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We uncover a topological classification applicable to open fermionic systems governed by a general
class of Lindblad master equations. These “quadratic Lindbladians” can be captured by a non-Hermitian
single-particle matrix which describes internal dynamics as well as system-environment coupling. We show
that this matrix must belong to one of ten non-Hermitian Bernard-LeClair symmetry classes which reduce
to the Altland-Zirnbauer classes in the closed limit. The Lindblad spectrum admits a topological
classification, which we show results in gapless edge excitations with finite lifetimes. Unlike previous
studies of purely Hamiltonian or purely dissipative evolution, these topological edge modes are
unconnected to the form of the steady state. We provide one-dimensional examples where the addition
of dissipators can either preserve or destroy the closed classification of a model, highlighting the sensitivity
of topological properties to details of the system-environment coupling.
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Introduction.—Topological band theory was developed to
predict and explain robust features in the electronic structure
of insulators and superconductors close to their ground states
[1,2]. While these ideas have already found fundamental
applications in quantum metrology [3] and quantum com-
putation [4], there has been a recent effort to understand the
role of topology in the dynamics of many-body systems in
highly nonequilibrium environments [5–12].
A growing body of literature has been dedica-

ted to studying topological aspects of “non-Hermitian
Hamiltonians,” which generate nonunitary time evolution
in certain dissipative classical and quantum settings [13–16].
While this versatile approach applies in various limits, it
is insufficient to describe the full time evolution of a generic
open quantummany-body system coupled to a bath.Anopen
system is described by a (possibly mixed) density matrix ρ
which propagates irreversibly due to dissipative coupling
with its environment. For suitably generic baths, ρ is
governed by the Liouville equation: i_ρ ¼ LðρÞ, where L
is the “Lindbladian”—a non-Hermitian superoperator that
acts linearly on ρðtÞ. While calculating the complex
spectrum of the Lindbladian can always be viewed as a
non-Hermitian eigenvalue problem, L possesses an inher-
ent structure which further constrains the topological
signatures of open systems.
In this Letter, we show that there exists a robust

topological classification of the full complex spectrum of
the Lindbladian, L, for the case of a Markovian bath with
linear fermionic dissipators. In this case, the Lindblad
spectral problem reduces to solving for the eigenvalues of a
non-Hermitian quadratic Fermi operator [17,18]. An under-
standing of the symmetry properties of this operator allows
us to compute the set of topologically distinct Lindblad

spectra, which exhibit properties that are stable against
continuous deformations. In particular, we make use of the
real-line gap topological classification of Bernard-LeClair
symmetry classes [19], recently uncovered by Kawabata
et al. [14].
Surprisingly, we find that our classification—which

applies in the presence of both dissipation and coherent
internal dynamics—differs qualitatively from the two limit-
ing cases that have previously been much studied, of purely
Hamiltonian systems (Hermitian Lindbladian) [1,2] and of
purely dissipative systems (anti-Hermitian Lindbladian)
[20–23].
As in closed systems, the topological classification has

consequences for dynamics near the system boundary. We
show that a topologically nontrivial Lindbladian possesses
robust edge modes whose phase-oscillation frequencies are
pinned to lie in the energy gap, but which generically pick
up finite lifetimes (see Fig. 1). (These edge modes will
appear in spectroscopic measurements as broadened peaks
within the bulk gap.) However, we find that, unlike
previous classifications for purely Hamiltonian or purely
dissipative systems, properties of the spectrum and steady
state are completely independent: The existence of spectral
edge modes implies nothing about the steady state density
operator. For example, these universal topological proper-
ties of the complex excitation spectrum—which have direct
physical consequences in spectroscopy—are unconnected
to the classification of steady-state density matrices
employed in Refs. [21,24–26]. Our work highlights the
various manifestations of band topology in a very general
class of exactly solvable open systems, and provides
formalisms which can be applied to understand generic
interacting systems in future work.
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Quadratic Lindbladians.—Before discussing topologi-
cal edge modes in an open environment, we describe the
general setup considered in this work. Our starting point
is the Gorini-Kossakowski-Sudarshan-Lindblad master
equation

i
dρ
dt

¼ LðρÞ ¼ ½H; ρ� þ i
X

μ

ð2LμρL
†
μ − fL†

μLμ; ρgÞ ð1Þ

which describes nonunitary time evolution of a density
matrix ρ subject to unitary dynamics generated by a
Hamiltonian H and dissipation due to operators Lμ which
can add and/or remove particles via a Markovian envi-
ronment [27]. Typically there exists a unique steady state
ρSS satisfying LρSS ¼ 0; all other eigenoperators have
complex eigenvalues with negative imaginary part, cor-
responding to terms decaying in time. Note that we have
multiplied the typical definition of L by i such that the
master equation resembles a non-Hermitian Schrödinger
equation: Real parts of eigenvalues (called energies) indicate
phase oscillation frequencies of eigenoperators, while neg-
ative imaginary parts correspond to the decay rate.
For a system of N fermions, one can always solve for

the spectrum λ of the “Lindbladian” L by projecting onto
some basis ρ ¼ P

i;j ρi;jjϕiihϕjj, which has dimension
2N × 2N ¼ 22N . Exact diagonalization of the resulting
square matrix is numerically expensive, since the basis
grows exponentially with the number of particles. However,
further progress can be made if the Hamiltonian is quadratic
in Fermi operators, and the dissipators are linear—such
systems we refer to as quadratic Lindbladians, and are the
subject of this work. In this case, Prosen [17,18] showed that
the spectrum of the Lindbladian can be found by diagonal-
izing a non-Hermitian fermionic superconductor with 2N

particles in Bogoliubov-de Gennes form. The factor of 2 can
be understood becausewe assign a fermion to both “bra” and
“ket” space. The number of eigenstates is again 22N since
each of the 2N Bogoliubov quasiparticles can either be
excited or not.
We briefly review this approach forN complex fermions.

The Hamiltonian and dissipators can be expressed in terms
of 2N Majorana fermions

H ¼
X2N

i;j¼1

αiHi;jαj; Lμ ¼
X2N

i¼1

lμ;iαi; ð2Þ

where H ¼ H†; H ¼ −HT . Majorana operators satisfy the
anticommutation relation fαi; αjg ¼ 2δij. Define a 2N ×
2N Hermitian matrix M ¼ lTl�. The Lindbladian can then
be represented as a superoperator acting on a doubled
Hilbert space spanned by 2N complex fermions fcjg

L ¼ 2ð c† c Þ
�
−ZT Y

0 Z

��
c

c†

�
ð3Þ

where c ¼ ðc1;…; c2NÞ, Y ¼ 2Im½M�, Z ¼ H þ iRe½M�.
The c superoperators explicitly act on the density matrix via
c†jρ ¼ ½αjρþ ðPFρÞαj�=2 and cjρ ¼ ½αjρ − ðPFρÞαj�=2,
where PF is the fermion parity superoperator [28].
Because of this upper triangular form Eq. (3), one can
now diagonalize the Lindbladian in terms of 2N quasi-
particles

L ¼ 4
X2N

j¼1

λjβ̄
†
jβj ð4Þ

where λj are the eigenvalues of thematrix−Z. Quasiparticles
obey generalized fermionic statistics: fβ̄†i ; βjg ¼ δi;j;
fβ̄†i ; β̄†jg ¼ fβi; βjg ¼ 0. In the doubled Hilbert space, the
steady state is represented as a 22N-dimensional vector that is
annihilated by all quasiparticles: βiρSS ¼ 0. The states β̄†i ρSS
represent eigenoperators of L, propagating with complex
energy 4λi.
The single-particle Lindblad spectrum fλg satisfies two

generic conditions: (1) Im½λi� ≤ 0, since elements of the
density matrix can only decay (not amplify) as a function of
time, and (2) eigenvalues must come in anti-complex-
conjugate pairs fλg ¼ f−λ�g where the brackets indicate
the set of spectral eigenvalues; this ensures Hermiticity of
the density matrix at all times.
Non-Hermitian tenfold way.—In what follows, we will

be interested in studying the robust features of the complex
Lindblad spectrum associated with a topological insulator
or superconductor in the presence of general linear fer-
mionic dissipation. We begin by addressing the symmetries
of the matrix whose eigenvalues determine the spectrum of
quadratic Lindbladians. From Eq. (3), the upper triangular

FIG. 1. Complex spectra of one-dimensional examples of [(a),
dark blue] closed Hermitian systems; [(b), green] purely dis-
sipative systems studied in Refs. [20,21,25]; and [(c), light blue]
generic quadratic Lindbladians studied in this work. Hermitian
systems in a topological phase possess in-gap states with zero
eigenvalue (dark blue dot), however the topology of purely
dissipative systems is not reflected in the Lindblad spectrum.
On the other hand, a quadratic Lindbladian which is gapped in the
real direction can possess robust zero-frequency edge modes
(light blue dot).
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structure of the matrix implies that the spectrum does
not depend on Y, and hence it is fully determined from
the eigenvalues of the 2N-dimensional square matrix
Z ¼ H þ iRe½M�.
The Hamiltonian of noninteracting fermions can be

sorted into one of ten Altland-Zirnbauer [29] symmetry
classes based the presence or absence of the following three
symmetries:

TRS∶ H ¼ UTH�U†
T; UTU�

T ¼ �I ð5aÞ

PHS∶ H ¼ −UCH�U†
C; UCU�

C ¼ �I ð5bÞ

chiral∶ H ¼ −USHU†
S; U2

S ¼ I; ð5cÞ

where the matrices UT;C;S are all unitary. Physically, these
stem from time-reversal, particle-hole, and chiral (sublat-
tice) symmetry, respectively. Our use of Majorana fermions
ensures that Eq. (5b) is automatically satisfied withUC ¼ I;
however, if charge is conserved then one can decouple
particle and hole sectors, each of which separately does not
respect PHS. A topological classification of noninteracting
models based on these ten classes is called the tenfold way
[30,31], and describes symmetry-protected topological
phases of free fermions.
We now ask whether Z can inherit these symmetries once

dissipators are introduced, i.e., M ≠ 0; Z ≠ Z†. If TRS is
imposed on Z in the form Eq. (5), i.e., Z ¼ UTZ�U†

T , then
wewill find that a damping modewith eigenvalue λmust be
paired with a mode of eigenvalue λ�—this has the same
frequency Re½λ� but a negative damping rate Im½λ�, and is
thus unphysical. (See Fig. 2.) Similarly, PHS cannot be
represented via an expression of the form Z ¼ −UCZTU†

C,
since this would ensure that eigenvalues come in positive-
negative pairs: fλg ¼ f−λg. Indeed Z cannot respect any
symmetry which associates a decaying mode with an
amplifying one. We find a unique way to extend the
Hamiltonian symmetries, Eq. (5), to Lindbladian sym-
metries which does not suffer from this problem, namely,

TRS∶ Z ¼ UTZTU†
T; UTU�

T ¼ �I ð6aÞ

PHS∶ Z ¼ −UCZ�U†
C; UCU�

C ¼ �I ð6bÞ

PAH∶ Z ¼ −USZ†U†
S; U2

S ¼ I: ð6cÞ

Different combinations of these symmetries generate ten
Lindbladian symmetry classes which reduce to the Altland-
Zirnbauer classes in the absence of dissipation. While the
non-Hermitian Bernard-LeClair symmetries generate a
much larger number of unique classes compared to their
Hermitian counterparts [19], the inherent structure of
quadratic Lindbladians ensures that the spectral matrix Z
must belong to one of the ten classes defined above.
Although the new form of time-reversal symmetry appears
unusual, we show in the Supplemental Material [32] that
this symmetry arises naturally when the microscopic
Hamiltonian of the system and environment as a whole
respect the Hermitian TRS, Eq. (5) (even though the system
alone propagates irreversibly). Note also that pseudo-anti-
Hermiticity (PAH) generalizes chiral symmetry, i.e., it is
guaranteed if a model has TRS and PHS.
Recent studies have used Bernard-LeClair symmetries to

construct a topological classification for non-Hermitian
models [14]. In this context, there exist different choices for
defining a spectral gap—some range of energy within
which no bulk eigenvalues are present. The positivity
condition Im½λi� ≤ 0 again puts constraints on these pos-
sibilities. If one chooses a point gap at the origin (λi ≠ 0),
or an imaginary line gap (Im½λi� ≠ 0), then the eigenvalues
of Z can be continuously deformed to a single point without
crossing these gaps, and so an analysis under these
conditions will not identify any robust spectral properties.
However, one can choose a real line gap condition
Re½λi� ≠ 0, i.e., we insist that all bulk modes have a finite
oscillation frequency [Fig. 1(c)]. Note that this is in stark
contrast to the pure-dissipation case [20,21,25].
According to Ref. [14], the classification table for the ten

Bernard-LeClair classes which stem from Eqs. (6) under a
real line gap is the same as that for the conventional tenfold
way, once the non-Hermitian symmetry classes are asso-
ciated with their corresponding Hermitian counterparts.
The relevant bulk topological indices can be calculated for
all the negative-frequency bands, and if their sum is
nonzero then we expect in-gap states to appear at the
system boundary, just as in Hermitian band theory. Since
the gap is chosen along the imaginary axis, an edge mode of
the Lindbladian will be pinned to zero frequency, but
generically will have a finite damping rate, since the
classification is only sensitive to Re½λi�.
An intuitive picture is formed if one takes a topologically

nontrivial system and gradually turns on dissipators with-
out closing the frequency gap. If this procedure is carried
out while at all times respecting the symmetries Eq. (6),
then the topological classification of the new open system is
identical to its closed precursor. Our results show that
the gapless edge modes of the Hermitian system will
remain constrained to lie in the middle of the gap, and
acquire a finite lifetime. Similarly, as was found for the Su-
Schrieffer-Heeger (SSH) chain in Ref. [37], topological
invariants can be defined for the spectrum of the open

FIG. 2. Hermitian time-reversal symmetry (left) must be
implemented using transposition rather than conjugation
once non-Hermitian dissipative terms are included (right).
(Z ¼ H þ iRe½M�)
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system such that they are equal to those for the closed
system.
Independence of steady-state properties.—In isolated

systems, the topological properties of the ground state are
reflected in the spectrum of the Hamiltonian. In open
systems, the analogous state to consider is the nonequili-
brium steady state LðρSSÞ ¼ 0. Although ρSS is generically
not a pure state, one can still discuss its topological
properties by using appropriate invariants for density matri-
ces [25]. Studies of systems with pure dissipation (H ¼ 0)
have shown that an alternative tenfold way for open systems
arises based on these properties [20,21,24,26]. One might
expect that our spectral analysis reflects these steady state
properties, in parallel with closed systems.
However, we find that the spectral and steady state

topological properties of quadratic Lindbladians are inde-
pendent. We prove this by showing that for any Lindbladian
with a nontrivial steady state, there exists another
Lindbladian with the same symmetries and spectrum, but
with a trivial steady state. This auxiliary system has the
same Hamiltonian, but the (generally complex) dissipators
lμ;i are replaced by real values l̃μ;i which satisfy
l̃T l̃ ¼ M ≡ ReðlTl�Þ. Because the matrix Z depends only
on M and H, the spectrum is unaffected. However, one
finds that ρSS ∝ I, and is thus always a structureless
“trivial” steady state. In the Supplemental Material [32],
we show that a valid l̃μ;i always exists and is sufficiently
local such that one can define a continuous path of
Lindbladians that leaves the spectrum invariant (e.g.,
without closing the gap in real frequency) yet connects
the physical system to this auxiliary system with a trivial
steady state. Hence, the form of the spectrum is uncon-
nected to the form of the steady state.
Having uncovered the general symmetry-based topologi-

cal classification of quadratic Lindbladians, we now illus-
trate its relevant features in the context of an example system.
Dissipative Kitaev chain.—We consider the Kitaev chain

[38] in the presence of local, linear dissipators. The unitary
evolution is generated via the Hamiltonian

HKit ¼ iμ
XN

j¼1

αj;Aαj;B þ iΔ
XN−1

j¼1

αj;Bαjþ1;A ð7Þ

where αj;A=B represent the two types of Majorana fermions
on lattice site j of N, and μ;Δ ∈ R. We also consider N − 1
dissipators which connect nearest-neighbor sites: Lj ¼
γðαj;A þ iαjþ1;BÞ. A variant of this model has been studied
previously [28]; however, we shall emphasize the impor-
tance of the non-Hermitian Bernard-LeClair symmetries
which are responsible for the protection of gapless edge
modes.
The Kitaev chain Hamiltonian falls into class BDI,

which has a Z classification in 1D. In a Majorana
basis, the first-quantized (matrix) Hamiltonian obeys the
symmetries H ¼ −H�; H ¼ τzH�τz; H ¼ −τzHτz where

τz ¼ IN ⊗ σz, and σz is the Pauli matrix which acts on
the Majorana sublattice index. If we turn on the dissipator
strength γ ≠ 0, then the dynamics of the open system is
determined from the Lindblad spectrum, found explicitly
by diagonalizing Z. Z inherits the following symmetries:
Z ¼ −Z�; Z ¼ τzZTτz; Z ¼ −τzZ†τz. Indeed we find that
such dissipators will keep the model in the same symmetry
class, and we expect the edge modes to obey Re½λedge� ¼ 0.
For spinless fermions, any dissipator which can be written
in the form Lμ ¼ eiϕμ

P
jðγμ;jαj;A þ iγ̄μ;jαj;BÞ, for ϕμ; γμ;j;

γ̄μ;j ∈ R will preserve the TRS condition Eq. (6).
The spectrum is calculated numerically, and plotted in

Fig. 3. We notice that indeed edge modes are constrained to
obey Re½λedge� ¼ 0, while the imaginary part of their energy
becomes negative. Mathematically, this is due to pseudo-
anti-Hermiticity: Z ¼ −τzZ†τz which implies λedge ¼
−λ�edge ⇒ Re½λedge� ¼ 0; Im½λedge� ≠ 0 [39]. We can also
understand this behavior physically: The linear fermionic
dissipators break fermion parity conservation of the closed
Kitaev chain, hence Majorana modes at a given edge can
couple to the environment and will acquire a finite lifetime
(called quasiparticle poisoning) [28,40,41]. If, instead,
dissipators obeyed fermion parity then we would expect
the steady state to retain its twofold degeneracy due to
decoupled parity sectors. (This type of dissipation falls
outside the scope of quadratic Lindbladians.) Coupling to
dissipators cannot, however, perturb the frequency of edge
mode phase oscillations, since we have demonstrated that
symmetries protect these zero-frequency eigenoperators of
the Lindbladian.
The spectrum of the Lindbladian can be inferred from

single-particle Green’s functions in the frequency domain,
i.e., the Fourier transform of hαiðtÞαjð0Þi. A particular
eigenvalue λ will give rise to a spectroscopic peak centred
on Re½λ� with a characteristic width Im½λ�. In experiment,
these can be determined from linear response functions
(see, e.g., Refs. [42,43]). For example, the zero-bias
tunneling peak characteristic of Majorana modes in topo-
logical superconductors should remain centered at zero
energy, but acquire a finite width.

FIG. 3. Lindblad spectrum for the Kitaev chain with linear,
nearest-neighbor dissipators, μ=Δ ¼ 0.1; γ2=Δ ¼ 0.04. A single
edge mode exists on each side of the chain (red dots), and is
symmetry protected to obey Re½λedge� ¼ 0. Majorana edge modes
of the closed system can couple to fermionic dissipators and
hence acquire a finite lifetime Im½λedge� < 0.

PHYSICAL REVIEW LETTERS 124, 040401 (2020)

040401-4



In the Supplemental Material [32], we discuss a different
example (an open SSH chain) where the relevant symmetries
can be either preserved or violated by the dissipators
[whereas the PHS, Eq. (6b), intrinsic to superconducing
systems cannot be broken].
Outlook.—An immediate question is whether gapless

edge modes can exist in the imaginary spectrum, which
would lead to robustly nonunique steady-state density
matrices. While certain studies [20,21] have achieved
this via “topology by dissipation” where Hamiltonian
dynamics is fully switched off, such edge modes generi-
cally acquire a lifetime once Hamiltonian terms are added
back, implying that this effect is fragile against such local
perturbations. The existence of such a protected in-gap
state for free fermions would require bands which amplify
and bands which decay, such that the edge mode connects
the two bulk bands. This scenario is forbidden, since
the imaginary Lindblad spectrum is constrained to be
nonpositive.
While we have limited our discussion to the case of

“quadratic Lindbladians,” we expect the topological edge
modes described in this work to survive beyond this limit
as non-Hermitian analogues of interacting symmetry-
protected topological phases. For example, a quadratic
Lindbladian respecting only PHS represents a dissipative
topological superconductor, which will still be protected by
fermion parity symmetry (as well as the Hermiticity-
preserving nature of the Lindbladian) when solvability is
broken. We also expect that topological features of the
spectrum and steady state will remain decoupled in this
limit: Unlike the Lindblad spectrum, the ground state of a
closed system is not smoothly connected to the steady state
of an open system with vanishingly small dissipation. Thus
any topological properties of the former are not necessarily
preserved in the latter.
We note in passing that the ten Lindblad symmetry

classes uncovered in this Letter may have interesting
implications for the spectral statistics of random dissipative
systems [44–46]. Imposing symmetries on the Lindbladian
may result in universal features of the complex spectrum, in
analogy with the Altland-Zirnbauer random matrix classi-
fication of Hamiltonian dynamics.
In summary, we have discovered a topological classi-

fication which constrains the dynamics of open femionic
systems described by a Lindblad master equation.
Specifically, we have demonstrated that the addition of
symmetry-preserving dissipators will ensure that edge
modes of the Lindbladian have phase oscillations which
are pinned to lie in the frequency gap, but will generically
acquire a nonzero lifetime. This causes the topological
properties of the spectrum to decouple from those of the
steady state. Our work provides a framework to system-
atically understand the protection of topological edge
modes in the presence of both dissipation and internal
dynamics.
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