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Abstract: The thymus provides a nurturing environment for the differentiation and selection of 
T cells, a process orchestrated by their interaction with multiple thymic cell types. We used 
single-cell RNA-sequencing (scRNA-seq) to create a cell census of the human thymus across the 
lifespan and to reconstruct T-cell differentiation trajectories and T-cell receptor (TCR) 
recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T-cell 
populations, thymic fibroblast subtypes and activated dendritic cell (aDC) states. In addition, we 
reveal a bias in TCR recombination and selection, which is attributed to genomic position and 
the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of 
the human thymus across the lifespan with new insights into human T-cell development. 

One Sentence Summary: We profiled human thymus using single cell RNA-sequencing across 
development and aging, revealing the diversity and dynamics of human thymic cell types and the 
kinetics of T-cell receptor recombination. 
 
Main Text: 
  
Introduction 
  
         The thymus plays an essential role in the establishment of adaptive immunity and central 
tolerance as it mediates the maturation and selection of T cells. This organ degenerates early 
during life and the resulting reduction in T-cell output has been linked to age-related incidence of 
cancer, infection and autoimmunity (1, 2). T-cell precursors from fetal liver or bone marrow 
migrate into the thymus, where they differentiate into diverse types of mature T cells (3, 4). The 
thymic microenvironment cooperatively supports T-cell differentiation (5, 6). While thymic 
epithelial cells (TECs) provide critical cues to promote T-cell fate (7), other cell types are also 
involved in this process, such as dendritic cells (DC) that undertake antigen presentation, and 
mesenchymal cells, which support TEC differentiation and maintenance (8–11). Seminal 
experiments in animal models have provided major insights into the function and cellular 
composition of the thymus (12, 13). More recently, scRNA-seq has revealed new aspects of 
thymus organogenesis and new types of thymic epithelial cells (TECs) in mouse (14–16). 
However, the human organ matures in a mode and tempo that is unique to our species (17–19), 
calling for a comprehensive genome-wide study for human thymus. 
         T-cell development involves a parallel process of staged T-cell lymphocyte 
differentiation accompanied by acquisition of a diverse TCR repertoire for antigen recognition 
(20). This is achieved by the genomic recombination process that selects one V, (D) and J 
segments from the array of gene segments. Interestingly, this VDJ gene recombination can 
preferentially include certain gene segments, leading to the skewing of the repertoire (21–23). To 
date, most of our knowledge of VDJ recombination and repertoire biases, has come from animal 
models and human peripheral blood analysis, with little comprehensive data on the human 
thymic TCR repertoire (22, 24, 25). 

Here, we applied scRNA-seq to generate a comprehensive transcriptomic profile of the 
diverse cell populations present in embryonic, fetal, paediatric and adult stages of the human 
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thymus and we combined this with detailed TCR repertoire analysis to reconstruct the T-cell 
differentiation process.  

  
Cellular composition of the human thymus across life 
  

We performed scRNA-seq on 15 fetal thymi beginning from 7 post-conception weeks 
(PCW), when the thymic rudiment can be dissected, to 17 PCW, when thymic development is 
completed (Fig. 1, A and B).  We also analysed 9 postnatal samples, covering the entire period 
of active thymic function. Isolated single cells were sorted based on CD45, CD3 or EPCAM 
expression to sample thymocytes and enrich for non-thymocytes, prior to single-cell 
transcriptomic analysis coupled with TCRɑβ profiling. After quality control including doublet 
removal, we obtained a total of 138,397 cells from the developing thymus and 117,504 cells 
from postnatal thymus (Table S1). If available, other relevant organs were collected from the 
same donor. We performed batch correction using the BBKNN algorithm combined with linear 
regression (fig. S1) (26).  

We have annotated cell clusters into more than 40 different cell types or cell states (Fig. 
1, C and D and Table S2, 3), which can be clearly identified by the expression of specific 
marker genes (fig. S2 and Table S4). Differentiating T cells are well represented in the dataset, 
including double negative (DN), double positive (DP), CD4+ single positive (CD4+T), CD8+ 
single positive (CD8+T), FOXP3+ regulatory (Treg), CD8αα+ and γδ T cells. We also identified 
other immune cells including B cells, NK cells, innate lymphoid cells (ILCs), macrophages, 
monocytes and dendritic cells (DCs). 

Our dataset also featured diverse non-immune cell types, which constitute the thymic 
microenvironment. We further classified them into subtypes including thymic epithelial cells 
(TECs), fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells and lymphatic 
endothelial cells (Fig. 1E). Thymic fibroblasts were further divided into two subtypes, neither of 
which has been previously described: Fibroblast type 1 (Fb1) cells (COLEC11, C7, GDF10) and 
Fibroblast type 2 (Fb2) cells (PI16, FN1, FBN1) (Fig. 1E). Fb1 cells uniquely express 
COLEC11, which plays an important role in innate immunity (27) and ALDH1A2, an enzyme 
responsible for the production of retinoic acid, which regulates epithelial growth (28). In 
contrast, extracellular matrix (ECM) genes and Semaphorins which regulate vascular 
development (29), are specifically detected in Fb2 (fig. S3A). To explore the localisation pattern 
of these fibroblast subtypes, we performed in situ smFISH targeting Fb1 and Fb2 markers 
(COLEC11 and FBN1) together with general fibroblast (PDGFRA), endothelial (CDH5) and 
VSMC (ACTA2) markers (Fig. 1F). The results show that Fb1 cells were peri-lobular, while Fb2 
cells were interlobular, often associated with large blood vessels lined with VSMCs, consistent 
with their transcriptomic profile of genes regulating vascular development. We confirmed the 
expression of GDF10 and ALDH1A2 localised in the peri-lobular area (Fig. 1F). 

In addition to fibroblasts, we also identified subpopulations of human TECs (Fig. 1E and 
fig. S4). To maximise the coverage of epithelial cells, we enriched for EPCAM positive cells 
across several time points (Fig. 1B). To annotate human TECs, we compared our human dataset 
to the published mouse TEC dataset (15) (figs. S5, S6, and S7). We were able to identify 
conserved TEC populations across species, including PSMB11-positive cTECs, KRT14-positive 
mTEC(I), AIRE-expressing mTEC(II), and KRT1-expressing mTEC(III) (Figs. 1E and S4). 
Interestingly, cTECs were more abundant during early development (7-8 PCW), and an 
intermediate population (mcTEC), which are marked by expression of DLK2, was evident in late 
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fetal and paediatric human thymi (fig. S4B). We identified a very rare population of mTEC(IV) 
cells in humans, which are similar to tuft-like mTEC(IV) cells described in the mouse thymus. 
However, DCLK1 or POU2F3, the markers used to define mTEC(IV) cells in the mouse (15, 
16), were enriched but not specific to this population in human (figs. S4B, S5 and S6). We noted 
two EPCAM+ cell types which are specific to human: MYOD1 and MYOG-expressing myoid 
cells (TEC(myo)s), and NEUROD1, NEUROG1, CHGA-expressing TEC(neuro)s (Fig. 1E and 
figs. S6 and S7). Notably, CHRNA1, which has been associated with the autoimmune disease 
myasthenia gravis (30), was specifically expressed by both of these cell types in addition to 
mTEC(II) cells (Fig. 1E), expanding the candidate cell types which may be involved in tolerance 
induction in myasthenia gravis (31, 32). Supporting this possibility, we detected MYOD1 and 
NEUROG1 expressing cells preferentially located in thymic medulla (Fig. 1F).  

Lastly, we analysed the expression pattern of genes known to cause congenital T-cell 
immunodeficiencies to provide insight into when and where these rare disease genes may play a 
role during thymic development (fig. S8).  

  
Coordinated development of thymic stroma and T cells 
  

Next, we investigated the dynamics of the different thymic cell types across development 
(Fig. 1G). In the early fetal samples (7-8 PCW), the lymphoid compartment contained NK cells, 
γδ T cells and ILC3s, with very few differentiating αβT cells (Fig. 1G). Differentiating T cells 
are mostly found at DN stage in 7 PCW sample, which gradually progress through DP to SP 
stages thereafter, reaching equilibrium at around 12 PCW (Fig. 1G). Conversely, the proportion 
of innate lymphocytes decreased (Fig. 1G).  

Of note, the adult sample showed morphological evidence of thymic degeneration (fig. 
S9). Comparison with spleen and lymph nodes taken from the same donor showed the presence 
of terminally differentiated T cells in the thymus, suggesting re-entry into thymus or 
contamination with circulating cells (Fig. 1G and fig. S10). Notably, cytotoxic CD4+T 
lymphocytes (CD4+CTL) expressing IL10, perforin and granzymes were enriched in the 
degenerated thymus sample (33) (fig. S10C). The trend of increased memory T cells and B cells 
are also confirmed in other samples (Fig. 1G, p-value: 9.3x10-6 for memory T cells and 0.0096 
for memory B cells). 

The trend in T cell development was mirrored by corresponding changes in thymic 
stromal cells. We observed temporal changes in TEC populations starting from enriched cTECs 
towards the balanced representation of cTECs and mTECs (Fig. 1G, p-value: 0.0054), aligned 
with the onset of T-cell maturation. This supports the notion of ‘thymic crosstalk’ in which 
epithelial cells and mature T cells interact synergistically to support their mutual differentiation 
(34).  

Moreover, fibroblast composition also changed during development. The Fb1 population 
mentioned in the previous section dominated early development, with similar numbers of Fb1 
and Fb2 cells observed at later developmental timepoints (p-value: 0.014), and a reduction in the 
number of cycling cells (Fig. 1G). This is also confirmed by thymic fibroblast explant cultures, 
which showed an increase in Fb2 cell marker PI16 by FACS analysis (fig. S3, B and C). 

Finally, other immune cells also change dynamically over gestation and in postnatal life. 
Macrophages were abundant during early gestation, while DCs increased throughout 
development (Fig. 1G). DC1 was dominant after 12 PCW, and pDCs increased in frequency in 
postnatal life (p-values: 2.7x10-8 for macrophage, 1.05x10-3 for DC1, 4.86x10-5 for DC2) 
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To further investigate the factors mediating the coordinated development of thymic 
stroma and T cells, we systematically investigated cellular interactions using our public database 
CellPhoneDB.org (35) to predict the ligand-receptor pairs specifically expressed across them 
(Table S5). Among the predicted interactions, we checked the expression pattern of signaling 
factors known to be involved in thymic development across different cell types and 
developmental stages (fig. S11) (36–41). Lymphotoxin signaling (LTB:LTBR) comes from 
diverse immune cells and is received by most of the stromal cell states. In contrast, RANKL-
RANK (TNFRSF11:TNFRSF11A) signaling is confined between ILC3 and mTEC(II) 
cells/lymphatic endothelial cells. FGF signaling (FGF7:FGFR2) comes from Fibroblasts 
signaling to TECs, with decreasing expression of FGFR2 in adult thymus. For Notch signaing, 
while NOTCH1 is the the main receptor expressed in ETPs, diverse Notch ligands are expressed 
by different cell types: cTECs and endothelial cells expressed both JAG2 and DLL4, and other 
TECs broadly expressed JAG1 (42, 43). 
  
Conventional T cell differentiation trajectory 
  
         As fetal liver is the main haematopoietic organ and source of HSC/MPP when the thymic 
rudiment develops, we analysed paired thymus and liver samples from the same fetus (44), 
similarly to what has been described for early hematopoietic organs (45). We merged the thymus 
and liver data, and selected clusters including liver HSC/MPP, thymic ETPs and DN thymocytes 
for data analysis and visualisation (Fig. 2A, 2B and fig. S12). This positioned thymic ETPs at 
the isthmus between fetal liver HSC/MPP and pre/pro B cells. We integrated our liver/thymic 
hematopoietic progenitor subset with the single-cell transcriptomes of human hematopoietic 
progenitors sorted from bone marrow using defined markers (46) (Fig. S13). This analysis 
positions the ETPs next to the multi-lymphoid progenitor (MLP) from bone marrow and early 
lymphoid progenitor in fetal liver.  

To investigate the downstream T cell differentiation trajectory, we selected the T cell 
populations and projected them using UMAP and force-directed graph analysis (Fig. 2C, fig. 
S14A and Data S1), which showed a continuous trajectory of differentiating T cells. To confirm 
the validity of this trajectory, we overlaid hallmark genes of T-cell differentiation: 
CD4/CD8A/CD8B genes (Fig. 2D), cell cycle (CDK1) and recombination (RAG1) genes (Fig. 
2E) and fully recombined TCRɑ/TCRβ (Fig. 2F) (47). The trajectory started from CD4-CD8- DN 
cells, which gradually express CD4 and CD8 to become CD4+CD8+ DP cells, and then 
transitions through a CCR9high Tɑβ(entry) stage to diverge into mature CD4+ or CD8+ SP cells 
(Fig. 2D). We also noted a separate lineage of cells diverging from the DN-DP junction 
corresponding to γδ T-cell differentiation. Additional T-cell lineages identified in this analysis 
will be discussed in the following section (Fig. 2C, grey). DN and DP cells were separated into 
two phases by the expression of cell cycle genes (Fig. 2E). We designated the early population 
with strong cell cycle signature as proliferating (P) and the later population quiescent (Q), 
respectively (Fig. 2C). Expression of VDJ recombination genes (RAG1 and RAG2) increased 
from the late proliferative phase, and peaked at the quiescent phases. This pattern reflects the 
proliferation of T cells which precedes each round of recombination (48, 49). 

Next, we aligned the TCR recombination data to this trajectory (Fig. 2F). In the DN 
stage, recombined TCRβ sequences were detected from the late P phase, which coincides with an 
increase in recombination signature and the expression of pre-TCR-alpha (PTCRA) (Fig. 2G and 
fig. S15). The ratio of non-productive to productive recombination events (non-productivity 
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score) for TCRβ was relatively higher in DN stages, and dropped to a basal level as cells entered 
DP stages, demonstrating the impact of beta-selection (Fig. 2H). Notably, the non-productivity 
score for TCRβ was highest in the DN(Q) stage, suggesting that cells failing to secure a 
productive TCRβ recombination for the first allele undergo recombination of the other allele. In 
the DP stage, recombined TCRɑ chains were detected from P stage onwards. In contrast to 
TCRβ, non-productive TCRɑ chains were not enriched in the DP(Q) cells, but were rather 
depleted (Fig. 2H).  

To match the transcriptome-based clustering from this study to a published protein-
marker based sorting strategy, we compared our data with repository data from FACS-sorted 
thymocytes analysed by microarray (50) (fig. S16). Based on the cell cycle gene signature and 
marker gene expression, DN(P), DN(Q), DP(P) stages are closely matched to CD34+CD1A+, 
ISP CD4+, and DP CD3- populations respectively. Both our DP(Q) and Tɑβ(entry) stage cell 
signatures are enriched in the bulk transcriptome data from the DP CD3+ FACS-sorted cells. The 
enrichment of pre-beta selection cells in DN(Q) cells matches well with the characteristics of ISP 
CD4+ serving as a checkpoint for beta-selection (Fig. 2F and fig. S15).  

To model the development of conventional ɑβT cells in more detail, we performed 
pseudo-time analysis, which resulted in an ordering of cells highly consistent with known marker 
genes and transcription factors (Fig. 2G). In addition, we identified T-cell developmental 
markers, including ST18 for early DN, AQP3 for DP and TOX2 for DP to SP transition. To 
derive further insights into transcription factors that specify T-cell stages and lineages, we 
created a correlation-based transcription factor network, after imputing gene expression (see 
Methods), which demonstrated modules of transcription factors specific for lineage commitment 
(Fig. 2I). 
  
Development of Tregs and unconventional T cells 
  

In addition to conventional CD4+ or CD8+ T cells, which comprise the majority of T cells 
in the developing thymus, our data identified multiple unconventional T cell types, which were 
grouped by the expression of signature marker genes (Fig. 3, A, B and Fig. 2I). Unconventional 
T cells have been suggested to require agonist selection for development (3). In support of this, 
we observed a lower ratio of non-productive TCR chains for these cells, implying that they 
reside longer in the thymus compared to conventional T cells (Fig. 3C).  

Next, we investigated whether development of these unconventional T cells was 
dependent on the thymus. We reasoned that if a population is thymus-dependent, it would 
accumulate after thymic maturation (~10 PCW) and be enriched in the thymus compared to other 
hematopoietic organs. Consistent with this, all unconventional T cells were enriched in the 
thymus, particularly post-thymic maturation, suggesting that they are thymus-derived (Fig. 3D). 

Tregs were the most abundant unconventional T cells in the thymus. There was a clear 
differentiation trajectory connecting ɑβT cells and Tregs. We defined the connecting population 
as differentiating Tregs (Treg(diff)) (Fig. 3A). Compared to canonical Tregs, Treg(diff) cells had 
lower FOXP3 and IL2RA expression, and higher expression of IKZF4, GNG8 and PTGIR (Fig. 
3B). These genes have been associated with autoimmunity and Treg differentiation (51).  

We also noted another population which shares expression modules with Treg(diff) cells, 
but not with terminally differentiated Treg cells. We named this population as T(agonist) defined 
by the expression of a non-coding RNA, MIR155HG (Figs. 3, A and B). Interestingly, this 
population expressed IL2RA but has low FOXP3 mRNA. These features are similar to a 
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previously described mouse CD25+FOXP3- Treg progenitor (52) (fig. S17). Further analysis 
showed that the signature of two Treg progenitors (CD25+ and FOXP3lo Treg progenitors) 
defined in previous studies are expressed at a higher level in T(agonist) and Treg(diff) 
populations, respectively (fig. S17B). The UMAP and force-directed graph showed that both of 
these populations are linked to mature Tregs (fig. S17A), suggesting the possibility of two Treg 
progenitors in the human thymus.  

Other unconventional T cell populations included CD8ɑɑ+T cells, NKT-like cells and 
Th17-like cells (Fig. 3B). There were three distinct populations of CD8ɑɑ+T cells: GNG4+ 
CD8ɑɑ+T(I) cells, ZNF683+ CD8ɑɑ+T(II) and a CD8ɑɑ+ NKT-like population marked by 
EOMES (Fig. 3E). GNG4+CD8ɑɑ+T(I) and ZNF683+CD8ɑɑ+T(II) both shared PDCD1 
expression at an early stage, which decreased in their terminally differentiated state (fig. S14B). 
While GNG4+ CD8ɑɑ+T(I) displayed a clear trajectory diverging from late DP stage (ɑβT SP 
entry cells), ZNF683+CD8ɑɑ+T(II) cells have a mixed ɑβ and γδ T cell signatures, and sit next to 
both GNG4+CD8ɑɑ+T(I) cells and γδ T cells (Fig. 3A and fig. S14B).  

EOMES+ NKT-like cells have a shared gene expression profile with NK cells (NKG7, 
IFNG, TBX21) and are enriched in γδ T cells, i.e. their TCRs are γδ rather than ɑβ (Fig. 3B and 
fig. S14B). Interestingly, previously described gene sets from bulk RNA sequencing of human 
thymic or cord blood CD8ɑɑ+T cells can now be deconvoluted into our three CD8ɑɑ+T cell 
populations using signature genes. These results suggest that our three CD8ɑɑ+T cell populations 
are present in these previously published thymic and cord blood samples at different frequencies, 
as shown in (fig. S18) (53).  

Finally, we found another fetal specific cell cluster which we named as “Th17-like cells”, 
based on CD4, CD40LG, RORC and CCR6 expression (Fig. 3B). Th17-like cells and NKT-like 
cells expressed KLRB1 and ZBTB16, which are hallmarks of innate lymphocytes (54, 55) (Fig. 
3F). 

As described above, many cell clusters contained a mixed signature of ɑβ and γδ T cells, 
meaning that a single cluster contained some cells with ɑβ TCR expression and others with γδ 
TCR. To classify cells into ɑβ and γδ T cells, we analysed the TCRɑ/δ loci, where recombination 
of TCRɑ excises TCRδ, making the two mutually exclusive (Fig. 3G). This clearly showed that 
γδ T cells diverging between the DN and DP populations are pure γδ T cells. In contrast, 
CD8ɑɑ+T(II), NKT-like and Th17-like cells include both ɑβ and γδ T cell populations, 
suggesting transcriptomic convergence of some ɑβ and γδ T cells.  

Interestingly, TRDV1 and TRDV2, the two most frequently used TCRδ V genes in 
human, displayed clear usage bias: TRDV2 was used at an earlier stage (DN), while TRDV1 was 
exclusively utilised in later T-cell development (DP(Q) and ɑβT entry) (Fig. 3H). Based on this 
pattern, we can attribute the stage of origin of γδ T-cell populations, which suggests that 
CD8ɑɑ+T(II) are derived from the late DP stage, while NKT-like/Th17-like cells arise from 
earlier stages (Fig. 3H). 
 
Discovery and characterisation of GNG4+ CD8ɑɑ T cells in the thymic medulla 
 

Having identified unconventional T cells and their trajectory of origin within thymic T-
cell development, we focused on our newly discovered GNG4+CD8ɑɑ+T(I) cells, as they have a 
unique gene expression profile (GNG4, CREB3L3 and CD72). This is in contrast to CD8ɑɑ+T(II) 
cells, which express known markers of CD8ɑɑ+T cells such as ZNF683 and MME (53). 
Moreover, the expression level of KLF2, a regulator of thymic emigration, was extremely low in 
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CD8ɑɑ+T(I) cells, suggesting that they may be thymic-resident (Fig. 3B). To locate and validate 
CD8ɑɑ+T(I) cells in situ, we performed RNA smFISH targeting GNG4 in fetal thymus tissue 
sections. The GNG4 RNA probe identified a distinct group of cells enriched in the thymic 
medulla, and co-localised with CD8A RNA (Fig. 3I). TNFRSF9 (CD137), is a marker shared 
between CD8ɑɑ+T(I) cells and Tregs. When tested in situ, GNG4+ cells were a subset of 
TNFRSF9+ cells, further confirming the validity of the localisation pattern.  

As CD137 is a surface marker of both CD8ɑɑ+T(I) cells and Tregs, we enriched these 
cells using this marker (fig. S19). Further refinement using CD3+CD137+CD4- FACS-sorting 
allowed us to specifically enrich for CD8ɑɑ+T(I) cells, and confirm their identity by Smart-seq2 
scRNA sequencing, providing additional transcriptomic phenotyping of these cells (Fig. 3J).  

To compare our findings in human thymus to mouse thymus, we generated a 
comprehensive mouse thymus single cell atlas of postnatal murine samples (4, 8, 24 weeks old) 
and combined this data with a published prenatal mouse thymus scRNA-seq dataset (14) (fig. 
S20). Integrative analysis of mature T cells from human and mouse shows that cell states are 
well mixed across species (fig. S21). This analysis showed that GNG4+ CD8ɑɑ+T(I) cells in 
humans are most similar to the mouse intraepithelial lymphocytes precursor type A (IELpA) 
cells (56) (fig. S21), sharing expression of HIVEP3, NR4A3, PDCD1 and TNFRSF9 (fig. S22). 
However, there were also highly differentially expressed genes between them, including GNG4 
and XCL1 in human, and ZEB2 and CLDN10 in mouse, suggesting a potential difference in 
function (fig. S23). Moreover, human CD8ɑɑ+T(I) fully mature into a CD8A[high]/CD8B[low] 
phenotype whereas mouse IELpA cells become triple negative (CD8A[low]CD8B[low]CD4[low]) 
cells (fig. S23). This shows that human and mouse TNFRSF9high agonist selected cells in the 
thymus take on distinct transcriptional characteristics. 
  
Recruitment and activation of DCs for thymocyte selection 
  

Selection of T cells is coordinated by specialised TECs and DCs. We identified three 
previously well-characterised thymic DC subtypes: DC1 (XCR1+CLEC9A+), DC2 
(SIRPA+CLEC10A+), pDC (IL3RA+CLEC4C+) (6, 57, 58). We also identified a population that 
was previously incompletely described, which we term as “activated DCs” (aDCs), characterised 
by LAMP3 and CCR7 expression (Fig. 4, A and B) (59, 60). aDCs expressed high level of 
chemokines and co-stimulatory molecules, together with transcription factors like AIRE and 
FOXD4, which we validated in situ (Fig. 4B and fig. S24), suggesting that they may correspond 
to the previously described AIRE+CCR7+ DCs in human tonsils and thymus (61).  

Interestingly, our single-cell data revealed three subsets within the aDC group, identified 
by distinct gene expression profiles: aDC1, aDC2 and aDC3 (Fig. 4, A and B). aDC1 and aDC2 
subtypes shared several marker genes with DC1 and DC2, respectively. To systematically 
compare aDC subtypes to canonical DCs, we calculated an identity score for each DC population 
by summarising marker gene expression. This demonstrated a clear relationship between aDC1-
DC1 and aDC2-DC2 pairs, suggesting that each aDC subtype derives from a distinct DC 
population (fig S25). Interestingly, aDC1 and aDC2 displayed distinct patterns of chemokine 
expression, suggesting functional diversification of these aDCs (Fig. 4B). Moreover, aDC3 cells 
had decreased MHC class II and co-stimulatory molecule expression compared to other aDC 
subsets, which may reflect a post-activation DC state. 

Having identified two canonical TECs and a variety of DC subsets, we used 
CellPhoneDB analysis to identify specific interactions between these antigen-presenting cells 
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and differentiating T cells (35). We focused on interactions mediated by chemokines, which 
enable cell migration and anatomical co-localisation (Fig. 4C). This demonstrated the relay of 
differentiating T cells from the cortex to the medulla, which is orchestrated by CCL25:CCR9 and 
CCL19/21:CCR7 interactions between cTEC/mTEC and DP/SP T cells, respectively (62). 
Interestingly, aDC expressed CCR7, together with CCL19, enabling attraction to and recruitment 
of T cells into the thymic medulla. Moreover, they strongly expressed the chemokines CCL17 
and CCL22, whose receptor CCR4 was enriched in CD4+ T cells and particularly Tregs. aDCs 
also potentially recruit other DCs and mature Tregs via CXCL9/10:CXCR3 interactions and are 
able to provide a strong co-stimulatory signal, which suggests a role in Treg generation. We also 
noted that GNG4+CD8ɑɑ+T(I) T cells expressed XCL1, which may be involved in the 
recruitment of XCR1-expressing DC1 cells (63). Our analysis shows that XCL1 is expressed 
most highly by CD8ɑɑ+T(I) cells and at a lower level by NK cells (fig. S26). The location of 
CD8ɑɑ+T(I) in the peri-medullary region suggests a potential relay of signals from CD8ɑɑ+T(I) 
to recruit XCR1+DC1s into the medulla, where these cells are activated and upregulate CCR7. 
(Fig. 4D). 

To confirm our in-silico predictions, we performed smFISH to identify the anatomical 
location of CD8ɑɑ+T(I) cells (GNG4), DC1s (XCR1), aDCs (LAMP3, CD80) and Tregs 
(FOXP3). A generic marker of non-activated DCs (ITGAX) and mTECs (AIRE) was also used to 
provide a reference for the organ structure. Imaging of consecutive sections of fetal thymus (15 
PCW) revealed the zonation of CD8ɑɑ+T(I)/DC1/non-activated DCs located in the peri-
medullary region and aDC/Tregs enriched in the center of the medulla (Fig. 4E-4H). All 
localisation patterns are supportive of our in-silico model, demonstrating the power of single-cell 
transcriptomics coupled with CellPhoneDB predictions. 
  
Bias in human TCR repertoire formation and selection 
  

As our data featured detailed T-cell trajectories combined with single-cell resolution TCR 
sequences, it provided an opportunity to investigate the kinetics of TCR recombination. TCR 
chains detected from the TCR-enriched 5’ sequencing libraries were filtered for full-length 
recombinants, and were associated with our cell type annotation. This allowed us to analyse 
patterns in TCR repertoire formation and selection (Fig. 5, A and B).  

For TCRβ, we observed a strong bias in VDJ gene usage which persisted from the 
initiation of recombination (DN cells) to the mature T-cell stage (Fig. 5A). This bias is not 
explained by recombination signal sequence (RSS) score (fig. S27). The bias does correlate well 
with genomic position (fig. S27), and this is consistent with a looping structure of the locus, 
which has been observed in the mouse (Fig. 5C) (64). However, the V gene usage bias that we 
observe in human is not found in mouse (25). We also observed a preferential association of D2 
genes with J2 genes, while D1 genes can recombine with J1 and J2 genes with similar frequency 
(fig. S28). There was no clear association between TCRβ V-D or V-J pairs (fig. S28A).  

While the initial recombination pattern largely shapes the repertoire, selection also 
contributes to the preference in TCRβ repertoire. We observed that several TRBV genes were 
depleted or enriched after beta-selection compared (DP cells) to before beta-selection (DN cells). 
This suggests that there are germline-encoded differences between the different Vβ gene’s ability 
to respond to peptide-MHC (pMHC) stimulation (fig. S29A). This result is in line with the 
molecular finding that Vβ makes the most contacts with pMHC molecule versus DJ (and also 
Vɑ) (65). 
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For the TCRɑ locus, we found a clear association between developmental timing and V-J 
pairing as described before (66): Proximal pairs were recombined first, followed by 
recombination of distal pairs (Fig. 5B), which in turn restricts the pairing between V and J genes 
(fig. S28B). This provides direct evidence for progressive recombination of the TCRɑ locus (Fig. 
5D). Notably, proximal pairs were relatively depleted in mature T cells compared to DP cells, 
showing a further bias in the positive selection step (fig. S28B). 

To investigate whether differential TCR repertoire bias exists between cell types, we 
compared the TCR repertoire of different cell types by running a principal component analysis 
(Fig. 5E). Notably, we observed a clear separation of CD8+ T cells and other cell types. The 
trend was consistent in all individual donor samples. Statistical testing of the difference in odds 
ratios identified several TCR genes responsible for this phenomenon (fig. S29B). The observed 
trend was largely similar to that seen in naive CD4+/CD8+T cells isolated from peripheral blood 
(22, 23). Notably, the TRAV-TRAJ repertoire of CD8+T cell was biased towards distal V-J pairs 
compared to other cell types (Fig. 5F). Considering that distal repertoires are generated at a later 
stage of progressive TCRɑ recombination, this might be due to slower or less efficient 
commitment towards the CD8+T lineage (Fig. 5D). There was also a slight bias towards 
proximal V-J pairs for CD8ɑɑ+T(I) cells that was much more evident in the postnatal thymic 
sample compared to fetal samples (fig. S29C) (53).  

 
DISCUSSION 
  
         Here we generated a single-cell atlas of the human thymus throughout development in 
utero and in postnatal life alongside complementary in situ imaging to provide spatial context for 
our atlas. We reconstructed the trajectory of human conventional and unconventional T-cell 
differentiation combined with TCR repertoire information, which revealed a bias in the TCR 
repertoire of mature conventional T cells. As TCR repertoire bias predisposes our reactivity to 
diverse pMHC combinations, this may have profound implications for how we respond to 
antigenic challenges.  

Our analysis of the thymic microenvironment revealed the complexity of cell types 
constituting the thymus, and the breadth of interactions between stromal cells and innate immune 
cells to coordinate thymic development to support T cell differentiation. The intercellular 
communication network that we describe between thymocytes and supporting cells can be used 
to enhance in vitro culture systems to generate T cells, as well as future T-cell therapeutic 
engineering strategies. 
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Fig. 1. Cellular composition of the developing human thymus 
 
(A) Schematic of single-cell transcriptome profiling of the developing human thymus.  
(B) Summary of gestational stage/age of samples, organs (circle: thymus, rectangle: fetal liver, adult bone 
marrow, adult spleen and lymph nodes) and 10x Genomics chemistry (colours).  
(C) UMAP visualisation of the cellular composition of the human thymus colored by cell type (DN: 
double-negative T cells, DP: double-positive T cells, ETP: Early thymic progenitor, aDC: activated 
dendritic cells, pDC: plasmacytoid dendritic cells, Mono: monocyte, Mac: macrophage, Mgk: 
megakaryocyte, Endo: endothelial cells, VSMC: vesicular smooth muscle cells, Epi: epithelial cells, Fb: 
fibroblasts, Ery: erythrocytes).  
(D) Same UMAP plot coloured by age groups, indicated by post-conception weeks (PCW) or postnatal 
years (y).  
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(E) Dot plot for marker gene expressions in thymic stromal cell types. Color represents maximum-
normalised mean expression of marker genes in each cell group, and size indicates the proportion of cells 
expressing marker genes. (This scheme is consistently used throughout the manuscript.)  
(F) RNA single-molecule FISH in human fetal thymus slides with probes targeting stromal cell 
populations. Top left: Fb2 population marker FBN1 (red), general fibroblast markers PDGFRA (yellow) 
and CDH5 (green). Top right: Fb1 marker GDF10 (yellow), FBN1 (red) and CDH5 (green). Middle left: 
Fb1 marker COLEC11 (yellow), FBN1 (red), Middle right: Fb1 marker ALDH1A2 (yellow), VSMC 
marker ACTA2 (green), FBN1 (red), Bottom left: TEC(myo) marker MYOD1 (red). Bottom right: 
Epithelial cell marker EPCAM (red) and TEC(neuro) marker NEUROG1 (yellow). Data representative of 
n=2. 
(G) Relative proportion of cell types throughout different age groups. Dot size are proportional to 
absolute cell numbers detected in the dataset. Statistical testing for population dynamics was performed 
by t-testing using proportions between stage groups. X-axis shows age of samples, which are coloured in 
the same scheme as Fig. 1D. 
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Fig. 2. Thymic seeding of early thymic progenitors (ETPs) and T cell differentiation trajectory 
 
(A) UMAP visualisation of ETP and fetal liver hematopoietic stem cells/early progenitors. (HSC: 
Hematopoietic stem cells, NMP: Neutrophil-Myeloid progenitors, MEMP: Megakaryocyte-Erythrocyte-
Mast cell progenitors). The same UMAP coloured by (B) organ (liver in blue and thymus in yellow/red).  
(C) UMAP visualisation of developing thymocytes after batch correction. (DN: double negative T cells, 
DP: double positive T cells, SP: single positive T cells, P: proliferating, Q: quiescent). The data contains 
cells from all sampled developmental stages. Cells from abundant clusters are down-sampled for better 
visualisation. The reproducibility of structure is confirmed across individual sample. Unconventional T 
cells are marked as grey. 
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(D-F) The same UMAP plot showing CD4 (red), CD8A (blue) and CD8B (turquoise) gene expression 
(D), CDK1 (red) cell cycle and RAG1 (blue) recombination gene expression (E), and TCRα (red) and 
TCRβ (green = productive and blue = non-productive) VDJ genes (F).  
(G) Heatmap showing differentially expressed genes across T cell differentiation pseudotime. Upper 
panel: X-axis represents pseudo-temporal ordering. Gene expression levels across pseudotime axis are 
maximum-normalised and smoothed. Genes are grouped by their functional categories and expression 
patterns. Lower panel: Cell type annotation of cells aligned along the pseudotime axis. The same colour 
schemes are used as (C). 
(H) Scatter plot showing the rate of productive chain detection within cells in specific cell types (x-axis) 
and the ratio between the number of non-productive/productive TCR chains detected in specific cell types 
(y-axis); TCRβ (left panel) and TCRα (right panel).  
(I) Graph showing correlation-based network of transcription factors expressed by thymocytes. Nodes 
represent transcription factors, and edge widths are proportional to the correlation coefficient between two 
transcription factors. TFs with significant association to specific cell types depicted in colour. Node size 
is proportional to the significance of association to specific cell types. 
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Fig. 3. Identification of GNG4+ CD8aa T cells in the thymic medulla 
 
(A) UMAP visualisation of mature T cell populations in the thymus. Axes and coordinates are as Fig. 2C. 
(The cell annotation colour scheme used here is maintained throughout this figure.) 
(B) Dot plot showing marker gene expression for the mature T cell types. Genes are stratified according 
to associated cell types or functional relationship.  
(C) Scatter plot showing the ratio between the number of non-productive/productive TCR chains detected 
in specific cell types in TCRα chain (x-axis) and TCRβ chain (y-axis). Same colour schemes apply as in 
(A). The grey arrow indicates a trendline for decreasing non-productive TCR chain ratio in 
unconventional versus conventional T cells. 
(D) Scatter plot showing the relative abundance of each cell type between fetal liver and thymus (x-axis) 
and before and after thymic maturation (delimited at 10 PCW) (y-axis). Grey arrow indicates trendline for 
increasing thymic dependency. 
(E-H) Scatter plot comparing the characteristics of unconventional T cells based on CD8A vs. CD8B 
expression levels (E), KLRB1 vs ZBTB16 expression levels (F), TCRα productive chain vs TRDC 
detection ratio (G) and TRDV1 vs TRDV2 expression levels (H). Grey arrows or lines are used to set 
boundaries between groups (E, G, H) or indicate the trend of innate marker gene expression (F). 
(I) single-molecule RNA FISH showing GNG4 (red), TNFRSF9 (blue) and CD8A (green) in a 15 PCW 
thymus. Right bottom panel shows detected spots from the image on top of the tissue structure based on 
DAPI signal. Colour scheme for spots are the same as in the image.  
(J) FACS gating strategy to isolate CD8aa(I) cells (live/CD3+/CD4-/CD137+) and Smart-seq2 validation 
of FACS-isolated cells projected to the UMAP presentation of total mature T cells from discovery dataset 
(bottom left panel). GNG4 expression pattern is overlaid onto the same UMAP plot (bottom right panel). 
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Fig. 4. Recruitment and activation of dendritic cells for thymocyte selection 
 
(A) UMAP visualisation of thymic DC populations and (B) dot plot of their marker genes.  
(C) Heat map of chemokine interactions between T cells, DCs and TECs, where the chemokine is 
expressed by the outside cell type and the cognate receptor by the inside cell type.  
(D) Schematic model summarising the interactions between thymic epithelial cells (TECs), dendritic cells 
(DCs) and T cells. The ligand is secreted by the cell at the beginning of the arrow, and the receptor is 
expressed by the cell at the end of the arrow. 
(E) Left-hand panels: single molecule RNA FISH detection of GNG4 (red), XCR1 (green) and FOXP3 
(blue) in 15 PCW thymus. Right-hand panels: Computationally detected spots are presented as a solid 
circle over the tissue structure based on DAPI signal. Colour schemes for circles are the same as in the 
image.  
(F-H) Sequential slide sections from the same sample are stained for the detection of LAMP3 (red), AIRE 
(blue) and XCR1 (green) (F), LAMP3 (red), ITGAX (blue) and CD80 (green) (G), LAMP3 (red), FOXP3 
(blue) (H). Spot detection and representation as in (E). Data representative of n = 2.  
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Fig. 5. Intrinsic bias in human TCR repertoire formation and selection 
 
(A) Heatmap showing the proportion of each TCRβ V, D, J gene segment present at progressive stages of 
T cell development. Gene segments are positioned according to genomic location. 
(B) Same scheme as in (A) applied to TCRα V and J gene segments. While there is a usage bias of 
segments at the beginning of development, segments are evenly used by the late developmental stages, 
indicating progressive recombination leading to even usage of segments. 
(C-D) Schematics illustrating a hypothetical chromatin loop that may explain genomic location bias in 
recombination of TCRβ locus (C) and the mechanism of progressive recombination of TCRα locus 
leading to even usage of segments (D).  
(E) PCA plots showing TRBV or TRAV and TRAJ gene usage pattern in different T cell types. Arrows 
depict T cell developmental order. For TRBV, there is a strong effect from beta selection, after which 
point the CD4+ and CD8+ repertoires diverge. The development for TRAV+TRAJ is more progressive, 
with stepwise divergence into the CD4+ and CD8+ repertoires.  
(F) Relative usage of TCRα V and J gene segments according to cell type. The Z-score for each segment 
is calculated from the distribution of normalised proportions stratified by the cell type and sample. P-
value is calculated by comparing z-scores in CD4+T and CD8+T cells using t-test, and FDR is calculated 
using Benjamini-Hochberg correction. (*: p-value < 0.05, **: FDR < 10%). Gene names on the x-axis 
and asterisks are coloured by significant enrichment in CD4+T cells (blue) or CD8+T cells (orange).  
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Materials and Methods 

 
Tissue Acquisition 

 
All tissue samples used for this study were obtained with written informed consent from all participants in 

accordance with the guidelines in The Declaration of Helsinki 2000 from multiple centres. Human fetal 

tissues were obtained from the MRC/Wellcome Trust-funded Human Developmental Biology Resource 

(HDBR, http://www.hdbr.org) with appropriate maternal written consent and approval from the Newcastle 

and North Tyneside NHS Health Authority Joint Ethics Committee (08/H0906/21+5). HDBR is regulated 

by the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the relevant 

HTA Codes of Practice. Some human embryonic thymic tissues were also obtained from Wellcome-MRC 

Cambridge Stem Cell Institute and Department of Clinical Neurosciences with appropriate maternal written 

consent and approval from Research Ethics Committee (REC No: 96/085). Human paediatric samples were 

obtained from Ghent University Hospital and Newcastle Hospitals NHS Trust with appropriate written 

consent and approval from the Ghent University Hospital Ethics Committee (B670201319452) and the East 

Midlands-Derby Research Ethics Committee (REC No: 18/EM/0314) respectively. The human adult 

deceased donor sample was obtained from the Cambridge Biorepository for Translational Medicine (CBTM) 

with appropriate written consent and approval from the Cambridge University Ethics Committee (reference 

15/EE/0152, East of England Cambridge South Research Ethics Committee).  

 
Tissue Processing 

 
All tissues were processed immediately after isolation using consistent protocols with variation in 

enzymatic digestion strength. Tissue was transferred to a sterile 10mm2 tissue culture dish and cut into 

<1mm3 segments before being transferred to a 50mL conical tube. For mild digestion, tissues were digested 

with 1.6mg/mL collagenase type IV (Worthington) in RPMI (Sigma-Aldrich) supplemented with 10%(v/v) 

heat-inactivated fetal bovine serum (FBS; Gibco), 100U/mL penicillin (Sigma-Aldrich), 0.1mg/mL 
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streptomycin (Sigma-Aldrich), and 2mM L-glutamine (Sigma-Aldrich) for 30 minutes at 37°C with 

intermittent shaking. For stringent digestion, tissue was digested with 0.2 mg/ml Liberase ™ (Roche)/0.125 

KU DNase1 (Sigma-Aldrich)/10mM HEPES in RPMI for 30 minutes at 37°C with intermittent shaking. 

The dissociated cells were separated and remaining undigested tissue were digested again with fresh media. 

This procedure was repeated until the tissue was completely dissociated. Digested tissue was passed through 

a 100µm filter, and cells collected by centrifugation (500g for 5 minutes at 4°C). Cells were treated with 

1X red blood cell (RBC lysis buffer (eBioscience) for 5 minutes at room temperature and washed once with 

flow buffer (PBS containing 5%(v/v) FBS and 2mM EDTA) prior to cell counting.  

  

Fetal developmental stage assignment and chromosomal assessment 

 
Embryos up to 8 post conception weeks (PCW) were staged using the Carnegie staging method (67). After 

8 PCW, developmental age was estimated from measurements of foot length and heel to knee length and 

compared against a standard growth chart (68). A piece of skin, or where this was not possible, chorionic 

villi tissue, was collected from every sample for Quantitative Fluorescence-Polymerase Chain Reaction 

analysis using markers for the sex chromosomes and the following autosomes: 13, 15, 16, 18, 21, 22. All 

samples analysed were of normal karyotype. 

  

Flow cytometry and FACS for Single-cell RNA Sequencing 

 
Isolated thymus cells were stained with a panel of antibodies prior to sorting based on CD45 or CD3 

expression gate. The anti-human monoclonal antibodies used for flow cytometry based 

immunophenotyping and FAC sorting are listed in Table S6. An antibody cocktail was freshly prepared by 

adding 3µL of each antibody in 50µL Brilliant Stain Buffer (BD) per tissue. Cells (≤10x106) were 

resuspended in 50-100µL flow buffer and an equal volume of antibody mix was added to cells from each 

tissue. Cells were stained for 30 minutes on ice, washed with flow buffer and resuspended at 10x106 cells/mL. 

Immediately prior to sorting, DAPI (Sigma-Aldrich) was added to a final concentration of 3µM and cells 
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strained through a 35µm filter. Flow sorting was performed on a BD FACSAria™ Fusion instrument using 

DIVA V8, and data analysed using FlowJo V10.4.1. Cells were gated to remove dead cells and doublets, 

and then sorted for 10X or SS2 scRNAseq analysis. For 10X droplet microfluidic analysis, cells were sorted 

into chilled FACS tubes coated with FBS and prefilled with 500µL sterile PBS. Paediatric samples were 

sorted into 50% FCS and 50% IMDM medium (supplemented with 1% L-glutamine, 1% 

Penicillin/Streptomycin and 10% FCS). For SS2 scRNAseq analysis, single cells were index-sorted into 

96-well lo-bind plates (Eppendorf) containing 10µL lysis buffer (TCL 858 (Qiagen) + 1% (v/v) 2-

mercaptoethanol) per well. 

 
MACS for Single-cell RNA Sequencing 

 
Enrichment of EPCAM positive cells were performed using CD326 (EPCAM) microbeads (Miltenyi 

Biotec., 130-061-101) according to manufacturer’s protocol. CD45 depleted cells were obtained using 

CD45 microbeads (Miltenyi Biotec., 130-045-801) according to manufacturer’s protocol. Cell number and 

viability were checked after the enrichment to ensure that no significant cell death has been caused by the 

process. 

 
Coverage of cells per sample 

 
From each sample, we obtained 1,000-20,000 cells which varies due to the size of the tissue/sample 

obtained. If roughly estimated by comparing this number to the total number of cells obtained after 

dissociation (Data S1), we have profiled 1 out of 10 cells for 7-8 wks fetus, 1 out of 100 cells for 9-11 wks 

fetus, 1 out of 5,000 cells for 12-13 wks fetus, 1 out of 10,000 cells for 16-17 wks fetus, 1 out of 500,000 

cells for paediatric thymus and 1 out of 10,000 cells from adult thymus. The difference in sampling depth 

is caused by the rapid increase in thymic size throughout development, and decrease in cellularity in the 

aging process. The CD45+ population accounts for 90% of cells in thymus, most of them being thymocytes. 

To increase the coverage of CD45- stromal cells, we sampled the same number of cells from both 
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CD45+/CD45- sorting gate from fetal and adult samples, which increased the coverage of stromal cells by 

~10 fold. We also specifically enriched for EPCAM+ epithelial cells from one fetal, paediatric and adult 

samples, to ensure higher coverage of epithelial cells. Thus, our sampling strategy was most extensive on 

CD45- stromal cells from fetus and adult, thymocytes and epithelial cells. 

 
Single molecule RNA FISH 

 
Samples were fixed in 10% NBF, dehydrated through an ethanol series and embedded in paraffin wax. 

Five-micrometre samples were cut, baked at 60 °C for 1 h and processed using standard pre-treatment 

conditions, as per the RNAscope multiplex fluorescent reagent kit version 2 assay protocol (manual) or the 

RNAscope 2.5 LS fluorescent multiplex assay (automated). The RNAscope probes used for this study are 

listed in Table S7. TSA-plus fluorescein, Cy3 and Cy5 fluorophores were used at 1:1500 dilution for the 

manual assay, or 1:300 dilution for the automated assay. Slides were imaged on different microscopes: 

Hamamatsu Nanozoomer S60 or 3DHistech Pannoramic MIDI. Filter details were as follows: DAPI: 

excitation 370–400, BS 394, emission 460–500; FITC: excitation 450–488, BS 490, emission 500–550; 

Cy3: excitation 540–570, BS 573, emission 540–570; Cy5: excitation 615–648, BS 691, emission 662–756. 

Stained sections were also imaged with a Perkin Elmer Opera® Phenix™ High-Content Screening System, 

in confocal mode with 1 µm z-step size, using 20× (NA 0.16, 0.299 µm/pixel) and 40× (NA 1.1, 0.149 

µm/pixel) water-immersion objectives 

 
Thymic fibroblasts culture derivation and phenotypic characterisation 

 
Thymic explants were derived from foetal biopsies at different thymic stages (HDBR Newcastle University 

- Newcastle Upon Tyne, REC reference: 19/NE/0290 and HDBR University College of London - London, 

REC reference: 18/LO/0822) and cultured on a precoated Matrigel (Corning) 6mm dish in DMEM (Life 

Technologies) supplemented with 15% heat-inactivated FBS (Life Technologies) + 1% 

Penicillin/Streptomycin (Sigma-Aldrich), 1% L-glutamine (Life Technologies), 1% Non-Essential 
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Aminoacids (Life Technologies) and 100mM beta-Mercaptoethanol (Life Technologies). Fibroblast cells 

come out of explants at around 7 days of culture and are left on the plate until outgrowths are confluent 

enough to pass. The culture is therefore kept for 5-6 passages and phenotypic analysis was performed at 

multiple passages. Fibroblasts were detached with trypsin 1X (Sigma-Aldrich) for 3 minutes at 37°C and 

subsequently resuspended in completed media before collection. Cells are harvested and phenotypic 

analysis is performed on 500,000 cells per sample. Cells were stained at 4°C for 30 min in Hanks Balanced 

Salt Solution-2% FBS with the following markers: anti-THY1 AF700 1:100 (Biolegend), anti-PDGFRalpha 

PE 1:100 (Biolegend) and PI-16 (BD) 1:50. Cells are washed in an excess of HBSS + 2% FBS and are 

resuspended in HBSS + 2% FBS with DAPI (Sigma-Aldrich) to discriminate live from dead cells. 

  

Library Preparation and Sequencing 

 
For the droplet-encapsulation scRNA-seq experiments, 8000 live, single, CD45+ or CD45- FACS-isolated 

cells or MACS-enriched cells were loaded on to each of the Chromium Controller (10x Genomics).  Single 

cell cDNA synthesis, amplification and sequencing libraries were generated using the Single Cell 3' and 5’ 

Reagent Kit following the manufacturer’s instructions. The libraries from up to eight loaded channels were 

multiplexed together and sequenced on an Illumina HiSeq 4000. The libraries were distributed over eight 

lanes per flow cell and sequenced using the following parameters: Read1: 26 cycles, i7: 8 cycles, i5: 0 

cycles; Read2: 98 cycles to generate 75bp paired end reads. 

For the plate-based scRNA-seq experiments, a slightly modified Smart-Seq2 protocol was used as 

previously described (56). After cDNA generation, libraries were prepared (384 cells per library) using the 

Illumina Nextera XT kit. Index v2 sets A, B, C and D were used per library to barcode each cell for 

multiplexing. Each library was sequenced (384 cells) per lane at a sequencing depth of 1-2 million reads 

per cell on HiSeq 4000 using v4 SBS chemistry to create 75bp paired end reads. 

  

Alignment, quantification and quality control of single cell RNA sequencing data 
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Droplet-based sequencing data was aligned and quantified using the Cell Ranger Single-Cell Software Suite 

(version 2.0.2 for 3’ chemistry and version 2.1.0 for 5’ chemistry, 10x Genomics Inc) using the GRCh38 

human reference genome (official Cell Ranger reference, version 1.2.0). Cells with fewer than 2000 UMI 

counts and 500 detected genes were considered as empty droplets and removed from the dataset. Cells with 

more than 7000 detected genes were considered as potential doublets and and removed from the dataset. 

Smart-seq2 sequencing data was aligned with STAR (version 2.5.1b), using the STAR index and annotation 

from the same reference as the 10x data. Gene-specific read counts were calculated using htseq-count 

(version 0.10.0). Scanpy (version 1.3.4) python package was used to load the cell-gene count matrix and 

perform downstream analysis.   

 
Doublet detection 

 
To exclude doublets from single-cell RNA sequencing data, we applied scrublet 

(https://github.com/AllonKleinLab/scrublet, (69)) algorithm per sample to calculate scrublet-predicted 

doublet score per cell with following parameters: sim_doublet_ratio  = 2; n_neighbors=30; 

expected_doublet_rate= 0.1. Any cell with scrublet score > 0.7 was flagged as doublet. To propagate the 

doublet detection into potential false-negatives from scrublet analysis, we over-clustered the dataset 

(sc.tl.louvain function from scanpy package version 1.3.4; resolution = 20), and calculated the average 

doublet score within each cluster. Any cluster with averaged scrublet score > 0.6 was flagged as a doublet 

cluster. All remaining cell clusters were further examined to detect potential false-negatives from scrublet 

analysis according to the following criteria: (1) Expression of marker genes from two distinct cell types 

which are unlikely according to prior knowledge (i.e. CD3 for T cells and CD19 for B cells), (2) Higher 

number of UMI counts and (3) Lack of unique marker gene defining the cluster. All clusters flagged as 

doublets were removed from further downstream biological analysis.  

  

Defining contaminating populations from other tissues 



Submitted Manuscript: Confidential 

32 
 

 
We noticed that embryonic thymus can be contaminated with thyroid or parathyroid derived tissue, which 

is annotated as Epi_PAX8 (marked by PAX8, HHEX, TG, NKX2.1) and Epi_GCM2 (marked by PTH, 

GCM2, GATA3, CHGA). We removed cell clusters defined by these markers and removed entire dataset 

if it has larger cell cluster belonging to these contaminating populations compared to thymic epithelial cells. 

 
Clustering and annotation of scRNA-seq data 

 
Downstream analysis included data normalisation (scanpy.api.pp.normalize_per_cell method, scaling 

factor 10000), log-transformation (scanpy.api.pp.log1p), variable gene detection 

(scanpy.api.pp.filter_gene_dispersion), data feature scaling (scanpy.api.pp.scale), PCA analysis 

(scanpy.api.pp.pca, from variable genes), batch-balanced neighbourhood graph building 

(scanpy.api.pp.bbknn) and Louvain graph-based clustering (scanpy.api.tl.louvain, clustering resolution 

manually tuned) performed using the python package scanpy (version 1.3.4). Custom defined cell cycle 

gene sets (Table S8) were removed from the list of variable genes to remove cell-cycle associated variation. 

Cluster cell identity was assigned by manual annotation using known marker genes as well as computed 

differentially expressed genes (DEGs) using custom python function. Clusters with clear and uniform 

identity were annotated first, and a logistic regression model was trained based on this annotation. This 

model was used to predict the identity of cells in a cluster with a mixture of different cell types, which can 

be computationally clustered together due to transcriptional similarity. To achieve a high-resolution 

annotation, we separated broadly annotated cells (e.g. Epithelial cells, single positive T cells) and repeated 

the procedure of variable gene selection, which allowed the annotation of smaller and fine-grained cell 

subsets (e.g. mTECs, regulatory T cells). 

  

Alignment of data across different batches 
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Batches for batch alignment can come from different chemistries used on the same set of cells, e.g. 10X 

chemistry (5’ and 3’), or from cells from different donors analysed using the same chemistry. In other words, 

there can be technical or biological differences between batches. We performed iterative batch correction, 

first by roughly aligning batches across similar samples (e.g. all foetal samples or paediatric samples) using 

scanpy.api.pp.bbknn function. We used this batch-aligned manifold to annotate cell types. After achieving 

a coarse-grained cell type annotation, we fitted a L2-regularised linear model using batches (e.g. 10X 

chemistry, donors) or cell type annotation as a categorical variable. Then we regressed out variations 

explained by batch variables, and kept residuals, which contain biological information. After this, we 

aligned batches again using the scanpy.api.pp.bbknn function to achieve a high-resolution and batch-mixed 

manifold, which is used for refining annotation, visualisation and trajectory analysis. 

  

Estimating cellular composition per sample 

 
To estimate the relative proportion of each cell type in different samples, we defined broad categories of 

cell types (e.g. lymphocytes, myeloid cells, total cells), and calculated the proportions of each cell type 

within selected group of cells. If all cell types used for a comparison come from the same sorting gate, we 

simply calculated the proportion as: number of cells in specific cell type / total number of cells in 

comparison set. When cell types used for comparison are derived from multiple sorting gates, we calculated 

a normalisation factor for each sorting gate as: number of cells sorted in a specific sorting gate / total number 

of sorted cells across multiple sorting gates, and multiplied this normalisation factor to the number of cells 

in each sorting gate. These normalised numbers are used to calculate proportions, which eliminates bias 

caused by sorting different number of cells into different gates. The significance of changes in cellular 

proportions are tested by t-test on cell proportions. 

 

Trajectory analysis 
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To model differentiation trajectories, a combination of linear regression and batch-alignment algorithms 

were applied as described above to generate a neighbourhood graph. The robustness and accuracy of batch-

alignment was tested by comparing multiple batch-alignment methods. Among the resulting manifolds, we 

selected the one with the best fit to well-known sequential events in T-cell differentiation such as TCR 

recombination. We then calculated diffusion pseudotime (70) using the scanpy.api.tl.dpt function in scanpy, 

which starts from the manually selected progenitor cell. The progenitor cell is selected from the extremities 

of diffusion components. Cells are binned based on the pseudotime ordering, and differentially expressed 

genes are identified as genes whose expression is significantly different from the randomly permuted 

background in any of the bins. 

  

Visualisation of the transcription factor network 

 
Transcription factor network analysis was performed as previously described (71). First, gene expression 

levels were imputed by taking an average of 30-nearest neighbors in three-dimensional UMAP space. An 

annotation score for each cell type was calculated by measuring the frequency of cell types amongst the 30-

nearest neighbors which are used for imputation. To remove redundant information, cells were randomly 

sampled from each unit voxel from the three-dimensional UMAP space. The human transcription factors 

were selected from AnimalTFDB3 (72). Only highly-variable transcription factors were subject to 

calculation of the correlation matrix, which was subsequently used for graph building and visualisation 

using the force-directed graph function implemented in the scanpy package. 

  

TCR VDJ sequence analysis 

 
10X TCR-enriched libraries are mapped with the Cell Ranger Single-Cell Software Suite (version 2.1.0, 

10x Genomics Inc) to the custom reference provided by the manufacturer (version 2.0.0 GRCh38 VDJ 

reference). VDJ sequence information was extracted from the output file “filtered_contig_annotations.csv.” 

The merged VDJ output dataset is available in our data repository (see Data and materials availability). 
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Chains which contained full-length recombinant sequence and supported by more than 2 UMI counts were 

selected, and linked to the cellular transcriptome data based on cell barcodes. These chains were considered 

as productive if a functional ORF covering the CDR3 region could be found. To compare V, D, J gene 

usage per cell type, each V, D, J gene count in each specific cell type was normalised by the sum of counts 

within that cell type, and then converted to a z-score per gene. Student’s t-test was used to compare the z-

scores between different cell types. Cochran–Mantel–Haenszel test was also used to compare profiles 

between CD4+T and CD8+T cells, which yielded comparable results. 

 
Comparison to published dataset 

 
Human liver dataset collected from the same donors which has been described in (44). were processed in 

the same way as the thymic cells. The human bone marrow-derived hematopoietic progenitors dataset has 

been downloaded from Gene Expression Omnibus (GSE117498) as processed count matrix. The dataset 

has been processed through the same pipeline and combined with human liver and thymus dataset. Batch 

alignment was performed across thymus, liver and bone marrow datasets using the BBKNN algorithm 

assisted by linear regression. The human sorted thymocytes microarray dataset has been downloaded from 

ArrayExpress (E-MEXP-337) as a processed expression matrix.  

 
Mouse thymus cell atlas 

 
The mouse stromal dataset has been collected from Gene Expression Omnibus (GSE103967) and mouse 

fetal thymus dataset has been downloaded from Gene Expression Omnibus (GSE107910). Mouse postnatal 

thymus dataset has been generated for C57BL/6J mice (4, 8, 24 weeks old). Dissected thymi were 

dissociated with Liberase TH protocol and two 10X 3’ v3 lanes were loaded for each sample. All data has 

been processed in the same way as the human thymic cells. The mouse stromal dataset has been re-annotated 

following the original description by authors. We noted some minor cell populations which were not 

defined in the original study. Mouse fetal and postnatal cells are integrated into the same dataset and 
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annotated altogether. A logistic model trained from the annotated human data was applied to assist the 

annotation process to achieve coherent annotation between human and mouse.  

 
Cross-species comparison 

 
The alignment of the mouse dataset to the human dataset has been achieved by two methods: (1) Bi-

directional prediction based on logistic models trained from each dataset. The prediction probability from 

human to mouse and mouse to human cell pairs are multiplied to derive the final similarity score. (2) Batch 

alignment using BBKNN algorithm assisted by linear regression to remove species-specific variations 

while keeping the biological structure. For this, an initial round of BBKNN integration has been performed 

across all samples to produce a graph structure with connections between nearest neighbors across batches. 

Low-resolution graph-based clustering was performed on this to obtain a clustering structure based on 

biological variation. Then L2-regularised linear regression was performed using this cluster structure as 

biological variables and species/sample structure as batch variable. The variation explained by batch 

structure was regressed out from the data, and this corrected matrix is used for the second round of BBKNN 

integration. This resulted in a manifold that is well-mixed across species. Of note, we confined this approach 

to subsets of cells (e.g. mature T cells), to achieve better alignment by reducing complexity. 

 
Cell-cell interaction analysis 

 
Specific interactions between cells are modeled using CellPhoneDB (www.CellPhoneDB.org) as 

previously described (35). To minimise computational burden and equally represent different cell types, we 

downsampled the dataset by randomly sampling 1000 cells from each cell type. We modified cell-cell 

interaction scores by multiplying average expression level of each ligand and receptor gene within cell-cell 

pairs, and maximum-normalising this score. The list of chemokines was retrieved from the HUGO Gene 

Nomenclature Committee. To visualise the interactions, we first selected interaction pairs based on 

significance of specificity from CellPhoneDB and calculated normalised interaction score for each cell pairs. 
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This normalised interaction score has been calculated by multiplying the average expression level of ligand 

and receptors for all cell pairs, and maximum normalising these values. 

 
  



Submitted Manuscript: Confidential 

38 
 

 

Fig. S1. 
UMAP visualisation of the entire dataset before (left) and after (right) batch alignment. Cells are 
coloured by methods (top), donors (middle) and cell types (bottom). 
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Fig. S2. 
Dot plot showing marker gene expression for annotated cell types. Color represents maximum-
normalised mean expression of marker genes in each cell group, and size indicates the proportion 
of cells expressing marker gene. ETP: early thymic progenitors, DN: double negative T cells, 
DP: double positive T cells, Treg: regulatory T cells, ILC3: innate lymphoid cell type 3, 
B_pro/pre: pro-B cells and pre-B cells, DC1: conventional dendritic cell type 1, DC2: 
conventional dendritic cell type 2, aDC: activated dendritic cells, pDC: plasmacytoid dendritic 
cells, Mono: monocytes, Mac: macrophage, Mast: mast cells, Mgk: megakaryocytes, Ery: 
erythrocytes, Endo: endothelial cells, VSMC: vesicular smooth muscle cells, Fb_1, Fb_2: 
fibroblasts type 1 and 2 
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Fig. S3. 
(A) Volcano plot showing differentially expressed genes between fb1 and fb2 type of thymic 
fibroblasts. X-axis and y-axis represent log2(fold change) and -log10(p-value) respectively. (B) 
FACS analysis of PI16 protein level in thymic fibroblast explant culture from different stages of 
human fetal thymus. (C) Expression level of PI16 mRNA level in single-cell RNA sequencing 
data from different stages of human fetal thymus 
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Fig. S4. 
(A) UMAP plot showing human thymic epithelial cell (TEC) populations (B) UMAP plot 
showing the human TECs stratified into three different stages (early: 7 pcw -11 pcw fetal, 
middle: 12 wks pcw – 3 months postnatal, late: more than 15 years old). The grey shaded data 
points correspond to the other two stages. (C) UMAP plot showing the expression pattern of 
marker genes for each epithelial cell type (same colour scheme as applied in (A)) stratified into 
early, middle, late stages. The shaded data points correspond to the other two stages.  
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Fig. S5. 
(A) UMAP plot showing mouse thymic stromal cell populations (15) stratified by cell type and 
(B) by age. (C) UMAP plots showing the expression pattern of marker genes for each epithelial 
cell type in mouse thymic stromal cell population. 
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Fig. S6. 
Projection score between human and mouse thymic epithelial cell types calculated by 
multiplying the cross-species predicted projection probability of logistic models trained on each 
species data. 
  

cross-species projection
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Fig. S7. 
Comparison of markers for thymic epithelial cell types from human and mouse. X-axis is gene 
expression log2-fold change for the designated human cell types against all other human thymic 
epithelial cells. Y-axis is gene expression log2-fold change for the designated mouse cell types 
against all mouse thymic epithelial cells. Comparison sets are determined based on the cross-
species projection score (fig. S6) 
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Fig. S8. 
Dot plot showing the expression of genes causing Severe Combined Immunodeficiency (SCID) 
(A), thymic defects (B), Combined Immunodeficiency (CID) (C), and syndromic CID (D). 
Genes are taken from the IUIS Classification of Inborn Errors of immunity (February 2018). 
Color represents maximum-normalised mean expression of marker genes in each cell group, and 
size indicates the proportion of cells expressing marker gene. 
  



Submitted Manuscript: Confidential 

48 
 

 
 
 

 
 

Fig. S9. 
H&E staining of cross-sectioned thymic tissue at different developmental and postnatal ages.  
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Fig. S10. 
(A) UMAP plot showing cell type annotations for the young adult sample (20-25 years old). (B) 
Organ composition for UMAP plot shown in (A). (C) Dot plot showing marker gene expression 
for mature T cells found in young adult sample. Abbreviations are as defined from Fig. S2. BM: 
bone marrow; SP: spleen; TH: thymus; iLN: inguinal lymph node; mLN: mesenteric lymph 
node; tLN: thoracic lymph node. 
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Fig. S11. 
Dot plot showing cell type specific expression of signalling pathways which are known to 
regulate thymic development. Dataset is separated according to developmental stages as 
indicated in Fig. S4B. Cell types with less than 50 cells detected per stages are omitted from the 
plot. 
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Fig. S12. 
UMAP plot displayed in Figs. 2A and B coloured according to the original annotation on thymus 
cells from this study (left panel) and liver cells sampled from same donors (44). (right panel) 
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Fig. S13. 
UMAP plot showing the integrative analysis between hematopoietic progenitors from thymus 
and liver and sorted human hematopoietic progenitors from bone marrow (46). Cells are labeled 
based on (A) annotation described in Fig 2A, (B) derived organs (left panel, shown for thymus 
and liver cells) or sorting scheme (right panel). MLP: multi-lymphoid progenitors. MEP: 
megakaryocyte-erythrocyte progenitors. HSC: hematopoietic stem cells. GMP: granulocyte-
macrophage progenitors. CMP: common-myeloid progenitors. 
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Fig. S14. 
(A) UMAP plot (left, same one as shown in Fig. 2C) and force directed graph plot (right) 
showing T cell development trajectory. (B) UMAP plot (left) and force directed graph plot 
(right) showing marker gene expression for CD8ɑɑ+ T subtypes found in human thymus. 
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Fig. S15. 
UMAP plot (same as used in Fig. 2C) displaying expression pattern of TRBC1, TRBC2, PTCRA 
(pre-TCR complex) and TRAC genes. Peak expression of PTCRA is found in DN(Q) cells.  



Submitted Manuscript: Confidential 

55 
 

 
 
 

 
 

Fig. S16. 
(A) Heatmap showing expression pattern of T cell differentiation marker genes (x-axis) from 
sorted cell populations (y-axis) (50). (B) Heatmap showing the expression pattern of T cell 
differentiation marker genes (same set used in (A)) across modelled pseudotime. Distribution of 
cell types are depicted in the lower panel. (C) Umap plot (same as Fig. 2C) showing expressing 
pattern of selected marker genes. DEFA6 is marker gene for ISP CD4+ population (Fig. S16A), 
which overlaps largely with DN(Q) cells (Fig. 2C). 
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Fig. S17. 
(A) UMAP and force directed graph for T cell trajectory (Same as displayed in fig. S14), 
highlighting Treg lineage cell types. (left panel). Right panel shows marker for T(agonist) cells 
(MIR155HG), Tregs and Treg(diif) cells (FOXP3), and IL2RA expression is shared among all 
three cell types. (B) Dot plot showing the expression of lineage markers and signatures for two 
Treg progenitors defined in (52).  
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Fig. S18. 
Dot plot showing the expression level of CD8ɑɑ+ T marker genes enriched in thymus (left) or 
cord blood (right) across conventional CD8+ T cells and three CD8ɑɑ+ T types found in thymus. 
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Fig. S19. 
UMAP plot showing CD3+CD137+ sorted population from 12 PCW fetal thymus. Sorted cells 
(top right, red) were compared to unsorted mature T cells (top right, skyblue) from the same 
sample. Gene expression of CD8ɑɑ+T(I) marker (GNG4), Treg marker (FOXP3) and marker 
shared between these two groups (TNFRSF9/CD137) are shown. 
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Fig. S20. 
UMAP plot showing single-cell atlas of mouse thymic cells coloured by (A) cell types, (B) 
developmental stages and (C) age. E: embryonic day, W: weeks of postnatal age, Rag1KO: Rag1 
knockout mouse. 
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Fig. S21. 
UMAP plot showing the integrative data analysis of mature T cell populations from human and 
mouse. Human cell types are annotated by ‘hs’ and mouse cell types are marked with ‘mm’. 
Matching cell groups are shown together. 
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Fig. S22. 
Comparison of markers for mature T cell types from human and mouse thymus. X-axis is gene 
expression log2-fold change for the designated human cell types against all other human 
epithelial cells. Y-axis is gene expression log2-fold change for the designated mouse cell types 
against all mouse epithelial cells. Comparison sets are determined based on the data integration 
(Fig. S21) 
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Fig. S23. 
Violin plots showing the gene expression level (normalised to total reads per cell, log-
transformed) across CD8ɑɑ+T(I) (human), IELpA (mouse) and CD8+T cells from both species. 
‘hs’ and ‘mm’ suffix is used to identify cells from human and mouse, respectively. Gene names 
are designated in the y-axis. 
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Fig. S24. 
RNA single-molecule FISH detection of various genes expressed in aDCs (LAMP3, AIRE, 
FOXD4) on 15 PCW fetal thymus tissue section. Cells with expression of both genes are marked 
with a circle. 
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Fig. S25. 
UMAP plot showing DC subtypes found in human thymus (top left). The same UMAP plot is 
used to show the cells with high DC1, DC2 and pDC scores, which are calculated by taking the 
average of expression level for lineage-specific genes. 
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Fig. S26. 
UMAP plot showing cell types expressing XCL1 (top) and XCL1 expression level in fetal 
thymus (bottom) 
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Fig. S27. 
(A) Scatter plot comparing genomic position (x-axis) and relative usage (y-axis) for TCRβ V 
genes. Genes are coloured based on genomic position. The same colour scheme is applied for 
following figures. (B) Scatter plot comparing genomic position (x-axis) and RSS score (y-axis) 
for TCRβ V genes. (C) Scatter plot comparing RSS score (x-axis) and relative usage (y-axis) for 
TCRβ V genes. 
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Fig. S28. 
(A) Relative frequency (log scale) of V-J, V-D, J-D gene pairs in TCRβ locus. (B) Relative 
frequency (log scale) of V-J gene pairs in TCRɑ locus. Dataset is divided into DP and SP stages 
to highlight the enrichment of proximal pairs in DP stage. 
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Fig. S29. 
(A, B) Relative usage of V, D and J gene segments according to cell types for TCRβ locus (A) or 
TCRɑ locus (B). Z-score for each segment is calculated from the distribution of normalised 
proportions stratified by the cell type and sample. P-value is calculated by comparing z-scores 
using t-test, and FDR is calculated using Benjamini-Hochberg correction. (*: p-value < 0.05, **: 
FDR < 10%) Gene names on the x-axis and asterisks are coloured by significant enrichment. For 
CD4 vs CD8ɑɑ+T (I) comparison, CD8ɑɑ+T (I) data points are separated into fetal samples 
(n=4) and post-natal sample (n=1, young adult) to highlight differences between fetal sampels 
and young adult sample. All other comparisons are inclusive of both fetal and post-natal samples. 
Consistency between fetal and post-natal samples are separately confirmed (data not shown). 
(C) Volcano plot showing log2(fold change) of V, D, J gene frequencies between CD4+T and 
CD8+T cells (x-axis) and -log10(p-value) calculated by Cochran–Mantel–Haenszel test. Genes 
with most significant changes are annotated. 
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Table S1. Table_S1.xlsx (separate file) 
Excel file containing metadata for sequenced samples. 
  
[FileName] Prefix for raw sequencing files 
[SampleID] Sample description (DonorID-Organ-Sort-Method) 
[Organ] TH: thymus, SP: spleen, LI: liver, BM: bone marrow, iLN: iliac lymph node, tLN: 
thoracic lymph node, mLN: mesenteric lymph node 
[DonorID]  Unique ID assigned for each donor 
[Sort]  Sorting scheme used for each sample. 45P: CD45+, 45N: CD45-, CD3P: CD3+, 
CD3N: CD3-, CD137: CD137, 45NM: CD45 depletion by MACS, EPCAM: EPCAM 
enrichment by MACS 
[Method] 3GEX: 10X 3’ chemistry gene expression profiling, 5GEX: 10X 5’ chemistry 
gene expression profiling 
[VDJ_file] File names for TCR enrichment sequencing if available 
[Enzyme] Protocols used for dissociation 

Table S2. Table_S2.xlsx (separate file) 
Excel file containing absolute cell numbers for each cell type in each sample. 

Table S3. Table_S3.xlsx (separate file) 
Excel file containing hierarchy of cell type annotations used in the study 

Table S4. Table_S4.csv (separate file) 
CSV file containing top 20 marker genes for each cell type. 

Table S5. Table_S5_cpdb_means.csv (separate file) 
CellPhoneDB analysis output file containing means calculated for each ligand-receptor pair 
within each cell-cell pair. The output has been selected for the ligand-receptor pairs which are 
specific to at least one cell-cell pair. Please refer to CellPhoneDB manual for details. 

 

 
  



Submitted Manuscript: Confidential 

73 
 

Table S6. 
Antibodies used for FACS staining 
 

 

 
  

Marker Fluorochrome Clone Isotype Supplier 

CD123 BUV395 7G3 Mouse IgG2a κ BD Biosciences 

CD11c APC-Cy7 Bu15 Mouse IgG1 κ Biolegend 
CD14 PE CF594 MφP9  Mouse IgG2b κ BD Biosciences 
CD137 PE-Cy5 4B4-1 Mouse IgG1 κ Biolegend 
CD141 PerCP-Cy5.5 M80 Mouse IgG1 κ Biolegend 
CD19 FITC 4G7 Mouse IgG1 κ BD Biosciences 
CD20 FITC L27 Mouse IgG1 κ BD Biosciences 
CD3 BV605 SK7 Mouse IgG1 κ Biolegend 
CD4 BV711 RPA-T4 Mouse IgG1 κ Biolegend 

CD8A AF700 HIT8a Mouse IgG1 κ Biolegend 
CD8B FITC REA715 Human IgG1 Miltenyi Biotec 

HLA-DR BV785 L243 Mouse IgG2a κ Biolegend 
EpCAM Vioblue HEA125 Mouse IgG1 κ Miltenyi Biotec 

CD45 APC HI30 Mouse IgG1 κ BD Biosciences 
CCR7 PerCP-Cy5.5 G043H7 Mouse IgG2a κ Biolegend 
CD56 PE NCAM16.2 IgG2b, k BD Biosciences 
CD34 PE-Cy7 581 Mouse IgG1 κ Biolegend 
CD3 APC SK7 Mouse IgG1 κ Biolegend 

THY1 Af700 5E10 Mouse IgG1 κ Biolegend 
PEGFRa PE 16A1 Mouse IgG1 κ Biolegend 

PI16 BV605 RUO Mouse IgG1 κ BD Biosciences 
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Table S7. 
Probes used for smRNA FISH 
 
 
Gene ID Cat. Number Channel 
CSF2RA 409341 C1 
CCR7 410721 C1 
LAMP3 468761-C2 C2 
CD80 421471-C3 C3 
CD8A 560391-C3 C3 
FOXP3 418471 C1 
TNFRSF9 415171 C1 
ITGAX 419151 C1 
FBN1 482478-C2 C2 
COLEC11 542438 C1 
ACTA2 311818-C3 C3 
PDGFRA 604488 C1 
CDH5 437458-C3 C3 
XCR1 custom C3 
FOXD4 custom C3 
GNG4 custom C2 
AIRE custom C1 
GDF10 506168  
NEUROG1 444398-C2 C2 
MYOD1 562728-C2 C2 
EPCAM 310288-C4 C4 
ALDH1A2 528748  
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Table S8. 
List of cell cycle genes (559 genes) defined and used in this study 
 
AC004381.6, ACAT2, ACOT7, ACSL3, ACTL6A, ACYP1, ADK, AIFM1, ALYREF, ANKRD36C, ANLN, ANP32B, 
ANP32E, AP000251.3, ARHGAP11A, ARHGAP11B, ARHGAP33, ARHGEF39, ASF1B, ASPM, ASRGL1, ATAD2, ATAD5, 
ATP5G1, ATP8B3, AURKA, AURKB, BAG2, BARD1, BAZ1B, BCL2L12, BIRC5, BLM, BLMH, BOP1, BORA, BRCA1, 
BRCA2, BRD7, BRD8, BRIP1, BUB1, BUB1B, BUB3, BUD13, C16orf91, C19orf48, C1QBP, C1orf112, C1orf35, C21orf58, 
C4orf27, C4orf46, C5orf34, C8orf88, C9orf40, CARHSP1, CASC5, CASP8AP2, CBX2, CBX5, CCDC14, CCDC15, CCDC167, 
CCDC18, CCDC34, CCDC58, CCDC86, CCNA2, CCNB1, CCNB2, CCNE2, CCNF, CCP110, CCSAP, CDC20, CDC25A, 
CDC25B, CDC25C, CDC27, CDC45, CDC6, CDC7, CDCA2, CDCA3, CDCA4, CDCA5, CDCA7, CDCA8, CDK1, CDK2, 
CDK5RAP2, CDKN2AIP, CDKN3, CDT1, CENPA, CENPE, CENPF, CENPH, CENPJ, CENPK, CENPL, CENPM, CENPN, 
CENPO, CENPP, CENPQ, CENPU, CENPV, CENPW, CEP152, CEP55, CEP57L1, CEP76, CEP78, CEP97, CHAC2, 
CHAF1A, CHAF1B, CHEK1, CISD1, CIT, CKAP2, CKAP2L, CKAP5, CKLF, CKS1B, CKS2, CLGN, CLSPN, CMSS1, CNP, 
CRNDE, CSE1L, CTC-260E6.6, CTCF, CTDSPL2, CTNNAL1, CTPS1, DAZAP1, DBF4, DCAF12, DDB2, DDX11, 
DDX39A, DEK, DEPDC1, DEPDC1B, DHCR24, DHFR, DIAPH3, DLEU2, DLGAP5, DNA2, DNAJC9, DNMT1, DSCC1, 
DSG2, DSN1, DTL, DTYMK, DUT, E2F2, E2F7, E2F8, EBNA1BP2, ECT2, EIF1AY, ELP5, EMC9, ENO2, ENOSF1, 
EPCAM, ERCC6L, ERH, ERI2, ESCO2, ESPL1, EXO1, EXOC5, EXOSC5, EXOSC8, EXOSC9, EZH2, FAIM, FAM111A, 
FAM111B, FAM122B, FAM221A, FAM64A, FAM72B, FAM76B, FAM83D, FANCA, FANCD2, FANCG, FANCI, FBXO5, 
FEN1, FH, FHL2, FKBP5, FOXM1, G2E3, GALK1, GAPDH, GAR1, GARS, GEN1, GGH, GINS1, GINS2, GINS4, GKAP1, 
GLRX5, GMCL1, GMNN, GMPPB, GOT2, GPANK1, GPATCH4, GPN3, GPSM2, GSG2, GTF3A, GTF3C5, GTSE1, H1FX, 
H2AFV, H2AFX, H2AFY, H2AFZ, HADH, HAT1, HAUS6, HELLS, HIRIP3, HIST1H1A, HIST1H1B, HIST1H1D, 
HIST1H1E, HIST1H2AH, HIST1H2AM, HIST1H3G, HIST1H4C, HIST2H2AC, HIST3H2A, HJURP, HLTF, HMGA2, 
HMGB1, HMGB2, HMGB3, HMGCS1, HMGN2, HMGN5, HMGXB4, HMMR, HN1, HNRNPLL, HNRNPR, HPRT1, 
HSPA14, HSPB11, IARS, IDH2, IFRD2, IGF2BP1, ILF2, IMMP1L, INCENP, ING2, ITGB3BP, JAM3, KCTD9, KDM1A, 
KIAA0101, KIAA1524, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B, KIF22, KIF23, KIF2C, KIF4A, KIFC1, 
KLHL23, KMT5A, KNSTRN, KNTC1, KPNA2, LDHA, LDLR, LEO1, LIG1, LIN9, LMNB1, LMNB2, LRR1, LRRC42, 
LRRCC1, LSM4, MAD2L1, MAD2L2, MAGOHB, MASTL, MCM10, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, 
MCM8, MELK, MGME1, MIS18A, MIS18BP1, MKI67, MLH1, MMS22L, MND1, MNS1, MRPS2, MRPS23, MRTO4, 
MSH2, MSH6, MTFR2, MTHFD1, MTHFD2, MXD3, MYBL2, MYEF2, MZT1, NAE1, NASP, NCAPD2, NCAPD3, NCAPG, 
NCAPG2, NCAPH, NCAPH2, NCBP2-AS2, NDC80, NEDD1, NEIL3, NEK2, NFYB, NOP14, NOP16, NRM, NTPCR, 
NUCKS1, NUDT1, NUDT15, NUDT8, NUF2, NUP107, NUP155, NUP37, NUP50, NUP93, NUSAP1, ODF2, OIP5, ORC1, 
ORC6, OXCT1, PAICS, PARPBP, PAWR, PBK, PCNA, PDCD2, PGAM1, PGP, PHF19, PHGDH, PIDD1, PIF1, PKMYT1, 
PLCB4, PLK1, PLK4, PM20D2, POC1A, POLA1, POLA2, POLD1, POLD3, POLE, POLE2, POLQ, POLR2D, POLR3K, 
POP7, PPA1, PPIL1, PRC1, PRDX2, PRIM1, PRIM2, PRKDC, PRPS1, PRR11, PRSS21, PSIP1, PSMC3IP, PSMG1, PSMG3, 
PSRC1, PTMA, PTTG1, PUM3, PXMP2, RACGAP1, RAD18, RAD21, RAD51, RAD51AP1, RAD51C, RAD54L, RAN, 
RANBP1, RANGAP1, RBBP8, RBL1, RCC1, RDM1, RFC2, RFC3, RFC4, RFC5, RFWD3, RHEB, RHNO1, RMI1, RMI2, 
RNASEH2A, RNF168, RP11-196G18.23, RPA1, RPA3, RPL39L, RPS4Y1, RRM1, RRM2, RTKN2, RUVBL1, SAAL1, 
SAC3D1, SAE1, SAMD1, SASS6, SEH1L, SFXN4, SGOL1, SGOL2, SGTA, SHCBP1, SHMT1, SIVA1, SKA1, SKA2, SKA3, 
SKP2, SLC16A1, SLC2A1, SLC39A8, SLC43A3, SLC7A3, SLF1, SLFN13, SMC1A, SMC2, SMC3, SMC4, SNRNP48, 
SNRPD1, SPAG5, SPC24, SPC25, SPDL1, SRD5A3, SRM, SSRP1, STIL, STMN1, SUV39H2, SVIP, TACC3, TCF19, TCOF1, 
TDP1, TEX30, TFDP1, THOC3, THOC6, THOP1, TICRR, TIMELESS, TK1, TM7SF3, TMEM106C, TMEM237, TMEM97, 
TMPO, TOMM40, TOMM5, TOP2A, TOPBP1, TPGS2, TPX2, TRAIP, TRAP1, TRIP13, TROAP, TTF2, TTK, TUBA1B, 
TUBB, TUBB4B, TUBG1, TXN, TXNRD1, TYMS, UBE2C, UBE2S, UBE2T, UBR7, UCHL5, UCK2, UHRF1, UNG, USP1, 
USP39, VRK1, WDHD1, WDR34, WDR43, WDR62, WDR76, WDR77, WEE1, WHSC1, XRCC6BP1, YBX1, YDJC, 
YEATS4, ZGRF1, ZNF714, ZNF738, ZWILCH, ZWINT 
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Data S1. T_cell_development_3D_umap.html (separate file) 
HTML file containing 3D umap structure for T cell developmental trajectory. 
 

 
 
 


