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Abstract 
Genomic alterations shape cell phenotypes and the structure of tumour ecosystems in poorly defined 

ways. To investigate these relationships, we used imaging mass cytometry to quantify the expression 

of 37 proteins with subcellular spatial resolution in 483 tumours from the METABRIC cohort. Single-

cell analysis revealed cell phenotypes spanning epithelial, stromal, and immune types. Distinct 5 

combinations of cell phenotypes and cell-cell interactions were associated with genomic subtypes of 

breast cancer. Epithelial luminal cell phenotypes separated into those predominantly impacted by 

mutations and those affected by copy-number aberrations. Several features of tumour ecosystems, 

including cellular neighbourhoods, were linked to prognosis, illustrating their clinical relevance. In 

summary, systematic analysis of single-cell phenotypic and spatial correlates of genomic alterations in 10 

cancer revealed how genomes shape both the composition and architecture of breast tumour ecosystems 

and will enable greater understanding of the phenotypic impact of genomic alterations.    
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The heterogeneity of cancer remains an obstacle to effective clinical management. Efforts to understand 

this inter-tumour heterogeneity in breast cancer have identified tumour subtypes associated with distinct 

clinical behaviours1-3 and driver genomic alterations4-6. However, these classifications do not account 15 

for the cellular complexity of solid tumours, which are comprised of diverse cancerous and non-

cancerous cells in distinct spatial arrangements and in a variety of transitory states7. Genomic alterations 

within cancer cells likely determine the components and structures of these multicellular ecosystems, 

which ultimately drive disease progression and treatment resistance. Thus, an understanding of how 

genomic alterations shape tumour ecosystems should enable identification of biomarkers and 20 

development of new treatments. Here we studied, in unprecedented detail, how genomic alterations 

shape breast tumour ecosystems by coupling imaging mass cytometry8 (IMC) to multi-platform 

genomics. We quantified the abundances of 37 markers in 483 breast tumour samples from the 

METABRIC cohort2,5,9, enabling a systematic 'phenogenomic' analysis of breast cancer.  

 25 

Results 

Spatially Resolved Phenotyping of Breast Tumour Ecosystems by IMC 

To study the cellular composition of breast tumours while preserving spatial context, we used IMC to 

detect 37 proteins in formalin-fixed, paraffin-embedded samples of 483 tumours from the METABRIC 

cohort. These tumours have undergone extensive genomic characterisation including copy-number, 30 

transcriptomic and microRNA (miRNA) profiling, and targeted sequencing of 173 breast cancer 

genes2,5,9 (Fig. 1a and Supplementary Table 1). Tissues were stained with a panel of isotope-labelled 

antibodies (Supplementary Table 2). Stained sections were laser ablated at subcellular resolution, and 

liberated isotopes were detected using a mass cytometer8 to yield images revealing abundances and 

locations of 37 proteins of interest simultaneously (Fig. 1b).  35 

We analysed the resulting data using an image processing pipeline adapted for IMC10-12. Briefly, we 

used random forest classification to segment single cells, then quantified the expression of proteins per 

cell and recorded the identities of adjacent cells13. The resulting multiplexed molecular tissue maps, 

taken together with extensive matched publicly available genomic data2,5,9,14, characterised these breast 

tumours with unprecedented depth, linking multidimensional tumour phenotypes with somatic genomic 40 

alterations.   

Data-Driven Derivation of Cell Phenotypes 

To investigate cellular diversity and intercellular relationships in breast tumours, we analysed IMC-

derived single-cell expression data using a combination of clustering approaches (Fig. 1c). The resulting 

cell phenotypes fell broadly into the categories of tumour, stromal, and immune cells (Fig. 2a, b). Most 45 

cells were epithelial (Fig. 2c). We determined cell identities by comparison of lineage marker 
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expression and inspection of cell morphology and location (Fig. 2d-f and Extended Data Fig. 1). There 

was diversity among cells categorized as fibroblasts or myofibroblasts. Myofibroblasts were 

distinguished from fibroblasts by greater expression of SMA (Extended Data Fig. 2a). Levels of 

vimentin, SMA, and fibronectin expression further distinguished fibroblasts and myofibroblasts. Four 50 

fibroblast phenotypes expressed CD68 in the absence of CD45, consistent with previous reports15. 

Comparable stromal diversity in breast cancer has recently been reported16. For epithelial phenotypes, 

key distinguishing features included expression of hormone receptors (HRs); cytokeratins 5, 7, and 19; 

HER2; and carbonic anhydrase IX, a marker of hypoxia. We also identified T cells, B cells, 

macrophages, endothelial cells, myoepithelial cells, and vascular smooth muscle cells (Fig. 2d).  55 

Transcriptomic Correlations Corroborate Cellular Identities 

To test the validity of the assigned cell phenotypes, we assessed correlations between the proportions 

of cell phenotypes and bulk gene expression profiles in each tumour. The number of correlated genes 

varied substantially between cell phenotypes (Fig. 3a). We conducted comparative pathway analysis of 

the most positively correlated genes in each phenotype (Fig. 3b). This revealed three families of 60 

enriched pathways: (i) a group of related cell-cycle pathways active in epithelial cells, (ii) genes 

necessary for formation of the extracellular matrix and collagen deposition, enriched among 

myofibroblasts, and (iii) a group of genes related to antigen presentation, interferon gamma signalling, 

and interactions between lymphoid and non-lymphoid cells that were associated with all four T cell 

phenotypes and B cells. Thus, transcriptomic correlations with cell phenotypes corroborated the cellular 65 

identities we assigned based on IMC data. 

miRNAs are critical regulators of cell phenotypes within tumours9,17. In contrast to gene expression, 

which was balanced for positive and negative correlations for a given cell phenotype, there was a trend 

toward positive correlations between miRNA levels and a subset of four stromal phenotypes (vascular 

smooth muscle cells and three myofibroblast phenotypes; Fig. 3c). Pathway analysis of the genes 70 

targeted by the miRNAs correlated with these phenotypes revealed extracellular matrix terms, including 

extracellular matrix organisation and collagen biosynthesis, among the top pathways (Extended Data 

Fig. 2b). These observations suggest that miRNA-mediated gene regulation is more important among 

stromal cells, including myofibroblasts, than in other cell phenotypes.  

Genomic Subtypes of Breast Cancer are Characterised by Diverse Tumour Ecosystems 75 

We next compared cell phenotype distributions and spatial features between breast cancer subtypes 

using linear regression. We focused on two widely used molecular taxonomies of breast cancer: the 

intrinsic molecular subtypes1, based on tumour transcriptomes, and the integrative clusters2, based on 

driver copy-number aberrations (CNAs) 2.    

We first investigated which of the cell phenotypes were enriched among different tumour subtypes.  80 

Several observations were consistent with prior knowledge, validating our approach. Epithelial cell 
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phenotypes in particular showed distinctive enrichment patterns consistent with the known biology of 

the genomic subtypes (Fig. 4). Luminal A tumours were enriched for HR+ epithelial cells (phenotypes 

31, 48, and 53), whereas more proliferative Luminal B tumours1 were enriched for both HR+ epithelial 

cells (phenotype 31) and HR+ Ki67+ cells (phenotype 33). Basal-like tumours, which are mostly triple-85 

negative, showed enrichment of HR- Ki67+ cells (phenotype 57), epithelial cells expressing basal 

cytokeratins (phenotype 51), and the phenotype associated with hypoxia (phenotype 9). Similarly, HR+ 

cell phenotypes (31, 48, and 53) were enriched among the ER+ Integrative Clusters (IntClusts 3, 4+, 6, 

7, and 8), whereas IntClust 10 tumours, which map to the Basal-like subtype, showed a near-identical 

cell enrichment pattern to Basal-like tumours. As expected epithelial cells characterised by high 90 

expression of HER2 (phenotype 16) were enriched among the HER2 subtype and IntClust 5 tumours, 

defined by ERBB2 amplification.  

We also made several observations that highlight unexpected differences in the phenotypic composition 

of tumour subtypes. For instance, luminal subtypes were distinguished by their enrichment profiles for 

five key epithelial phenotypes (14, 28, 31, 46, 48, and 53) that varied in their expression of cytokeratins 95 

and hormone receptors (Fig. 4). Luminal B tumours were enriched for phenotypes 14 and 28, which 

had low HR and cytokeratin expression. IntClusts 2 and 6 also showed enrichment for cell phenotype 

28. Cell phenotype 31, enriched in both Luminal A and B tumours, also differed from phenotype 48 

(only enriched in Luminal A tumours) by lower expression of both HR and cytokeratins (Fig. 2f). This 

suggests that Luminal B tumours have deviated further from a prototypical luminal epithelial cell than 100 

have Luminal A tumours.  

IntClusts 3, 4+, 7, and 8 were all characterised by enrichment for cell phenotype 48; all show low-to-

intermediate genomic instability. IntClusts 7 and 8 have loss of 16q in common. IntClusts 6 and 8 were 

enriched for cell phenotype 31 despite their disparate genomic profiles (IntClust 6 tumours were 

characterised by the 8p12/ZNF703 amplicon and IntClust 8 by 1q gain/16q loss) and otherwise 105 

distinctive cell enrichment profiles.  Cell phenotype 46, the only luminal cell phenotype to show high 

expression of both CK7 and CK19, was enriched among HER2 and IntClust 3 tumours. IntClust 3 

tumours were characterised by few copy-number alterations, frequent mutations of PIK3CA, CDH1, 

and RUNX1 and the most favourable prognosis of all Integrative Clusters. Enrichment for cell 

phenotype 46, which showed a highly distinctive expression profile, may indicate that the founding cell 110 

of these tumours occupies a different place in the mammary epithelial developmental lineage18 than 

founders of other IntClust tumour types.  

We observed distinct patterns of stromal cell enrichment in different cancer subtypes (Fig. 4). 

Fibroblasts that expressed CD68 were enriched among poorer prognosis ER+ Luminal B tumours. 

Myofibroblasts were enriched in indolent ER+ tumours (Luminal A and IntClust 3 and 4+), which are 115 

characterised by favourable prognosis but distinct genomic landscapes. Myofibroblasts were also 
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enriched in IntClust 1 tumours, which are defined by the 17q23 amplicon. The enrichment patterns 

differed: IntClust 3 tumours, which harbour few CNAs but frequent mutations of PIK3CA and CDH1, 

were enriched for myofibroblast phenotype 38 and vascular smooth muscle cell phenotype 6. IntClust 

4+ tumours, defined by few genomic aberrations, were enriched for cells of myofibroblast phenotype 120 

55. Fibroblast phenotypes also showed distinct enrichment patterns among indolent ER+ tumours: 

Luminal A tumours were enriched for three fibroblast phenotypes (21, 24, and 35), whereas IntClust 3 

and 4+ tumours shared enrichment of fibroblast phenotype 21. Myofibroblast cell phenotype 32 and 

fibroblast phenotypes 29 and 30 were enriched in both Basal-like and IntClust 10 tumours, which often 

have TP53 mutations.  In summary, these findings indicate that genomically defined breast cancer 125 

subtypes contain distinct stromal cell repertoires.  

We noted both T cell and macrophage enrichment among Basal-like and IntClust 10 tumours. This may 

be related to the high mutational burden, genomic instability, and frequent TP53 mutations associated 

with IntClust 10 tumours5. Luminal B tumours of the IntClust 9 group were the only ER+ subtype 

characterised by both macrophage and T cell enrichment. IntClust 9 tumours have an intermediate-to-130 

poor prognosis, are characterised by 8q amplification, and have the highest proportion of TP53 

mutations among ER+ tumours2, which may be a factor in eliciting an immune response. We evaluated 

the robustness of our overall findings to potential biases or errors in the analytical methods and found 

that cell enrichment patterns among tumour subtypes were not adversely affected by signal bleed 

through or choice of clustering method used to identify cell phenotypes (Extended Data Fig. 3 – 5a).  135 

Genomic tumour subtypes were also characterised by different cell-cell interactions. We used 

permutation testing to identify interactions between the 57 cell phenotypes that occurred more or less 

frequently than expected by chance19 and then investigated which of these were significantly enriched 

among tumour subtypes. We distinguished between those of the same cell phenotype (homotypic 

neighbours) and those of different phenotypes (heterotypic neighbours). Subtypes significantly enriched 140 

for interactions included HER2, Basal-like, and IntClust 10 (Extended Data Fig. 5b). In Basal-like and 

IntClust 10 tumours, we observed abundant homotypic relationships among both epithelial and stromal 

cells. These tumours are, therefore, distinguished from other subtypes by a starker separation between 

compartments. We evaluated this further by comparing the average number of homotypic neighbours 

per cell phenotype and across molecular subtypes (Extended Data Fig. 6). Basal-like and IntClust 10 145 

tumours were associated with more homotypic interactions, also suggestive of a 'separation phenotype'. 

Collectively our findings reveal that breast cancer genomic subtypes have diverse cellular compositions 

including marked differences in stromal phenotypes and in patterns of cellular interaction. 

Impact of Somatic Genomic Alterations on Breast Tumour Ecosystems  

We next investigated associations between cell phenotype and somatic alterations in key driver genes20. 150 

We compared cell phenotype proportions between tumours with and without a particular alteration 
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using linear regression (Fig. 5). We recovered relationships consistent with known breast cancer biology 

and also made several unexpected observations. For example, gains of ERBB2 were associated with the 

HER2+ cell phenotype 1621. Similarly, the TP53 mutation is known to occur more frequently among 

ER- tumours than other types of breast cancer5, and indeed we found that ER- basal cells (phenotype 155 

51), hypoxia-associated epithelial cells (phenotype 9), and HR- Ki67+ epithelial cells (phenotype 57) 

were all positively associated with TP53 mutations. In contrast, HR+ CK7- cells (phenotypes 48 and 31) 

were negatively associated with TP53 mutations. For PIK3CA, the most frequently mutated oncogene 

in ER+ breast cancer5, this pattern was reversed: HR+ CK7- (phenotype 48) epithelial cells were 

positively associated with PIK3CA mutations, whereas HR- Ki67+ cells (phenotype 57) showed a 160 

negative association.  

Cell phenotypes 28 (epithelial HRlow CKlow), 31 (epithelial HR+; lower cytokeratin and hormone 

receptor expression), and 48 (epithelial HR+ CK7-) were differentially enriched among Luminal A and 

B tumours and were associated with distinct genomic events. Cell phenotype 48 was characterised by 

associations with more mutations than any other phenotype; these included PIK3CA, GATA3, MAP3K1, 165 

CBFB, MAP2K4, CTCF, and MEN1. In contrast, cell phenotypes 31 and 28 were not associated with 

mutations, although these phenotypes were associated with CNAs including gains of CCND1 and 

TUBD1 and ATM loss. These findings suggest that these ER+ epithelial cell phenotypes are separated 

by those driven by mutations (phenotype 48) and those driven by CNAs (phenotypes 28 and 31).  

The relationships that we uncovered in our analysis were not restricted to epithelial phenotypes. We 170 

found that fibroblast phenotypes 30 and 37 and myofibroblast phenotype 32 were associated with TP53 

mutations. Loss of PTEN was also associated with fibroblast phenotype 30 as well as myofibroblast 

phenotype 12. Other myofibroblast phenotypes showed negative associations with TP53 and RB1 

mutations.   

Next, we investigated associations between cell phenotypes and mutations in genes associated with 175 

immune cytolytic activity22 to assess possible genomic selection for evasion of immune attack (Fig. 5). 

Epithelial cells that expressed carbonic anhydrase IX (phenotype 9), a marker of hypoxia, were 

associated with gains of CD274, which encodes PD-L1, and with heterozygous deletions of B2M, which 

encodes beta2-microglobulin. This was the only cell phenotype positively associated with both of these 

alterations. This suggests that tumour cell hypoxia may enable selection of genomic alterations that 180 

facilitate immune evasion and supports the previously reported link between tumour hypoxia and an 

immune tolerant microenvironment23.  

The genomic landscape of breast cancer is dominated by copy-number events4, hence we tested for 

associations between cell phenotype proportions and genome-wide CNAs (Extended Data Fig. 7). This 

analysis highlighted marked differences between cell phenotypes that would not be apparent without 185 

single-cell phenotypic data. For example, two luminal epithelial phenotypes, 31 and 48, were both 
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associated with gains of 16p. Phenotype 31, but not phenotype 48, was also correlated with loss of 11q. 

Despite the fact that both phenotypes 9 (hypoxia associated) and 57 (ER- Ki67+) were enriched among 

Basal-like/IntClust 10 tumours, their CNA association profiles diverged substantially. Loss of 5q, a 

trans gene expression module specific to Basal-like tumours that encodes key cell cycle and DNA repair 190 

genes24, was a clear hallmark of phenotype 9, whereas gain of 10p, also characteristic of Basal-

like/IntClust 10 tumours, was a hallmark of phenotype 57.  

We also assessed the relationship between cell phenotype abundance and genomic instability, calculated 

as the proportion of the genome affected by CNAs (Extended Data Fig. 8). This showed that 

myofibroblast cell phenotypes 11 and 44 were inversely associated with genomic instability. In contrast, 195 

the proportions of CD68+ fibroblasts (phenotype 8), proliferative epithelial cells (phenotypes 33 and 

57), macrophages (phenotype 13), and T cells (phenotype 5) increased with genomic instability. 

Therefore, tumours with high genomic instability contain more proliferative cells and have distinctive 

stromal and immune populations.  

To determine the overall contribution of different types of genomic information to cell phenotype 200 

composition, we investigated how much of the variance in cell-phenotype proportion is explained by 

mutations, CNAs, and gene and miRNA expression. We addressed this by fitting a series of four linear 

models, each incremented by another data type (Extended Data Fig. 9). The explained variance of most 

cell phenotype proportions was substantially improved upon addition of gene expression data to 

mutation and CNA data but was not further improved upon addition of miRNA data. A set of stromal 205 

cells was an exception to this trend: For these cells, addition of miRNA data resulted in improvements 

in the explained variance of myofibroblasts (phenotypes 17, 43, 34, and 39), providing further support 

that miRNAs are more critical in regulation of gene expression in stromal cells than other cell types in 

the tumour ecosystem. T cell abundance across all four T cell phenotypes was best explained by gene 

expression data with little contribution from genomic alterations, consistent with recent work25.   210 

Taken together, our systematic phenogenomic analysis indicates that somatic genomic aberrations exert 

influence over the cellular composition of both tumour cells and cells of the tumour microenvironment. 

We saw evidence for selective pressure of the immune response, and our data suggest that phenotypic 

features of tumour ecosystems, including hypoxia, are driven by a specific repertoire of large underlying 

genomic events that span genomic subtypes.  215 

Prognostic Impact of Cell Phenotypes Depends on Their Genomic Context 

We examined whether the cell phenotypes and neighbourhoods that we identified were predictive of 

clinical outcome and whether their prognostic effect differed among the IntClust subtypes. We 

conducted Cox regression analysis of cell phenotype proportions adjusted for ER status and plotted 

hazard ratios in rank order (Fig. 6a). To account for the compositional nature of the predictors (cell 220 

phenotype proportions), variables were modelled as log-ratios taking myoepithelial and endothelial 
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cells as referents for epithelial and non-epithelial cell phenotypes, respectively. As expected, cell 

phenotypes that expressed Ki67 (phenotypes 33 and 57) and HER2 (phenotype 16) were associated 

with poor outcome as was the cell phenotype indicative hypoxia (phenotype 9). Cells within the tumour 

microenvironment were also prognostic. Macrophages (phenotype 13) were indicative of poorer 225 

outcome, whereas vascular smooth muscle cells (phenotype 6) were associated with favourable 

prognosis. Phenotype 6 cells were enriched among Luminal A and IntClust 3 tumours (Fig. 4).  

To assess whether the spatial information in our dataset has prognostic relevance, we first investigated 

the correlations between cell phenotypes across all images (Fig. 6b). We annotated a correlation matrix 

of cell phenotypes with cell-cell interactions that occurred in at least 10% of images and used 230 

permutation testing19 to distinguish whether cells were in contact more often (cell-cell interaction) or 

less often (cell-cell separation) with other cell phenotypes than expected by chance (Fig. 6b). The 

majority of interactions occurred between epithelial cells, either of the same or of different phenotypes. 

Cells of epithelial phenotypes 31 and 48 had negative interactions with fibroblasts and myofibroblasts. 

We observed patterns indicative of tumour microenvironment structure defined by both correlations 235 

(statistical sense) and interactions in an image (physical sense) between cell phenotypes26.  

Fibroblasts and myofibroblasts made distinctive contributions to tumour microenvironment structure. 

For example, one group on the heatmap (Fig. 6b, square 1) showed correlations among T cells, 

macrophages, and endothelial cells and an interaction between T cells and macrophages, but no stromal 

cells were involved in correlations or interactions. A stromal-lymphoid group, in contrast, involved 240 

correlations among fibroblasts, T cells, and B cells and homotypic interactions among T cells (Fig. 6b, 

square 2). A third group composed of myofibroblasts and lacking an immune component involved both 

homotypic and heterotypic interactions (Fig. 6b, square 3). These patterns are suggestive of a spectrum 

of tumour microenvironments in breast cancer: At one end of the spectrum is a microenvironment 

characterized by diverse immune cells and endothelial cells; there is an intermediate microenvironment 245 

of lymphocytes and stromal cells; and, at the other end of the spectrum, there is an immune-depleted 

microenvironment dominated by myofibroblasts.  

Next, we investigated the prognostic impact of cell neighbourhoods, where a cell neighbourhood was 

defined as the cells in contact with a given index cell. We used the mean of homo- or heterotypic cell 

neighbours per cell phenotype per tumour, normalised to the number of neighbouring cells, for survival 250 

analyses (Fig. 6c). Both homo- and heterotypic neighbourhoods showed prognostic associations similar 

to those of the corresponding cell-proportion predictor. An exception to this trend was the heterotypic 

neighbourhood of myofibroblasts of phenotype 12 that was significantly associated with poor outcome; 

the proportion of this cell phenotype was not significantly associated with outcome. Finally, we 

evaluated the combined contributions of cell phenotypes and their neighbourhoods to outcome 255 

prediction by fitting a multivariable Cox regression model by penalised maximum-likelihood 
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estimation. Predictors selected by the model included homo- and heterotypic neighbours in addition to 

cell proportions (Fig. 6d, e and Supplementary Table 3), suggesting that spatial statistics such as 

neighbourhoods may improve outcome prediction based on cell composition.  

Finally, we investigated whether the prognostic effect of cell phenotypes significantly differed between 260 

IntClust subtypes (Fig. 6f). We identified three cell phenotypes, of which only one was of epithelial 

lineage (HR+ CK7-, phenotype 48), that showed a significantly different prognostic effect within 

specific IntClust subtypes. Myofibroblasts of phenotype 55 were associated with favourable outcome 

among IntClust 1 tumours but not among other subtypes. These findings support a model of cancer-

associated stroma as a constraint on tumour progression and suggest that this may be related to non-cell 265 

autonomous effects of specific genomic alterations.  

Cell phenotype 48, characterised by high cytokeratin and HR expression, was also associated with 

favourable outcome among IntClust 6 tumours but not others. Notably, most IntClust 6 tumours, which 

are driven by 8p12 amplification, were enriched for tumour cell phenotypes with low cytokeratin and 

HR expression (phenotypes 31 and 28; Fig. 4). Phenotype 48 cells were characterised by associations 270 

with several mutations but not CNAs, contrasting phenotypes 31 and 28 which showed associations 

with CNAs but not mutations (Fig. 5). Therefore, the subtype-specific prognostic effect of cell 

phenotype 48 may be related to intra-tumour genetic heterogeneity among IntClust 6 tumours.  

The only immune cell phenotype to demonstrate a subtype-specific prognostic effect was phenotype 13 

(vimentin+ Slug- macrophages), which was associated with a favourable outcome among IntClust 7 275 

tumours but with a poorer outcome among other subtypes. IntClust 7 tumours are characterised by 16p 

gain, 16q loss, and mutations in MAP3K1 and CTCF and were enriched for cell phenotype 48 (HR+ 

CK7-). This supports previous observations of subtype-specific prognostic effects of immune cells such 

as macrophages in breast cancer27,28.  These data show that IMC-derived cell phenotypes are linked to 

clinical outcome, illustrate the potential for identifying multiparametric tissue biomarkers by integrating 280 

multidimensional single-cell data and quantitative spatial features, and reveal prognostic effects 

dependent on genomic context.  

Discussion    

We have conducted a phenogenomic analysis of cancer by integrating multidimensional breast tumour 

tissue imaging using IMC with multi-platform genomic data to investigate the impacts of somatic 285 

alterations on tumour ecosystems at cellular spatial resolution. The tumour samples we studied were 

from the METABRIC cohort; these samples have been extensively characterised at the genomic level 

and are linked to long-term patient follow-up data2,5,9,14. We quantified the abundances of 37 epitope 

markers in each sample and used a data-driven approach to phenotypically classify cells and quantify 
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cellular neighbourhoods revealing diverse tissue phenotypes that paralleled the genomic heterogeneity 290 

of breast cancer. 

There was a separation of luminal epithelial cells into those associated with driver gene mutations but 

not CNAs (epithelial HR+ CK7- cells of phenotype 48) and those associated with CNAs but few 

mutations (epithelial HR-low CK-low cells of phenotype 28 and epithelial HR+ CK7- cells of phenotype 

31). Cells of phenotype 48 were enriched among favourable-prognosis ER+ tumours (Luminal A, 295 

IntClusts 3 and 4+) and were characterised by higher cytokeratin and HR expression than cells of 

phenotypes 28 and 31, which were enriched among poor prognosis luminal tumours (Luminal B and 

IntClust 6). Most luminal tumours were composed of a mixture of cell phenotypes rather than a single 

dominant population. This agrees with the observation that there is a continuum of proliferation rates 

among luminal tumours rather than a multimodal distribution7,29. Diverse transcriptional programmes 300 

regulated by ER lead to the phenotypic diversity in luminal tumours30,31. Taken together with our 

findings, this suggests that the phenotypic compositions of luminal tumours are largely due to the 

interplay between somatic alterations and transcriptional programs induced by ER. Past work has 

suggested phenotypic expansion of minority cell populations under the pressure of endocrine treatment 

in luminal breast cancer31. This suggests that quantitative molecular mapping of cancer tissues, 305 

particularly by longitudinal tracking of cell composition, may enable improved clinical decision 

making. 

IntClust 10 tumours, which are Basal-like, had distinctive microenvironments defined by hypoxia and 

enrichment of T cells, macrophages, and several stromal cell types. Of these, hypoxia-associated 

epithelial cells of phenotype 9 were associated with gains of CD274 and loss of B2M, linking hypoxia 310 

to immune escape. Hypoxia has previously been linked to immune suppression23,32. The hypoxic 

environment may directly facilitate clonal diversity, possibly through impaired DNA-damage repair33, 

or it may be a characteristic of tumours with high cell turnover and therefore more rapid clonal selection. 

As immune escape has been implicated in resistance to immune checkpoint blockade34, markers of 

hypoxia may aid in identifying patients with de novo resistance or those likely to develop resistance to 315 

these agents.     

Analysis of multidimensional tissue imaging data has challenges. Among them is how to accurately 

segment cells. Cancer tissues often contain areas of crowded cells such that it can be problematic to 

accurately separate one cell from another and this may lead to mixing of signal between closely 

associated cells. We investigated the impact of different cell segmentation strategies by comparing 320 

whole cell segmentation to a highly conservative annular approach limited to a distance of up to three 

pixels from the nuclear edge. Cell phenotypic profiles were highly similar between these two 

approaches (Extended Data Fig. 3) but were not identical. Similarly, we compared different cell 

clustering strategies (Extended Data Fig.4) and found largely concordant, but not identical results. Our 
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systematic investigation of these effects revealed that some variation in cell profiles and phenotypes 325 

can arise depending on which approach is adopted. Importantly, the key findings were robust to these 

choices.                        

We uncovered unexpected diversity among stromal cells. Cancer-associated fibroblasts (CAFs) are 

typically described as expressing SMA, giving rise to the term myofibroblasts35. We observed these 

cells across tumours of all genomic subtypes, but they were most highly enriched in ER+ tumours with 330 

low genomic instability. Survival analysis was suggestive of their associations with favourable outcome 

(Fig. 6a), in apparent disagreement with the putative pro-tumoural role of CAFs. The myofibroblast 

phenotype 32 was an exception, as these cells were enriched in IntClust 10 tumours and were associated 

with high levels of genomic instability, more consistent with the prevailing CAF paradigm. There is, 

however, evidence to support our finding of CAF enrichment in tumours with favourable prognosis: 335 

The probable histopathological correlate of activated fibroblasts is stromal desmoplasia35, a feature 

exemplified by pancreatic carcinomas, which are associated with a dismal prognosis, but for which 

CAFs have been implicated as cellular restraints of tumour progression36,37. In contrast, tubular 

carcinomas of the breast are also defined by marked stromal desmoplasia but have excellent prognosis38. 

A recent review of the METABRIC study revealed that tubular carcinomas belong to the IntClust 3 340 

subtype39, which was associated with enrichment with myofibroblast phenotype 38 in our analysis. Our 

findings therefore indicate that a subset of favourable-prognosis luminal breast tumours are 

characterised by fibroblast activation.      

The cardinal features of the multicellular ecosystems of solid tumours have only begun to be explored. 

Here, integrating multidimensional tissue imaging and multi-platform genomics data for the first time, 345 

we identified cellular phenotypic correlates of somatic genomic alterations and demonstrated their 

variable influence on tumour ecosystems. Our findings suggest that somatic genomic alterations 

collectively manifest as characteristic tumour ecosystems. Characterisation of these ecosystems will 

further our understanding of tumour evolution and will potentially enable identification of features that 

can be used to stratify patients and that can serve as targets for development of novel therapies. 350 
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Figure Legends 
Fig. 1 | Workflow to yield highly multiplexed molecular maps of METABRIC tumours by using 

imaging mass cytometry (IMC). a, Map of samples ordered by availability of data across platforms. 

Bar chart depicts the number of segmented cells per tumour. Samples comprising fewer than 100 cells 

(blue bars) were excluded from tumour-level analyses. b, Experimental workflow for multiplexed IMC 

of 37 proteins in breast tumour tissues associated with genomic annotation and clinical data. Tissue 

microarrays were labelled with isotope-tagged antibodies and subjected to IMC to quantify bound 

antibody abundance at 1-µm resolution. Resulting multidimensional images were processed, single cells 

were segmented, and cellular neighbourhoods quantified. c, Schematic of two-stage clustering approach 

based on a self-organising map and Phenograph. 

Fig. 2 | Data-driven derivation of cellular identities reveals composition of tumour ecosystems. a, 

Two-dimensional tSNE representation of multiplexed proteomic data highlighted by cell phenotype. 

Each dot represents one cell; 5% of cells per tumour were randomly selected for illustration (n = 24,003 

cells). b, tSNE maps coloured by expression of five canonical proteins. c, Bar plot showing the relative 

proportions of epithelial, stromal, and immune cells of all cells analysed. d, Annotated tSNE map of 

cell phenotypes drawn using median protein expression levels. e, Heatmap of pairwise Spearman rank 

correlations of cell proportions, where the total cell count per tumour was taken as the denominator. 

Cell phenotypes were ordered by hierarchical clustering by Ward’s method. Highlighted squares 

indicate significant cell-cell interactions (determined by permutation tests) observed in at least 10% of 

tumours. f, Heatmap of median values of normalised protein expression per cell cluster. Markers were 

arranged by hierarchical clustering by Ward’s method. Bar chart on the right depicts total cell count per 

cluster, distinguishing those cells derived from ER+ versus ER- tumours. 
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Fig. 3 | Transcriptomic correlations with IMC-defined cell types. a, Scatter plot comparing the 

number of positive and negative correlations between cell phenotype proportions and gene expression 

levels determined using linear models (n = 390 tumours). Each point represents one cell phenotype (n 

= 55 cell phenotypes; spearman correlation = 0.95; p-value < 0.05). b, Comparative reactome pathway 

enrichment analysis by cell phenotype based on the most strongly positively correlated genes (n = 390 

tumours; hypergeometric test; p-values are Benjamini-Hochberg adjusted for multiple comparisons). 

The top two terms per phenotype are depicted. Circle size is proportional to the number of genes 

associated with each term relative to the total number of genes per term. c, Scatter plot comparing the 

number of positive and negative correlations between cell cluster proportions and miRNA expression 

levels determined using linear models (n = 371 tumours). Each point represents one cell phenotype (n 

= 55 cell phenotypes; spearman correlation = 0.58; p-value < 0.05). ECM, extracellular matrix; IFN, 

interferon; TCR, T cell receptor. 

Fig. 4 | Phenotype enrichment in genomic breast cancer subtypes. Enriched phenotypes in each 

indicated genomic subtype are illustrated as two-dimensional tSNE maps. The schematic map (right) 

indicates position by cell phenotype. Depicted associations were identified by linear regression, are 

limited to positive associations, and are restricted to those associated with a p-value < 0.05 (two-sided, 

adjusted for multiple comparisons per subtype by Benjamini-Hochberg correction). The dark grey 

background is proportional to the model coefficient, providing an indication of the strength of the 

association. 

Fig. 5 | Somatic genomic alterations influence cell phenotypes. Patterns of association between cell 

phenotype proportions and driver somatic genomic alterations. Only those phenotypes with at least one 

significant association at adjusted p-value < 0.05 are included. Associations were tested by linear 

regression (n = 390 tumours for copy-number alterations and n = 372 tumours for mutations, two-sided 

tests). Grey background is proportional to the model coefficient, providing an indication of the strength 

of the association. Rows are ordered by hierarchical clustering of model coefficients; columns are 

ordered by hierarchical clustering of model coefficients within each aberration type (mutation, 

amplification, or deletion). Bar charts depict the number of tumours with the corresponding alteration. 

Sizes of the leftmost markers labelled 'median proportion' are weighted by median proportion of each 

cell phenotype by ER status. 

Fig. 6 | Prognostic impact of cell phenotypes and their neighbourhoods. a, Hazard ratios of disease-

specific survival for each cell type, modelled as log-ratios. Circles represent point estimates and 

whiskers the 95% confidence interval derived from a Cox proportional-hazards model, adjusted for ER 

status (n = 448 patients, two-sided tests). b, Heatmap of Spearman rank correlations among cell 

proportions of each cell type, relative to all cells analysed per tumour (n = 467 tumours). Cell 

phenotypes are ordered by hierarchical clustering. Highlighted orange and blue squares of cell-cell 
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relationships are restricted to significant cell-cell interactions (orange) or separation (blue) determined 

by permutation tests and observed in at least 10% of images. c, Scatter plots comparing hazard ratios 

of cell neighbourhoods and cell proportions (Cox-regression, n = 448 patients). Highlighted are those 

with a cell neighbourhood p-value < 0.05 but a cell proportion p-value > 0.05. d, Phenotypes and 

neighbourhoods selected by a multivariable model as predictors of disease-specific survival (regularised 

Cox-regression, n = 448 patients). Coloured markers represent features selected by the model with red 

indicating an association with poorer outcome (greater hazard) and blue an association with better 

outcome (lesser hazard); precise hazard ratios are provided in Supplementary Table 3. e, Survival plot 

by quartiles of values (hazard ratio) predicted using the multivariable model depicted in d. f, Hazard 

ratio within one IntClust subgroup compared to the hazard ratio for all other IntClust subgroups 

combined for specified cell types. Depicted are those associated with a p-value < 0.05 for interaction 

between cell phenotype and IntClust subtype (derived from a Cox-regression model adjusted for ER-

status, n = 390 patients, p-value adjusted for multiple comparisons). 

 

Methods 

Study Population and Genomic Assays 

We analysed breast tumour samples from patients enrolled in the METABRIC study2. These patients 

were diagnosed with primary invasive carcinoma and treated in Cambridge, UK between 1985 and 

2005. Appropriate ethical approval from the institutional review board was obtained for the use of 

biospecimens with linked pseudo-anonymised clinical data. Extensive details of specimen handling, 

nucleic acid extraction, microarray hybridisation, targeted sequencing, and quality control procedures 

have been described previously2,5,9. Briefly, nucleic acids were extracted from 30-µm sections from 

fresh frozen tissues using the DNeasy Blood and Tissue Kit and the miRNeasy Kit (Qiagen) on the 

QIAcube (Qiagen) according to the manufacturer’s instructions. Genotyping and copy-number analysis 

was conducted using Affymetrix SNP 6.0 arrays, and transcriptional profiling was conducted using the 

Illumina HT-12 v3 platform. Segmentation and copy-number calls were made using circular binary 

segmentation, and gene expression data were normalised using the beadarray40 R package.  miRNA 

profiling was conducted using a custom Agilent microarray in which putative and known miRNA 

sequences were represented.  For targeted sequencing, libraries were prepared using the Nextera 

Custom Target Enrichment kit (Illumina). Enrichment probes for 173 breast cancer driver genes were 

used to enrich for all exons. Samples were sequenced using an Illumina HiSeq 2000.   

Tissue Microarray Construction and Assessment of Sampling Error 

Areas of invasive carcinoma suitable for in situ molecular analysis were identified on haematoxylin and 

eosin stained slides by a breast pathologist (E.P.). Cores of 0.6 mm corresponding to marked areas were 
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then removed and processed as previously described41. Of the 483 tumours included in this analysis, 

463 were represented by one core, 19 by two cores, and one by three cores. Where tumours were 

represented by more than one core, data from all cores were used to compute cell numbers and cell 

phenotype proportions. We used the subset of tumours represented by more than one core to assess 

whether sampling error was likely to prove problematic for our analysis (Extended Data Fig. 10). Our 

comparison was restricted to cores that contained at least 200 cells. We compared the cell phenotype 

composition between paired cores using hierarchical clustering. For seven of the fifteen samples with 

more than one core tested and containing at least 200 cells, the matched cores clustered together 

indicating greater similarity between cores from the same tumour than between those from different 

tumours. Where cores from a tumour did not cluster together, this was often because the tissue content 

differed between them. For example, one contained mostly stromal cells, whereas the other contained 

mostly tumour cells. Therefore, although the study was not free of sampling error, these observations 

suggest that it did not represent a major impediment.    

Antibody Conjugation 

Descriptions of antibodies, isotope tags, and concentrations used for staining are provided in Extended 

Data Table 1.  Antibody-metal conjugation was conducted using the Maxpar labelling kit (Fluidigm). 

Following conjugation, the concentration was assessed using a Nanodrop (Thermo Scientific) and was 

adjusted to between 100 and 500 µg/ml. Antibodies were stored in Candor Antibody Stabiliser (Candor 

Bioscience) at 4 oC.  The cloud-based platform AirLab was used for all antibody management and panel 

construction42.  Antibody concentration and specificity were evaluated by visual inspection of IMC 

images of a variety of control tissues including normal breast and invasive carcinoma.  

Tissue Antibody Labelling 

Slides were stained as previously described19. Briefly, slides were deparaffinised in xylene and 

rehydrated in a graded alcohol series. Antigen retrieval was conducted using Tris-EDTA (pH 9) buffer 

at 95 oC in a NxGen decloaking chamber (Biocare Medical).  Following cooling, slides were blocked 

with 3% BSA in TBS for 1 hour. Slides were incubated with metal-tagged antibodies overnight at 4 oC 

with the exception of anti-oestrogen receptor alpha antibodies, which were detected using a metal-

tagged anti-rabbit secondary antibody to increase signal (Extended Data Table 1).  Following 

incubation, slides were washed with TBS. Finally samples were incubated with 0.5 μM Cell-ID 

Intercalator-Ir (Fluidigm, #201192B) for detection of DNA. After 5 min, slides were rinsed with TBS 

and then air dried. 

Imaging Mass Cytometry 

Abundance of bound antibody was quantified using a Hyperion Imaging Mass Cytometer (Fluidigm). 

Tissue was laser ablated at 200 Hz. Ablated tissue aerosol was transported to a CyTOF mass cytometer 

(Fluidigm) for quantification as previously described8.    
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Image Processing, Single-cell Signal Quantification, and Identification of Cell Neighbourhoods 

Count data were converted to tiff image stacks and analysed using a bespoke image processing pipeline 

(https://github.com/BodenmillerGroup/imctools). Briefly, random 125 x 125 µm crops of images were 

generated and up-scaled by a factor of 2 for pixel classification using the pixel-classification tool ilastik. 

Pixels were manually labelled as nuclear, cytoplasmic, and background to train a random forest 

classifier in ilastik. The trained classifier was used to attribute probabilities to remaining pixels 

generating probability maps as RGB tiff files. We identified images where the pixel classifier was 

performing most poorly by quantifying the uncertainty of the classifier per image; we then extended the 

training set using pixels from these images and repeated the process until improvement in model 

performance plateaued (four iterations). Probability maps were analysed using CellProfiler12. Nuclei 

were detected as primary objects with secondary objects and cytoplasm and cell membrane were 

identified by expanding primary objects to the border between cell cytoplasm/membrane and 

background using the propagation method. Single-cell regions identified in this way formed a cell mask 

used for signal quantification and derivation of neighbourhood relationships.  Single-cell protein 

abundance estimates corresponded to the mean ion count of all pixels encompassed by a cell area. We 

adjusted for hot aggregates of antibody/metal in a manner similar to that previously described43. Briefly, 

we trained a pixel-classifier to identify affected areas using ilastik, generated a corresponding mask and 

removed affected cells from analyses. We found that the majority of cells from the two rare phenotypes 

10 and 25 were affected by hot pixel aggregates, hence cells assigned to these were removed from 

analyses. We identified tissue showing 'edge effect' (a gradient of ion counts identifiable at the periphery 

of tissue spots) by manual inspection and isolated affected peripheral cells by using iterations of convex 

hulls to varying depth, as appropriate. Affected cells were removed from analyses.  Processed data will 

be made available upon publication of the manuscript.  

Cell Clustering 

Single-cell expression data were arcsinh transformed using 0.8 as a cofactor prior to analysis. Based on 

protein distribution values across all cells, data were clipped at the 99th centile and cells included in 

clustering. Markers used for clustering were limited to the most informative in distinguishing cell 

populations and those deemed to have an acceptable signal-to-noise profile: CK8/18, CK19, CK5, 

CD68, CD3, CD20, ER, PR, CD45, GATA3, CK7, Ki67, SMA, HER2, panCK, EGFR, TP53, beta-

catenin, vWF/CD31, CAIX, Slug, and vimentin. We analysed data in two stages. First, we clustered 

cells into 225 groups using a self-organising map44 (15 x 15) implemented in the FlowSOM package44 

and then, using the mean expression values within each of these clusters per image, conducted a second 

round of clustering using the community detection algorithm Phenograph45 resulting in 57 clusters (of 

which two were removed following adjustment for hot pixel aggregates). These clusters were mapped 

back to single cells.  To give these phenotypes descriptive labels, we used the average protein expression 

profile for each cluster to determine cell lineage based on markers of epithelial (panCK, CK7, CK8/18, 

https://github.com/BodenmillerGroup/imctools
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CK19), stromal (vimentin, fibronectin, SMA), and immune (CD45, CD3, CD20, CD68) cell types. 

Where average expression profiles were ambiguous with respect to these markers, images were also 

inspected to determine the most appropriate cell label based on cell location and morphology.      

Cell-Cell Interactions and Cell Neighbourhoods  

We used a previously described permutation testing approach19 to determine whether interactions 

between cell phenotypes were observed more frequently than expected by chance. Briefly, immediate 

neighbours of each cell as defined in the 'Object Relationships' table created using the CellProfiler 

pipeline were used to generate a null distribution of cell interaction frequencies by permuting cell labels 

1,000 times per image. The observed frequency of each interaction phenotype was compared to this 

null distribution. A p-value was computed as the proportion of permuted frequencies with a value equal 

to or greater than the observed frequency, adding one to each side of the equation to avoid spurious p-

values of zero46. Whether a cell-cell relationship was deemed significant separation or interaction was 

determined by whether the observed frequency fell on the lower or upper tail of the null distribution, 

respectively. Adjustment for multiple testing was conducted for each image using the Benjamini-

Hochberg method47,48.  Cell neighbourhood statistics were computed for each tumour as the average 

number of adjacent homo- or heterotypic neighbours per cell, adjusted for the number of neighbours. 

Homotypic neighbourhood statistics were computed as the average number of cell neighbours that were 

of the same cell phenotype, and heterotypic neighbourhoods as the average number that were of a 

different phenotype.  

Statistics and Reproducibility 

Cell phenotypes were treated as proportions.  Spearman rank correlations were computed based on the 

proportion of a cell phenotype compared to all of the cells in a tumour. For comparison to genomic and 

clinical data, cell phenotype proportions were computed separately by whether a cell was epithelial or 

not epithelial.  Adjustments for multiple testing were conducted using the Benjamini-Hochberg 

method47,48.  No statistical method was used to predetermine sample size. Samples comprising fewer 

than 100 cells were removed from tumour-level analyses. Cells affected by staining artifacts were 

removed from analyses. The experiments were not randomized. The Investigators were not blinded to 

allocation during experiments and outcome assessment. 

Molecular Subtypes 

Intrinsic tumour subtypes were determined using the PAM50 method as previously described2,49. 

Integrative cluster subtype was based on the original designation2.  Enrichment of cell phenotypes by 

molecular subtype was tested separately for each subtype using a linear model.  Logit-transformed cell 

type proportion [logit(proportion + 0.001)] was taken as the dependent variable with the subtype of 

interest represented by an indicator variable. Association between cell-cell interactions detected by 

permutation testing and molecular subtypes was conducted using logistic regression by taking a given 
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cell-cell interaction as the dependent variable. Adjustment for multiple-testing was conducted for each 

subtype. 

Sensitivity Analyses – Cell Segmentation  

It was possible that stromal cell enrichment among tumour subtypes was related to signal bleed from 

tumour cells into adjacent stromal cells in closely packed areas, where cell segmentation can be 

problematic. We therefore examined the composition of all neighbouring cells for each cell phenotype 

(Extended Data Fig. 7a, b). This showed that most neighbouring cells tended to be of the same cell 

phenotype or the same cell lineage. Although this was the case for most stromal cell phenotypes, some 

showed a higher proportion of epithelial or immune cell neighbours than others (Extended Data Fig. 

7a). When we compared the composition of neighbouring cells separately for genomic subtypes of 

breast cancer, we did not find that those identified as enriched were neighboured by a greater proportion 

of epithelial cells compared to those that were not significantly enriched (Extended Data Fig. 7b). 

Stromal cell enrichment patterns among tumour subtypes were not, therefore, due to inappropriate 

attribution of tumour cell signal to adjacent stromal cells. We further tested for the influence of signal 

bleed by systematic comparison of two cell segmentation strategies: The first strategy was the 

propagation method, used for the analyses described in the main text, where cell perimeters depend on 

a combination of the distance to the nearest nucleus and changes in the gradient of probability generated 

using a machine-learning based pixel classification. In the second strategy, a mask was drawn around 

each nucleus up to a maximum distance of 3 pixels, not including background, resulting in a shrunken 

mask per cell. We then compared the expression profiles of stromal cell phenotypes based on either 

whole-cell or 3-pixel segmentation limited to cells that mapped unambiguously. A clustered heatmap 

(Extended Data Fig. 7c) revealed that stromal phenotype expression profiles based on whole-cell 

segmentation clustered together with 3-pixel counterparts with only one exception (phenotype 3), which 

was separated by phenotype 30 with a highly similar profile. This showed that molecular profiles were 

robust to cell segmentation strategy and corroborated our conclusion that cell phenotypes were not 

adversely affected by signal-bleed from adjacent cells.      

Sensitivity Analyses – Cell Clustering 

To determine whether associations between cell phenotypes and tumour subtypes were robust to the 

cell clustering method used to identify cell phenotypes, we used FlowSOM rather than the clustering 

strategy using Phenograph to cluster cells into 100 groups. We then mapped these groups to each of the 

57 cell phenotypes identified by our original method based on the similarity of their expression profiles 

(Extended Data Fig. 8a). Finally, we tested for associations between these mapped cell phenotypes and 

tumour subtypes to compare patterns of association between the original cell phenotypes and their 

mapped counterparts. To account for random initialisation in the clustering algorithm, this process was 

repeated 100 times. The distribution of mapped groups was reflected in the total cell count per 

phenotype and that most phenotypes were successfully recovered (Extended Data Fig. 8b). There was 
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excellent concordance for associations with genomic tumour subtypes between the original cell 

phenotypes and newly mapped groups (Extended Data Fig. 8b). In sum, these findings showed that 

patterns of association with tumour subtypes were robust to choice of clustering strategy.  

We also investigated whether combining all cells belonging to cell phenotypes with the same descriptive 

label (e.g., fibroblasts) would lead to a meaningful loss of information. We combined cell phenotypes 

with the same descriptive label and tested for enrichment patterns among tumour subtypes (Extended 

Data Fig. 9). Major enrichment patterns were reproduced including those of most epithelial, stromal, 

and macrophage cell phenotypes; however, this simplification came at the cost of resolution. For 

example, differential enrichment between cell phenotypes 31 and 48 among luminal tumours, distinct 

stromal cell phenotype enrichment profiles, and T cell enrichment patterns were lost when cells were 

combined into coarser groupings. This demonstrated the advantage of retaining all cell phenotypes in 

accurately mapping the complexity of the distinct tumour ecosystems of different tumour subtypes.   

Correlation of Cell Phenotype with Gene Expression or miRNA Expression 

Gene expression and miRNA data, processed and normalised as previously described2,9, were used for 

these analyses. Where more than one probe mapped to a gene, the probe with greatest variance across 

the dataset was selected. Cell phenotype correlations with gene expression and miRNAs were estimated 

using linear regression following logit transformation of the cell proportions. Cell phenotype was used 

as the dependent variable and expression as the independent variable. Significant correlations were 

identified following adjustment for multiple testing. Enrichment analysis of reactome pathways was 

conducted using the ReactomePA50 and ClusterProfiler51 packages. For gene expression, these analyses 

included up to the top 300 positively correlated genes per cluster.  For pathway analysis of miRNAs 

enriched among myofibroblasts, probable gene targets were first identified. This was conducted using 

a data-driven approach. Genes were considered likely targets of miRNAs if more than 5% of expression 

variance was explained by the miRNA based on the results of a generalised additive model fit to the 

entire METABRIC cohort as previously described9.  Pathways enriched among the resulting targets 

were identified as for gene expression analyses. 

Correlation of Cell Phenotype with Genomic Variation 

Data processing and normalisation were conducted as previously described2,5. Genomic instability was 

computed as the proportion of the non-diploid genome based on ASCAT integer copy-number calls52. 

Kruskal-Wallis tests were used to test for the association between cell phenotypes and quartiles of 

genomic instability. Associations between cell phenotypes and CNAs were tested separately for 

gains/amplifications and heterozygous/homozygous deletions where tumours were coded as either 

positive or negative for a given copy number alteration.  A similar strategy was used to analyse 

associations with mutations. Tumours were deemed either positive or negative for a given mutation 

encompassing all non-synonymous mutations; genes with fewer than five mutations observed were 
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excluded from association analyses based on data contained in supplementary table 4 of reference5.  A 

given CNA or mutation was tested for association with a cell phenotype using a linear model, taking 

the logit-transformed cell proportion as the dependent variable. Tests for association with CNAs were 

adjusted for the total number of amplified or deleted genes per tumour and the total number of copy-

number events per tumour. These features were represented by three rank-transformed covariates as 

previously described22. Tests for association with mutations were adjusted for the total number of 

detected mutations, also represented as a rank-transformed covariate.  Tests for association with copy-

number status were limited to genes previously identified as likely amplicon drivers20, those associated 

with immune cytolytic activity22, and those designated as 'large deletions' in breast cancer within the 

COSMIC database53. Analyses of these genes were limited to either increased or decreased copy-

number status as appropriate. Adjustment was made for multiple testing per alteration type.     

Explained Variation of Cell Phenotypes by Genomic Data 

The degree to which cell phenotype abundance was explained by each genomic data type was 

investigated using a linear model, taking logit-transformed cell phenotype proportion as the response 

variable. We fit a series of four models, each incremented by an additional data type (mutations, CNAs, 

gene expression, and miRNA expression), represented by their first 20 principal components such that 

the full model contained 80 predictors. To account for the variable number of predictors, we used the 

adjusted R-squared statistic as an indicator of explained variance.  

Survival Analyses 

Analyses were based on updated clinical data available in reference14. To account for the compositional 

nature of the cell phenotype data, we took myoepithelial and endothelial cells as referents for epithelial 

and stromal cells, respectively in order to compute log-ratios that were then used as explanatory 

variables in Cox regression models54. Analyses were adjusted for ER status. To account for known 

violations of the proportional-hazards assumption by ER55, it was modelled as a time-varying covariate: 

An additional term was included in the model that was allowed to vary with the logarithm of time. To 

determine whether prognostic effects significantly differed between IntClust subtypes, we extended 

these models to include an indicator variable for IntClust subtype and an interaction term between cell 

phenotype and IntClust subtype. P-values for the interaction term were adjusted using Benjamini-

Hochberg correction. Evaluation of all log-ratios and neighbourhoods (163 predictors) in a multivariate 

model was conducted using a penalised maximum-likelihood estimated Cox regression model 

implemented in the R package glmnet56. Lambda was selected using cross-validation.  All analyses were 

conducted using Stata SE version 14.2 and R57.  

Further information on research design is available in the Nature Research Reporting Summary linked 

to this article. 
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Data Availability  
Imaging mass cytometry data, including cell masks and processed single cell data, have been deposited 

to the Image Data Resource (https://idr.openmicroscopy.org/)  under the accession code idr0076. 

Previously published METABRIC copy-number, gene expression, miRNA and targeted sequencing 

https://linkprotect.cudasvc.com/url?a=https%3a%2f%2fidr.openmicroscopy.org%2f&c=E,1,R7CWYFCYHsH_qdhhvFqxfQ39r16iUAVhPsL1Mf3DhXoHMNAixmjaFNGhs2W2GUHV8adwbdneb289mwYQWQfNpCq66v1ZWzlcCeao66DDBQ,,&typo=1
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data that were re-analysed here are available under accession codes EGAS00000000083, 

GAS00000000122 and EGAS00001001753 at the European Genome-Phenome archive 

(http://www.ebi.ac.uk/ega/). Updated METABRIC clinical data analysed here are available as part of 

the supplementary information in reference14. All other data supporting the findings of this study are 

available from the corresponding author on reasonable request.  

 

Code Availability 
In house image preprocessing scripts are available at https://github.com/BodenmillerGroup/imctools. 

Other analysis code is available from the authors upon request. 

http://www.ebi.ac.uk/ega/
https://github.com/BodenmillerGroup/imctools&
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