definition 6, since each piece is under a combination of translation and rotation, we
can make appropriate simplification on the creased paper (S,G). First, we can require each inner
crease to be a straight-line, otherwise the two pieces adjacent to this inner crease will not have
relative rigid folding motion, which is not what we expect in rigid origami. Second, for clarity all
pieces are chosen to be planar, but note that there would be no essential difference in the results
presented here without this restriction. Therefore,

Definition 7. In rigid origami, our object of study can be limited to a creased paper (P,C) with
a piecewise-planar paper P and a straight-line crease pattern C. Here each planar piece is called a
panel. The set of all rigidly folded states {(f, λ)}P,C is called the rigidly folded state space.

As an alternative way to move from origami to rigid origami, [6] shows that an isometric map
on a creased paper will become piecewise rigid if we require the paper S, crease pattern G and
isometry function f to have stronger properties. This result is provided in Appendix (a).

In the following section, we will start to discuss the configuration of a creased paper (P,C) in
rigid origami.

3. The Configuration Map of a Creased Paper in Rigid Origami
In order to study the rigid-foldability between possible rigidly folded states of a creased paper, in
this section we introduce the configuration map to characterize a rigidly folded state. Before that,
some preliminary definitions are needed.

Definition 8. At every vertex, the angles between adjacent creases are sector angles, each of which
is named αi. α= {αi} is the set of all sector angles, which are regarded as fixed variables under
a given creased paper (P,C), satisfying:

αi ∈ (0, 2π); except that, for a degree-1 vertex, α= 2π

Then we specify an orientation for (P,C) (If P is not orientable, an orientation is assigned to each
part of its division as mentioned in Definition 3). At each inner crease, a signed folding angle ρj
is defined by which the two panels adjacent to the inner crease deviate from a plane, specifically,
ρj is the difference between π and the dihedral angle measured from the specified orientation.
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ρ1

ρ3

ρ4
ρ2

ρ1, ρ3

ρ2, ρ4

π

-π

-π π

α1
α2

α3 α4

orientation

Figure 2. Here we show a simple creased paper with four sector angles α1 = α2 = α3 = α4 = π/2, and its two rigidly

folded states with ρ1 = ρ3 > 0, ρ2 = ρ4 = 0 and ρ2 = ρ4 < 0, ρ1 = ρ3 = 0. The folding angles are measured in the

specified orientation, which is the “top” side of the paper, facing the readers. The configuration space is a "cross", and

the information of stacking is contained in the difference of ρj =±π. The configuration map is a bijection from the

configuration space to the rigidly folded state space.

ρ= {ρj} is the set of all folding angles, satisfying:

ρj ∈ [−π, π]

The sector and folding angles are illustrated in Figure 2.

We introduce the sector and folding angles in order to find an explicit expression for the
isometry function f of a rigidly folded state for any point p∈ P and a given ρ. The set of folding
angles of the trivial rigidly folded state is denoted by ρ0, which is not necessarily 0.

From the analysis above, a rigidly folded state (f, λ) corresponds with a set of folding angles
ρ. However, different (f, λ) can be mapped to the same ρ— an example is shown in Figure 3. The
difference in ρj =±π can only represent the information of order function on two panels adjacent
to an inner crease. Therefore the order function is still needed when expressing a rigidly folded
state with ρ.

Proposition 1. Given a creased paper (P,C), a panel P0 is fixed to exclude Euclidean motion. Set
one of the vertices as the origin and one of its creases labelled c0 as the x-axis. then build the right-
hand global coordinate system with xy-plane on this panel. For every p∈ P , p= [x, y, z]T , there is
a path from the origin (0, 0, 0) to p. The path intersects with C on some inner creases labelled ck
(k ∈ [1,K]). The folding angle on crease ck is ρk (Figure 4).

A local coordinate system can also be built on panel Pk (k ∈ [1,K]), whose origin Ok is on one
endpoint of ck, x-axis is on ck and z-axis is normal to the panel. p is in the closure of PK . The
direction of all z-axes of the global and local coordinate systems are consistent with the orientation
of the paper and hence consistent with the definition of the sign of folding angles. The direction
of the x-axis is specified on ck so that the rotation from panel Pk−1 to Pk is a rotation of the define
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(a) (b)

1
2

3

3
1
2

1
3
2

orientation

Figure 3. (a) is a creased paper with three identical squares. Here the orientation is chosen to be the “top” side of the

paper, facing the readers. (b) shows two different rigidly folded states of (a) with the same folding angle {−π,−π}. The

numbers are stacking sequences of the panels. The order functions of these two rigidly folded states are λ(1, 3) = 1,

λ(3, 1) =−1 and λ(1, 3) =−1, λ(3, 1) = 1.

folding angle ρk about that axis. The angle between the x-axes of local coordinate systems on
creases ck−1 and ck as βk. βk is a linear function of the sector angles α.

Now the coordinate of p in the local coordinate system can be written as fK(p) =

[fKx (p), fKy (p), fKz (p)]T . When using homogeneous matrices to represent the transformation
from local to global coordinate system along the path, the result is: f(p)

1

=


fx(p)

fy(p)

fz(p)

1

= TK(ρ)


fKx (p)

fKy (p)

fKz (p)

1

 (3.1)

where,

TK(ρ) =

K∏
1


cosβk − sinβk 0 ak
sinβk cosβk 0 bk

0 0 1 0

0 0 0 1




1 0 0 0

0 cos ρk − sin ρk 0

0 sin ρk cos ρk 0

0 0 0 1

 (3.2)

[ak, bk, 0]
T (k ∈ [1,K]) is the position of Ok in the local coordinate system for panel Pk−1. The

product T is formed by post-multiplication.
Let ρ= ρ0: 

x

y

z

1

= TK(ρ0)


xK

yK

zK

1

 (3.3)

where [xK , yK , zK ] is the coordinate of p in the local coordinate system on panel K. As panel PK
moves rigidly, we have 

fKx (p)

fKy (p)

fKz (p)

1

=


xK

yK

zK

1

 (3.4)

Thus, 
fx(p)

fy(p)

fz(p)

1

= TK(ρ)T−1K (ρ0)


x

y

z

1

 (3.5)
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O0

x0

y0

c0

orientation

p

O1

O2

P0

P1

P2 P3

P4

P5

O3  = O4
O5

c1 c2
c3

c4 c5

Figure 4. A creased paper with two boundary components (Euler characteristic 0). Here the orientation is chosen to be

the “top” side of the paper, facing the readers. The point p, intermediate inner creases ck , panels Pk and origins Ok

(k ∈ [0, 5]) are shown respectively. The position of p can be described by a series of rotation and translation starting from

O0.

Remark 4. In Definition 3, the order function is defined on the non-crease contact points, and
in rigid origami pairs of points on stacked panels will have the same order function. Note that
simply describing the order of stacking for panels is not sufficient for a well-defined order. An
example is the Möbius band triangle, where ordering of the three panels a, b, c are a> b> c> a
(> means on the top side of).

Definition 9. Given a creased paper (P,C), the configuration map is defined as F : {(ρ, λ)}P,C →
{(f, λ)}P,C , where {ρ}P,C is the set of folding angles of all possible rigidly folded states of (P,C),
and {λ}P,C is the collection of order function for each ρ. The collection of this pair {(ρ, λ)}P,C
is called the configuration space. An example of the configuration map and configuration space
is provided in Figure 2. Now F naturally becomes a bijection. The order function λ can be
a multivalued function of ρ in the configuration space, and when using ρ to describe the
configuration, λ does not need to include the stacking of adjacent panels since this information is
included in the difference of ρj =±π.

Before further discussion we want to explain the limit of ρ, f and λ in the configuration
space. A series of {ρn}→ ρ is naturally defined; {fn}→ f means the supreme metric sup |fn(p)−
f(p)| → 0; {λn}→ λ requires {λn} to satisfy the continuity condition mentioned in Section 11.5
of [3]. These conditions for {λn} are to guarantee there is no crossing in the approach of a series
of rigidly folded states.

Proposition 2. The configuration map F has the following properties:
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(1) F is scale-independent. That means, if inflating P to P ′ by a factor c (g > 0), for any p′ = cp,
f(p′) = cf(p); if an order function is defined on p, q, and p′ = cp, q′ = cq then λ(p′, q′) =
λ(p, q).

(2) We extend f to be the function of ρ, ρ0 and p, then

f(−ρ,−ρ0,

 x

y

−z

) =
 1 0 0

0 1 0

0 0 −1

 f(ρ,ρ0,
 x

y

z

)
Therefore the positions of f(−ρ,−ρ0) and f(ρ,ρ0) are symmetric to P0, {ρ}P,C is
symmetric to 0, and λ(−ρ) =−λ(ρ).

(3) If F is defined in a neighborhood of a point in {(ρ, λ)}P,C , or F−1 is defined in a
neighborhood of a point in {(f, λ)}P,C , F is a homeomorphism.

(4) {ρ}P,C is discrete or compact.

Proof. Statement (1): Inflating P means to keep all the sector angles and inflate the lengths of all
the creases by c, so for any p′ = cp, direct calculation gives f(p′) = cf(p). Also, inflating does not
change the order function.

Statement (2): This expression is equivalent to:

TK(−ρ)T−1K (−ρ0)


x

y

−z
1

=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

TK(ρ)T−1K (ρ0)


x

y

z

1

 (3.6)

which can be proved by induction and direct symbolic calculation. When changing all the folding
angles ρ to −ρ and calculate λ from the same orientation, the order of panels is reversed, so
λ(−ρ) =−λ(ρ).

Statement (3): In the neighborhood of (ρ, λ) that F is defined, for any series of (ρn, λn)→
(ρ, λ), we need to prove (fn, λn)→ (f, λ). This is guaranteed because f is smooth with respect to
ρ. We also need to prove that for any series of (fn, λn)→ (f, λ) we have (ρn, λn)→ (ρ, λ). This
is because if sup |fn(p)− f(p)| → 0, TnK(ρ)− TK(ρ)→ 0, then ρn→ ρ with the information in
order function. The case for F−1 defined in a neighborhood of a point in {(f, λ)}P,C is similar.

Statement (4): If {ρ}P,C is not discrete, the rigidly folded state space {(f, λ)}P,C is closed in
the sense the limit of f and λ are defined, since the properties of an isometry function f and order
function λ are preserved under limitation. From statement (3), {ρ}P,C is closed. Because {ρ}P,C
is also bounded, it is compact.

Since it is more convenient to study the rigid-foldability in the configuration space rather than
in the rigidly folded state space, we provide the next conclusion.

Theorem 1. Given a creased paper (P,C), (f1, λ1) is rigid-foldable to (f2, λ2) if and only if
(ρ1, λ1) is 0-connected to (ρ2, λ2) in the configuration space {(ρ, λ)}P,C .

Proof. The following proof is an extension of “The combination of continuous functions is
continuous.”

Sufficiency: If (ρ1, λ1) and (ρ2, λ2) are 0-connected in {(ρ, λ)}P,C , this path is parametrized by
L : t∈ [0, 1]→{(ρ, λ)}P,C . From statement (3) in Proposition 2, on this path L, the configuration
map F : {(ρ, λ)}P,C →{(f, λ)}P,C is continuous. It can be directly verified that the composite
map F ◦ L : t∈ [0, 1]→{(f, λ)}P,C is also continuous. Therefore (f1, λ1) is rigid-foldable to
(f2, λ2).

Necessity: (f1, λ1) is rigid-foldable to (f2, λ2) means there exists a path in this function space
L′ : t∈ [0, 1]→{(f, λ)}P,C . Every point on this path corresponds with a point in the configuration
space {(ρ, λ)}P,C , and from statement (3) in Proposition 2, the inverse of configuration map
F−1 : {(f, λ)}P,C →{(ρ, λ)}P,C is continuous on L′. Similarly we can verify that the composite
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map F−1 ◦ L′ : t∈ [0, 1]→{(ρ, λ)}P,C is also continuous. Therefore (ρ1, λ1) and (ρ2, λ2) are
0-connected.

Definition 10. If the configuration space is a collection of discrete points, it is called 0-dimensional.
If the configuration space is (0, ∅) or a collection of two points (ρ, λ) and (−ρ,−λ), it is named
trivial, and this creased paper is globally rigid.

From Theorem 1, the existence of non-trivial rigidly folded states and rigid-foldability are
the shape and 0-connectedness of the configuration space {(ρ, λ)}P,C , which are not easily
characterized. We will mainly present three methods to study the configuration space: algebraic,
geometric and numeric methods. Usually we focus on {ρ}P,C and then check λ when there are
multiple λ for a particular ρ. For convenience from now on we use (ρ, λ) to represent a rigidly
folded state.

4. Algebraic Analysis of the Configuration Space
The algebraic method analyzes the possible position of panels around vertices (equation (4.1))
and holes (equation (4.2)) symbolically, then remove the solutions that induce self-intersection of
panels. Before further discussion some definitions are needed.

Definition 11. Given a creased paper (P,C), WP,C is the solution space of the consistency
constraints given in equations (4.1) and (4.2), where every ρj ∈ [−π, π].

(1) At every inner degree-n vertex: (Figure 5(a))

Tn(ρ) =

n∏
1

 cosαj − sinαj 0

sinαj cosαj 0

0 0 1


 1 0 0

0 cos ρj − sin ρj
0 sin ρj cos ρj

= I (4.1)

where αj is between cj−1 and cj (j ∈ [2, n]), α1 is between cn and c1. Equation (4.1)
can be derived by following Proposition 1 and choosing the path to be the one shown
in Figure 5(a). T is formed by post-multiplication. Only three of the nine equations are
independent, which are in different columns and rows.

(2) For a hole with n inner creases (Figure 5(b)), called a degree-n hole: (If the Euler
Characteristic is 2 or 1, there is no such constraint)

Tn(ρ) =

n∏
1


cosβj − sinβj 0 aj
sinβj cosβj 0 bj
0 0 1 0

0 0 0 1




1 0 0 0

0 cos ρj − sin ρj 0

0 sin ρj cos ρj 0

0 0 0 1

= I (4.2)

where βj is between cj−1 and cj (j ∈ [2, n]), β1 is between cn and c1. [aj , bj , 0] (j ∈ [1, n])
is the position of Oj in the local coordinate system for panel Pj−1. Equation (4.2) can
be derived by following Proposition 1 and choosing the path to be the one shown in
Figure 5(b). T is formed by post-multiplication. Only six of the sixteen equations are
independent. Three of them are in the top left 3× 3 rotation matrix, the other three are
the elements from row 1 to row 3 in column 4, which are automatically satisfied if the
inner creases are concurrent.

The consistency constraints may not include every folding angle, so W̃P,C is defined as the
extension of the solution space WP,C to include the folding angles not mentioned in WP,C , also
with range [−π, π]. NP,C is the collection of all the solutions that do not satisfy the conditions for
order function λ, i.e. panels self-intersect, which are called the boundary constraints because they
are unilateral constraints that only contribute to the boundary of {ρ}P,C . Some examples have
been mentioned in [7].
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(a) (b)

c0 = c5

c1
c2

c3

c4

O

c1
c2

c3

c4

c0 = c5

O1

O4

O2  = O3

O0  = O5

Figure 5. (a) is a degree-5 single-vertex creased paper. (b) is a degree-5 single-hole creased paper. For each creased

paper, a path is shown to illustrate the consistency constraints in Definition 11. We label intermediate inner creases cj
and origins Oj (j ∈ [0, 5]). Note that (a) has one boundary component and (b) has two boundary components. We don’t

need to consider the consistency constraint around the outer boundary because it is naturally satisfied (Definition 11).

Remark 5. Although the lengths of creases may not be involved in the consistency constraints,
they are important in the boundary constraints. In a large creased paper, a folding angle will
appear in the consistency constraints once or twice, generating a coupled system.

Theorem 2. [7,8]
{ρ}P,C = W̃P,C\NP,C (4.3)

Corollary 2.1. Some properties of WP,C and NP,C .

(1) WP,C is symmetric to 0, so NP,C is symmetric to 0.
(2) WP,C is discrete or compact, so NP,C is open and bounded if not discrete.

Proof. Statement (1) can be proved by comparing the expressions of Tn(ρ) + Tn(−ρ) and Tn(ρ)−
Tn(−ρ). With induction and direct symbolic calculation, if Tn(ρ) = 0, Tn(−ρ) = 0. Because
{ρ}P,C is also symmetric to 0, NP,C is symmetric to 0. Statement (2) is satisfied because if WP,C

is not a discrete set, any limit point of WP,C is also a solution, which means WP,C is closed, also,
WP,C is bounded.

From Definition 11, the consistency constraints are derived from the consistency of panels
around an inner vertex or a hole, therefore we define:

Definition 12. Given a creased paper (P,C), for each inner vertex v, the restriction of (P,C) on
all panels incident to v forms a single-vertex creased paper, and v is called the centre vertex (Figure
5(a)). Similarly, consider a hole with boundary h, whose incident inner creases are not concurrent.
The restriction of (P,C) on all panels incident to h forms a single-hole creased paper (Figure 5(b)).
If the inner creases incident to a hole are concurrent, it is still regarded as a single-vertex creased
paper, whose centre vertex is the intersection of its inner creases. A single-vertex or single-hole
creased paper is called a single creased paper. The number of folding angles is the degree of a single
creased paper.
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Corollary 2.2. W̃P,C is the intersection of extensions of the solution spaces of all single creased
papers.

Corollary 2.2 clarifies the link between global and local rigid-foldability, and explains why
local rigid-foldability cannot guarantee global rigid-foldability, since even the intersection of 0-
connected spaces is not necessarily 0-connected.

Next we want to apply results in the classic rigidity theory based on the consistency
constraints. Here elements {(3, 2), (1, 3), (2, 1)} are chosen as independent constraints from each
equation (4.1) and from the top left 3× 3 of equation (4.2). This is because considering the
first-order derivative of T [9]:

∂T

∂ρj
=

 0 −zj yj
zj 0 −xj
−yj xj 0

 (4.4)

where [xj , yj , zj ] is the direction vector of inner crease cj for ρj in the coordinate system built on
ρn, pointing outside the centre vertex or hole. Therefore only choosing non-diagonal elements
from each equation (4.1) or top left 3× 3 of equation (4.2) could result in a valid first-order
derivative, which corresponds with the direction of “speed” in kinematics. The collection of
independent consistency constraints is written as A(ρ) = 0, whose solution space is larger than
WP,C . If verifying the solution ofA(ρ) = 0 with equations (4.1) and (4.2), the result could be some
rotation matrices containing 0 and ±1 other than I , but they can be easily removed.

Further, by using the normalized folding angles t : tj = tan
ρj
2 (tj ∈ [−∞,∞]), the independent

consistency constraints can be written as a system of polynomial equationsA(t) = 0 with:

cos ρj =
1− t2j
1 + t2j

, sin ρj =
2tj

1 + t2j
(4.5)

For convenience, in this section we will mainly use the above representation A(t) = 0 for
further analysis. The degree for each folding angle in each equation ofA(t) = 0 is at most 2.

(a) Equivalent Definitions on Rigid-foldability
Here we will follow the idea that is commonly understood for bar-joint frameworks, and give
several equivalent definitions on rigid-foldability, which also holds if expressed by the folding
angles ρ.

Definition 13. An analytic path γ : [s1, s2]3 s→{(t, λ)}P,C that joins (t1, λ1) and (t2, λ2) can be
expressed as:

ti(s) =

∞∑
n=0

ain(s− s1)n (4.6)

where ti are the components of γ and ain are the coefficients for the power series of ti.

Theorem 3. Given a creased paper (P,C), the three following definitions on rigid-foldability are
equivalent.

(1) (Analytic) Given a rigidly folded state (t, λ), if there exists another rigidly folded state (t′,
λ′), where t′ is connected to t in the folding angle space {t}P,C by an analytic path, and
λ′ is 0-connected to λ, then (t, λ) is rigid-foldable to (t′, λ′).

(2) (Continuous) Given a rigidly folded state (t, λ), if there exists another rigidly folded state
(t′, λ′) which is 0-connected to (t, λ) in the configuration space, then (t, λ) is rigid-foldable
to (t′, λ′).
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(3) (Topological) Given a rigidly folded state (t, λ), ∀ε > 0, if there exists another rigidly
folded state (tε, λε), s.t. 0< |tε − t|< ε, and all {λε} satisfy the continuity condition
mentioned in Section 11.5 of [3], then (t, λ) is rigid-foldable.

Proof. (1) → (2) and (2) → (3) are natural. Next we prove (3) → (1). If from (3), (t, λ) is rigid-
foldable, then t is a limit point of the solution of A(t) = 0. From the curve selection lemma
(Section 3, [10]), there exists a real analytic curve γ starting from t and ending at another point t′.
The continuity of order function is naturally satisfied since the path in (1) is selected from (3).

Corollary 3.1. If two points in the configuration space are only connected by a single path, this
curve is analytic. For example, the configuration space of a rigid-foldable degree-4 single-vertex
creased paper or a rigid-foldable quadrilateral creased paper [11] is analytic.

(b) Analysis from the Tangent Space
Given a creased paper (P,C) and a point (t, λ) in the configuration space, it is traditional
in kinematics to consider the possible “infinitesimal” motion and determine the direction of
“speed” in the configuration space. An "infinitesimal flex", or a first-order flex dt, is a vector in
the tangent space of t satisfying JA · dt= 0, where JA=dA/dt is the Jabocian. Here JA is a
formal derivative since a point in the configuration space might be discrete. If (P,C) has i inner
vertices, j inner creases and h holes, the number of equations is 3i+ 6h, while the number of
variables is j, hence the size of JA is (3i+ 6h)× j. If rank(JA) =min(3i + 6h, j ), i.e. reaches its
maximum, this rigidly folded state (t, λ) is regular, otherwise it is special. If denoting the degree
of freedom by deg(t) = j − rank(JA), {t}P,C is locally a deg(t) dimensional smooth manifold. It
also has a deg(t) dimensional tangent space. If deg(t) = 0, i.e. the only first-order flex is 0, this
rigidly folded state (t, λ) is first-order rigid, otherwise first-order rigid-foldable. For a regular point,
the counting of degree of freedom is provided in [12].

Theorem 4. (1) If (t, λ) is first-order rigid, it is rigid. Equivalently, if (t, λ) is rigid-foldable,
it is first-order rigid-foldable.

(2) If (t, λ) is regular and rigid, it is first-order rigid. Equivalently, if (t, λ) is regular and
first-order rigid-foldable, it is rigid-foldable.

Proof. Statement (1): If for a given point t, A(t) = 0 and deg(t) = 0, from the Implicit Function
Theorem (Section 8.5, [4]),A−1(0) is a 0-dimensional manifold in some neighborhood of t, hence
(t, λ) is rigid.

Statement (2): If t is a regular point, from the Implicit Function Theorem, the dimension of
A−1(0) in a neighborhood of t equals to deg(t). Therefore if (t, λ) is regular, (t, λ) is rigid if and
only if (t, λ) is first-order rigid.

Remark 6. For a smooth creased paper (the origami case), the foldability and rigidity can be
similarly defined in the topological or continuous sense. However, here the first-order rigidity
does not imply rigidity, while analytical first-order rigidity implies analytical rigidity, which
means that these definitions on foldability are not equivalent. For details please refer to Chapter
12, [13].

Note that unlike a bar-joint framework, projective and affine transformation does not preserve
the first-order rigidity or first-order rigid-foldability.

(c) Generic Rigid-foldability and Equivalent Panel-hinge Framework
When studying the rigid-foldability of creased papers, we find that some of them with a crease
pattern isomorphic to a particular graph might be (almost) always rigid, or might be (almost)
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always rigid-foldable. This is the combinatorial property of a crease pattern, which is called the
generic rigidity (or rigid-foldability). Here we will discuss the theory of generic rigidity, starting
from a discussion on first-order rigidity. This is parallel to the work on the generic rigidity of
bar-joint frameworks [14].

Definition 14. Given a graph H , (P,C)H is defined as a creased paper with a crease pattern
isomorphic toH , which is also called a realization ofH . {(P,C)}H is the collection of such creased
papers, and {t}H is the collection of normalized folding angles of such creased papers.

Theorem 5. (1) Either (a) the setX = {t|(P,C)H is first-order rigid} is an open dense subset
in {t}H , and (almost) all realizations of H are first-order rigid; or (b) X = ∅ and all
realizations of H are first-order rigid-foldable.

(2) Either (a) the set Y = {t|(P,C)H is rigid} contains an open dense subset in {t}H , and
(almost) all realizations of H are rigid; or (b) Y c = {t|(P,C)H is rigid-foldable} contains
an open dense subset in {t}H , and (almost) all realizations of H are rigid-foldable.

Proof. Statement (1): Assume that there is a first-order rigid realization (t, λ) for a given graph
H , then deg(t) = 0, or equivalently, some sub-matrices of JA have non-zero determinants. This is
a system of polynomial constraints over t. If such a system of polynomials is non-zero at t, it is
non-zero in an open dense subset of {t}H (Section 3 of [15]).

Statement (2): Assume that there is a first-order rigid realization (t, λ) for a given graph
H , from Theorem 4, Y ⊃X , so the first part holds. Then assume there is no first-order rigid
realization, Y c contains all regular realizations of H , which are defined as R= {t|some sub-
matrices of JA have non-zero determinants} (a regular realization is where the Jacobian has
maximum rank). This is also a system of polynomial constraints over t. If such a system of
polynomials is non-zero at t, it is non-zero in an open dense subset of {t}H .

Definition 15. From Theorem 5, several equivalent definitions are provided on the generic rigidity
of H . If H is not generically rigid, it is generically rigid-foldable.

(1) H is generically rigid if X is dense in {t}H , or equivalently, (almost) all realizations of H
are first-order rigid.

(2) H is generically rigid if there is a first-order rigid realization.
(3) H is generically rigid if there is a first-order rigid regular realization.

A generic realization of H is a rigid realization if H is generically rigid, or is a rigid-foldable
realization if H is generically rigid-foldable.

Remark 7. For a bar-joint framework, "generic realization" usually means the coordinates of its
vertices do not satisfy a system of polynomial equations with rational coefficients, which is a
strong sufficient condition for genericity. However, in rigid origami we use folding angles to
describe the position of a creased paper, and a similar statement has not been found. How to
exactly determine whether a realization is generic is still unclear in both classic rigidity theory
and rigid origami. Sometimes estimating the generic rigidity from the number of constraints,
for example saying "H is generically rigid if 3i+ 6h≥ j", will fail for a similar reason to the
“double banana” model in bar-joint frameworks [16]. Often, finding a non-generic rigid-foldable
realization for a generically rigid crease pattern is an important topic, where tools such as
symmetry might be useful. For instance, the Miura-ori [17] is a non-generic realization of a
quadrilateral crease pattern, that is generically rigid.

A creased paper (P,C) can be regarded as a panel-hinge framework in rigidity theory, if each
panel is considered as a rigid body and the vertices on each panel are constrained in a plane. Here
is a conclusion connecting the property of H and the generic rigidity of H .
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Definition 16. Given a graph H , its dual graph H∗ is a graph that has a vertex for each face of H ,
and has an edge whenever two faces of H are separated from each other by an edge. A multigraph
kH (k ∈Z) is defined as replacing each edge of H by k parallel edges. A spanning tree of H is a
subset of H , which has all the vertices covered with minimum possible number of edges.

Theorem 6. H is generically rigid if and only if 5H∗ contains 6 edge-disjoint spanning trees [18].

Global rigidity (Definition 10) is also an important concept in classic rigidity theory, but there
is no complete result on the generic global rigidity for a panel-hinge framework. It would be very
appealing to develop a parallel theory that connects the property of H and the generic global
rigidity of H .

Remark 8. Modelling rigid origami by a corresponding bar-joint framework with position-based
description is often used for numerical simulation, which can be generated by replacing each
panel with a complete bar graph. This process can be described using graph product for a
periodic crease pattern [19]. A corresponding bar-joint framework also allows the discussion for
engineering based non-rigid origami, for example, there might be elastic deformation along the
bars [20]. However, even assuming all bars are rigid, this modelling only preserves the finite
motion, while the first-order flex will be completely different without additional constraints.
Therefore when studying the kinematics of rigid origami, it is probably better to use the folding
angle description.

(d) High order Rigid-foldability
We want the concept of high order rigid-foldability to be a generalization of the first-order
rigid-foldability. It is natural to consider the Taylor expansion of A(t) = 0 near a point in the
configuration space. The n-th order flex is an ordered pair (ρ′,ρ′′, ...ρ(n)) that satisfies the
equation given by the first n terms of Taylor expansion. If the solution space of the n-th order flex
is (0,0, ...0), the creased paper is n-th order rigid, otherwise n-th order rigid-foldable. The problem is,
as stated before, the degree for each folding angle inA(t) = 0 is at most 2. Given a creased paper,
if the degree of its single creased papers is at most m, the (2m+ 1)-th derivative ofA(t) = 0 will
vanish. Hence only up to 2m-th order flex is sensible if the high-order rigid-foldability is defined
in this way, which also means at most 2m-th order rigid-foldability implies rigid-foldability.

When calculating the derivatives, it was found that the folding angle expression A(ρ) = 0

leads to a simpler form. [21] gives explicit constraints for the first-order and second-order flex.

(e) Duality and Isomorphism of the Tangent Space, Figure Method
From the constraints on the first-order and second-order flex, [21] also gives the following
conclusions on a developable creased paper, which includes the discussion on reciprocal figure of
the crease pattern. We will introduce related definitions first.

Definition 17. Given a planar crease patternC, the reciprocal figureR is a mapping (with potential
self-intersection) from a dual graph C∗ (Definition 16) of C on to a plane with the following
properties:

(1) The edge c∗ in R mapped from a crease c in C is a line segment perpendicular to c.
(2) The face loop is defined for each face v∗ in R corresponding to vertex v in C as the

sequence of dual edges corresponding to the edges in counterclockwise order around
v.

(3) Each edge c∗ of the reciprocal diagram has assigned a sign σi, such that along any face
loop of v∗, the direction of the edge c∗ is 90◦ clockwise or counterclockwise rotation of
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the vector along the original crease c from corresponding vertex v if the sign is plus or
minus, respectively.

A zero-area reciprocal diagram ofC is a reciprocal diagram ofC where the signed area of each face
in the counterclockwise orientation is zero. Example figures are shown in [21].

Theorem 7. Main results in [21].

(1) A developable creased paper (P,C) is first-order rigid-foldable if and only if there exists
a non-trivial (not a point) reciprocal figure of C.

(2) A developable creased paper (P,C) is second-order rigid-foldable if and only if there
exists a non-trivial zero-area reciprocal figure of C.

(3) For a developable single-vertex creased paper, the second-order rigid-foldability is
equivalent to rigid-foldability.

(4) For a developable and flat-foldable quadrilateral creased paper [11], the second-order
rigid-foldability is equivalent to rigid-foldability.

Remark 9. Statements (3) and (4) imply a very interesting topic, which is to find the minimum
order m leading to the equivalence of mth-order rigid-foldability to rigid-foldability for some
special creased papers. We believe that there must be some deeper reason to justify the
equivalence of high-order rigid-foldability and rigid-foldability for a certain type of creased
paper, possibly from real algebraic geometry, which will be discussed in a future article.

Along with the analyses above, there are also some isomorphism on the tangent space Tρ for
a developable creased paper. From the constraints on the first-order flex, Tρ is isomorphic to the
space of the magnitude of admissible axial forces, when regarding the inner creases as rigid bars,
and the holes as rigid panels. It means that dρ∈ Tρ if and only if the above model is in equilibrium
when seeing dρ as the magnitude of corresponding axial forces [9].

Proposition 3. The planar state of a developable creased paper is first-order rigid-foldable if the
degree of each inner vertex is no less than 4.

Proof. We start from assuming that there is no hole in this developable creased paper (Euler
Characteristic 1), which has i inner vertices and j inner creases. From the isomorphism mentioned
above, at the planar state deg(0) = j − 2i. If the degree of each inner vertex is 4 and the creased
paper is unbounded, j = 2i. However, consider the effect of boundary, each inner vertex share
more inner creases, so j > 2i, and if there are some vertices whose degree is greater than 4, j will
be even greater, therefore deg(0) = j − 2i > 0. For a developable creased paper with holes, it can
be generated by cutting from a developable creased paper without hole, hence its planar state is
still first-order rigid-foldable.

[22] gives another way to describe the constraints on the first-order flex by the existence of
dual graph. Assuming a point ρ is differentiable with respect to a parameter t in {ρ}P,C , then for
every K,

˙ρK
−→cK =−→ωK −−−−→ωK−1 (4.7)

−→cK is the direction vector of crease cK where the folding angle is ρK , and ωK is the angular
velocity of panel K in the global coordinate system. From Proposition 1:

−→ωK(ρ)× = ṪK(ρ)TTK(ρ) (4.8)

where:

−→ωK(ρ)× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


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ωx, ωy, ωz are the coordinates of −→ωK(ρ), and

TK(ρ) =

K∏
1

 cosβk − sinβk 0

sinβk cosβk 0

0 0 1


 1 0 0

0 cos ρk − sin ρk
0 sin ρk cos ρk


By associating each panel with the instantaneous rotation axis, we get a dual graph C∗ of C,

which is formed by joining corresponding ends of the instantaneous rotation axes. ρ̇ is admissible
if and only if C∗ is parallel to C.

(f) When the Paper is a Polyhedron
If the paper is a polyhedron, many conclusions from other related topics can be filled into the
framework of rigid origami. One classic topic is unfolding a given polyhedron with possible
cuts along the edges, and the main problem of it is to avoid self-intersection, which is discussed
in Section 6(b). Another topic is to consider the possible rigid folding motion of a polyhedron
without cutting. Based on the well-known Cauchy’s Theorem, a strictly convex polyhedron is
rigid, while a non-convex polyhedron might be rigid-foldable. Robert Connelly gave an example
of non-convex rigid-foldable polyhedron [23]. The Bellows Conjecture, saying that the volume of
a rigid-foldable polyhedron is invariant under rigid folding motion, was proved and became
a typical feature of such rigid-foldable polyhedra [24]. Although studying the isometry of a
polyhedron is a historical problem, the research concerning the rigid folding motion between
possible isometries is relatively new and there are many open problems.

5. Geometric Analysis of the Configuration Space
As well as the algebraic analysis above, we can also consider a geometrical perspective. The
consistency and boundary constraints of the configuration space are the geometric and physical
compatibility of the rigid panels.

(a) Connection with Spherical Linkage Folding, Spherical Duality
Spherical linkage folding has proved useful in modelling a single-vertex creased paper. If putting
the centre vertex in the centre of a sufficiently small sphere, all the sector angles will correspond to
a closed series of great spherical arcs (consistency constraints) that only intersect at the endpoints
of all the arcs (boundary constraints), and every folding angle is the supplement of an interior
angle of this spherical polygon. Possible rigid folding motion of a single-vertex creased paper can
also be descibed from triangulating this spherical linkage. some basic analyses for a degree 1, 2 or
3 single creased paper are provided in Appendix (b).

We then consider the rigid-foldability of a degree-n single-vertex creased paper. In planar
linkage folding, the Carpenter’s rule problem is to ask whether a simple planar polygon can be
moved continuously to where all its vertices are in convex position, the edge lengths are preserved
and there is no self-intersection along the way [25]. It is foreseeable that the rigid-foldability of
a single-vertex creased paper is closely linked with the spherical version of the Carpenter’s rule
problem.

Proposition 4. Some conclusions about the folding angle space of a degree-n single-vertex
creased paper {ρ}v from spherical linkage folding.

(1) If a pair of inner creases is collinear,
∑
αl ≥ 2π. The corresponding folding angles are

denoted by ρi, ρj , then {ρ}v has a two dimensional subspace ρi = ρj .
(2) If a pair of inner creases is collinear, and

∑
αl = 2π, the corresponding folding angles are

denoted by ρi, ρj , then {ρ}v has a two dimensional subspace ρi = ρj , other ρk = 0. All
these subspaces only intersect at 0.
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(3) If
∑
αl ∈ (0, 2π), then every αl ∈ (0, π), and there is no pair of collinear inner creases

(antipodal points). {ρ}v is {ρ0,−ρ0} or the union of two disjoint 0-connected subspaces,
which are symmetric to 0 [26]. Note that even if n≥ 4, the configuration space can be two
isolated points, such as α1 = α2 + α3 + α4.

(4) If
∑
αl = 2π and every αl ∈ (0, π), {ρ}v is {0} or the union of two 0-connected subspaces

[26], which are symmetric to 0 and only intersect at 0. If and only if the degree of centre
vertex n≥ 4 and the interior of crease pattern is not a cross, {ρ}v has other non-trivial
0-connected subspaces different from (2), where every folding angle can be non-zero [27].

(5) Otherwise, from the constraints of a closed spherical linkage,
∑
αl ∈ (2π, (2n− 2)π).

Generically, by arbitrarily given n− 3 folding angles we can obtain a spherical triangle,
and the rest 3 folding angles can be calculated, hence there is no difficulity in simulating
a general degree-n vertex.

The point of view from spherical linkage folding is also beneficial when dealing with a multi-
vertex system. [28] presented two integrated 1-DOF (single degree of freedom) planar-spherical
mechanisms inspired by rigid origami, which also lead to new design of 1-DOF rigid-foldable
creased papers. Further, for a general creased paper, it is possible to model it on a sphere with
the Gauss map. Translating the startpoint of the normal vectors of all panels to the centre of a unit
sphere, and connecting the corresponding endpoints on this sphere if they share an inner crease.
This operation forms a spherical dual of a creased paper: each panel is mapped to a point, and
each inner crease (or each folding angle) is mapped to a linkage. The spherical duality would be
a potential tool for analyzing a large creased paper.

(b) When the Interior of Crease Pattern is a Forest
Definition 18. In graph theory, a forest is a disjoint union of trees. A tree is an undirected graph in
which any two vertices are connected by exactly one path.

As stated in the introduction, the forward problem in rigid origami can now be characterized
as finding the conditions on sector angles for a creased paper to be rigid-foldable. It is a relatively
complex problem because the rigid-foldability of a creased paper cannot be represented by the
rigid-foldability of its single creased papers. However, if considering the case where a creased
paper has no inner panel, this relatively simple structure may generate rigid-foldability.

Theorem 8. If a creased paper (P,C) satisfies:

(1) The interior of C is a forest.
(2) The restriction of a rigidly folded state (ρ, λ) on each single creased paper is rigid-

foldable.

then this rigidly folded state (ρ, λ) is generically rigid-foldable. Especially, if ρ= 0, the
configuration (ρ, λ) = (0, ∅) is rigid-foldable (Figure 6).

Proof. Since the interior ofC is a forest, adjacent single creased papers only share one inner crease.
Start from an arbitrary single creased paper, called P 1. Because (ρ1, λ) is not an isolated point
(here “isolated” means not 0-connected to any other points), there is a path between a point (ρ1, λ)
and (ρ1, λ). Consider an adjacent creased paper P 2 with a common folding angle ρc. We can
write ρc ∈ [a1, b1] on the path in {(ρ, λ)}1, similarly, ρc ∈ [a2, b2] on the path in {(ρ, λ)}2. Let
ρc ∈ [a1, b1] ∩ [a2, b2], which is not empty because ρ exists. If [a1, b1] ∩ [a2, b2] is a closed interval,
the two paths in {(ρ, λ)}1 and {(ρ, λ)}2 can be re-parametrized, then the direct product of them
is a path in {(ρ, λ)}1∪2, and now the restriction of this rigidly folded state on P 1 ∪ P 2 is rigid-
foldable. Otherwise, if [a1, b1] ∩ [a2, b2] is just a point, the path may not exist. The case where the
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Figure 6. We show a rigid-foldable creased paper with the interior of crease pattern being a forest. Here each tree is

denoted by dashed lines.

restriction of (ρ, λ) on {(ρ, λ)}1∪2 is an isolated point is called non-generic. An example of this
non-generic case is shown in Figure 7.

Now consider the special case when ρ= 0. This is different to the general case because the
range of all folding angles are symmetric to 0. Because (01, ∅) is not an isolated point, there must
be a path between a point (ρ1, λ) and (0, ∅), and from the symmetry there must be a path between
(0, ∅) and (−ρ1, λ) in {(ρ, λ)}1. Name its adjacent creased paper P 2 and the common folding
angle ρc. ρc ∈ [−a1, a1] (a1 ≥ 0) on the path in {(ρ, λ)}1, similarly, ρc ∈ [−a2, a2] (a2 ≥ 0) on the
path in {(ρ, λ)}2. Let ρc ∈ [−min(a1, a2),min(a1, a2)], we can always parametrize all the folding
angles on P 1 ∪ P 2 to a continuous path by ρc. If a1 or a2 = 0, the direct product of the two paths
in {(ρ, λ)}1 and {(ρ, λ)}2 is a new path in the intersection of {(ρ, λ)}1 and {(ρ, λ)}2.

Further, the above analysis for each single creased paper can be repeated. Since the number
of single creased papers is countable, we can obtain a path between (ρ, λ) and another point
(ρ, λ) in the intersection of configuration spaces of all single creased papers if each time we can
add a single creased paper in the generic case. If λ is continuous on this path, (ρ, λ) is rigid-
foldable to (ρ, λ) along this path. Otherwise, it may be possible to choose a subset of this path to
avoid self-intersection of different single creased papers and make λ continuous (so-called generic
case). Besides, for (0, ∅), by choosing ρ′ on this path sufficiently close to ρ, the self-intersection
of different single creased papers can be avoided and λ will have no definition, so (0, ∅) is rigid-
foldable to (ρ′, ∅) and (−ρ′, ∅).

Remark 10. Theorem 8 is not necessary, even when the interior of C is a forest. If for some single
creased papers, the restriction of (ρ, λ) is an isolated point, it cannot have relative rigid folding
motions, but (P,C) can still be rigid-foldable. If there is a cycle in the interior of C, the path in
the intersection of the configuration spaces of all single creased papers may not be successfully
generated with the above one-by-one process, and generically (ρ, λ) is not rigid-foldable.

Although the general rigid-foldability problem is hard, with Theorem 8, we can analyze some
simple creased papers, for instance, quadrilateral creased papers, which will be discussed in a
subsequent article.
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(a) (b))
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Figure 7. This figure shows a non-generic case mentioned in the proof of Theorem 8. (a) and (b) are the front and rear

perspective views of a creased paper, where two single-vertex creased papers share two panels. The sector angles are

shown in degrees. This rigidly folded state is not rigid-foldable because the common folding angle ρ cannot exceed π/2 in

the top single-vertex creased paper, and cannot be below π/2 in the bottom single-vertex creased paper, although both

of the single-vertex creased papers are rigid-foldable.

6. Numeric analysis of the Configuration Space
This section gives a brief overview of the numeric analysis on rigid origami. Although this paper
concentrates on the algebraic and geometric methods, numerical analysis can be an efficient tool
for tracing the rigid folding motion and avoiding self-intersection. We also briefly mention the
analysis on complexity of certain problems in rigid origami to give a more complete perspective.

(a) Tracing the Rigid Folding Motion
Given a creased paper (P,C), there are at least two rigidly folded states (t0, λ(t0)) and
(−t0,−λ(t0)). A possible way to know its configuration space is to solve the equation A(t) = 0

introduced in Section 4 numerically, and remove the solutions in NP,C . Unfortunately this only
works for some small systems, since the total degree ofA(t) = 0 increases dramatically for larger
systems. Another way is starting from a point in the configuration space and tracing a possible
rigid folding motion based on the integration of first-order flex. An example is given in [29], using
the Euler method and correcting errors at each step.

(b) Self-intersection of Panels
In rigid origami, the study on boundary constraints (self-intersection of panels) requires different
techniques than those used for the study of consistency constraints. A straightforward question
is, how to design a rigid folding motion without self-intersection if a given creased paper is rigid-
foldable. The prime source of relevent results comes from the study of unfolding a polyhedron to
a planar polygon without overlapping (also called the net), which has been extensively studied
[30]. However, the result of how to design a rigid folding motion without self-intersection when
unfolding a polyhedron is still developing, as introduced below.

It is natural to consider applying a collision detection algorithm to solve the problem of
avoiding self-intersection. [31] proposed an algorithm called Lazy PRM, which minimizes the
number of collision checks performed during robot motion planning and hence minimizes the
running time of the planner. Then [32] provided an algorithm under the Lazy PRM framework
for cutting and unfolding a polyhedron continuously to one of its nets without self-intersection.
This algorithm also works for a “tessellated polyhedron”, where each face of a polyhedron
is triangulated densely. However, it is still a challenge to unfold a complicated non-convex
polyhedron in general if the net is not linearly foldable (“linearly foldable” means there exists
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a straight-line linearly interpolating the planar state to the fully folded state without self-
intersection). Further, [33] showed that for a given polyhedron, the way of cutting can be
optimized to generate a net that is linearly foldable, uniformly foldable (“uniformly foldable”
means the speed of each folding angle are the same), and much faster in motion planning than
an arbitrary net. Nevertheless, for some complicated non-convex polyhedra such a net may not
exist.

There are also some other algorithms for some special creased papers. [34] showed that it
is possible to unfold a “nested band” continuously to place all faces of the band into a plane
without self-intersection by cutting along exactly one edge. However, the technique used here
is extended from one dimensional folding, which seems hard to be applied universally. [35]
proved that the source unfolding [30] of any convex polyhedron can be continuously unfolded
without self-intersection. Further, any convex polyhedron can be continuously unfolded without
self-intersection after a linear number of cuts. Although here the rigid folding motion can be
constructed in polynomial time, the source unfolding itself is difficult to compute.

(c) Complexity
Computer-aided design is common for origami, and there have been many results on the
complexity of algorithm in origami problems. Here we are more interested in analyses related
to rigid origami. [36] showed that it is NP-hard to determine whether a given creased paper can
be folded flat (using all the inner creases). [3] showed that it only takes linear time to determine
whether a single-vertex creased paper can be folded flat (using all the inner creases). A recent
result [37] showed that it is weakly NP-hard to determine whether a degree-4 creased paper (all
the inner vertices are degree-4) can be folded flat (using all the inner creases), and it is strongly NP-
hard to determine whether a given creased paper is rigid-foldable (using optimal inner creases).
The analysis of complexity gives insight for the case where we want to approximate a target
surface by sub-dividing the crease pattern.

7. Discussion

(a) Flat-foldability of Rigid Origami
The definition of rigid origami in this paper allows the discussion on flat-foldability. A creased
paper is flat-foldable if and only if it has a different flat rigidly folded state, where all the folding
angles are ±π. Note that flat-foldability does not require a rigid folding motion. There have been
many conclusions, some of which are collected in [3], including the flat-foldability of a strip
(1-dimensional origami), a single-vertex creased paper, and the map folding. [11] provides the
sufficient and necessary condition for the flat-foldability of a large quadrilateral creased paper.

(b) Mountain-valley Assignment
Definition 19. A mountain-valley assignment of a creased paper is a discrete map of every inner
crease µ: {cj}→ {M,V }. If the folding angle of an inner crease is negative, this inner crease is
called a mountain crease (M ), while if it is positive, this inner crease is called a valley crease (V ).

This concept is widely used. However, counting possible mountain-valley assignments is
known to be a difficult problem. The mountain-valley assignment is of interest here because for a
developable creased paper different mountain-valley assignment can classify different branches
of rigid folding motion. For a flat-foldable single-vertex creased paper, current progress is given
in [38]. For a rigid-foldable single-vertex creased paper [27] or Miura-ori [39], the idea of minimal
forcing set helps to analyze the mountain-valley assignment. Given a rigid-foldable creased paper
and a mountain-valley assignment µ, The forcing set is a subset of inner creases such that the only
possible mountain-valley assignment for this creased paper that agrees with µ on the forcing set is
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(a) (b)

(c) (d)

ρ1

ρ2

ρ3

ρ4

ρ1

ρ2

ρ3

ρ4

α β
π-α π-β

α β
α β

Figure 8. Examples for monotonous rigid-foldability. (a) is a developable degree-4 single-vertex creased paper, while

(c) is non-developable (top view). In both examples α= 60◦, β = 70◦. As ρ1 increases from 0 to π, the changes of

absolute value for ρ2, ρ3, ρ4 in (a) and (c) are shown in (b) and (d) respectively. Here (a) is monotonously rigid-foldable,

corresponding to an expansive motion. (c) is not monotonously rigid-foldable.

µ itself. If a forcing set has minimal size among all the forcing sets, it is called the minimal forcing
set. The theory for the mountain-valley assignment of a large creased paper is still developing,
although given a specific example there are some techniques (at least, enumeration) to deal with it.
An approach is linking this problem to graph coloring, [40] counts the number of mountain-valley
assignments for local flat-foldability of a Miura-ori, while how to identify those guarantee global
flat-foldability (which are the real number of branches) requires some unknown techniques. For
a non-developable creased paper, the mountain-valley assignment cannot be used to classify its
rigid folding motions. Generically, a rigid-foldable creased paper with more symmetry will have
more branches of rigid folding motion.

(c) Monotonous Rigid-foldability
If for two rigidly folded states (ρ1, λ1) and (ρ2, λ2) of a creased paper (P,C), there exists a
path L : t∈ [0, 1]→{(ρ, λ)}P,C , s.t. L(0) = ρ1, L(1) = ρ2, and the absolute value for components
|ρj(t)| (strictly) all increase or all decrease, we say (ρ1, λ1) is (strictly) monotonously rigid-foldable
to (ρ2, λ2). This concept is an extension of the expansive rigid folding motion mentioned in [26].
In Figure 8, we show a monotonously rigid-foldable single vertex in (a) and (b); and a not
monotonously rigid-foldable single vertex in (c) and (d). Monotonous rigid-foldability is a
stronger property than 0-connectedness in the configuration space. A better understanding of
monotonous rigid-foldability might prove to be useful, for instance in selecting an expansive
rigid folding motion that can avoid local self-intersection.
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(d) Variation for a Given Crease Pattern
If the interior of a crease pattern is fixed, the shape of panels and the outer creases are not related to
the consistency constraints of a rigidly folded state, thus we can reshape the panels and the outer
creases to obtain a different creased paper, which will not essentially change the configuration
space.

(e) Kirigami
Kirigami can be defined as cutting along countable continuous curves on a creased paper. If a cut
curve is closed, a region whose boundary is this cut curve will be removed, otherwise a cut curve
will be split into two boundary components. How kirigami will affect the rigid-foldability has not
been fully studied, although clearly kirigami will not decrease the rigid-foldability of a creased
paper. We intend to discuss this in a future article.

8. Conclusion
This article puts forward a theoretical framework for rigid origami, and demonstrates how
this framework can be used to connect rigid origami and results from related areas, such
as the rigidity theory, graph theory, linkage folding and computer science. In particular we
clarify necessary definitions for rigid origami, and show that the key problem is to describe the
shape and 0-connectedness of the configuration space. Further, by using the normalized folding
angle expression, we are able to describe the generic and n-th order rigid-foldability from the
polynomial nature of a rigid origami system.

Appendix

(a) An Alternative Way to Move from Origami to Rigid Origami
Here a result in [6] is presented: an isometric map on a creased paper will become piecewise rigid
if the paper S, crease pattern G and isometry function f are required to have stronger properties.
Following Definitions 1–5, we add the conditions below,

(1) S is piecewise-C2.
(2) If a point on a crease c is C0 or c⊂ ∂S, c is a line segment.
(3) A point on a crease or piece of (S,G) is locally isometric to a disk or a half-disk. A vertex

of (S,G) is not necessarily locally isometric to a disk or a half-disk.
(4) f is an isometry function such that f(S) is piecewise-C2.

Then if all “folding angles” are non-trivial,

(1) Each piece is planar.
(2) The restriction of f on each piece is a combination of translation and rotation (reflection

is not necessary).

(b) The Configuration Space of a Degree-1, 2 and 3 Single Creased Paper
Here we consider the folding angle space of a degree-n single-vertex and single-hole creased
paper, called {ρ}nv and {ρ}nh , from the solution spaceWn

v andWn
h . When n≤ 3, the order function

has no definition.

(1) W 1
v : ρ1 = 0, when α1 = 2π. {ρ}1v =W 1

v , which is the same for W 1
h and {ρ}1h with β1 = 2π

and a1 = b1 = 0.
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The folding angle on an inner crease incident to a degree-1 vertex is always 0, which
means this single creased paper can be regarded as a panel. On the other hand, if a single-
hole creased paper has only one inner crease, this single creased paper as well as the hole
should always keep planar, which means they can be merged to a panel. Therefore in a
large creased paper we only need to consider at least degree-2 single creased papers.

(2) W 2
h is either (for W 2

v , set α1 = β1, α2 = β2, a1 = b1 = a2 = b2 = 0)

(a) ρ1 = ρ2, when β1 = β2 = π, a1 = a2, b1 = b2 = 0.
(b) ρ1 = ρ2 = 0, when β1 + β2 = 2π, and

a1 + a2 cosβ1 − b2 sinβ1 = 0

b1 + a2 sinβ1 + b2 cosβ1 = 0
(A 1)

(c) ρ1 =±π, ρ2 =±π, when β1 = β2, and

a1 + a2 cosβ1 + b2 sinβ1 = 0

b1 + a2 sinβ1 − b2 cosβ1 = 0
(A 2)

{ρ}2h is either (for {ρ}2v , set α1 = β1, α2 = β2, a1 = b1 = a2 = b2 = 0)

(a) ρ1 = ρ2, when β1 = β2 = π, a1 = a2, b1 = b2 = 0.
(b) ρ1 = ρ2 = 0, when β1 + β2 = 2π, and equation (A 1) is satisfied.
(c) ρ1 = ρ2 =±π, when β1 = β2, and equation (A 2) is satisfied.

Considering {ρ}2v , for a degree-2 single-vertex creased paper in case (a), the vertex and
two inner creases can be merged into one inner crease; for case (b) or (c), this single
creased paper can be regarded as a panel. For a degree-2 single-hole creased paper, case
(a) can be regarded as two panels rotating along an inner crease. For case (b) or (c), the
configuration space is trivial, which means they can be regarded as a panel. Therefore in
a large creased paper we only need to consider at least degree-3 single creased papers.

For n≥ 3, it seems hard to make direct symbolic calculations and study the real roots. A
possible way is to solve the polynomial system numerically, but the complexity increases rapidly.
We then provide the result for {ρ}3v from the analysis on a spherical triangle, which is:

(a) i, j, k is a permutation of {1, 2, 3}. If

(a) αi = π, then αj + αk = π, ρk = ρi, ρj = 0.
(b) αi + αj = π, then αk = π, ρk = ρj , ρi = 0.

(b) If α1 + α2 + α3 = 2π and not (a), ρ1 = ρ2 = ρ3 = 0.
(c) Otherwise, there are two solutions {ρ1, ρ2, ρ3} and {−ρ1,−ρ2,−ρ3}, which satisfy the

following equations and the supplement of ρ1, ρ2, ρ3 are the interior angles of a spherical
triangle. (Special cases like αi = αj + αk are included)

cos ρ1 =
cosα1 cosα2 − cosα3

sinα1 sinα2

cos ρ2 =
cosα2 cosα3 − cosα1

sinα2 sinα3

cos ρ3 =
cosα3 cosα1 − cosα2

sinα3 sinα1

(A 3)

As for a degree-3 single-hole creased paper, {ρ}3h is a subset of {ρ}3v and is not empty. Since
it is not possible for a degree-3 single creased paper to have continous rigid folding motion
different from folding along a single crease, we usually consider no less than degree-4 single
creased papers.

Data Accessibility. This article has no additional data.
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