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In metastatic cancer, the degree of heterogeneity of the tumor-immune 

microenvironment and its molecular underpinnings remain largely unstudied. To 

characterize the tumor-immune interface at baseline and during neoadjuvant 

chemotherapy in high-grade serous ovarian cancer (HGSOC), we performed 

immunogenomics analysis of treatment-naive and paired pre/post-chemotherapy treated 

samples. In treatment-naive HGSOC, we find that immune cell-excluded and 

inflammatory microenvironments co-exist within the same individuals and within the 

same tumor sites, indicating ubiquitous variability in immune cell infiltration. Analysis of 

tumor microenvironment cell composition, DNA copy number, mutations and gene 

expression showed that immune cell exclusion was associated with amplification of Myc 

target genes and increased expression of canonical Wnt signaling in treatment-naive 

HGSOC. Following neoadjuvant chemotherapy, increased natural killer cell infiltration 

and oligoclonal expansion of T cells were detected. We demonstrate that the tumor-

immune microenvironment of advanced HGSOC is intrinsically heterogeneous and that 

chemotherapy induces local immune activation, suggesting that chemotherapy can 

potentiate the immunogenicity of immune-excluded HGSOC tumors. 

 

The complex interplay between tumor cells and the tumor microenvironment (TME) affects 

treatment outcome in cancer1–3; however, it is unclear how this occurs in ovarian cancer4,5. 

Studying the interplay between tumor progression, the TME and treatment response in an 

advanced stage multisite disease is challenging due to the difficulty of obtaining tumor samples 

from multiple sites from the same individual, which frequently harbor distinct immune 

microenvironments5–8. Moreover, interactions between different cell populations of the TME are 

plastic and change depending on extrinsic perturbations such as therapy9. 

High-grade serous ovarian cancer (HGSOC) typically presents with multisite peritoneal 

tumors, and is uniformly treated with either upfront surgical debulking or delayed primary 
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surgery after neoadjuvant chemotherapy (NACT)4. Thus, HGSOC exemplifies the ideal disease 

to study the characteristics of the TME at multiple sites in the same patient and quantify 

changes following perturbation with therapy. In HGSOC, the relatively low somatic point 

mutation load, high aneuploidy levels and high copy-number alterations have been associated 

with low immunogenicity4,5. It has been shown that T cell infiltration (CD3+/CD8+) plays a major 

role in predicting survival in HGSOC in a primary disease setting10,11. Recent studies have 

started to define the interplay between mutational intra-tumor heterogeneity (ITH) and T cell 

interactions5, as well as the potential effect of chemotherapy on T cell infiltration in HGSOC12. 

However, the extent of TME heterogeneity, its underlying mechanisms, and its impact on 

therapeutic response remain unknown. To address these questions, we here performed 

systematic immunogenomic analyses of HGSOC samples from two different patient cohorts: (i) 

a treatment-naive cohort consisting of 49 samples from 10 patients, and (ii) a paired pre/post 

neoadjuvant chemotherapy cohort consisting of 40 patients with 80 paired samples.  

 

RESULTS 

Intrapatient transcriptomic heterogeneity is largely explained by immune-related gene 

signatures. To investigate the TME of HGSOC in a treatment-naive setting, we analyzed the 

transcriptome of 38 primary and metastatic tumor samples from 8 out of 10 patients collected 

prospectively (Fig. 1a,b and Supplementary Table 1a,b). To provide accurate sampling, ovarian 

tumor masses and peritoneal metastases were resected and placed on lesion-specific 3D molds 

designed from tumor segmentation data from high resolution T2-weighted magnetic resonance 

(MR) images. Tumor sampling was performed according to imaging-based phenotypically 

distinct “habitats”, as previously defined13 (see Methods and Supplementary Note). We first 

performed clustering analysis of the whole transcriptome and independently the protein-coding 
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transcriptome. The overall gene expression of tumor samples was highly patient specific, 

irrespective of anatomical site or tumor cellularity (the fraction of tumor cells in the admixture of 

cells in a sample) using t-distributed stochastic neighbor embedding (t-SNE) or hierarchical 

clustering (Fig. 1c and Supplementary Fig. 1a). To focus on well-defined biological processes 

and signaling pathways, we performed single sample gene-set enrichment analysis (ssGSEA)14 

using the 50 hallmark gene sets15 as well as stromal and immune gene signatures, and tumor 

cellularity based on bulk tumor mRNA using the ESTIMATE method16. Tumor cellularity derived 

from mRNA correlated with the whole-exome sequencing (WES) derived tumor cell fraction 

(Supplementary Fig. 1b, Pearson’s rho correlation coefficient = 0.78, P = 1.49 x 10-6), estimated 

from copy number alteration (CNA) with TITAN17. We categorized the MSigDB hallmark gene 

sets into five classes: oncogenic, cellular stress, immune, stromal, and other. Principal 

component analysis (PCA) showed that most of the gene set enrichment variation between 

samples (62% of variation from the two first PCs) could be explained by oncogenic, immune, 

and stroma-associated gene sets (Fig. 1d and Supplementary Fig. 1c). In contrast to the full 

transcriptome analysis, patient-specific clustering was less evident, indicating that tumors from 

different patients share common patterns of pathway activation and non-cancer cell related 

gene sets. To investigate which gene sets explained the observed variance, we computed the 

principal component feature loadings and displayed them in a variable factor map (Fig. 1e). This 

analysis showed that PC1 (47% of variation) is explained by tumor cellularity, since immune and 

stromal gene set vectors had an opposite direction to oncogenic vectors (Fig. 1e inset and 

Supplementary Fig. 1d). Unsupervised hierarchical cluster analysis corroborated sample 

clustering as a function of tumor cellularity, and separated clustering of oncogenic and immune 

gene sets despite low overlapping of genes within hallmark classes (Supplementary Fig. 1e,f). 

Since differential expression of immune-related gene signatures explained much of the 

variation between the samples, we further investigated the extent of intrapatient immune 

heterogeneity by computing the ESTIMATE immune score for each sample16. We compared the 
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immune scores of the samples collected with the HGSOC case study that we previously 

published7, and immune scores of 307 treatment naive ovarian cancer samples from The 

Cancer Genome Atlas (TCGA)18. Overall, the immune scores of our cohort fell within the 

expected range (Fig. 1f), suggesting that the immune characterization is representative at the 

population level. Some patients (01, 04, 10, and the case study) showed an intrapatient 

variation comparable to the inter-patient variation observed at the population level by the TCGA 

ovarian cancer samples, which indicates that, within a single individual, distinct immune 

microenvironments can co-exist at diagnosis of HGSOC. Consistent with our prior report7, we 

recapitulate the observation that tumors with high immune infiltration (ESTIMATE immune 

score) and immunosuppressive Wnt signaling tend to be mutually exclusive (Supplementary 

Fig. 1g, Kendall’s tau correlation coefficient = -0.34,  P = 0.003) with case 04 showing a 

negative correlation (Supplementary Fig. 1g, Pearson’s rho correlation coefficient = -0.95, P = 

0.015). When samples were divided into low and high WES-derived tumor cellularity using the 

median value as a cut-off, we corroborated that samples with high tumor cellularity have a 

higher ssGSEA normalized enrichment scores (NES) of Wnt signaling (Supplementary Fig. 1h, 

two-sided Mann-Whitney rank test, P = 0.01).  

 

Co-existence of distinct tumor-immune microenvironments and spatial T cell infiltration 

heterogeneity in HGSOC. To further characterize the tumor microenvironment of HGSOC, we 

performed multicolor immunofluorescence (IF) staining and quantification of CD4+, CD8+, and 

regulatory T cells (CD4+ FOXP3+) in at least 10 tumor sections excluding stromal areas in each 

sample leading to a compendium of 440 imaged and quantified tumor sections (Fig. 2a,b, 

Supplementary Fig. 2a,b, and Supplementary Table 2a). This multi-region and multi-site IF 

analysis shows that treatment-naive HGSOC patients have variation in T cell infiltration in tumor 

sites, ranging from less than 1% (e.g. patient 06) to more than 10% of total cells in some sites 
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(e.g. patient 10). Furthermore, some patients’ tumor sites demonstrated marked variation in T 

cell infiltration within the same tumor site across different imaging habitats (e.g. patient 01). 

Using hierarchical random-effect models (see Methods and Supplementary Table 2b), we found 

higher variability of T cell infiltration between and within habitats (i.e. within the same tumors 

site) than across tumor sites and across patients in CD8+, CD4+ and Tregs (Fig. 2a and 

Supplementary Fig. 2a-c, bootstrap P-values < 0.01), suggesting that the spatial intra-lesion 

variation of T cell infiltration is greater than the variation across sites and individuals.  

 

Transcriptional analysis points to Wnt and Myc pathways enriched in high tumor 

cellularity samples. To evaluate the infiltration levels of immune and stromal cell types other 

than T cells, we compared different TME cell deconvolution methods and cell-type specific 

signatures (Supplementary Note). We benchmarked seven different methods and 

ConsensusTME (Supplementary Fig. 3a,b)19 using WES-derived tumor cellularity (TITAN) and T 

cell counts from our HGSOC cohort as well as WES-derived tumor cellularity (ABSOLUTE) and 

leukocyte methylation scores from TCGA HGSOC samples. ConsensusTME consistently 

performs as one of the top three methods in the different benchmarks tested (Fig. 3a,b, 

Supplementary Fig. 3c, and Supplementary Table 3). We applied ConsensusTME to the 

treatment-naive HGSOC transcript data to explore if cell types besides CD8+, CD4+ and Tregs 

had noticeable patterns of infiltration across the samples. We first visualized the variation across 

samples using the NES of estimated ConsensusTME gene sets of cells and corroborated the 

intra-patient TME heterogeneity with highly and lowly infiltrated tumors of different cell-types 

(Fig. 3c and Supplementary Fig. 3d). As expected, PC1 separated samples by tumor cellularity 

explaining 74% of variance (Supplementary Fig. 3e,f). Analyzing the next principal components 

(PC2 and PC3), the cell-types explaining most of the variation were cytotoxic, NK cells and T 

cells (opposite to tumor cellularity), and fibroblasts and endothelial cells (toward tumor 

cellularity) (Fig. 3c,d and Supplementary Fig. 3d). 



 

7 
 

We next assessed whether specific genes or transcriptional programs were associated 

with variability in immune infiltration. We used the median WES-derived tumor cellularity 

(TITAN) of the cohort to classify high and low tumor cellularity samples as an orthogonal tumor 

cellularity quantification (see Methods). We performed a differential expression analysis 

leveraging sample-patient dependency (i.e. considering that multiple tumor samples come from 

the same individual) to increase statistical power20. As expected, genes related to immune 

activation were highly expressed in low tumor cellularity samples, but only four genes 

(BAIAP2L1, RCC2, CLDN12, PRKAA2) were highly expressed in high tumor cellularity samples 

(Fig. 3e). Gene ontology (GO) enrichment analysis showed that genes with higher expression in 

low tumor cellularity samples are enriched in inflammation-related processes such as humoral 

response, response to IFNγ, and leukocyte activation (false discovery rate (FDR) < 0.05) (Fig. 

3f). No significant GO enrichment was found with the genes significantly highly expressed in 

high tumor cellularity.  

To investigate which molecular signaling pathways or TME cell-types were more highly 

enriched in high tumor cellularity samples, we performed ssGSEA using the t-statistic of the 

differential expression analysis. As expected, immune and stromal signatures were highly 

enriched in low tumor cellularity samples, as well as IFNγ and IFNα response. In contrast, Myc 

and Wnt signaling appeared to be highly enriched in high tumor cellularity (Fig. 3g and 

Supplementary Table 3b). We corroborated the mutual exclusivity between immune and Wnt 

signaling scores in TCGA ovarian cancer samples (Supplementary Fig. 3g, Kendall’s tau = -

0.17, P = 9.2 x 10-6) and found the same trend for Myc signaling (Supplementary Fig. 3g, 

Kendall’s tau = -0.17, P = 5.2 x 10-6). In our treatment-naive cohort, Myc signaling showed a 

consistent negative trend with the immune signature across all patients (Supplementary Fig. 3h, 

Kendall’s tau = -0.38, P = 0.001) and was enriched in high cellularity tumors (Supplementary 

Fig. 3i, independent t-test P = 0.006). Considering the TME, only monocytes appeared more 

prevalent in high tumor cellularity samples (Fig. 3h and Supplementary Table 3c). These 
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observations suggest that high Myc and Wnt signaling could be considered at least partially 

independent of tumor proliferation and may contribute to immune cell exclusion as suggested by 

previous studies21–25. 

 

Integrated transcription and mutation analysis support Myc and Wnt signaling 

associated with immune cell exclusion. We next performed whole-exome sequencing (WES) 

to characterize the mutational landscape of immune exclusion in these tumors. In total, 47 tumor 

samples from 10 patients with treatment-naive multi-site HGSOC were sequenced (Fig. 1a) 

along with 10 normal samples and analyzed for single-nucleotide variations (SNVs) and small 

insertions and deletions (see Methods). Furthermore, we used TITAN to infer DNA copy-number 

alterations (CNAs), tumor ploidy, cellularity, and subclonality (Supplementary Fig. 4a)17. As 

expected, we found a negative correlation between WES copy-number derived cellularity 

estimates (TITAN) and the ESTIMATE immune cell score used in the prior analyses 

(Supplementary Fig. 4b, Pearson's rho = -0.82, P = 9.96 x 10-10). We found that WES-derived 

tumor cellularity calculated by TITAN was positively correlated with ASCAT26 (Supplementary 

Fig. 4c, Kendall’s tau = 0.69, P = 1.01 x 10-12) and negatively correlated with IF-based estimates 

of T cell infiltration (Supplementary Fig. 4d, CD8+ T cells Kendall’s tau = -0.25, P = 0.028).  

As expected18,27, TP53 mutations were detected in almost all patients (9 of 10, 

Supplementary Table 4) as well as frequent amplification (≥ 6 copies) of KRAS and MYC (Fig. 

4a). In agreement with KRAS driving cell proliferation via MAP kinase signaling28, KRAS-

amplified samples were more highly enriched in cell cycle-related G2M checkpoint 

(Supplementary Fig. 4e, Welch’s test, P = 0.03), which was further supported by Ki67 staining 

(Supplementary Fig. 4f, Kendall’s tau = 0.34, P = 0.006). This suggests that the G2M checkpoint 

program in high cellularity tumors is a by-product of KRAS amplification rather than a driver of 

immune exclusion. No associations were observed between tumor cellularity and mutations in 
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HGSOC tumor suppressor genes or oncogenes18 (Fig. 4a), nor were mutations in HLA genes 

detected (Polysolver), in line with a previous analysis in primary HGSOC samples29.  

In ovarian cancer, copy-number aberration and chromosomal instability can be driven by 

distinct mutational processes such as BRCA1-BRCA2-related homologous recombination 

deficiency (HRD), gene breakage events and amplification-associated foldback inversions30–32. 

To assess such processes, we quantified previously defined copy number signatures 

constructed from features including breakpoint counts, change in copy number, and segment 

size. This enabled us to quantify exposure to mutagenic cellular processes contributing to 

genomic instability in ovarian carcinoma (Supplementary Fig. 4g and Supplementary Note)32. 

We then applied this same WES-based copy-number signature analysis on the treatment-naive 

cohort with high confidence purity and ploidy fits based on TITAN (n = 42, Supplementary Table 

1c). In agreement with our previous study32, we found that signatures 1 and 4 had high mean 

exposure (both 30% in our cohort, Fig. 4b). Signature 1 reflects oncogenic Ras-MAPK signaling, 

telomere shortening, and amplification-associated fold-back inversions, while signature 4 

associates with oncogenic PI3K and Myc signaling, and whole-genome duplication. In addition, 

we found evidence of mutagenesis due to homologous recombination deficiencies BRCA1-

BRCA2-related HRD signature 3 (mean exposure of 6%) and non-BRCA1-BRCA2-related HRD 

signature 7 (mean exposure of 19%). As expected, the germline mutant BRCA2 patient 04 had 

relatively high mean exposure of signature 3 (14% compared to 6% of the full cohort).  

We next asked whether specific copy-number signatures associated with immune cell 

infiltration. Samples with high exposure of signature 4 associated with low ESTIMATE immune 

score (Fig. 4c, P = 0.043 Welch’s test). In general, signature 4 and signature 1 showed opposite 

trends, with signature 4 correlating negatively and signature 1 positively with immune score, 

also after accounting for the compositional nature of the data using isometric log ratio (ILR) 

transformation33 (Supplementary Fig. 4h-j). These data suggest that specific mutational 

processes in HGSOC may be related to distinct tumor-immune microenvironments. 
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To investigate whether specific pathway related SNVs associate with tumor cellularity, 

we performed mutation enrichment analysis controlling for sample mutation load and patient 

dependency (see Methods). We detected functionally relevant mutations in apoptosis (FDR = 

0.0004), reactive oxygen species (FDR = 0.0004), stromal (FDR = 0.0031) and Wnt signaling 

(FDR = 0.0097) gene sets, which were enriched in tumors with high tumor cellularity (Fig. 4d, 

Supplementary Fig. 4k, and Supplementary Table 4b-e; likelihood ratio test and Benjamini, 

Hochberg and Yekutieli false discovery rate). We then evaluated whether the functional 

mutation enrichment (non-silent SNVs divided by the total number of genes in that gene set) 

affects the expression of pathway genes and found that the stromal gene set showed a negative 

correlation (Kendall’s tau = -0.35, P = 0.008) and Wnt signaling a positive correlation (Kendall’s 

tau = 0.32, P = 0.01) with their respective NES (Supplementary Fig. 4l). The mutations in the 

Wnt signaling pathway found to be highly damaging as predicted by PolyPhen-234 were 

DKK1K211N (PolyPhen-2 = 1), PTCH1F826L (PolyPhen-2 = 0.972), and a truncating mutation in 

NKD1Q241*, all of which encode for negative regulators of Wnt signaling35–37. These mutations 

were enriched in multiple tumor samples with high tumor cellularity (Supplementary Table 4) 

and high NES of Wnt signaling pathway (Supplementary Fig. 4l). Together, these results 

suggest that higher levels of Wnt signaling can be a consequence of functional mutations in 

regulators of the Wnt pathway, although these are rare mutations in primary tumors.  

To assess gene expression regulation from tumor cells with CNAs, we integrated 

transcriptomic, genomic and tumor cellularity data. In brief, for a given gene, a positive 

correlation of gene expression with CNA and tumor cellularity indicates that the gene is 

expressed predominantly in cancer cells as opposed to non-cancerous cells (e.g. immune, 

stromal, etc.). We computed these correlations genome-wide and performed GSEA on the 

ranked correlation coefficients of genes belonging to hallmark gene sets (Fig. 4e and 

Supplementary Fig. 4m). As expected, immune- and stroma-related gene sets show a negative 

correlation of gene expression with CNAs and tumor cellularity (e.g. EMT, inflammatory 
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pathway, TNF-α). In contrast, Myc targets have a positive correlation between gene expression 

CNAs and tumor cellularity, indicating overexpression of Myc targets is cancer-derived and 

induced by CNAs. However, MYC transcription factor amplification was not significantly (P > 

0.05) associated with mRNA expression, nor did MYC mRNA expression correlate with tumor 

cellularity (Supplementary Fig. 4n, similarly for MYCN). Our integrated transcriptomic, CNA and 

IF analysis provides clues to the interpretation of tumor gene expression as Myc target genes 

may be selectively amplified and overexpressed during tumor development. 

 

Chemotherapy induces immune activation in HGSOC. To investigate the effect of 

chemotherapy on the TME and evaluate whether the intra-patient TME heterogeneity described 

above could be a potential confounding factor, we studied the transcriptome of 18 site-matched 

and 38 site-unmatched tumors before and after treatment with neoadjuvant platinum and taxane 

chemotherapy (9/17 site-matched cases, 19/23 site-unmatched cases with transcriptome data, 

Fig. 5a,b and Supplementary Table 5a-c). Using t-SNE dimensionality reduction on the whole 

transcriptomes, we found that treated and untreated samples clustered separately (Fig. 5c and 

Supplementary Fig. 5a), in contrast to the samples of the treatment-naive cohort that cluster in a 

patient-specific manner (Fig. 1c and Supplementary Fig. 1a). Using the ssGSEA NES of the 

hallmark gene sets, we observed that pre- and post-treatment sample groups were separated 

by the two first principal components (Fig. 5d and Supplementary Fig. 5b,c). Only site-matched 

samples showed that PC1 values (52% variation) were higher in pre-treatment samples relative 

to post-treatment ones (Fig. 5d, paired t-test test, P = 0.038), with higher PC1 values positively 

associated with oncogenic pathways, while immune/stromal hallmarks were negatively 

associated (Supplementary Fig. 5c). In addition, immune signature NES showed a negative 

association with Myc signaling (Kendall’s tau correlation coefficient = -0.39, P = 0.025) and a 

similar trend with Wnt signaling (Kendall’s tau correlation coefficient = -0.31, P = 0.075) in site-

matched samples (Supplementary Fig. 5d). Using ConsensusTME, pre- and post-treatment 
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samples clustered separately for site-matched but not site-unmatched samples (Fig. 5e and 

Supplementary Fig. 5e,f). 

 

Intra-patient TME heterogeneity masks chemotherapy-induced immune activation. To 

evaluate differences between pre- and post-treatment samples, we performed an exploratory 

analysis leveraging paired comparisons using the Hallmark and ConsensusTME gene set NES’s 

independently for site-matched and site-unmatched samples (Fig. 6a). Site-matched samples 

showed an increase of immune related hallmark gene sets and ConsensusTME estimated 

immune cells in post-treatment samples, while site-unmatched samples showed an increase of 

cellular stress pathways reflecting cellular and metabolic stress after cytotoxic drug exposure, 

but no difference of ConsensusTME gene sets. We performed multivariate analysis on innate, 

adaptive, and cytotoxic cells (CD8+ and NK cells) comparing pre- and post-NACT samples 

(Supplementary Fig. 6a). Only an increase of NK cells and the cytotoxic gene set following 

NACT in the site-matched samples was detected, while no difference was observed in the site-

unmatched samples (Fig. 6b and Supplementary Fig. 6b). There was no significant difference in 

CD8+ and cytotoxic cells, suggesting that NK cells infiltrate and become active after NACT. 

 

NK cells are enriched after cisplatin treatment in preclinical ovarian cancer models. The 

ConsensusTME analysis of the site-matched samples suggested that cytotoxic NK cells infiltrated 

after chemotherapy. To experimentally validate this finding, we employed two syngeneic ovarian 

cancer models: UPK1038 and ID839. Phenotypically, implantation of UPK10 into the peritoneal 

cavity leads to large tumors with minimal ascites, while intraperitoneal ID8 cell implantation 

results in carcinomatosis and ascites. We generated an aggressive ID8 cell line clone by 

sequential passaging through immune competent mice. The resulting cell line leads to rapid 

development of carcinomatosis and ascites, allowing for early assessment of therapy efficacy 

(Supplementary Fig. 6c-e). To assess the impact of cisplatin in these complementary models, 
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tumor-bearing C57BL/6 mice were treated with cisplatin or PBS as control, and tumors (UPK10) 

or peritoneal washings (ID8) were collected and processed for multi-parameter flow cytometry 

(Fig. 6c,d). NK cells were significantly enriched after cisplatin treatment in the peritoneal fluid of 

the ascites ID8 model (P = 0.004) with similar trend observed in the UPK10 tumors, although 

not meeting statistical significance (P = 0.083). No significant increases in other immune 

populations were observed in both models (Supplementary Fig. 6f,g). These observations are in 

line with ConsensusTME predicted changes in the site-matched samples as only the combination 

of NK and cytotoxic gene set scores in the multivariate analysis (Fig. 6b and Supplementary Fig. 

6a,b) was significantly enriched after NACT (multivariate T2 test: P = 0.0437; logistic regression: 

P = 0.012). 

 

Chemotherapy induces oligoclonal expansion of T cell subsets across patients. To 

evaluate T cell infiltration and oligo-clonal expansion between pre- and post-NACT samples, we 

performed TCR sequencing. Since T cell activation leads to clonal expansion of particular T cell 

clonotypes, TCR clonality measures can be used as a surrogate for T cell activation upon 

(neo)antigen recognition7,40,41. TCR oligoclonal expansion was significantly higher in post-NACT 

site-matched samples (Fig. 7a, paired test P = 0.001), but no significant difference was 

observed in site-unmatched samples (paired test P = 0.19). T cell fraction was also significantly 

higher in post-NACT site-matched samples (paired test P = 0.03), while a slightly lower T cell 

fraction was observed in site-unmatched post-NACT tumors, potentially as a result of the 

variability of immune infiltration between omentum metastases (pre-NACT biopsies) and primary 

tumors (post-NACT debulking surgery). We explored whether features of unique vs. shared 

TCR sequences across patients could provide further nuance in the observed effects of 

chemotherapy on T cell expansion. In the site-matched patient group, there was a higher 

number of shared TCRs between pre- and post-treatment samples compared to the site-

unmatched group (11,032 vs. 6,524, chi-squared test of independence of variables P < 2.22 x 
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10-308, Fig. 7b). Moreover, the number of samples sharing the same TCRs was higher in post-

NACT compared to pre-NACT samples (Fig. 7c, one-way chi-squared test P = 2.8 x 10-75). We 

compared the number of shared TCRs before and after NACT, as well as the number of unique 

pre- and post-NACT TCRs per patient. The number of unique TCRs post-NACT was higher than 

the number of unique pre-NACT TCRs in site-matched samples (Fig. 7d top, Nemenyi post-hoc 

test q = 0.07), while in unmatched samples no difference was observed between pre- and post-

treatment unique TCRs (Nemenyi post-hoc test q = 0.464). The majority of the new TCRs do 

not present a clonal expansion shown by their productive frequency (Fig. 7d bottom). We did not 

identify statistically significant associations between pre-treatment gene signatures and NACT-

induced increase of TCR clonality in site-matched samples although some trends were 

observed (Supplementary Fig. 7d,e). Together, these results provide evidence that NACT 

induces an immune activation in the local TME of HGSOC, and that intra-patient inter-site TME 

heterogeneity can obscure this clinically relevant observation among tumor sites within patients. 

 

 

DISCUSSION 

Despite advances in treatment, the prognosis for patients with HGSOC remains poor, with 

frequent development of resistance to therapy. Genetic and molecular analyses of 

asynchronous and disseminated tumors within patients have recently started to shed light on 

tumor clonal dynamics and evolutionary properties of different tumor types42–44; however, the 

extent of TME heterogeneity in advanced HGSOC has only begun to be revealed5,7,45. We 

explored the main sources of variation in the transcriptomic space among treatment-naive 

samples and detected that transcriptomic pathway heterogeneity is mainly explained by the 

presence or absence of immune and stromal cells. The degree of immune signature variation 
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within patients was similar to the extent we observed in a case study of metastatic HGSOC, 

where different tumor immune microenvironments were associated with clinical outcome7. In the 

present study, all patients presented at least one tumor with low immune infiltration, suggesting 

that HGSOC is characterized by distinct microenvironmental niches, which could underpin 

primary and acquired resistance to therapies9,46,47. Integration of transcription, copy-number and 

tumor cellularity analysis revealed that Myc target genes are amplified and overexpressed in 

immune cell-excluded samples with high tumor cellularity, while functional mutation enrichment 

analysis found mutations in negative regulators of Wnt signaling, both providing plausible 

mechanistic explanations for immune cell exclusion given the known immunosuppressive 

functions of Myc and Wnt signaling21,22,25,48. Taken together, TME heterogeneity is an intrinsic 

feature of HGSOC, which spans across patients, tumors within patients and within tumors in 

treatment-naive, metastatic disease. Furthermore, we found that intra-patient TME 

heterogeneity can mask the immune activation generated by treatment with cytotoxic 

chemotherapy. These analyses provide evidence of an immunogenic effect of chemotherapy in 

HGSOC, and the finding of chemotherapy-induced NK cell expansion provides a translational 

path for new treatment strategies combining chemo- and immunotherapy.  

The availability of multiple tumor samples from the same patients enabled differential 

expression analysis between high and low tumor cellularity tumors. Pathway analysis of the 

differentially expressed genes showed that Wnt signaling and Myc target gene signatures were 

more enriched in samples with high tumor cellularity (Supplementary Table 6), consistent with 

emerging data in HGSOC and other tumors and models6,23,25,49,50. Analysis of orthogonal WES 

data further suggested a link between Myc target gene activation and lower immune cell 

infiltration as (1) MYC was amplified (≥ 6 copies) in approximately one third of the analyzed 

tumors, (2) copy-number signature 4, which is characterized by MYC alterations and whole-

genome duplications events, was negatively correlated with immune score, and (3) expression 
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level of Myc target genes is significantly correlated with both their copy number amplification 

and tumor cellularity. We did not find associations between inflamed or immune-excluded TME 

phenotypes and MYC expression, and it remains an open question whether activity of MYC 

itself beyond its targets genes contributes to the observed differences in TMEs.    

There are clinical implications from understanding the effect of chemotherapy on the 

TME and the molecular drivers of TME heterogeneity51. Previous studies found a decrease of 

Tregs and a trend towards higher cytolytic activity in tumors after NACT12 as well as increased 

MHC class I expression, antigen presentation, T cell infiltration and PD-L1 expression in 

preclinical models52. Using ConsensusTME, we observed an increase of cytotoxic immunogenic 

activity after NACT in matched tumor samples but not in site-unmatched samples from the same 

patient. These data were supported by our preclinical findings that NK cells become more 

abundant after cisplatin treatment in ovarian cancer models. Employing TCRseq, we found a 

significant increase in T cells and TCR clonality in matched samples, but no significant 

difference was detected in unmatched pairs. Comparing post-NACT site-matched and site-

unmatched samples indicated that the observed change in TCR clonal expansions was driven 

by chemotherapy independent of potential effects of biopsy itself (Supplementary Note). Finally, 

we found an increased number of shared TCRs between patients after chemotherapy compared 

to pre-treatment, which suggests chemotherapy may induce or unmask preexisting common 

(neo)antigens in the patients.  

Disentangling the actual mechanisms using human tumor samples represents a 

challenge since tissue samples are limited, inter-patient variability is prominent and mechanistic 

experimental validation is prohibitive. Given these constraints, this study is descriptive in nature 

and relies heavily on observations derived by independent studies using mouse tumor models. 

The present study shows that the TME of HGSOC is intrinsically heterogeneous within 

patients and within tumors, posing an important barrier for the successful application of 

therapies that target the TME, like checkpoint blockade immunotherapy. The induced 
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immunogenicity following NACT was only unmasked after taking into account the TME 

heterogeneity, which acts as a confounding variable. Despite high rates of response to initial 

treatment, HGSOC has a high recurrence rate and has yet to show significant response to 

available immunotherapeutic agents. Exploring new combination therapies and novel 

therapeutic targets based on a greater understanding of the TME has the potential to change 

the current paradigm of treatment and improve clinical outcomes in this disease. 
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FIGURE LEGENDS 

Fig. 1 | Immune-related gene signatures contribute to the majority of the transcriptional variance 

observed across multiple tumor samples from treatment-naive HGSOC patients. a, Presence, 

absence and replicate indication of samples and data types for treatment-naive samples (Cohort I). 

Metastases other than omentum were defined as “Other”. Samples from the same tumor are indicated 

with a connecting horizontal line (Supplementary Fig. 2a). Pseudoreplicates are samples from the same 

tumor and habitat, but from a different region within the habitat (see Methods). Age, age at diagnosis; 

BRCA, BRCA1/2 mutation status (Neg, negative; NA, data not available); WES, whole exome 

sequencing; IF, immunofluorescent staining. Extended clinical data can be found in Supplementary Table 

1a,b. b, Flowchart of sample acquisition and analysis. c, t-SNE analysis of overall transcription profiles of 

multiple HGSOC tumor samples per patient. d, PCA of ssGSEA-based analysis of cancer hallmark gene 

sets. e, Principal component feature loadings (magnitude and direction) of c are shown in the variables 

factor map. Vectors are colored according to a major biological classification of cancer hallmark gene 

sets. Variation across classes in the PCs is shown in Supplementary Fig. 1c. Directionality of 

ESTIMATE’s tumor cellularity is represented with the map compass (n = 38 samples from n = 8 

independent patients). Inset shows 95% non-parametric bootstrap confidence intervals for the means of 

loadings per hallmark gene set for PC1 (n = 36 samples from n = 8 independent patients). Approximated 

bootstrap P-values were calculated (see Methods) *P < 0.05, **P < 0.01 (immune vs. oncogenic P ≈ 0.01, 

stroma vs. oncogenic P ≈ 0.008). f, ESTIMATE immune score across patients and samples. The Case 

Study samples were taken from ref. 7. Box plots show median, interquartile range (25th and 75th 

percentiles) and 1.5x interquartile range. All samples are plotted. Abdomen image by Wenjing Wu/ⓒ 2018 

Memorial Sloan Kettering Cancer Center. 

 

Fig. 2 | T cell infiltrate variation across patients, within patients, and within tumors. a, Multi-tumor 

sampling from 8 HGSOC patients are shown with each dot representing the percentage of T cell subsets 
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in a quantified area within a given tumor section stained with multicolor IF for CD8, CD4 and FOXP3. 

Stromal areas were excluded based on H&E stains. Patient cases are indicated by different colors. 

Imaged-based phenotypic habitats are defined by the Greek letters α, β and γ. Habitats from the same 

tumor sample are indicated by connecting lines at the bottom (see Supplementary Fig. 2a for detailed 

examples). Box plots are sorted according to the median of CD8 T cell infiltration across patients, sites 

and habitats. Box plots show median, interquartile range (25th and 75th percentiles) and 1.5x interquartile 

range. All samples’ regions are plotted. The two pseudoreplicates in case 5 are indicated with a diagonal 

line in the tumor site symbol (n = 440 observations of n = 8 independent patients with 38 total samples, 

see Supplementary Table 2). b, Representative images of a. 

 

 

Fig. 3 | Unbiased analysis of tumor microenvironment heterogeneity in treatment-naive HGSOC 

tumors. a, Treatment-naive cohort correlation between (i) total TME cell estimation scores and WES-

derived tumor cellularity (TITAN), and (ii) percentage of CD8+, CD4+, and Tregs determined by 

immunofluorescent staining. b, TCGA ovarian cancer cohort correlation between total TME cell 

estimation scores for each method and WES-derived tumor cellularity (ABSOLUTE), and fitted multiple 

linear regression analysis using TCGA leukocyte methylation score as response variable and estimated 

immune cell types as explanatory variables (see Supplementary Note and Supplementary Table 3a). 

Adjusted R2, Akaike information criterion (AIC), and Bayesian information criterion (BIC) values were 

calculated to compare both goodness of fit and model simplicity. Kendall’s tau correlation coefficients and 

P-values were calculated for a and b with exact Kendall’s tau-b two-sided test. See below for significance 

levels. Normality and homoscedasticity assumptions were tested for all statistical comparisons. c, PCA of 

ssGSEA-based analysis using ConsensusTME estimations (n = 38 samples from n = 8 independent 

patients). d, Principal component feature loadings (magnitude and direction) of c. Vectors are colored 

according to cell-types as shown in Supplementary Fig. 3a, for example monocytes and macrophages 

M0, M1, M2 (orange), B cells and plasma cells (light blue), and CD8 and cytotoxic cells (yellow). e, 

Differential expression analysis of high and low tumor cellularity classified tumors using the WES-derived 
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tumor cellularity (TITAN) score median of the cohort as a cutoff. Patient dependence was used as a 

covariate (n = 36 samples which have both WES and mRNA data, n = 8 independent patients). Limma 

moderated two-sided t-statistics by empirical Bayes moderation. Benjamini-Hochberg (BH) FDR 

corrected. FDR < 0.05 was considered differentially expressed. f, Gene ontology enrichment analysis of 

28 significantly highly expressed genes in low tumor cellularity samples. Two-sided Fisher’s exact test, 

BH FDR corrected (Supplementary Table 3d). g,h, ssGSEA analysis of differentially expressed genes 

using hallmarks and ConsensusTME normalized enrichment scores (NES). Gene sets on the x-axes were 

ranked according to their NES (Supplementary Table 3b,c). High NES reflects high tumor cellularity. 

Dashed red lines indicate median and ±1.96 median absolute deviations (modified z-score). Kernel 

density plots of observed and fitted normal distribution are shown in the right margin. No significant 

difference between observed and fitted distribution was detected (Shapiro-Wilk test, D’Agostino’s K2 test, 

and Anderson-Darling test for normality distribution). ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001. 

 

Fig. 4 | Mutation patterns in immune-excluded tumors associate with Wnt pathway genes and Myc 

target genes. a, Coding mutations and copy-number alterations (CNAs) in selected driver oncogenes 

and tumor suppressors based on known drivers in HGSOC. Tumor-normal DNA pairs from n = 10 

independent patients, 47 independent tumor site samples (and 3 pseudoreplicates), were sequenced 

(whole-exome sequencing, WES) and analyzed for copy-number alterations using TITAN, resulting in 

estimates of tumor ploidy, cellularity, and subclonality. The top and side bars represent the summed 

column-wise and row-wise number of alterations, respectively. *, †, and ‡ indicate pairs of 

pseudoreplicates (see Fig. 1a). b, DNA copy-number signatures analysis showing tumor-specific 

exposure to all seven signatures ordered by tumor cellularity (TITAN) selecting samples with high 

confident purity and ploidy estimates (n = 42 samples, n = 10 independent patients). c, Copy-number 

signature 4 association with immune score. Using samples with both mRNA and WES data (n = 30 

samples), ESTIMATE immune score was compared (Welch’s two-sided t-test) between samples with 

signature 4 exposure below (low s4) and higher than the median exposure (high s4). Boxplot with median 

midline, boxes representing the 1 to 3 quartiles and whiskers extending to extreme values at most 1.5 
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times the interquartile range. d, Functional mutation enrichment and tumor cellularity associations per 

hallmark gene set were tested through the Chi-squared likelihood ratio test using the tumor mutation load 

and the patient dependency as covariates. The difference in mean pathway mutation ratio between 

samples with high cellularity versus samples with low cellularity (WES-derived by TITAN, n = 50 samples) 

is plotted against BH FDR corrected P-values (Benjamini, Hochberg, and Yekutieli) from multiple linear 

regression (tumor cellularity~mutation ratio, n = 50 samples). e, Gene set enrichment analysis (GSEA) of 

gene-level correlation between absolute copy-numbers and gene expression (CNA~mRNA, per-gene 

median n = 36 samples), compared to enrichment in correlations between gene expression and tumor 

cellularity (mRNA~tumor cellularity, n = 36 samples), both estimated by means of Spearman’s rank 

correlation method (see Methods). BH FDR correction was performed, adjusting for the number of 

hallmark terms. Normality and homoscedasticity assumptions were tested for all statistical comparisons. 

 

Fig. 5 | Unbiased signaling pathway and TME cell decomposition analysis of chemotherapy 

treated HGSOC site-matched and unmatched tumor samples. a, Presence, absence and replicate 

indication of samples and data types for the pre and post-chemotherapy matched and unmatched 

samples (Cohort II). Extended clinical data can be found in Supplementary Table 5. b, Flowchart of 

sample acquisition, clinical study design, and analysis. c, t-SNE analysis of overall transcription profiles of 

multiple HGSOC tumor samples per patient. d,e, PCA and principal component feature projections 

(magnitude and direction) of ssGSEA-based analysis of hallmark gene sets and ConsensusTME cells. 

Insets show paired comparison of pre- and post-treatment samples PC1s. Inset violin plots represent the 

full probability density of the data. Paired samples are connected with a line. Two-sided paired t-tests 

were conducted for hallmark, while Wilcoxon signed rank tests were conducted for ConsensusTME gene 

sets PC1 comparison. *P < 0.05. Normality and homoscedasticity assumptions were tested for all 

statistical comparisons. P-values were not corrected for multiple testing since the maximum number of 

tests within analysis was two (c). Pelvis image by Wenjing Wu/ⓒ 2018 Memorial Sloan Kettering Cancer 

Center. 

 



 

30 
 

Fig. 6 | Chemotherapy-induced enrichment of NK cells evident in site-matched samples and is 

supported by preclinical data. a, Pre/post NACT paired comparisons of hallmark gene sets and 

ConsensusTME inferred cells. Paired t-test, Welch’s t-test or Wilcoxon’s signed-rank test (all two-sided) 

were calculated according to the samples’ distribution and variance (see Methods). BH FDR P-value 

corrections were computed. b, Left histograms, multivariate analysis of cell type combinations associated 

with NACT (two-sided Hotelling’s T2 permutation test) and, right, notched box plots comparing pre- and 

post-NACT for sums (+) of cell scores: cytotoxic cells (i.e. signature of cytolytic activity from 

ConsensusTME), CD8+ T cells or NK cells (multiple linear regression without interaction, see 

Supplementary Fig. 6a). n = 8 independent patients; top row corresponds to n = 18 matched samples, 

bottom row to n = 38 unmatched samples. Notched box plots show median and interquartile range (25th 

and 75th percentiles), with paired data points indicated by a connecting line. Violin plots are shown in the 

background representing the probability density of the data. c, Flow cytometry analysis of homogenized 

tumors after UKP10 intraperitoneal inoculation of 8 weeks old C57/BL6 mice and treatment with 2 mg of 

cisplatin dissolved in 1 ml of PBS or 1 mL PBS as control as indicated. Analyzed immune cell types were 

CD8+ T-effector cells, NK1.1+ NK cells, CD4+ T-helper cells, FOXP3+ T-regulatory cells, CD19+ B cells, 

CD11b+ myeloid cells. Granzyme B (GrB) expression was used as a proxy for activity state of cytotoxic 

cells. Two-sided two-sample independent t-tests were conducted for CD8 T cells and two-sided Welch’s 

tests were conducted for NK cells. d, Similar to c, except peritoneal fluids of intraperitoneally inoculated 

ID8 cells were analyzed. CD4+ T-helper cells, FOXP3+ T-regulatory cells, CD19+ B cells, CD11b+ 

myeloid cells are shown in Supplementary Fig. 6f,g. Two-sided two-sample independent t-tests were 

conducted for CD8 T cells and NKGrB+ out of NK cells, while two-sided Welch’s tests were conducted for 

the rest of NK cell comparisons. Violin plots are shown in the background representing the full probability 

density of the data. All samples are plotted. Normality and homoscedasticity assumptions were tested for 

all statistical comparisons. 

 
 

Fig. 7 | Oligoclonal expansion of T cells and enrichment of shared TCRs after chemotherapy. a, 

Comparisons of percentage of productive T cells (top), TCR productive clonality (middle), and maximum 
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productive TCR frequencies (bottom) between pre- and post-NACT site-matched and site-unmatched 

samples. Paired (matched samples) parametric (TCR clonality and TCR freq.) and non-parametric 

Wilcoxon (% T cells) two-sided t-tests were computed. Unpaired (unmatched samples) non-parametric 

Wilcoxon (% T cells, TCR clonality and TCR freq.) two-sided t-tests were computed. TCR clonality is 

expressed as 1-entropy with values near 1 representing samples with one or a few predominant TCR 

rearrangements, while values near 0 represent more polyclonal samples. Notched box plots show median 

and interquartile range (25th and 75th percentiles), with paired data points indicated by a connecting line. 

Violin plots are shown in the background representing the full probability density of the data. b, Shared 

and unique TCR amino acid sequences between pre- and post-NACT site-matched and site-unmatched 

samples. Chi-squared test of independence of variables was conducted. c, Distributions of shared TCR 

amino acid sequences between patients pre- and post-NACT samples. One-way chi square test was 

conducted. d, Number of shared and unique TCRs pre- and post-NACT in site-matched and site-

unmatched samples (top) and their productive frequencies (bottom). Notched box plots show median and 

interquartile range (25th and 75th percentiles), 1.5x interquartile range (top) and outliers. Violin plots are 

shown in the background representing the full probability density of the data. Widths of box and violin 

plots are proportional to the number of samples (top) and TCRs (bottom). Friedman ranking tests followed 

by Nemenyi post-hoc tests with associated adjusted p-values (q) were conducted. P-values were not 

corrected for multiple testing since the maximum number of tests within analysis was six (a). Normality 

and homoscedasticity assumptions were tested for all statistical comparisons. 

 

  



 

32 
 

METHODS 

Patients. All study participants were patients at Memorial Sloan Kettering Cancer Center 

(MSKCC) and had stage IIIC or IV high grade serous ovarian cancer as assessed by a 

pathologist specialized in gynecologic malignancies. Patients signed written consent to 

Institutional Review Board (IRB)-approved protocols at MSKCC, which was compliant with the 

Health Insurance Portability and Accountability Act (HIPAA). 

 

Treatment-naïve cohort. For the treatment-naive cohort, 25 patients were consented to the 

study between August 2014 and March 2016. Out of these patients, 17 were excluded as they 

either (i) withdrew from the study (n = 3); (ii) the final pathology was not HGSOC (n = 5); (iii) 

patients had disease progression upon review of study imaging and underwent neoadjuvant 

chemotherapy instead of primary cytoreductive surgery (n = 5); (iv) inadequate image-guided 

tissue sampling due to friable tissue (n = 2); (v) research imaging studies not performed due to 

patient cancellation (n = 2). The final study population consisted of 10 patients with 

histopathologically-confirmed diagnosis of HGSOC (Supplementary Table 1a,b). Each patient 

underwent multi-parametric MRI (mpMRI) of the abdomen and pelvis and whole-body 18F-FDG 

PET/CT within 7 days immediately preceding the primary cytoreductive surgery, as previously 

described. All tissue samples were obtained based on imaging habitats. Germline BRCA1/2 

mutation status was obtained from clinical data. 

 

Neoadjuvant chemotherapy cohort. A previously established institutional database identified 

152 patients with HGSOC who underwent neoadjuvant chemotherapy between 2008 and 2013. 

Of these, 149 went on to interval debulking surgery, 48 had adequate pre- and post-treatment 

formalin-fixed paraffin-embedded tissue samples available. All pre-treatment specimens were 

obtained either through core biopsy or laparoscopic biopsy, and all post-treatment specimens 
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were obtained at the time of laparotomy for interval debulking surgery. Choice of chemotherapy 

was at the clinician’s discretion; all patients in the cohort received a platinum and taxane based 

regimen (Supplementary Table 5a-c). Forty paired samples yielded data for analysis, 17 were 

site-matched while 23 were site-unmatched. Gene expression and TCRseq data were 

generated for 28 and 37 pairs, respectively (Supplementary Table 5b). Samples with very low 

TCR sequences (n = 5 samples, 10 pairs) were not included in the downstream analyses as the 

confidence of TCR clonality is low. 

 

Image acquisition, custom 3D molds and habitat-guided sampling. Imaging habitats were 

defined based on mpMRI and 18F-FDG PET/CT derived quantitative parameters 

(Supplementary Note). To establish coherence across patients (i.e. to label each cluster with the 

α, β, and γ Greek letters, such that across patients clusters would have similar imaging 

features), the intra-cluster distance was calculated for each cluster. For each patient, custom 

made 3 dimensional (3D) molds13 and habitat-guided specimen samples were performed 

(Supplementary Note). 

 

Immunofluorescence and immunohistochemistry. The immunofluorescence was performed 

at the Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center using 

Discovery XT processor (Ventana Medical Systems). The tissue sections were deparaffinized 

with EZPrep buffer (Ventana Medical Systems), antigen retrieval was performed with CC1 buffer 

(Ventana Medical Systems). Sections were blocked for 30 min with Background Buster solution 

(Innovex), followed by avidin-biotin blocking for 8 min (Ventana Medical Systems). Multiplex 

immunofluorescence stainings were performed as previously described53 (see Supplementary 

Note). Stained slides were digitized using Pannoramic Flash 250 (3DHistech, Hungary) using 

20x/0.8NA objective. Regions of interest were drawn on the scanned images using Pannoramic 

Viewer (3DHistech, Hungary) and exported into tiff images. ImageJ/FIJI was used to segment 
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DAPI-stained nuclei and count the cells with positive signal. Ki67 was quantified according to 

the recommendations for breast cancer54, where the percentage of positively stained nuclei is 

quantified among the total number of malignant cells as previously described13. 

 

Nucleic acid isolation and quantification. Frozen sections from the tumor and normal tissues 

were stained with nuclear fast red and microdissected using a sterile needle under a 

stereomicroscope (Olympus SZ61), to enrich for tumor cells and that the normal tissue was 

devoid of any neoplastic cells, and subjected to DNA extraction using the DNeasy Tissue and 

Blood kit (Qiagen), as previously described55. Following review of the H&E slides by a 

gynecologic pathologist, RNA was extracted from tumor tissues/ sections, and microdissection 

performed if required, using the RNeasy (Qiagen) assay. DNA of microdissected tumor and 

normal samples was subjected to whole-exome sequencing at MSKCC’s Integrated Genomics 

Operation (IGO) on a HiSeq 4000 exome capture Agilent SureSelect V4, as previously 

described13,56, and RNA to the human Affymetrix Clariom D Pico assay (Thermo Fisher 

Scientific). For WES data, we obtained a median sequence coverage of 230.57 (range 169.42-

307.68) of 47 samples from 10 patients with treatment-naive multi-site HGSOC along with 10 

normal samples with a median sequence coverage 121.67 (range 81.69-154.48). 

 

T-cell receptor sequencing. High-throughput in situ sequencing of the T cell receptors present 

in the samples and blood of the patient was performed using the immunoSEQ assay platform 

(Adaptive Biotechnologies). 

 

Cell lines, mouse experiments, and flow cytometry. Cell lines (ID8 and UPK10), mouse 

experiments and flow cytometry were performed as described in the Supplementary Note. 
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Treatment-naïve gene expression. RNA expression was assessed using the human 

Affymetrix Clariom D Pico assay. Arrays were analyzed using the SST-RMA algorithm in the 

Affymetrix Expression Console Software. Expression was determined by using the Affymetrix 

Transcriptome Analysis Console. Locally weighted scatterplot smoothing (LOESS) 

normalization across samples was implemented using the affy R package 

version.1.58.057.Tumor cellularity and total immune component in the tumor samples were 

analyzed using the ESTIMATE algorithm method version 1.0.1316 on the gene expression data, 

in R version 3.5.0. The t-distributed Stochastic Neighbor Embedding (t-SNE) and principal 

component analysis dimensionality reduction methods were implemented in python version 

3.6.5using the sklearn version 0.19.1 package58.  

 

Single-sample gene set enrichment. Single-sample gene set enrichment analysis59, a 

modification of standard GSEA60, was performed on RNA measurements for each sample using 

the GSVA package version 1.28.014 in R version 3.5.0. Normalized enrichment scores were 

generated for the hallmark gene sets15, immune and stromal signatures16, TME cell gene sets 

obtained from previous publications61,62, as well as the ConsensusTME gene sets (Supplementary 

Fig. 3a). Hallmark gene sets were obtained from MSigDB database version 6.163. 

 

Hallmarks PCA-Factors map two-stage cluster bootstrap inference. We used a two-stage 

non-parametric cluster bootstrap with 10,000 replicates to evaluate the significance of 

differences between the means of the loadings of defined Hallmark classes (Oncogenic, 

Immune, Stromal, Stress, Other) on the PCA dimensions of interest (Supplementary Note).  
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Tumor cellularity differential expression. Tumor samples from the treatment-naive cohort 

were divided into high and low tumor cellularity classes taking as a cutoff the median of tumor 

cellularity calculated for the tumor samples using TITAN17. Then a differential expression 

analysis, taking patient dependency into account, was performed using the R packages 

limma_3.36.164 and Biobase_2.40.065. Gene ontology analysis of significantly up- or down-

regulated genes was performed using the Gene Ontology Consortium66,67 web server selecting 

only biological processes (http://www.geneontology.org/). Fisher’s exact test FDR P-value 

corrections as calculated by the Benjamini Hochberg procedure were calculated for this 

analysis. 

 

ssGSEA of differential expression. Further, the t-statistic for each gene was retrieved and the 

list of genes with their associated t-statistic was used to calculate Hallmark and ConsensusTME 

normalized enrichment scores (NES) through ssGSEA. Hallmark gene sets’ NES were 

normalized by taking the exponential function. ConsensusTME gene sets’ NES approached 

normality by taking the natural logarithm. Modified z-score was employed to detect outliers in 

the hallmarks and ConsensusTME NES independently, as the modified z-score uses the median 

and the median absolute deviation (MAD) to robustly measure central tendency and dispersion 

in small data sets68. 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑	𝑧 − 𝑠𝑐𝑜𝑟𝑒	 = (0.6745	 ∗ 	(𝑦	 − 𝑚𝑒𝑑𝑖𝑎𝑛))	/	𝑀𝐴𝐷	 

 

T cell infiltration across cases, sites, and habitats. A hierarchical-random mixed effects 

model analysis was performed to evaluate if there were significant differences in the variation 

(i.e. heterogeneity) of T cell infiltration subsets between patients, sites within patients, and 

habitats within tumors (Supplementary Note).  
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TME cell estimation. Cell estimation methods were used to estimate levels of non-cancerous 

cells in the TME. The methods employed were CIBERSORT69, MCP-counter70, TIMER71, 

xCellL72, as well as gene sets collected from two previous publications61,62. CIBERSORT 

analysis was performed using the CIBERSORT R implementation version 1.04.MCP-counter 

analysis was performed using the R implementation version 1.1.0. The TIMER web server 

(https://cistrome.shinyapps.io/timer/) was used for deconvolution of TME cells73. The xCell web 

server version 1.1 (http://xcell.ucsf.edu/) was used for deconvolution of TME cells. For the 

Bindea et al. and Davoli et al. gene sets, standard ssGSEA analysis was performed as 

previously described. 

 

T cell subsets immunofluorescent staining benchmark. We correlated the CD8, CD4, Tregs 

infiltration counts with the estimation scores generated by CIBERSORT, MCP-counter, Bindea 

et al., Danaher et al., Davoli et al., TIMER, xCell, and the ConsensusTME scores. For the immune 

score comparison, all the genes used for the estimation for each method were aggregated 

together into one single gene set per method except for CIBERSORT. CIBERSORT 

deconvolution -log10(P-values) were used as a metric for immune score comparison. CD8, CD4, 

and Treg counts from IF data were summed and used for the comparison. Because the 

methods have different scoring systems and ranges, we standardized (z-score) the scores to be 

able to compare the results across methods together. For each tumor, multiple IF-stained 

sections were quantified for tumor infiltrating lymphocytes (TILs), and we correlated all the 

regions quantified with the estimation scores of each tumor, explaining the vertical patterns 

observed in Figure 3a. Kendall’s rank correlation was performed for each comparison and FDR 

P-value correction was applied. 

 

DNA sequencing alignment and copy-number inference. We initially aligned raw sequence 

reads from the whole exome sequencing (WES) to the reference genome GRCh37 (hg19) using 
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the Burrows-Wheeler Aligner (BWA 0.7.15)74. Next, we performed local realignment, duplicate 

read removal and base quality score recalibration using the Genome Analysis Toolkit (GATK 

3.7)75. To quantify copy-number alterations (CNA), we first assessed read depth of the aligned 

WES data captured at targeted exome regions of the genome (SureSelect v4 S03723314). We 

then fitted a mixture model using TITAN v1.19.117 to pairs of tumor and normal read depth, 

taking into account estimates of tumor ploidy, cellularity, and clonality. We used the TITAN 

Snakemake pipeline with a depth-correction method from ichorCNA76, binSize = 10,000, alphaK 

= 2,500, alphaR = 2,500, normalInit = 0.5, and all other arguments at default values. We fitted 

multiple models with fixed numbers of subclones ranging 1-5 and initial average ploidy 2-3, 

selecting the best fit according to maximum likelihood. In addition to CNA, TITAN estimates loss 

of heterozygosity (LOH); we used HapMap 3.3 as a reference for common human genetic 

variants. The resulting copy-number events were mapped to genome annotations from 

TxDb.Hsapiens.UCSC.hg19.knownGene using the GenomicRanges Bioconductor package. 

Absolute copy-numbers were assessed at the gene level with a Euclidean distance metric to 

hierarchically cluster tumor samples. In parallel, we compared tumor cellularity and ploidy 

estimates with results from ASCAT26 run on the same tumor-normal pairs. Further supporting 

the agreement between TITAN and other methods for CNA analysis, a prior report found 

significant correlation between TITAN and ABSOLUTE for estimating ploidy and tumor 

cellularity using both WES and whole-genome sequencing data (WGS)76.  

 

DNA copy-number signatures. To assess CNA signatures, we evaluated seven genomic 

signatures constructed from features such as breakpoint counts, change in copy number, 

segment size, and chains of oscillating copy numbers, which had previously been detected in 

ovarian cancer using non-negative matrix factorization32. CopywriteR was used to adjust read 

counts in exome capture regions to match the depths seen in off target regions. These data 

were then processed as previously described32 to obtain segmented relative copy number. This 
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was transformed to absolute copy number using TITAN purity and ploidy estimates. FACETs 

was also used to estimate purity and ploidy77. Only samples that agreed between FACETs and 

TITAN ploidy/purity estimates were retained for further analysis (difference in ploidy < 1.5 and 

difference in purity < 0.1). In addition, the TITAN fits for these discrepant samples were 

manually investigated and some included nonetheless, based on reasons of parsimony with 

regards to genome duplication and copy-number profiles observed in other sites from the same 

patient. Copy number signature exposures were computed using the signature definitions 

provided by Macintyre et al. 2018 and the YAPSA package.  

To account for the compositional nature of the copy-number signatures (they sum to 

one), we performed the isometric log ratio (ILR) transform in a sample-wise manner; the 

signature exposure fraction was compared to the geometric mean of all other parts of the 

composition by a log-ratio transformation33, followed by linear regression with tumor cellularity 

as the target variable for visualization. For determining statistical significance, we used a partial 

correlation using Kendall’s tau, to take into consideration any between-patient correlations. 

 

Copy-number and tumor cellularity associations. To validate CNA-based (TITAN) tumor 

cellularity estimates, we compared it with the mRNA-based tumor cellularity estimates and to 

tumor infiltrating leukocyte (TIL) counts from immunofluorescence measurements of CD8, CD4, 

and Foxp3, averaged over multiple independent slides from the same tumor site. At the gene 

level, we used Spearman’s correlation to detect association between absolute copy numbers 

and gene expression (CNA-mRNA) and between tumor cellularity and gene expression. To be 

robust against deviation to bivariate normality and linear relationship, in this analysis (related to 

Fig. 4e and Supplementary Fig. 4m) Spearman rank correlation method was chosen. Based on 

the ranking of correlation coefficients, we carried out gene set enrichment analysis (GSEA 

3.0)60,78 of hallmark gene sets with 10,000 random permutations as background. 
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Mutation calling. Somatic mutation calls were performed as previously described13,56,79. Briefly, 

somatic single nucleotide variants (SNVs) were called using MuTect (1.1.7)80 and small 

insertions and deletions (indels) were identified using Strelka (1.0.15)81, VarScan2 (2.3.7)82, 

Lancet (1.0.0)83,84 and Scalpel (0.5.3)84, and further curated by manual inspection. SNVs and 

indels outside of target regions were filtered out, as were SNVs and indels for which the variant 

allele fraction (VAF) in the tumor sample was <5 times that of the paired normal VAF as 

previously described84. Finally, SNVs and indels found at >5% global minor allele frequency in 

dbSNP (build 137) and >5% global allele frequency in ExAC (0.3.1) were discarded. We 

separately also performed manual inspection of genome alignment at the TP53 loci, which, for a 

single patient, contained a frameshift deletion filtered by the mutation caller. Mutations and 

copy-numbers from selected oncogenes and tumor suppressors were visualized using oncoprint 

from the ComplexHeatmap R package. 

 

SNV and tumor cellularity association. Using the called SNVs, we considered mutations 

other than silent mutations as functionally relevant. A functional mutation enrichment score per 

gene set was derived by dividing the number of functional SNVs by the number of genes in the 

gene set (same results are obtained when raw functional SNV counts are used, but the 

normalized version is used for visualization purposes). Using a multiple linear regression model 

approach, we tested for association between tumor cellularity and functional mutations in 

pathways. Since sample tumor cellularity can affect the frequency of mutations called, we 

accounted for this using sample mutation load as a covariate in the linear model. Similarly, 

samples from the same patient are likely to share many mutations, therefore patient 

dependency was also incorporated as a covariate in the linear model. We evaluated whether 

functional SNV enrichment and WES-derived tumor cellularity (TITAN) were associated for each 

of the 52 gene sets analyzed in this study. Benjamini, Hochberg, and Yekutieli multiple test 

correction was calculated for all the 52 tests. Further, Polymorphism Phenotyping v2 (PolyPhen-



 

41 
 

2)34 was used to evaluate potential damaging missense mutations detected in the Wnt signaling 

pathway (Supplementary Table 4b). 

 

HLA mutation calling. To detect mutations in the polymorphic regions of HLA loci we utilized 

the polymorphic loci resolver (POLYSOLVER v4) algorithm29. This required us to initially 

perform patient specific HLA typing for the three major MHC class I regions (HLA-A, -B and -C) 

using the previously aligned WES of the normal samples for each patient. Once inferred, we 

carried out POLYSOLVER-based mutation detection incorporating Mutect80 and Strelka81 for 

calling point mutations and indels, respectively, using the default read filtering criteria for the 

pipeline29.  

 

Paired volcano plots. For each of the 52 hallmark and 18 ConsensusTME gene sets, paired 

comparisons before and after NACT were performed. Equality of variance (Bartlett’s test or 

Levene’s test) and normality (Shapiro test, Kolmogorov-Smirnov test, and D-Agostino-Pearson’s 

test) assumptions were checked to select the corresponding paired test (Paired t-test, Welch’s t-

test, or Wilcoxon signed-rank test). 

 

Unpaired volcano plots. For each of the 18 ConsensusTME gene sets, unpaired comparisons 

between matched and unmatched NACT samples were conducted. Equality of variance 

(Bartlett’s test or Levene’s test) and normality (Shapiro test, Kolmogorov-Smirnov test, and D-

Agostino-Pearson’s test) assumptions were checked to select the corresponding test 

(Independent t-test, Welch’s t-test, or Mann-Whitney rank test). The analysis was performed 

under python 3.6.5 and scipy 1.1.0 (http://www.scipy.org/) ecosystem85. 
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Multivariate analyses. Multiple linear regression analysis was performed to evaluate the 

difference of normalized enrichment scores before and after NACT of biologically related cell 

types (stromal, myeloid, lymphoid, and cytotoxic) using R version 3.5.0. 

 
Logistic regression and Hotelling’s T2 test (multivariate t test) were performed as a 

sensitivity analysis on cytotoxic cells (NK and CD8 T cells) since the model comprising NK cells 

+ Cytotoxic genes sets was found as significantly different between pre- and post-NACT in the 

multiple linear regression analysis. Logistic regression was performed using the glm function 

with the binomial distribution (Supplementary Fig. 6b). Chi-squared test was employed to test 

significance against the null hypothesis. Multivariate two-sample Hotelling’s T2 test was 

performed to compare differences of CD8, NK, and cytotoxic ConsensusTME gene sets NES 

between pre- and post-NACT tumors. 

 

TCR sequencing analysis. Analysis of the sequences was performed on the immunoSEQ 

ANALYZER 3.0 (Adaptive biotechnologies). T cell counts and TCR clonality were retrieved for 

statistical comparisons. T cell counts are derived from quantitative immunoSequencing of the 

TCRB loci, in which the internal controls allow precise quantitation of sequence counts based on 

reads. Nucleated cell counts are determined by sequencing housekeeping genes. The fraction 

of T cells is determined by dividing the T cell count by the nucleated cell counts. Values for TCR 

productive clonality range from 0 to 1. Values near 1 represent samples with one or a few 

predominant rearrangements (monoclonal or oligoclonal samples) dominating the observed 

repertoire. TCR productive clonality values near 0 represent more polyclonal samples. TCR 

productive clonality is calculated by normalizing productive entropy using the total number of 

unique productive rearrangements and subtracting the result from 1.  
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Analyses shown in Figure 7b-d were performed using the TCR amino acid sequences; 

however, the same conclusions were obtained with the DNA sequences. One-way chi-square 

test was conducted with expected frequencies set as the pre-NACT distribution and the 

observed frequencies set as the post-NACT distribution. For comparison between shared, pre- 

and post-NACT unique TCRs the Friedman ranking test—where the hypothesis that in a set of k 

dependent samples groups (where k ≥ 2), at least two of the groups represent populations with 

different median values—was calculated86,87. To detect which groups were different, the 

Nemenyi post-hoc test using the pivot quantities obtained by the Friedman ranking test was 

calculated. The Nemenyi post-hoc test evaluates the hypothesis that the ranking of each pair of 

groups are different88. 

 

LASSO regression. Least absolute shrinkage and selection operator (LASSO) regression 

analysis was performed using the glmnet R package89. Post-selection inference was conducted 

with the selectiveInference R package90,91. Hallmark and ConsensusTME cell type NES of pre-

NACT samples were used together and independently as explanatory variables, and the log2 of 

the ratio post/pre NACT TCR clonality as response variable. 

 

Normality and homoscedasticity tests. All statistical tests presented were selected according 

to whether normality and homoscedasticity assumptions were met. To test normality the Shapiro 

test and Kolmogorov-Smirnov test were conducted. To test equality of variance Bartlett’s test or 

Levene’s test were conducted according to normality of the data. Shapiro test with P-value < 

0.01 as a threshold and the Breusch-Pagan test to test equality of variance were used in Figure 

4c and Supplementary Figure 4b,c. 

 

Reporting Summary. Further information on research design is available in the Nature 

Research Reporting Summary linked to this article. 
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Ethical approval. All ethics and compliances required for this study have been obtained by the 

appropriate ethics and compliance regulations.  

 

Data and code availability. Data and software used for this work can be accessed at GitHub 

(https://github.com/cansysbio/HGSOC_TME_Heterogeneity). Requests for additional data and 

custom code should be directed to the corresponding author. The immunofluorescence images 

discussed in this study will be provided upon request to the corresponding author. Microarray 

data are available through the GEO database accession number GSE146965. Mutation data 

are available in Supplementary Table 4a. TITAN Copy Number segment data are available in 

Supplementary Table 4f. The TCR sequencing data discussed in this study will be provided 

upon request from the corresponding author. 
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Figure 7 

 

 

 


