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A B S T R A C T

We evaluated 1038 of the most cited structural and functional (fMRI) magnetic resonance brain imaging papers (1161 studies) published during 1990–2012 and 270
papers (300 studies) published in top neuroimaging journals in 2017 and 2018. 96% of highly cited experimental fMRI studies had a single group of participants and
these studies had median sample size of 12, highly cited clinical fMRI studies (with patient participants) had median sample size of 14.5, and clinical structural MRI
studies had median sample size of 50. The sample size of highly cited experimental fMRI studies increased at a rate of 0.74 participant/year and this rate of increase
was commensurate with the median sample sizes of neuroimaging studies published in top neuroimaging journals in 2017 (23 participants) and 2018 (24 partici-
pants). Only 4 of 131 papers in 2017 and 5 of 142 papers in 2018 had pre-study power calculations, most for single t-tests and correlations. Only 14% of highly cited
papers reported the number of excluded participants whereas 49% of papers with their own data in 2017 and 2018 reported excluded participants. Publishers and
funders should require pre-study power calculations necessitating the specification of effect sizes. The field should agree on universally required reporting standards.
Reporting formats should be standardized so that crucial study parameters could be identified unequivocally.
1. Introduction

The number of participants is in general low in cognitive neurosci-
ence and neuroimaging. Thus, it has been pointed out that statistical
power that depends on sample size is also likely to be low in these studies.
Consequently, many false negative outcomes, imprecise measurements,
exaggerated published statistically significant effect sizes and high false
report probability can be expected in this field (Desmond and Glover,
2002; Murphy and Garavan, 2004; Yarkoni, 2009; Ingre, 2013; Lindquist
et al., 2013; Ioannidis, 2008, 2005a,b; Button et al., 2013; Poldrack et al.,
2017; Szucs and Ioannidis, 2017a,b; Turner et al., 2018; Geuter et al.,
2018; Cremers et al., 2017; Petersson et al., 1999; Zandbelt et al., 2008).

In the null hypothesis significance testing (NHST) framework statis-
tical power is defined as the probability of getting a statistically signifi-
cant test result (rejecting the null hypothesis) given that a well-defined
alternative hypothesis with a specified effect size is true and therefore the
null hypothesis is false (for extended review see Szucs and Ioannidis,
2017a). It is often thought that statistical power is only important for
studies because low power precludes the detection of existing effects.
However, studies with low power also have other serious problems: First,
low power increases false report probability, the probability that
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statistically significant findings are in fact false (Ioannidis, 2005; Szucs
and Ioannidis, 2017b). Second, using low sample sizes (and therefore
having low power) leads to noisy measurements due to high sampling
variability. Hence, many studies with low power will likely report widely
different results. Third, if mostly only small sample size NHST studies
with statistically significant results are published, then these will inevi-
tably report exaggerated (large) effect sizes even if the true phenomenon
produces small effect sizes (Yarkoni, 2009; Geuter et al., 2018). This is so
because by using small sample sizes and therefore small degrees of
freedom only relatively large effects have a chance to pass traditional
statistical significance testing thresholds (e.g. α ¼ 0.05). Such large ef-
fects may occur occasionally due to sampling variability. Large effects
can also be the result of p-hacking when analytical manipulation makes
the results from these small studies to pass the significance threshold.
Many such exaggerated published effects from small studies will then
distort the literature and may also be picked up by meta-analyses, thus
further resulting in exaggerated meta-analytic effect sizes.

In the NHST framework the larger is the sample size, the to-be-
detected effect size and the α level the larger is statistical power.
Increasing the α level (e.g. from 0.05 to 0.10) is problematic in neuro-
imaging because of the multiple testing problem (Yarkoni, 2009).
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Further, increasing the α level will also greatly increase the amount of
false positive results if the null hypothesis is true (for discussions
regarding the α level see Benjamin et al., 2018 and Lakens et al., 2018;
Wasserstein et al., 2019; Amrhein et al., 2019; McShane et al., 2019).
According to the NHST framework it is crucial to determine statistical
power so that optimal decisions could be made regarding rejecting or not
rejecting the null hypothesis (Neyman and Pearson, 1933; for review see
Szucs and Ioannidis, 2017a). However, in neuroimaging the effect sizes
sought are often difficult to determine. This is partly due to the fact that
the actually measured signal changes are most often not communicated,
statistically significant effect size reports are likely to be exaggerated and
studies often only aim to reject a hypothesis of zero effect rather than a
well-justified numerically expressed effect (Szucs and Ioannidis, 2017a;
b). Due to uncertainty about effect sizes, many investigators have sug-
gested that the most straightforward way to increase power in neuro-
imaging would be through a parameter researchers have some control of:
by using sample sizes justified by power calculations based on realistic
expected effet sizes (Yarkoni, 2009; Desmond and Glover, 2012; Geuter
et al., 2018; Turner et al., 2018; Suckling et al., 2014; Poldrack et al.,
2017). Increasing sample sizes would also increase measurement preci-
sion. However, in contrast to their theoretical and practical importance it
is rare to see power calculations in papers published in many disciplines.

Here, we aimed to extend previous work on scrutinizing sample sizes
in neuroimaging and additionally, examined the prevalence of power
calculations. First, we determined participant numbers in the most cited
experimental functional magnetic resonance imaging (fMRI) studies
published between 1990 and 2012. We were especially interested in
highly cited studies because (by definition) they are very influential in
the scientific literature and because they are likely to set standards for
many researchers. Previously (Szucs and Ioannidis, 2017a) we observed
that, on average, more participants were examined in papers in medically
oriented than in cognitive neuroscience journals. So, for comparison we
also report participant numbers in the most cited structural MRI (sMRI)
and fMRI clinical studies that examined patients. Further, in order to
monitor progress in participant numbers we also determined sample sizes
in studies published in 4 top neuro-imaging journals in 2017 and 2018
(the latest available complete years before we did data collection).
Moreover, to learn whether participant numbers were set in a principled
way in recent papers we have collected data about the frequency and
method of (pre-study) power calculations in studies published in 2017
and 2018.

2. Methods

2.1. Highly cited papers: Identification and data extraction

We evaluated sample size data from 1038 of the most cited sMRI and
fMRI papers (1161 studies) published during 1990–2012 and 273 papers
(302 studies) published in 4 top neuroimaging journals during 2017 and
2018. By ‘paper’ we mean a publication unit published as a formal paper
in a journal, whereas by ‘study’ we mean the individual studies reported
in papers. Some papers reported more than one MRI study. Hence, the
number of studies is higher than the number of papers. We evaluated
only fMRI studies whereas some papers also included purely behavioral,
electro-encephalography, and other types of non-eligible studies.

First, we queried the Scopus (scopus.com) search engine for the 1500
most highly cited ‘articles’ using magnetic resonance imaging (MRI)
published from 1990 onwards in the ‘neuroscience’ field. The date of
query was May 25, 2017 and it returned papers published between 1990
and 2012. The search term was TITLE-ABS-KEY (*MRI*) AND DOCTYPE
(ar) AND PUBYEAR> 1989 AND (LIMIT-TO (SUBJAREA, “NEUR”)). The
query (see main text) generated a comma separated text file. During the
process of data extraction we added additional records to this file
describing participant numbers and study types.

We aimed to examine primary empirical research reports that used in
vivo sMRI or fMRI to study brain structure and function in humans. So,
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we excluded misclassified review papers, methodological papers, meta-
analyses of published findings, post-mortem studies, case studies, ani-
mal studies, behavioral papers, theoretical papers, modelling papers,
papers on surgery which only used MRI to aid surgery, non-brain MRI
papers (e.g. MRI of the chest and muscles), and papers with other than
MRI technology (positron emission tomography, electro-
encephalography, computed tomography).

Specifically, we first read titles and abstracts queried from the Scopus
database. For all studies of interest we accessed full text pdf files where
possible and we confirmed whether a certain paper was appropriate for
study. If a paper was appropriate for study then we manually extracted
participant numbers from most papers by reading the ‘Participants’, or
equivalent, sections of full text pdf files. In case of uncertainty about
participant numbers other sections of papers were also examined. We
could not access pdf files for 48 relevant papers but we were able to
extract participant information from abstracts and online full texts. We
could not access participant data for 9 relevant papers, so they were not
considered for analysis (marked as type ¼ ‘x … ’ in the data file).

In remaining sample there were 1098 papers (1223 studies). The
journals most represented in our sample are shown in Supplementary
Table 1. These studies could be sorted into 6 major categories:

(1) Experimental fMRI cognitive neuroscience studies with normal
adults (experimental studies). The primary concern of these
studies was the understanding of brain structure and function and
they did not have primary clinical relevance. Most of the experi-
mental fMRI studies compared brain activity across two or more
experimental conditions in a single group of participants. The
approximate topics of experimental fMRI papers are shown in
Supplementary Table 2.

(2) Cognitive neuroscience sMRI studies typically used structural data
to support the interpretation of fMRI data; to gain anatomical
information relevant for understanding normal brain function
(e.g. by studying connections between areas thought to implement
certain functions and/or cortical thickness in some areas thought
to host some functions); to compare brain anatomy in non-clinical
groups of participants (e.g. normal and poor adult readers); and to
study network properties thought to support some functions.

(3–4) Clinical fMRI (3) and Clinical sMRI (4) studies with patient
groups including studies of ageing and studies focused on develop-
mental disorders in children. Many clinical MRI studies compared
brain function or structure across controls and patients or measured
the effect of aging by studying multiple age groups. Single group
studies also tested groups of participants in various experimental
conditions. In a few papers participants were healthy ‘control par-
ticipants’ but the primary objective of papers was clinical research
(e.g. testing the effectiveness of pain suppression). Such papers were
categorized as ‘clinical’ papers. The most frequently studied diseases
and conditions and associated median and mean participant numbers
in clinically oriented papers are shown in Supplementary Table 3.
(5–6) Normative developmental fMRI (5) and sMRI (6) studies with
typically developing children who were under the age of 18 years.
Many of these studies compared brain function or structure across
multiple age groups.

There were very few cognitive neuroscience sMRI (16 papers with 18
studies) and developmental sMRI (19 papers with 19 studies) and fMRI
(25 papers with 25 studies) studies as compared with studies in the other
3 categories. Hence, data from these 60 papers (62 studies) were not
considered for analysis. However, the extracted data is available in the
data file.

Data for the remaining 1038 papers with 1161 studies were analyzed
in the work reported here. These studies were categorized as experi-
mental fMRI, clinical sMRI and clinical fMRI studies. Table 1 shows the
number of highly cited papers, the studies included in the papers and
paper citation counts. Papers in this sample were published between
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Table 1
The numbers of highly cited papers, the studies included in the papers and paper citation counts. The 1038 papers were subdivided into three categories (see details in
text).

Citation Counts

Study Type Papers Studies Min Median Mean Max Total

All 1038 1161 208 297 377 4147 391,178
Experimental fMRI 591 692 208 305 391 4147 231,071
Clinical sMRI 318 334 208 287 358 2912 113,954
Clinical fMRI 129 135 209 300 358 981 46,153

Table 2
The number of papers and studies in the 2017 and 2018 sample.

2017 2018 Totals

Journal Papers Studies Papers Studies Papers Studies

Nature
Neuroscience

4 5 2 2 6 7

The Journal of
Neuroscience

42 47 33 38 75 85

NeuroImage 46 51 66 73 112 124
Cerebral Cortex 38 44 39 40 77 84
Totals 130 147 140 153 270 300
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1990 and 2012 (Experimental fMRI studies: 1993–2012; Clinical sMRI
studies: 1990–2011; Clinical fMRI studies: 1996–2012). The 1038 papers
received 391,180 citations. The experimental fMRI papers received
nearly 60% of these citations.

We extracted the following data for each study: 1) Total number of
participants tested. 2) The number of participants stated as excluded
from analyses. When no exclusions were reported we assumed that the
number of excluded participants was zero. 3) The final number of par-
ticipants included in the MRI analysis. This ‘final’ participant number
was considered the number of participants for a study. 4) We determined
whether a study defined two or more groups of participants. If at least
two groups were defined then we recorded the number of participants in
each group. 5) For experimental studies we noted the approximate main
topic of a paper. 6) For clinical studies we coded the type of disease
examined. 7) Finally, we coded whether a study was a randomized
control trial or not.

2.2. Analysis of trial numbers in highly cited experimental fMRI papers

In order to get an impression of total and per condition experimental
trial numbers in individual participants we have examined the Methods
sections of 142 experimental fMRI studies with event-related designs
where trial numbers should be well-defined in principle. We extracted
the total number of trials and the number of experimental conditions
where this was possible.

2.3. Sample of experimental fMRI papers in 2017 and 2018

In order to be able to compare sample sizes in the most highly cited
papers to the most recent sample sizes at the time of data collection we
have extracted data from a sample of papers from the two most recent
years before writing this paper. Specifically, we have analyzed a sample
of 131 experimental fMRI papers published during 2017 and 142 papers
published during 2018 in 4 prominent neuro-imaging journals: Nature
Neuroscience, The Journal of Neuroscience, NeuroImage and Cerebral Cortex.
These journals were selected because they publish a large volume of
experimental fMRI papers with normal adult participants and they were
also in the top 7 most frequently occurring journals in our highly cited
paper sample (see Supplementary Table 1). Hence, we could assume that
many papers from these journals will become relatively highly cited in
the future. Therefore, this sample is fairly complementary to the to the
sample of highly cited papers. Obviously, for recent papers, as those
published in 2017–2018, it will take several more years to determine
which ones exactly will be highly cited.

We included about an equal number of papers from roughly similar
issues in both 2017 and 2018, simply based on the availability of issues
till the late summer of 2017 and 2018 (data collection periods). In order
to determine eligibility for inclusion, the titles, abstracts and where
necessary, the full text of the papers were briefly examined manually.
The only inclusion criterion was whether a paper reported an empirical
adult fMRI experimental study as defined in the highly cited paper
sample. There was no other evaluation of content or other data from the
papers before the final analysis. The number of studies and papers are
shown in Table 2. The issues checked per journal are shown in Supple-
mentary Table 4.
3

During data collection we manually opened each pdf file in Adobe
Acrobat © and checked the ‘Participants’ or equivalent section for initial
and final sample sizes and for the number of excluded participants. In
addition, we have also searched papers for the words ‘power’ and ‘sample
size’ and determined whether papers included any formal power calcu-
lations and/or they justified their sample sizes. In order to verify power
analyses in papers and/or to confirm their nature we have carried out our
own power analyses for each paper based on the data given in the papers.
This procedure was most often necessary because from papers it was
often unclear what kind of power analysis was exactly done.

2.4. Data availability

All data and the analysis code (Matlab scripts; www.mathworks.com)
producing all figures, tables and numerical details reported here are
available at https://osf.io/qzerc/. The code produces figures that can be
zoomed in and out in Matlab. It is not possible to upload pdf copies of
published papers because of copyright restrictions (we have accessed
papers through the subscriptions of the University of Cambridge, UK).

2.5. Ethics statement

This work did not test human or animal participants. All data was
collected from published papers. Hence, no ethical permission was
needed.

3. Results

3.1. Highly cited paper sample: 1990–2012

Fig. 1A compares the cumulative sample size distributions for the 3
types of papers in the highly cited sample. Fig. 1C sows corresponding
histograms. Table 3 shows the number of participants in studies with a
single group and with more than one group. For example, 662 out of 692
experimental studies had a single group of participants whereas 30
studies defined two or more groups. The median number of participants
in studies with a single group was 12. In the 30 studies with groups the
average group number was 2.033. The median number of participants in
groups was 11. The proportion of studies with a single group is notably
higher in experimental fMRI studies (662/692¼ 0.9566) than in Clinical
sMRI (163/334 ¼ 0.4880) and Clinical fMRI studies (28/135 ¼ 0.2074).

http://www.mathworks.com
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Fig. 1. (A) Cumulative sample size distributions in highly cited papers. The sample size/probability values are plotted for each sample size percentile. Dashed lines
(-all data) in the legend show data for all studies. Continuous lines (-own data) in the legend show data restricted to studies that collected their own data and only
included a single group of participants. The sample size axis is truncated at 1000 for better visibility. (B) Cumulative sample size distributions in experimental fMRI
papers only (highly cited papers and 2017 and 2018 data). The sample size/probability values are plotted for each sample size percentile. Dashed (-all data) and
continuous lines (-own data) show data as noted for Panel A. (C) Histogram of sample size distributions in highly cited papers (histogram bins: Each integer between 1
and 19; steps of 5 between 20 and 45 and steps of 10 from 50). (D) Histogram of sample size distributions in experimental fMRI papers only (histogram bins are the
same as in Panel C). (E) Yearly median sample sizes. Black circled dots show the yearly medians of the sample sizes from the highly cited papers. The black line is the
regression line fitted to this data. The leftmost blue dot and blue crosses represent the median and 25th and 75th percentiles of sample sizes from the entirety of the
highly cited paper data. The rightmost two red dots and crosses represent the medians and 25th and 75th percentiles of 2017 and 2018 data. (F) The distribution of
mean number of trials in the experimental conditions of 83 highly cited experimental fMRI papers (see further explanation in text). (X) Study categories in panels A–D:
Experimental (Exp) fMRI and Clinical (Clin) sMRI and fMRI studies, 2017 and 2018 experimental fMRI studies.

Table 3
The number of participants in studies with a single group (gr¼ 1) and with more than one group (gr> 1). Study categories: Experimental (Exp) fMRI and Clinical (Clin)
sMRI and fMRI studies. The first 3 columns show the number of studies with one or more groups and totals. The next 3 columns (N in Group if gr ¼ 1) show participant
numbers for studies with a single group. The next 3 columns (Number of Groups if gr > 1) show the number of groups in studies with more than one group. The last 3
columns (N in Groups if gr > 1) show participant numbers in groups in studies with more than 1 group.

Studies N in Group if gr ¼ 1 Number of Groups if gr > 1 N in Groups if gr > 1

Study Type gr ¼ 1 gr > 1 Total Min Median Max Min Mean Max Min Median Max

All 853 308 1161 2 13 3660 2 2.35 8 1 17.2 1056
Exp fMRI 662 30 692 2 12 603 2 2.03 3 1 11.0 500
Clin sMRI 163 171 334 2 50 3660 2 2.50 8 2 24.0 1056
Clin fMRI 28 107 135 3 14.5 146 2 2.19 7 1 12.5 68
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Median participant numbers were 3.5–4.17 times larger (N ¼ 50) in
single group Clinical sMRI studies than in the other two study categories.
Median participant numbers were about twice as large in multi-group
Clinical sMRI studies (N ¼ 24) than in other study categories.

There was no statistically significant correlation between the number
4

of citations to a paper and the number of participants in studies. In the
whole sample of 1161 studies the correlation of citation count and
sample size was r ¼ 0.0098 [95% CI: -0.0413; 0.0609; p ¼ 0.71]. In the
sample of Experimental fMRI papers the correlation was r¼ 0.0342 [95%
CI: -0.0405; 0.1084; p ¼ 0.37].



Table 5
The number (N of studies) and proportion (Prop.) of studies with their own
data and with a single group of participants that had sample size larger
than or equal to 12, 24, 40, 80 and 100 (N � ). Study categories: Experimental
(Exp) fMRI and Clinical (Clin) sMRI and fMRI studies, 2017 and 2018 experi-
mental fMRI studies.

Study
type

N� 12 N� 24 N �
40

N � 80 N �
100

Exp fMRI N of studies 372 62 18 7 4
Prop. (all ¼
662)

0.562 0.094 0.03 0.0106 0.006

Clin
sMRI

N of studies 141 113 92 62 48

Prop. (all ¼
163)

0.865 0.693 0.56 0.3804 0.294

Clin
fMRI

N of studies 16 8 3 2 2

Prop. (all ¼
28)

0.571 0.286 0.11 0.0714 0.071

2017 N of studies 117 53 20 8 7
Prop. (all ¼
127)

0.914 0.414 0.16 0.0625 0.055

2018 N of studies 109 57 12 6 4
Prop. (all ¼
120)

0.908 0.475 0.1 0.05 0.033
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3.2. Studies from 2017 to 2018

Table 4 shows the counts and proportion of papers and studies with
their own data, with secondary data and with only one group in the 2017
and 2018 data sets. Similarly to the highly cited paper data the over-
whelming majority of papers had a single group of participants. In 2017,
of the 9 studies with secondary data 8 studies were single group studies,
all of them had sample size �100. In 2018, of the 19 studies with sec-
ondary data 17 were single group studies, 10 had sample size �100.
Studies with secondary data used various data sources, the most frequent
source being the Human Connectome Project (humanconnectomepro
ject.org). In 2017 six out of nine while in 2018 seven out of 19 papers
took their data from various editions of this data source.

3.3. Comparison of sample size percentiles from highly cited papers and
from papers published in 2017 and 2018

Fig. 1B compares sample size distributions in the highly cited paper
sample and in the 2017–2018 sample. Fig. 1D shows corresponding
histograms. The shift in sample size distributions and a slight increase in
the proportion of studies with large sample sizes (many of them studies
based on data from large third party data bases) is well visible (sample
size quantiles are shown in Supplementary Table 5). Table 5 shows what
number and proportion of studies with their own data and a single group
of participants exceeded certain ‘landmark’ participant numbers identi-
fied in previous studies (see Discussion for details).

Fig. 1E shows the increase in median sample sizes of experimental
fMRI studies from 1993 to 2018. The figure shows the regression line
fitted the medians (black dots) of highly cited experimental fMRI studies.
The rate of increase in these medians was þ0.74 participants/year
(intercept ¼ �1477). The blue dot (between 2002-3) shows the overall
median and the small blue crosses show the 25th and 75th percentiles of
the entire set of highly cited experimental fMRI study data. The two red
dots and crosses on the right show the medians and percentiles for the
2017 and 2018 data. It is notable that extrapolation of the regression line
extremely well fits the medians measured in 2017 and 2018. In Fig. 1E it
is visible that medians show larger scattering relative to the regression
line at the left and right extremes of data points. This is due to the fact
that less data points were available in very early and very recent publi-
cation years (see numbers in Supplementary Table 6.) (Note that inci-
dentally, this also illustrates larger variability in case of small sample
sizes.)

3.4. The number of reported excluded participants in highly cited
experimental fMRI papers

Table 6 shows the number of reported excluded participants per study
category not considering studies with secondary databases (see below).
86–90% of highly cited studies did not report excluded participants. In
contrast, 49% of studies in 2017 and 2018 reported some excluded
participants. The proportion of studies with a relatively large number of
excluded participants (6–10 or more excluded participants) notably
increased from 1 to 2% in highly cited studies to about 6–11% by 2017
and 2018. More excluded participants were reported in clinical than in
Table 4
The counts and percentages of papers and studies with their own data, with se
studies with one group are a subset of the studies with their own data. Percentages are
þ 9 ¼ 130 papers in 2017 and 122 þ 18 ¼ 140 papers in 2018).

2017

Data source in study Papers % Studies

Own Data 121 93.1 138
Secondary data 9 6.9 9
Own data and Single group 110 84.6 127

5

experimental studies.
In 2017 nine studies used data from secondary databases and none

reported exclusions. In 2018 nineteen studies used data from secondary
databases and 3 studies reported exclusions: 19, 206 and 306 partici-
pants. These studies were not included in Table 6 as their inclusion would
largely inflate the mean number of excluded participants calculated there
(to mean ¼ 15.1).
3.5. Trial numbers in a sample of highly cited experimental papers

We could identify total and per condition trial numbers in 109 of the
142 experimental fMRI papers with event-related designs, while this
information was unclear in the other 33 papers.

17 papers described old/new recognition memory experiments. We
extracted the number of memory encoding trials as the usual question of
interest is whether some brain activity at encoding will predict later
recognition. The number of trials ranged from 10 to 455 (median¼ 150).
9 papers described designs with a large number of standard trials inter-
spersed with a significantly lesser number of deviant trials from a
different, critical trial type, for example in go/nogo designs (where
typically there are many fewer nogo than go trials) and in task switch
designs (where typically there are much fewer task switch than standard
trials). Trial numbers varied from 128 (8 critical) trials to 1180 (80
critical) trials.

In 83 of the 109 papers trial numbers were more similar across con-
ditions than in the above standard/deviant like designs. However, trial
numbers were still very often unequal across conditions and there was
also great variability in design. Fig. 1F shows the mean number of trials
by condition. The total number of trials in an experiment ranged between
40 and 2440, the number of conditions ranged between 2 and 28 and the
condary data and with only one group in the 2017 and 2018 data sets. The
computed relative to total paper and study numbers as shown in Table 2 (e.g. 121

2018

% Papers % Studies %

93.9 122 87.1 134 87.6
6.1 18 12.9 19 12.4
86.4 108 77.1 120 78.4

http://humanconnectomeproject.org
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Table 6
The number of excluded participants per study category in studies with their own data. Numbers are given for studies (not papers). Study categories (table rows)
for highly cited data: Experimental fMRI and Clinical sMRI and fMRI studies. The 2017, 2018 data included experimental fMRI studies. For each category the following
data are shown (table columns): total number of studies (Total), studies with no reported exclusions (None), studies with some exclusions (Some), studies with certain
numbers of participants excluded (1–5, 6–10, >10). The median and mean of the number of excluded participants. For each category, top rows (N) communicate study
numbers and bottom rows (%) communicate the percent of studies relative to the total study numbers shown here (The 9 studies in 2017 and the 19 studies in 2018
studies with secondary databases are omitted from this table; see text for details).

Total None Some 1–5 6–10 >10 Median Mean

Experimental fMRI N 692 595 97 80 13 4 2 3.7
% 100 86 14 12 2 1

Clinical sMRI N 334 301 33 6 7 20 22 87.5
% 100 90 10 2 2 6

Clinical fMRI N 135 121 14 8 3 3 4 8.4
% 100 90 10 6 2 2

2017 N 138 70 68 47 13 8 3 4.985
% 100 51 49 34 9 6

2018 N 134 68 66 41 15 10 3 6.2
% 100 51 49 31 11 7

Table 7
Summary of power calculation results. The table shows data for the 130 pa-
pers in 2017 and the 140 papers in 2018. It is shown whether papers included
statistical power calculations (a), had any comments on power (b) or had no
comments on power (c). Subcategories of papers with power calculations are also
shown a priori and post-hoc power computations and cases where this could not
be determined. The numbers adding up to the total numbers of papers in a year
are in italics: 9 þ 33þ88 ¼ 130; 9 þ 43þ88 ¼ 140.

2017 2018

Information on power? N % of 130 N % of 140

Power calculation (a) 9 6.9 9 6.4
- A priori power calculation 4 3.1 6 4.3
- Post-hoc power calculation 3 2.3 3 2.1
- Unclear 2 1.5 – –

Comments on power (b) 33 25.4 43 30.7
No comments on power (c) 88 67.7 88 62.9
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mean number of trials per condition ranged between 4 and 610. For
example, on the one extreme 112 trials were distributed into 28 condi-
tions and on the other end 2440 trials were distributed into 4 conditions.
It is notable in the figure that the mean number of trials per condition
tends to decrease as the number of experimental conditions increases.

3.6. Overview of power calculations in the 2017 and 2018 papers

Table 7 shows the summary of the statistical power analysis assess-
ment. In both 2017 and 2018 less than 7% of papers (9 papers in both
years) included power calculations and about a third of the papers made
some comment about power. None of the papers with large secondary
databases had power calculations in any of the years. 7.6% (10) vs.
11.3% (16) of papers without power calculations referred specifically to
the problem of having low power, in 2017 and 2018, respectively. Only
3–4% of 2017 and 2018 papers had clearly a priori power calculations.

3.7. Details of power calculations in the 2017 and 2018 papers

In 2017 four papers seemed to include formal pre-study power cal-
culations (α ¼ 0.05 for all). Two of these papers (n ¼ 36 and 53)
computed power for single runs of t-tests (two cases; Cohen’D ¼ 0.5 and
0.65; power ¼ 0.8 for both). Two other distinct papers (n ¼ 32) in the
same journal issue used the same participants. One paper computed
power for a single one-sample t-test (D ¼ 0.5) and set a priori power to
exceed 0.85. The other computed power for a single product-moment
correlation (r ¼ 0.4) and set a priori power to exceed 0.75.

In 2018 six papers described a-priori power computations. One paper
determined that a sample size of 24 was necessary to achieve power¼ 0.8
with a matched-sample two-tailed t-test to detect an effect size of D� 0.6
(α ¼ 0.05). However, 2 participants were excluded from analyses leaving
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only 22 participants in the study. This obviously left the study under-
powered by its own power criterion. Another paper aimed to look at brain
structure vs. behavioral performance correlations (n ¼ 40). It was not
specified how exactly power computation was done but our own power
analysis suggested that the required sample size of 34 was computed for
power ¼ 0.8 for a single correlation test of r ¼ 0.4 (α ¼ 0.05; one-tailed).
The study noted that power was computed for D ¼ 0.4 in G-Power (Faul
et al., 2007). However, G-Power computes the sample size of 34 when r
¼ 0.4 rather than when D¼ 0.4 (entering r is the default in G-Power). For
D ¼ 0.4; r would be r ¼ D/sqrt(D2 þ 4) ¼ 0.1961 (Borenstein et al.,
2009). To detect an effect size of r ¼ 0.1961 G-Power computes that N ¼
156 participants would be necessary (α¼ 0.05; one-tailed). For this effect
size (r ¼ 0.1961) the study would have achieved power ¼ 0.31 with N ¼
34 and actually achieved power ¼ 0.34 with 40 participants (α ¼ 0.05;
one-tailed). Hence, the study had much less power than reported.
Alternatively, it is possible that the power computation parameters were
misreported, and the intention was to compute power for r¼ 0.4. Another
paper stated that they chose a sample size to achieve good power to detect
the typical effect size in the field. An effect size of r ¼ 0.54 was chosen
from a previous meta-analysis. It was concluded that for the 25 partici-
pants initially tested power ¼ 0.87 would be achieved for the D ¼ 0.54
effect size (α ¼ 0.05; two-tailed; power was computed for a single cor-
relation). The paper initially tested 25 participants but one participant
was excluded, so only 24 participants were tested.

Another 2018 paper computed that 34 participants were necessary to
detect an interaction effect size of partial eta2 ¼ 0.06 at power ¼ 0.8 and
12 participants were required to replicate a previously found effect size
of partial eta2 ¼ 0.17 at power ¼ 0.8. The study tested 34 participants.
Based on recomputing power in G-Power it seems that power was
computed for a 2(groups) x 2(measurements) mixed design ANOVA with
partial eta2 of 0.06 and 0.17 (transformed to Cohen’s f ¼ 0.2526 and f ¼
0.4225 by G-Power). Another paper referred to a previous study of the
authors where they used Monte-Carlo simulation to estimate sample size.
The current study aimed to test a sample size of 30 participants as
required by this previous power calculation. Based on the calculation the
authors concluded that they achieved power >0.95. However, 2 partic-
ipants were excluded, so only 28 participants were tested. One paper
estimated the required sample size for Multi Voxel Pattern Analysis by a
simulation method (n ¼ 87).

In 2017 in two cases it was unclear whether power was computed a
priori. In these papers power (set to 0.8) was computed for a t-test (D ¼
0.44; n ¼ 128) and for correlation (r ¼ 0.5; n ¼ 29). The first of these
papers presented the only RCT in our 2017 sample.

In 2017 in three cases power was computed post-hoc. In these papers
power was computed for a t-test (D ¼ 0.6; n ¼ 22), for an ANOVA
interaction term (D ¼ 0.52; n ¼ 2 � 15). The latest study computed
power to guide future studies. In one case (n ¼ 8) it was unclear how
power was computed as no exact effect sizes were given (but likely for
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multiple t-tests).
In 2018 power computations seemed clearly post-hoc in three cases.

One paper with 15 participants has achieved null results in whole brain
analyses. The study has computed the achieved power for multiple
testing uncorrected ROI analyses suggesting that analyses achieved
power ¼ 0.8 to detect an effect size of D ¼ 0.68 with α ¼ 0.05 and D ¼
0.56 at α ¼ 0.1. Computations were not specified in the paper but re-
analysis suggests that they were done for one-tailed t-tests. The second
paper noted that the study was ‘adequately powered to detect large ef-
fects’ and noted that the sample size of 12 was adequate to detect an
effect size of d� 0.89 at power¼ 0.8 (α¼ 0.05). Power was computed for
a single two-tailed matched-sample t-test. In the third paper it was unclear
how power was computed but the authors claimed to have run some
analyses for effect sizes of D¼ 0.51, 0.53 and 0.54 with power¼ 0.8. The
analyses close to describing the power computation mentioned the use of
matched sample t-tests and the study had 31 participants. Indeed, power
for a two-tailed t-test (α¼ 0.05) for the above effect sizes and sample size
varies between power ¼ 0.78 to 0.83. So, it is likely that power was
computed for single matched-sample t-tests.

Besides the papers with power calculations 34 and 44 papers
mentioned statistical power in 2017 and 2018, respectively. Mentions
were most often non-specific and non-informative. For example, only one
paper in Nature Neuroscience had power calculations but all of them
included similar text stating that no methods have been used to prede-
termine sample sizes and sample sizes were simply chosen to be in line
with common practices in their field. Many studies noted that their
sample size was chosen so that they would be identical to or exceed
sample sizes from the authors’ own or others’ previous work. Some noted
that sample size was based on funding availability. Some studies com-
mented on issues of statistical power in general without clearly linking it
to the context of the specific study. Some studies commented that a
certain analysis was less or more powered than another one without
giving any further details or computations. Some papers commented on
their large perceived sample size (e.g. 60) without giving any actual
power calculation details. Ten (2017) and sixteen (2018) studies
mentioned that they may have been underpowered. Usually these non-
informative statements were restricted to one or two brief comments in
a paper. Several studies used small subsamples from their overall sample
for certain analyses.

In 2017 seven whereas in 2018 only two papers had multiple studies
where some of these studies declared a goal to replicate findings from an
earlier study in the same paper. None of these papers had power
calculations.

In 2017 two studies were special cases focused on individual mea-
surement: One had only 4 participants but each of them were tested in
5–6 sessions. The other tested 10 participants, each for 300 min during
10 sessions.

3.8. The prevalence of NHST statistics in papers

Power analyses are important for NHST statistics. Hence, we can ask
the question in what proportion of the above papers NHST statistics were
used at all. In order to gain an impression of this we have run an auto-
mated text search for all papers in the 2017 and 2018 sample. We
searched for the following terms strongly associated with NHST statistics
in neuroimaging: ‘ANOVA’, ‘ANCOVA’, ‘t-test’, ‘t test’ [with space sepa-
rator], ‘p ¼ ‘, ‘p<‘, ‘p>’ and ‘p�‘. Note that this list is not exhaustive, for
example, we have not searched for the expressions ‘significant’, ‘signif-
icance’, ‘correlation’, etc. as their interpretation could be ambiguous. So,
our text search was fairly conservative. In addition, the p value search
terms could not pick up all p values due to journal specific character
coding issues. So, there were likely many more p values reported than
picked up by the algorithm.

The text lines extracted around search terms (the search term þ 50
characters) are available as Supplementary Data File 1. An examination
of this data suggests that the appearance of search terms was virtually
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always associated with the corresponding NHST statistics used in papers.
In summary, we found that at least one of the search terms appeared in
about 95% of papers in both 2017 (123 of 130 papers) and 2018 (134 of
140 papers). We have manually searched the 7 papers in 2017 and 6
papers in 2018 in which the search terms were not found. Only one single
paper did not report p values and NHST statistics. Hence, we can
conclude that >99% of papers in our sample used NHST statistics.

4. Discussion

Running underpowered studies may waste research funding on
studies which a priori have low chance to achieve their objectives. In
addition, low power leads to high false report probability, imprecise
measurements (and therefore highly variable findings in terms of effect
sizes and spatial/anatomical location) and effect size exaggeration. Here
we have shown that participant numbers are relatively low in the most
highly cited fMRI papers. Such low sample sizes have been associated
with low statistical power for typical effect sizes in this field (Desmond
and Glover, 2002; Murphy and Garavan, 2004; Yarkoni, 2009; Ingre,
2013; Lindquist et al., 2013; Ioannidis, 2008, 2005a,b; Button et al.,
2013; Poldrack et al., 2017; Szucs and Ioannidis, 2017a,b; Turner et al.,
2018; Geuter et al., 2018). Hence, highly cited studies are likely to have
similar problems stemming from low statistical power as most ‘typical’
neuroscience studies. Our analysis also shows that sample sizes are
slowly but steadily increasing. However, the rate of increase is low. We
also found that power calculations are exceedingly rare in the published
literature.

4.1. The number of participants per group

Highly cited experimental and clinical fMRI studies had similar me-
dian sample sizes (medians in single group studies: 12 and 14.5; median
group sizes in multiple group studies: 11 and 12.5). 96% of experimental
studies were single group studies. This pattern remained in 2017 and
2018 when 93% and 87% of experimental fMRI studies had a single
group. Single group studies most likely had within-subject designs testing
the same participants in two or more conditions. While within-subject
designs are more powerful than between subject designs, even a single
one-sample t-test (two-tailed) requires 34 participants to surpass 80%
power to detect an effect size of D¼ 0.5 at α¼ 0.05. Of note, many power
calculations we found (optimistically) expected a similar effect size that
would be quite substantial in behavioral research. More than 90% of
highly cited studies had a smaller sample size than 34 and even in 2017/
2018 more than 80% of studies remained under this sample size. If the α
level is decreased to α ¼ 0.001 to be more in line with fMRI standards,
then detecting a D ¼ 0.5 effect size with 80% power would require 74
participants and detecting a D ¼ 0.3 effect would require 196 partici-
pants (90 participants at α ¼ 0.05). At the α ¼ 0.001 level even detecting
an effect size of D¼ 0.8 would require 33 participants (with 80% power).
While the above power calculations are illustrative, fMRI specific power
calculations have also convincingly demonstrated that typical participant
numbers in our sample have very low power (Turner et al., 2018; Geuter
et al., 2018). For example, Geuter et al. (2018) concluded that to detect
an effect size of D > 0.8 requires more than 40 participants while to
detect an effect size of 0.5 < D < 0.8 requires a sample size of at least 80.
Turner et al. (2018) also found that a sample size of 36 assures very low
replicability and optimizing replicability requires sample sizes well
beyond 100. Clearly, most studies in our data had much lower sample
sizes than these values.

In contrast to experimental studies, only 21% of highly cited clinical
fMRI studies were relatively small single group studies. However, while
clinical fMRI studies had somewhat larger individual participant groups
than experimental studies (11 vs. 12.5, see above), most of their total
sample size advantage stemmed from the fact that they more often had
two or more groups than experimental studies. This is important to
consider when comparing sample sizes from clinically vs. non-clinically
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oriented journals/publications. Clinical studies included multiple groups
because these studies often included both patient and control groups.
Overall, group sizes were very similar in both experimental and clinical
fMRI studies. Importantly, for the same overall sample size independent
sample t-tests are less powerful than one-sample or matched sample-tests
often used in single group studies (see e.g. GPower; Faul et al., 2007).
Hence, in terms of group comparison clinical fMRI studies probably do
not have a power advantage over experimental fMRI studies. Only the
single-group clinical sMRI studies had notably larger sample sizes than
fMRI studies. The discrepancy between fMRI and sMRI studies probably
has to do with the extra time and effort necessary to collect and analyze
fMRI than sMRI data. Genuine effect sizes may be larger in clinical than
in experimental studies because disease is likely to have more substantial
impact on brain function than experimental manipulations in healthy
participants. Hence, clinical studies may have some power advantage due
to larger expected effect sizes than in experimental studies.

4.2. Growth in sample sizes

We found that median sample sizes in highly cited experimental fMRI
studies increased consistently at a rate of þ0.74 participant/year be-
tween 1993 and 2010. This rate of increase was perfectly in line with the
median sample sizes we found in 2017 (23) and 2018 (24). The þ0.74
participant/year rate of increase was also in line with our survey (Szucs
and Ioannidis, 2017a) examining 3801 papers published between 2011
and 2014. In this earlier paper we reported degrees of freedom for one or
two-sample t-tests and estimated that the median degree of freedom was
18 in cognitive neuroscience papers. Provided that median sample sizes
were likely to be about 1–2 larger than the degrees of freedom this data
would also well fit the regression line found in the current study (with
about median sample size of 19–20 in about 2012/13). Notably, our
sample size median estimates are smaller than the 28.5 median estimated
by Poldrack et al. (2017) for the year of 2015. However, our analysis is
well compatible with the full set of data points from David et al. (2013)
used by Poldrack et al. (2017).

Overall, our current and earlier data (Szucs and Ioannidis, 2017a) and
data from other evaluations (David et al., 2013; Poldrack et al., 2017)
suggest that sample sizes and consequently, power are improving, albeit
very slowly. Only ~10% of highly cited experimental fMRI papers pub-
lished between 1993 and 2012 reached the sample size of 24 suggested
by Desmond and Glover (2002) and only about 3% reached the sample
size of 40 that Geuter et al. (2018) considered adequate to detect only
large effects. There has been clear improvement by 2017 and 2018 when
respectively, 41% and 48% of papers reporting their own data and with a
single group of participants (constituting about 90% of all papers) were
above the minimum participant numbers recommended by Desmond and
Glover (2002) eighteen years ago. However, this also means that in 2017
and 2018 still more than half of these papers had less than 24 partici-
pants. Moreover, there has been less improvement at the higher end of
participant numbers as in 2017 and 2018 still only 16%, 6% and 5% of
the above papers had more than 40, 80 and 100 participants, respectively
(Geuter et al., 2018; Turner et al., 2018). These proportions were 10%,
5% and 3% in 2018. Notably, besides the α level, power depends on the
sample size and the effect size searched. Hence, studies cannot univer-
sally rely on absolute sample size guidelines. An optimal approach may
be to determine a sample size that is appropriate to detect a ‘theoretically
informative’ minimum effect size (Poldrack et al., 2017).

Importantly, both here and earlier (Szucs and Ioannidis, 2017a) we
detected considerable variability in sample sizes across studies. So, using
solely medians to characterize sample sizes seems inadequate as it masks
substantial variability. The crucial question is what proportion of studies
in the literature remain too small and hence, underpowered.

While we only have two years’ worth of observations from 2017 to
2018 a noteworthy trend in the literature is the increasing use of large
third-party databases in neuroimaging. The proportion of papers using
such databases doubled from 2017 to 2018 from 6% of studies to 13% of
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studies. The use of these databases more than doubled the number of
studies with more than 100 participants. It remains to be seen whether
this trend continues in the coming years and whether it is present in other
neuroimaging journals. The use of large shared databases would be
beneficial for many reasons. First, such databases assure high statistical
power for modest effects. Second, considering the effort required to
compile large databases data collection may be carried out by seriously
vetted procedures and by experienced teams. Third, data is available to
any interested researchers assuring increased scrutiny and hence, reli-
ability of published results. Fourth, if data is collected in a decentralized
manner (e.g. many labs jointly contributing to data collection) than
replicability across different labs can easily be examined. Of course, there
are also downsides of using only large databases: e.g. biases may recur in
the literature if a large and often used database is inherently biased in
someways and the number of false positive errors may accumulate due to
sequential multiple testing by many researchers (Thompson et al., 2019).
For example, here we found that data from various editions of the Human
Connectome Project were used in close to 50% of studies (13 of 28
studies) using secondary datasets in 2017–2018. Further, it is also
possible to search large datasets for a subset of data confirming some
predefined hypotheses, or apply machine learning procedures searching
for patterns in noise (Powell et al., 2020). Hence, it is important to use
data from secondary databases in a principled manner, for example,
using all available and appropriate data (rather than just a subset) for
hypothesis testing clearly defining exclusion principles.

4.3. Power calculations

While low power in neuro-imaging received lots of attention recently
(Poldrack et al., 2017; Szucs and Ioannidis, 2017; Button et al., 2013), we
found that in both 2017 and 2018 only about 3–4% of papers had clear
pre-study power calculations and more than 62% of papers never
mentioned any issues of statistical power. Most power calculations we
found were done for single runs of t-tests and product-moment correla-
tions as there seems to be no agreement on how to estimate statistical
power for fMRI studies which rely on a very large number of tests,
idiosyncratic statistical procedures and on heavy multiple testing
correction (Hayasaka et al., 2007; Poldrack et al., 2017; Carp, 2012). The
power calculations we found often expected medium sized effects based
on previous published data. However, considering the very probable
effect size inflation of the published literature expecting relatively large
medium sized effects seems too optimistic (Ioannidis, 2008; Szucs and
Ioannidis, 2017a). It also frequently happened that studies determined a
required sample size by power calculation but then analyzed less data
than required by their own power calculation because they did not ac-
count for the number of excluded participants. This practice leaves
studies underpowered by their own power criteria. It was also typical
that power calculation parameters were not defined clearly so that in
most cases guesswork and recalculation was necessary to see how power
was determined. In some cases power calculations seemed erroneous.

Many papers without power calculations referred to sample sizes in
previous similar research to justify their sample sizes. However, consid-
ering that lots of neuroimaging is underpowered (Yarkoni, 2009; Button
et al., 2013; Szucs et al., 2017a) this is clearly inadequate rationale.
Unless the purpose is to guide future studies it is not informative to
compute post-hoc power considering an effect size already detected as
statistically significant in a study. Moreover, small studies are not good
guides for power calculations for future studies because they can only
detect relatively large effects as statistically significant (see e.g. Ioanni-
dis, 2008; Yarkoni, 2009; Szucs and Ioannidis, 2017a,b; Gauter et al.,
2018). Similarly, meta-analyses may also overestimate effects because
they tend to rely on many small, underpowered studies (Ioannidis, 2010).
In fact, studies with large sample size (and hence, with more accurate
measurements than small studies) rarely report large effects (see for
example Fi. 2. in Szucs and Ioannidis, 2017a, and comments in Yarkoni,
2009).
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A notable observation is the near complete lack of the use of fMRI
specific power calculation procedures. While these procedures have been
available since a while (e.g. www.neuropowertools.org; Durnez et al.,
2016; see useful links to websites in Poldrack et al., 2017; Mumford and
Nichols, 2008; Mumford, 2012; Gauter et al., 2018; Turner et al., 2018;
Desmond and Glover, 2002; Murphy and Garavan, 2004) it seems that
their use may be seen as being complicated, researchers may not know
these procedures yet, or they may not consider the use of these proced-
ures high enough a priority for investing effort. The power calculations
that we found mostly focus on single t-test and correlation analyses and
they likely overestimate statistical power as they do not consider
multiple-testing correction at all. Finally, we observed that all but one
paper in the 2017/2018 sample used some NHST statistics. Hence, the
use of power analyses would have been justified in most papers. Our data
is consistent with evidence from text mining of the entire biomedical
literature that suggests that use of NHST statistics with p-values is the
standard statistical approach (Chavalarias et al., 2016; Ioannidis, 2019).

4.4. High population level power vs. small N designs

A further point to discuss regards the question of whether high pop-
ulation level power is always necessary for studies. As the overwhelming
majority of fMRI papers are making population level claims about the
precise location and/or quantitative aspects of brain processes (mostly
related to localizing some function in the “general human brain”) we
suggest that high population level power is necessary in most studies.
This is even more important if studies claim clinical relevance. If studies
are so vastly underpowered, claims cannot be generalized to a wider/
selected population and can only be evaluated for the group of partici-
pants tested (Friston, 1999).

A related note concerns the use of so-called small N designs (Smith
and Little, 2018). We agree that small N designs can be more appropriate
than large samples in some situations. However, simply having small N
does not turn a study into a credible small N study. Indeed, the use of
small-N designs is optimal if both measurement and theory (precise
quantitative models) are strong and there is excellent measurement pre-
cision within participants (Smith and Little, 2018). Hence, small N de-
signs require extremely high-powered individual measurement (e.g.
delivering thousands of trials to participants in psychophysics experi-
ments) and in fact typically aim to replicate their findings multiple times
in a single participant and across a group of a few participants (Smith and
Little, 2018). In contrast, in most neuroimaging studies theory is rela-
tively weak (there are no clear quantitative predictions), measurement is
weak (e.g. the expected effect size cannot be defined) and within-subject
power is very weak (Szucs and Ioannidis, 2017b). For example, as shown
in the Results here, currently very few studies deliver high trial numbers.
Overall, it is a well-known problem of neuroscience experiments that it is
often difficult to identify even well-established group level effects in
individual participants. This is probably due to both high individual
variability and to low individual and group level power that results in
highly variable findings both in their spatial localization and effect size
(see Gauter et al., 2018). Due to the above reasons currently most im-
aging studies cannot claim to have credible small N designs.

Previously we have argued that both neuroimaging and psychology
should rely much less on ‘blind’ (aiming to reject a weakly motivated ‘nil’
null hypothesis) statistical hypothesis testing and should rely more on
parameter estimation and building quantitative models for the observed
data values (Szucs and Ioannidis, 2017a). The use of credible small N
designs (Smith and Little, 2018) is in perfect agreement with this sug-
gestion and may even address the problem that fMRI researchers do not
have unlimited scanning resources. First, credible small N designs would
allow us to build and test strong quantitative models in a few partici-
pants. Then, if our models already work well in a few participants, they
could predict exact quantitative effect sizes at least in some Regions of
Interest. Subsequently, if population generalization is important, larger
preregistered studies with high statistical power could be run for a
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population of interest.
At the practical level, considering that signal to noise ratio is pro-

portional to the square root of trials used in experiments assuring high
individual level power would require collecting much larger volumes of
individual data than currently typical. Using many trials/epochs would
then substantially prolong experimental time for individual participants.
Further, the number of trials in single fMRI measurement sessions is
constrained by various practical factors. First, the sluggish nature of the
haemodynamic response requires relatively long trial durations (e.g.
much longer than in electro-encephalography experiments). Second,
fMRI scanning time is expensive (e.g. costs may be higher than £500/
hour in the United Kingdom). Third, lying in the scanner relatively
motionless is tiring for participants. Fourth, complex cognitive experi-
ments may need long trial durations which restrict the number of trials
doable in a single imaging session. The only solution may be to collect
many trials in multiple runs. However, in such a case multi-level analysis
is needed to factor in potential discrepancies across sessions. Moreover,
research grants can rarely offer funds for long/repeated scanning ses-
sions. Hence, overall several practical limitations often beyond the con-
trol of researchers restrict increasing individual measurement precision
in studies.

Regarding experimental trial numbers our data shows that individual
research groups may use very different trial numbers even in relatively
similar experimental designs. Overall there is very great variability in
trial numbers per experiment condition in the literature. Hence, indi-
vidual measurement precision is likely to vary greatly across studies and
research groups. A note concerns the potential approach of aiming to
increase confidence in group level findings by replicating initial findings
from an experiment in a second pre-registered experiment within the
same paper. For example, this approach could be used in explorative
studies that could not initially include power calculations because rele-
vant effect sizes could not be determined but they still intend to make
population level claims. Clearly, without replication experiments such
claims from explorative findings must be treated with the utmost caution
and should not be considered ‘scientific truth’ (see discussion in Szucs
and Ioannidis, 2017a). While the above approach would be beneficial,
this practice is currently very rare: 9 out of 273 papers had replication
experiments but none of these papers had power calculations. In addi-
tion, it may also be difficult to ensure independence of replication ex-
periments reported within a single paper.

4.5. Participant exclusions

Only 10–15% of highly cited studies reported any excluded partici-
pants. In contrast, in 2017 and 2018, 49% of studies reported at least
some excluded participants. The proportion of studies with more than 5
excluded participants also increased by about 5-fold by 2017/2018.
Importantly, studies practically never stated that no participants were
excluded. Hence, the default value was that studies have not mentioned
anything about exclusions. That is, when there were no reported exclu-
sions it may mean that there were really no exclusions or that exclusions
were simply not reported. Taking the above into account our observa-
tions about reporting exclusions raise several questions. On the one hand,
the distribution of excluded participants in highly cited papers seems
oddly biased towards 0 exclusions and it is also in conflict with the much
larger proportion of studies with exclusions and the larger number of
excluded participants in 2017/18. So, many highly cited studies may not
have reported exclusions rather than not have exclusions. If so, there may
have been a change in exclusion reporting habits during the past years.
Alternatively, perhaps the most recent papers do exclude more partici-
pants then earlier papers. For example, more recent papers may apply
more stringent exclusion criteria than in the past by excluding partici-
pants with noisy measurements. Were this this case, the higher noise
level of highly cited studies would result in more false positive outcomes
than in more recent studies. Overall, it is not possible to decide which of
the above scenarios may be more probable. However, it is important to

http://www.neuropowertools.org
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note that exclusions should be well documented in all cases as arbitrary
exclusions do allow for high ‘researcher degree of freedom’ and so have
implications for data dredging and N-hacking (Simmons et al., 2011;
Carp, 2012; Szucs, 2016). For example, if participants not confirming to
group averages are simply deemed ‘noisy’ and are excluded from samples
then the data will get seriously distorted and will not be representative of
the population. Therefore, it would be important to clarify and define the
exact exclusion criteria and numbers in research fields. If data is pub-
lished, data from excluded participants should also be published.

4.6. The clarity of reporting

Besides the uncertainty about interpreting the above exclusion data it
is also noteworthy that extracting condition numbers and trial numbers
in each condition in published papers was particularly difficult due to
completely idiosyncratic descriptions and missing information. For
example, it is striking that in nearly 25% (33/142) of the highly cited
event-related design experimental fMRI studies we were unable to find
out how many trials were used in experiments. These results are
consistent with previous observations on poor reporting standards in
neuroimaging (Carp, 2012; Guo et al., 2014). Unclear reporting of study
parameters is a particular danger in neuroimaging where a large number
of often complicated and opaque procedures are used and seemingly
minor changes in some (undocumented) (pre-)analysis parameters can
result in major distortions of data (Carp, 2012). In order to increase
reporting standards, the Organization for Human Brain Mapping’s
2015-16 Committee on Best Practices in Data Analysis and Sharing
(COBIDAS) has formulated several reporting guidelines (Nichols et al.,
2016; Nichols et al., 2017; for a summary see Box 4 in Poldrack et al.,
2017). We suggest that journal editors need to enforce these guidelines.
Based on these reporting guidelines it would also be desirable to quickly
develop ‘industry standards’ for the exact reporting formats for technical
aspects of neuroimaging studies including power requirements. For
example, the creation of the Brain Imaging Data Structure (BIDS; Gor-
golewski et al., 2016) is an attempt to standardize data sharing/reporting
formats. A complementary approach could be to link standard reporting
cards to all neuroimaging papers. For example, Nature Research has
already started using standard ‘Reporting Summaries for MRI studies’.
However, we suggest a more formal, comprehensive and universally
required approach providing detail on all standard aspects of imaging
studies (see related discussion in Begley and Ioannidis, 2015). Using such
reporting cards would also make researchers’ job easier as they could
check whether they have carefully planned and documented all aspects of
their study. Standardized reporting would also make papers easily ma-
chine readable, with their data being possible to re-analyze and to
combine.

5. Conclusions

Besides clear and standardized reporting, in our opinion two key in-
gredients of future population-level hypothesis testing studies are pre-
registration (optimally, with pre-study acceptance by journals) and a
principled increase in sample sizes (Hardwicke and Ioannidis, 2018;
Munafo et al., 2017; Poldrack et al., 2017; Szucs and Ioannidis, 2017b;
Ioannidis et al., 2014). Pre-registration guarantees that studies get pub-
lished based on pre-study significance and thereforemay largely decrease
incentives for rephrasing exploratory results to give the impression of
pre-hypothesized and expected results. Decreasing publication bias
would also decrease effect size exaggeration (as negative findings would
get published). Principled sample size increase should be based on
pre-study power calculations specifying sought after realistic effect sizes
in NHST studies.

The consistent historic increase in sample sizes suggests that we may
be able to break the long ‘tradition’ of criticizing low power but not
improving the situation (Sedlmeyer and Gigerenzer, 1989). However, the
increase in sample sizes could be sped up by targeted and timely
10
interventions by both publishers and funders. Funding contracts could
specify power-calculation-based sample sizes, fund studies appropriately
if population generalizability is of interest, require pre-registration for
studies with pre-defined hypotheses, standardized reporting of method-
s/results, the necessity of publishing all analysis code and raw data
(Poldrack et al., 2017). Such changes would provide funders with cer-
tainty that their money is not wasted.

It is tempting to assume that many of the highly cited papers analyzed
here are probably replicated given that so many other scientists cite
them. However, high citations are not synonymous with replication. It is
well known from other fields that some papers get extremely heavily
cited without any attempt to replicate them and that when replication
eventually is attempted, it fails (Ioannidis, 2007; for neuroimaging see:
Boekel et al., 2015). A survey of the most-highly cited papers across all
medicine has shown that of the most-cited observational studies 5 out of
6 were subsequently refuted and even a quarter of randomized trials were
contradicted (Ioannidis, 2005). Exact replication in particular is often
avoided and this may allow building large literatures upon questionable
findings (Ioannidis 2007, 2012). Therefore, we suggest that, whenever
this has not been done already, the exact replication of some highly cited
influential studies should be high priority as many of these
ground-breaking studies were done in a previous era with deficient
sample size standards. Consequently, some highly cited studies in neu-
roimaging may have high false report probability (Szucs and Ioannidis,
2017a; b).
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