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ABSTRACT 1 

Objective: We employed Mendelian randomization (MR) to explore the effects of genetic 2 

predisposition to type 2 diabetes (T2D), hyperglycemia, insulin resistance, and β-cell 3 

dysfunction on risk of stroke subtypes and related cerebrovascular phenotypes. 4 

Methods: We selected instruments for genetic predisposition to T2D (74,124 cases, 824,006 5 

controls), HbA1c levels (n=421,923), fasting glucose levels (n=133,010), insulin resistance 6 

(n=108,557), and β-cell dysfunction (n=16,378) based on published genome-wide association 7 

studies. Applying two-sample MR, we examined associations with ischemic stroke (60,341 8 

cases, 454,450 controls), intracerebral hemorrhage (1,545 cases, 1,481 controls), and ischemic 9 

stroke subtypes (large artery, cardioembolic, small vessel stroke), as well as with related 10 

phenotypes (carotid atherosclerosis, imaging markers of cerebral white matter integrity, and 11 

brain atrophy).  12 

Results: Genetic predisposition to T2D and higher HbA1c levels were associated with higher 13 

risk of any ischemic stroke, large artery stroke, and small vessel stroke. Similar associations 14 

were also noted for carotid atherosclerotic plaque, fractional anisotropy, a white matter disease 15 

marker, and markers of brain atrophy. We further found associations of genetic predisposition 16 

to insulin resistance with large artery and small vessel stroke, whereas predisposition to β-cell 17 

dysfunction was associated with small vessel stroke, intracerebral hemorrhage, lower grey 18 

matter volume, and total brain volume. 19 

Conclusions: This study supports causal effects of T2D and hyperglycemia on large artery and 20 

small vessel stroke. We show associations of genetically predicted insulin resistance and β-cell 21 

dysfunction with large artery and small vessel stroke that might have implications for anti-22 

diabetic treatments targeting these mechanisms. 23 
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Classification of Evidence: This study provides Class II evidence that genetic predisposition 1 

to T2D and higher HbA1c levels are associated with a higher risk of large artery and small 2 

vessel ischemic stroke. 3 

  4 
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INTRODUCTION 1 

Cerebrovascular disease is a major public health issue ranking as the second leading cause of 2 

mortality and adult disability worldwide 1,2. Type 2 diabetes (T2D) is an established risk factor 3 

for cerebrovascular disease 3,4. In cohort studies, T2D shows associations with higher risk for 4 

both ischemic and hemorrhagic stroke independently of other risk factors 5. Also, several 5 

studies found associations of measures of hyperglycemia (glycated hemoglobin (HbA1c) and 6 

fasting glucose levels) with risk of stroke, both in patients with and without diabetes 5. 7 

However, large-scale randomized controlled trials (RCTs) testing intensive glucose-lowering in 8 

patients with T2D show no significant reductions in risk of stroke, possibly due to insufficient 9 

power 6-8. Moreover, the effects of T2D or hyperglycemia on etiological stroke subtypes (large 10 

artery stroke, cardioembolic stroke, small vessel stroke, intracerebral hemorrhage) remain 11 

elusive.  12 

Currently available anti-diabetic medications act by either directly lowering glucose levels or 13 

by targeting two major mechanisms that contribute to hyperglycemia: insulin resistance or 14 

pancreatic β-cell dysfunction 9. Observational data suggest that markers of insulin resistance, β-15 

cell dysfunction, and hyperglycemia influence the risk of cardiovascular disease independently 16 

of each other 10,11. However, data on stroke and its etiological subtypes are lacking. Moreover, 17 

there is a risk of confounding and reverse causation in observational studies. Developing 18 

targeted strategies for stroke prevention in patients at risk or suffering from T2D would require 19 

disentangling these relationships. 20 

Mendelian randomization (MR) may help to clarify these associations. MR uses genetic 21 

variants as instruments for traits of interest and is not prone to confounding and reverse 22 

causation 12. As such, MR has been proven a powerful methodology for inferring causality 13,14. 23 

The availability of large-scale genome-wide association studies (GWAS) with detailed 24 
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phenotyping of cases further enables the exploration of etiological stroke subtypes that are 1 

typically not considered in observational studies. 2 

Here, we leveraged large-scale data from GWASs and performed MR analyses, with the 3 

following aims: (i) to examine the effects of genetic predisposition to T2D on risk of ischemic 4 

stroke, ischemic stroke subtypes, and intracerebral hemorrhage; (ii) to explore the effects of 5 

genetically predicted measures of hyperglycemia (HbA1c and fasting glucose levels) on these 6 

phenotypes; (iii) to examine the associations of genetic predisposition to insulin resistance and 7 

β-cell dysfunction with major stroke etiologies; and (iv) to explore associations between 8 

diabetic traits and related vascular phenotypes including carotid atherosclerosis, neuroimaging 9 

markers of white mater integrity, and brain atrophy.  10 

 11 

METHODS 12 

Study design and data sources 13 

This is a two-sample MR study following the guidelines for strengthening the reporting of 14 

Mendelian randomization studies (STROBE-MR) 15. The study is based on publicly available 15 

summary statistics from GWAS consortia. Data sources are detailed in Table 1. MR uses 16 

genetic variants associated with exposures of interest and then explores the associations 17 

between the genetic predisposition to this exposure or the genetically predicted levels of the 18 

exposure phenotype with disease outcomes. As the genetic predisposition to a trait of interest is 19 

not affected by potential confounders, this approach is considered to be less prone to 20 

confounding, as compared to traditional observational analyses. 21 

Our study design is depicted in Figure e-1 and a detailed description of the phenotypes 22 

explored as exposures is provided in Supplemental Table e-1. We explored associations of 23 

genetic predisposition to T2D, measures of hyperglycemia (HbA1c and fasting glucose levels), 24 
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as well as markers of insulin resistance and β-cell dysfunction with cerebrovascular disease 1 

phenotypes including stroke subtypes, carotid atherosclerosis, white matter (WM) integrity, and 2 

brain atrophy. Information on genetic variants used as instruments are presented in 3 

Supplemental Tables e-2 to e-7.  4 

 5 

Genetic instrument selection  6 

Diabetes mellitus type 2. We selected genetic instruments from the latest GWAS meta-analysis 7 

for T2D based on 74,124 cases and 824,006 controls of European ancestry from 32 studies 8 

included in the DIAGRAM consortium 16. The analyses were adjusted for age, sex, and 9 

population structure. There were 403 distinct genetic variants showing significant associations 10 

with T2D in this meta-analysis. We clumped these variants for linkage disequilibrium based on 11 

a distance window of 10,000 kB and an r2<0.01 and used the remaining 289 variants as 12 

instruments (Table e-2). Given the average LD block length of 22,000 kB,17 we used a 10,000 13 

kB clumping window, with the notice that we cannot rule out very long-range LD effects.  14 

Hyperglycemia. We selected genetic instruments for HbA1c levels (per 1%-increment) based 15 

on two different GWASs that we performed on individuals of White British ancestry in the UK 16 

Biobank (UKB) 18. In the primary analysis, we explored HbA1c levels across the entire range 17 

of its values among both diabetic and non-diabetic individuals (n= 421,923). In this analysis, 18 

we only excluded individuals on anti-diabetic medications or insulin at the start of the study 19 

(n=5,468), as these medications affect HbA1c levels beyond genetic influence. In a secondary 20 

analysis, we explored HbA1c levels in the pre-diabetic range among diabetes-free individuals. 21 

In this analysis, we excluded individuals with self-reported history of physician-diagnosed 22 

diabetes, use of oral antidiabetic drugs or insulin, HbA1c level >6.5%, or random glucose 23 

levels >200 mg/dl (n=400,989). In both analyses, we also excluded 17,534 individuals that 24 

were included in the GWAS analysis for imaging phenotypes (see below) to avoid population 25 
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overlap between exposure and outcome datasets. We adjusted for age, sex, genotyping platform 1 

array, assessment center, and the first 20 principal components of the population structure and 2 

performed the analyses using BOLT-LMM with correction for relatedness and subtle 3 

population stratification. For fasting glucose levels (per 1-SD increment), we used the most 4 

recent GWAS meta-analysis (adjusted for age, sex, and population structure) by the MAGIC 5 

consortium on 133,010 diabetes-free individuals of European ancestry 19. For both HbA1c and 6 

fasting glucose, we selected as instruments genetic variants reaching genome-wide significance 7 

(p<5x10-8) after clumping at an r2<0.01 threshold (clumping window 10,000 kB). We identified 8 

333 instruments for HbA1c among both diabetic and non-diabetic individuals, 543 instruments 9 

for HbA1c levels among diabetes-free individuals, and 21 for fasting glucose levels among 10 

diabetes-free individuals (Tables e-3 to e-5).  11 

As several variants may influence HbA1c levels through effects on erythrocyte biology and not 12 

by inducing hyperglycemia 20, to isolate the effects of the hyperglycemia-related genetic 13 

component of HbA1c levels, we performed sensitivity analyses excluding those variants 14 

reported to be associated at p<0.001 with erythrocyte-related traits (hemoglobin concentration, 15 

red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin 16 

concentration, mean corpuscular hemoglobin, red cell distribution width, reticulocyte count, 17 

reticulocyte fraction of red cells, immature fraction of reticulocytes, high light scatter 18 

percentage of red cells, high light scatter reticulocyte count) in Phenoscanner 21. 19 

Insulin resistance and β-cell dysfunction. As instruments for insulin resistance we used 53 20 

genetic variants identified in a multi-trait GWAS to associate with the three components of this 21 

phenotype (fasting insulin levels, triglycerides and HDL-cholesterol; Table e-6) 22. All three 22 

GWASs that were used to perform the multi-trait GWAS were based exclusively on European 23 

individuals. We weighted the instruments based on their effects on fasting insulin levels (per 1-24 

log increment) in a GWAS meta-analysis of 108,557 diabetes-free European individuals 19. In 25 
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accordance with existing literature, we proxied β-cell dysfunction based on fasting proinsulin 1 

levels (per 1 log-increment) 23,24. We used summary statistics from a GWAS meta-analysis of 2 

16,378 diabetes-free European individuals and identified 21 genetic instruments (at p<5x10-8, 3 

r2<0.01; clumping window 10,000 kB; Table e-7) 23. The GWAS for fasting insulin levels was 4 

adjusted for age, sex, and population structure 19, whereas the GWAS for pro-insulin was 5 

additionally adjusted for fasting insulin levels 23.  6 

We further used T2D-associated genetic variants previously grouped into clusters of diabetic 7 

endophenotypes; three clusters of insulin resistance (related to obesity, fat distribution, or lipid 8 

metabolism) and two clusters of β-cell dysfunction both associated with reduced levels of 9 

fasting insulin, but with opposing effects on fasting proinsulin 25. We used the clusters of the 10 

variants and the respective weights per variant and cluster, as described by Udler et al. (Table 11 

e-8) 25. 12 

 13 

Proportion of explained variance  14 

For all genetic variants used as instruments, we estimated the proportion of explained variance 15 

for the respective phenotypes (Tables e-2 to e-7). We estimated the variance explained by each 16 

genetic variant for T2D based on the method by So et al. for binary phenotypes 26 and for the 17 

continuous traits we used a previously described formula based on summary statistics 27. For 18 

the estimations regarding T2D, we used a prevalence rate of 8.5%, according to the 2015 19 

estimate of the global prevalence of the disease by the International Diabetes Federation 28.  20 

 21 

Associations with outcomes 22 

We then examined associations of the selected instruments with ischemic stroke, ischemic 23 

stroke subtypes, and intracerebral hemorrhage (ICH) as the primary outcomes of interest. For 24 
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ischemic stroke, we used summary GWAS data from MEGASTROKE, mainly consisting of 1 

European individuals (70%) 29,30. We extracted summary GWAS statistics for any ischemic 2 

stroke (60,341 cases, 451,210 controls) and for the major ischemic stroke subtypes: large artery 3 

stroke (6,688 cases, 238,513 controls), cardioembolic stroke (9,006 cases, 352,852 controls), 4 

and small vessel stroke (11,710 cases, 287,067 controls). The major ischemic stroke subtypes 5 

in MEGASTROKE were defined according to the TOAST criteria 31. In sensitivity analyses, 6 

we also restricted our analyses to solely individuals of European ancestry. GWAS data for ICH 7 

were derived from the International Stroke Genetics Consortium (ISGC) GWAS meta-analysis 8 

including 1,545 cases and 1,481 controls of European ancestry 32.  9 

Presence of carotid plaque, markers of WM tract integrity (WM hyperintensities (WMH) 10 

volume, mean diffusivity, fractional anisotropy), and markers of brain atrophy (grey matter 11 

volume, total brain volume) were explored as secondary outcomes. Carotid plaque data were 12 

derived from a GWAS meta-analysis (21,540 cases, 26,894 controls of European ancestry) 13 

from the CHARGE consortium.33 As detailed in this meta-analysis, carotid plaques across the 14 

individual studies was defined by atherosclerotic thickening of the common carotid artery wall 15 

or the proxy measure of luminal stenosis greater than 25% 33. For the imaging phenotypes 16 

(WMH volume, mean diffusivity, fractional anisotropy, grey matter volume, total brain 17 

volume), we undertook GWAS analyses in the UK Biobank neuroimaging dataset including 18 

17,534 individuals of White British ancestry based on the MRI sequences 34. In this analysis, 19 

we excluded study participants who reported having received a diagnosis of dementia, 20 

Alzheimer’s disease, Parkinson’s disease or any other chronic degenerative neurological 21 

problem, demyelinating diseases, brain cancer, nervous system infection, brain abscess, 22 

encephalitis, cerebral palsy, head or neurological injury/trauma, brain hemorrhage, cerebral 23 

aneurysm, or stroke (N= 388). We performed linear regression analyses (additive models) for 24 

ln-transformed WMH volume, the first principal components of all measurements of mean 25 
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diffusivity and fractional anisotropy across the different white matter tracts in the diffusion 1 

sequences, and for normalized grey matter and total brain volumes. Adjustments were made for 2 

age, sex, mean resting and task functional MRI head motion, the genotype platform array, and 3 

the first 10 principal components of the population structure.  4 

 5 

Statistical analysis 6 

All analyses were performed in R (v3.5.0; The R Foundation for Statistical Computing) using 7 

the MendelianRandomization, TwoSampleMR, and the MR-PRESSO packages. 8 

Main analyses. We applied two-sample MR using association estimates derived from the 9 

abovementioned sources. Following extraction of the SNP-specific association estimates 10 

between the instruments and the outcomes, and harmonization of the direction of estimates by 11 

effect alleles, we computed MR estimates for each instrument with the Wald estimator. We 12 

calculated standard errors with the Delta method. We then pooled individual MR estimates 13 

using random-effects inverse-variance weighted (IVW) meta-analyses 35. For the main 14 

analyses, we corrected for multiple comparisons with the false discovery rate (FDR) approach 15 

and set statistical significance at q-value<0.05. Associations not reaching this threshold, but 16 

showing an unadjusted p<0.05 were considered of nominal significance. 17 

Assessment of pleiotropy and sensitivity analyses. MR estimates derived from the IVW 18 

approach could be biased in the presence of directional horizontal pleiotropy. As a measure of 19 

overall pleiotropy, we assessed heterogeneity across the SNP-specific MR estimates in the 20 

IVW MR analyses with the Cochran’s Q statistic (statistical significance set at p<0.05) 36. We 21 

further applied alternative MR methods which are more robust to pleiotropic variants. The 22 

weighted median estimator allows the use of invalid instruments as long as at least half of the 23 

instruments used in the MR analysis are valid 37. The MR-Egger regression allows for the 24 
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estimation of an intercept term that can be used as an indicator of unbalanced directional 1 

pleiotropy 38. MR-Egger provides less precise estimates and relies on the assumption that the 2 

strengths of potential pleiotropic instruments are independent of their direct associations with 3 

the outcome 38. The intercept obtained from MR-Egger regression was used as a measure of 4 

unbalanced pleiotropy (p<0.05 indicated significance) 38. Finally, MR-PRESSO regresses the 5 

SNP-outcome estimates against the SNP-exposure estimates to test for outlier SNPs 39. Outliers 6 

are detected by sequentially removing all variants from the analyses and comparing the residual 7 

sum of squares as a global measure of heterogeneity (p<0.05 for detecting outliers); outliers are 8 

then removed and outlier-corrected estimates are provided. MR-PRESSO still relies on the 9 

assumption that at least half of the variants are valid instruments 39. Finally, when significant 10 

results were found, we also applied bidirectional MR analyses to test for any inverse 11 

associations using diabetes and glucose-related traits as outcomes and stroke subtypes as 12 

exposures. For these analyses, due to the low number of SNPs associated with stroke or stroke 13 

subtypes, we lowered our p-value threshold for selecting genetic instruments at p<10-6. 14 

 15 

Primary research question/ Classification of evidence 16 

Is genetic predisposition to T2D and hyperglycemia associated with the risk of stroke subtypes? 17 

This study provides Class II evidence that genetic predisposition to T2D and higher HbA1c 18 

levels are associated with a higher risk of large artery ischemic stroke (OR per 1-log-increment 19 

in T2D odds: 1.22, 95%CI: 1.17-1.28; OR per 1%-increment in HbA1c levels: 2.06, 95%CI: 20 

1.60-2.66), and small vessel ischemic stroke (OR per 1-log-increment in T2D odds: 1.18, 21 

95%CI: 1.13-1.23; OR per 1%-increment in HbA1c levels: 1.85, 95%CI: 1.50-2.27). 22 

 23 

Standard Protocol Approvals, Registrations, and Patient Consents  24 
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This study, conducted in accordance with the STROBE-MR criteria15 was based on publicly 1 

available summary statistics from GWAS meta-analyses of individual studies that had already 2 

obtained ethical review board approvals and that had obtained written informed consent from 3 

all included patients or their guardians. 4 

 5 

Data availability statement 6 

This study was based on summary statistics. Data sources are detailed in Table 1. The data 7 

from the GWAS studies for ischemic stroke, ICH, and glycemic traits are publicly available 8 

and may be accessed through the MEGASTROKE,40 the ISGC 41, and the MAGIC 42 websites, 9 

respectively. Data from the UK Biobank GWAS for the neuroimaging traits may be accessed 10 

through an application to the UK Biobank. Data for the carotid plaque phenotype may be 11 

accessed through an application to the CHARGE Consortium. The detailed information on the 12 

genetic variants used as instruments to produce the presented results are available as 13 

Supplementary material (Tables e-2 to e-8).  14 

 15 

RESULTS 16 

The 289 genetic variants used as genetic instruments for T2D explained 12.7% of the variance 17 

in T2D prevalence (Table e-2), whereas variants used as instruments for the continuous 18 

hyperglycemia traits, insulin resistance (proxied by fasting insulin levels), and β-cell 19 

dysfunction (proxied by fasting proinsulin), explained lower proportions of variance: 2.6% for 20 

HbA1c among both diabetic and non-diabetic individuals, 1.9% for HbA1c among non-diabetic 21 

individuals, 1.5% for fasting glucose, 0.7% for insulin resistance, and 4.5% for β-cell 22 

dysfunction (Tables e-1 to e-5).  23 

 24 
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Genetic predisposition to type 2 diabetes mellitus and risk of stroke  1 

In the primary IVW MR analyses, genetic predisposition to T2D (1-log-increment=2.72-fold 2 

higher odds) was significantly associated with a higher risk of any ischemic stroke (OR: 1.11, 3 

95%CI: 1.08-1.13), large artery stroke (OR: 1.22, 95%CI: 1.17-1.28), and small vessel stroke 4 

(OR: 1.18, 95%CI: 1.13-1.23; Figure 1A). In addition, there was an association of nominal 5 

significance with higher risk of cardioembolic stroke (OR: 1.05, 95%CI: 1.01-1.09), but no 6 

significant association with ICH (OR: 1.09, 95%CI: 0.97-1.23; Figure 1A). With the exception 7 

of ICH, there was evidence of significant heterogeneity in all of the main analyses (p<0.05; 8 

Table e-9), but no evidence of unbalanced pleiotropy, as assessed by the Egger intercept p-9 

values (all p>0.05; Table e-10). Across sensitivity analyses based on alternative MR methods 10 

(weighted median, MR-Egger, outlier-corrected MR-PRESSO), all effects remained 11 

directionally consistent and all estimates stable with p<0.05 for any ischemic stroke, large 12 

artery stroke, and small vessel stroke (Table e-10). Similar results were also obtained when 13 

restricting the analyses to the European population of MEGASTROKE (Table e-10). 14 

Bidirectional MR analyses showed no effect of genetic predisposition to any ischemic stroke, 15 

large artery stroke, or small vessel stroke on risk of T2D (Table e-11). 16 

 17 

Genetic predisposition to measures of hyperglycemia and risk of stroke  18 

In analyses of hyperglycemia traits we found that genetically predicted HbA1c levels (per 1%-19 

increment) were significantly associated with risk of any ischemic stroke (OR: 1.36, 95%CI: 20 

1.21-1.53), large artery stroke (OR: 2.06, 95%CI: 1.60-2.66), and small vessel stroke (OR: 21 

1.85, 95%CI: 1.50-2.27; Figure 1B). There was evidence of heterogeneity in the analyses for 22 

HbA1c levels (Table e-8) and in some alternative MR analyses the effect estimates for any 23 

ischemic stroke, large artery stroke, and small vessel stroke were smaller (Table e-8). 24 

However, in sensitivity analyses that excluded SNPs influencing HbA1c levels through 25 
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erythrocyte-related traits, the association estimates were even larger (ischemic stroke, OR: 1 

1.53, 95%CI: 1.35-1.75; large artery stroke, OR: 2.83, 95%CI: 2.06-3.89; small vessel stroke, 2 

OR: 2.26, 95%CI: 1.72-2.97; Table e-10) and there was no evidence of heterogeneity (all 3 

p>0.10). Similar results were obtained when restricting analyses for stroke subtypes to the 4 

European population of MEGASTROKE, as well as when performing analyses for HbA1c in 5 

the non-diabetic range among diabetes-free individuals (Figure e-2; Table e-10). In 6 

bidirectional MR analyses genetic predisposition to any ischemic stroke, large artery stroke, or 7 

small vessel stroke was not associated with HbA1c levels (Table e-11). In contrast, we found 8 

no significant associations between genetically predicted fasting glucose levels among 9 

diabetes-free individuals and risk of stroke subtypes (Figure e-2; Table e-10).  10 

 11 

Genetic predisposition to insulin resistance, β-cell dysfunction, and risk of stroke 12 

We next selected genetic variants as instruments for insulin resistance and β-cell dysfunction, 13 

the two primary underlying mechanisms contributing to the development of hyperglycemia and 14 

T2D. Among diabetes-free individuals, we found genetic predisposition to insulin resistance (1-15 

log increment in fasting insulin levels) to be associated with a higher risk for ischemic stroke 16 

(OR: 1.33, 95%CI: 1.13-1.57), large artery stroke (OR: 1.60, 95%CI: 1.12-2.31), and small 17 

vessel stroke (OR: 1.63, 95%CI: 1.21-2.20; Figure 2A). Genetic predisposition to β-cell 18 

dysfunction (1-log increment in fasting proinsulin levels) was further associated with a higher 19 

risk for small vessel stroke (OR: 1.38, 95%CI: 1.17-1.63) and ICH (OR: 1.75, 95%CI: 1.21-20 

2.52). Furthermore, there was an association of nominal significance between genetic 21 

predisposition to β-cell dysfunction and the risk of cardioembolic stroke (OR: 1.18, 95%CI: 22 

1.03-1.35). There was no heterogeneity in these analyses (Table e-9) and the results were 23 

consistent in alternative MR analyses, as well as in analyses restricted to individuals of 24 

European ancestry (Table e-10).  25 
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To gain additional insights in the relationship between insulin resistance, β-cell dysfunction, and 1 

etiological stroke subtypes, we further explored the effects of T2D-associated variants clustered 2 

in five different mechanisms of action. These included three clusters for insulin resistance 3 

(mediated by obesity, fat distribution, lipid metabolism) and two clusters related to β-cell 4 

dysfunction (associated with high or low proinsulin). In multivariable analyses including all 5 

clusters and also adjusting for their effects on HbA1c, we found significant effects of genetic 6 

predisposition to β-cell dysfunction related to high proinsulin on risk of ischemic stroke and 7 

small vessel stroke (Figure 2B). We further found genetic predisposition to insulin resistance 8 

mediated through altered fat distribution to be associated with higher risk of small vessel stroke. 9 

Genetic predisposition to insulin resistance mediated through obesity showed associations of 10 

nominal significance with large artery and cardioembolic stroke. 11 

 12 

Genetic predisposition to type 2 diabetes and glycemis traits and associations with 13 

etiologically related cerebrovascular phenotypes 14 

Table 2 presents the MR associations of genetic predisposition to T2D, measures of 15 

hyperglycemia, insulin resistance, and β-cell dysfunction, with carotid plaque, as well as with 16 

neuroimaging traits related to white matter integrity and brain atrophy. Genetic predisposition 17 

to T2D and genetically elevated HbA1c levels were associated with carotid plaque. We further 18 

found a significant association between genetic predisposition to T2D and lower fractional 19 

anisotropy, a diffusion imaging marker of impaired white matter tract integrity, as well as 20 

significant associations with lower grey matter and total brain volumes (Table 2). Genetic 21 

predisposition to β-cell dysfunction (1-log increment in fasting proinsulin levels) was further 22 

associated with lower grey matter volume (beta: -0.13, 95%CI: -0.20 to -0.07) and total brain 23 

volume (beta: -0.17, 95%CI: -0.23 to -0.11; Table 2). These results remained stable in 24 

sensitivity analyses (Table e-10).  25 
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 1 

DISCUSSION 2 

Levaraging large-scale GWAS data in MR analyses, we investigated the causal associations 3 

between T2D, glycemic traits, and cerebrovascular disease. We found genetic predisposition to 4 

T2D and hyperglycemia (elevated HbA1c levels) to be associated with a higher risk of 5 

ischemic stroke, particularly large artery and small vessel stroke. Independently of 6 

hyperglycemia, genetic predisposition to insulin resistance but not β-cell dysfunction was 7 

associated with higher risk of large artery stroke, whereas genetic predisposition to both insulin 8 

resistance and β-cell dysfunction was associated with small vessel stroke. Genetic determinats 9 

for T2D and hyperglycemia further showed significant effects on carotid plaque and fractional 10 

anisotropy, a WM neuroimaging marker related to cerebral small vessel disease, as well as 11 

neuroimaging markers of brain atrophy. Furthermore, genetic predisposition to β-cell 12 

dysfunction was associated with intracerebral hemorrhage and neuroimaging markers of brain 13 

atrophy.  14 

Our MR results provide genetic evidence for a causal effect of T2D, and also hyperglycemia on 15 

risk of ischemic stroke. While T2D is among the established risk factors for stroke and vascular 16 

disease in general 4, primary prevention trials focusing on intensive glucose control or specific 17 

oral anti-diabetic agents showed inconsistent effects on stroke risk 6,8. Previous Mendelian 18 

randomization studies were underpowered to detect effects of hyperglycemia (HbA1c or fasting 19 

glucose levels) on stroke risk 43,44. Here, by using data from >400,000 individuals from the UK 20 

Biobank, we were able to show that genetically elevated HbA1c levels are associated with a 21 

higher risk of ischemic stroke, thus suggesting that preventive strategies focusing on long-term 22 

HbA1c-lowering will result in risk reductions for ischemic stroke. The lack of significant 23 

effects in previous trials might relate to insufficient power due to the low number of incident 24 
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stroke events, short follow-up periods, and differences in the efficacy profiles of the individual 1 

treatments 45. 2 

We found the effects of genetic predisposition to T2D and hyperglycemia to be specific for 3 

large artery and small vessel stroke. In accordance with these results, we found genetic 4 

predisposition to T2D to be associated with carotid plaque, an atherosclerotic phenotype, and 5 

fractional anisotropy, a marker of WM integrity associated with small vessel disease. Thus, our 6 

findings provide evidence for a causal involvement of T2D and hyperglycemia in both large 7 

artery atherosclerosis and cerebral small vessel disease. The discordant effects between 8 

genetically predicted HbA1c and fasting glucose levels might relate to the fact that HbA1c 9 

levels are a more accurate marker of average glucose levels and less prone to between-10 

measurement variability than single measurements of fasting glucose. Differences in sample 11 

sizes between the GWASs, as well as the inclusion of non-diabetic patients in the analysis for 12 

HbA1c levels might also partly explain this discordance. On the contrary, we found no 13 

significant effects of T2D or other diabetic traits on cardioembolic stroke. Differences in the 14 

magnitude of the effects between stroke subtypes might in part explain the heterogeneity in the 15 

effects of glucose-lowering treatments across previous clinical trials.45 On the basis of our 16 

findings, future trials testing glucose-lowering approaches should account for stroke subtypes. 17 

As another finding, we show that genetic predisposition to insulin resistance and β-cell 18 

dysfunction influences the risk of stroke. This could have clinical implications for oral anti-19 

diabetic medications. While all anti-diabetic agents lower glucose levels, some drug classes 20 

primarily target insulin sensitivity whereas others primarily target β-cell function.9 Specifically, 21 

metformin and thiazolidinediones primarily act by improving insulin sensitivity, whereas drug 22 

classes like, α-glucosidase inhibitors, sulfonylureas, and GLP1 receptor agonists primarily act 23 

by increasing insulin secretion from the β-cells.9 How these drug classes influence risk of the 24 

different stroke subtypes should be further explored in future research.  25 
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Our study has several methodological strengths. The large sample size (898,130 individuals for 1 

diabetic traits and up to 514,791 individuals for stroke) and nature of our datasets provided the 2 

power to detect differential effects of diabetes on etiological stroke subtypes and to perform 3 

multiple sensitivity analyses for testing the validity of the MR assumptions, thus minimizing 4 

the possibility of biased results. While the genetic determinants of HbA1c might influence its 5 

levels via both erythrocyte and glycemic biology, we provided support for the latter, as the 6 

effects were stronger when focusing on variants not associated with erythrocyte traits. 7 

Incorporating insulin resistance and β-cell dysfunction on top of hyperglycemia in the analyses 8 

offered deeper insights into the pathophysiological mechanisms linking diabetes with the 9 

different stroke subtypes. Finally, the exploration of additional cerebrovascular disease traits 10 

enabled us to triangulate our findings for stroke subtypes by showing similar associations for 11 

etiologically related phenotypes.  12 

Our study also has limitations. First, by design MR examines the effects of lifetime exposure to 13 

the traits of interest, which might differ from the effects of clinical interventions (e.g. glucose-14 

lowering approaches) applied for shorter time periods later in life. Second, T2D was analyzed 15 

as a binary trait and this might violate the monotonicity assumption of MR because only a 16 

fraction of individuals with increased genetic liability to T2D will actually get the disease. 17 

Thus, genetic liability to T2D that is used as an exposure in our analyses might capture a 18 

combination of underlying mechanisms including hyperglycemia, insulin resistance, and β-cell 19 

dysfunction. Third, the MR analyses for insulin resistance were weighted based on the effects 20 

of the genetic variants on fasting insulin adjusting for BMI and the analyses for β-cell 21 

dysfunction based on the effects of the variants on fasting pro-insulin adjusting for fasting 22 

insulin. These adjustments in the original GWASs might increase the risk for collider bias in 23 

MR analyses 46, which should be considered when interpreting our findings. Fourth, the 24 

analyses for HbA1c and fasting glucose that were restricted to non-diabetic individuals might 25 
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also introduce collider bias in the analyses, which might bias the association estimates to the 1 

null. Yet, the results for HbA1c in the entire population of both diabetic ad non-diabetic 2 

individuals showed similar results. Fifth, the variance explained by the genetic instruments 3 

used for hyperglycemic traits, insulin resistance, and β-cell dysfunction was very low, which 4 

might have limited the power of our analyses. However, despite the low proportion of variance 5 

explained, the instruments were sufficiently strong, thus ruling out potential weak instrument 6 

bias. Sixth, there was high heterogeneity in the majority of the MR analyses performed for this 7 

study. While the results from alternative MR methods were consistent, we cannot entirely rule 8 

out the possibility of bias in the derived effect estimates due to pleiotropic effects of the genetic 9 

instruments. Seventh, ischemic stroke subtypes were defined according to the TOAST 10 

classification system, which although widely used, might still inherently lead to 11 

misclassifications, especially in cases of mixed stroke etiology. Eighth, many of our exposure 12 

phenotypes like HbA1c levels, fasting glucose, and fasting insulin are time-dependent and 13 

might change with age, disease stage, and behavioral factors, as well as by epigenetic factors. 14 

However, our MR analyses are inherently limited in not taking such effects into account. Novel 15 

methods in addressing the time-varying effects 47 of these phenotypes on stroke subtypes 16 

should be examined in the future using datasets with available data. Finally, our analyses were 17 

primarily based on datasets involving individuals of European ancestry and might thus not be 18 

applicable to other ethnicities. 19 

In conclusion, our results suggest causal associations of T2D and hyperglycemia with a higher 20 

risk for ischemic stroke, particularly large artery and small vessel stroke. Against findings from 21 

secondary analyses of clinical trials, our results support that therapeutic approaches aimed at 22 

lowering HbA1c have the potential to decrease the risk of ischemic stroke.  23 

 24 

  25 



21 

 

Appendix 1. Authors. 1 

Name Location Role Contribution 

Marios K. 
Georgakis, MD, MSc 

LMU 
Munich, 
Germany 

Author Concept and design; data acquisition, analysis, 
and interpretation of data; statistical analysis; 
drafting of the manuscript; critical revision of 
the manuscript for intellectual content  

Eric L Harshfield, 
PhD 

Cambridge 
University, 
UK 

Author Concept and design; data acquisition, analysis, 
and interpretation of data; critical revision of 
the manuscript for intellectual content  

Rainer Malik PhD LMU 
Munich, 
Germany 

Author Data acquisition, analysis, and interpretation of 
data; statistical analysis; critical revision of the 
manuscript for intellectual content 

Nora Franceschini, 
MD, MPH 

UNC 
Gillings, NC, 
USA 

Author Data acquisition, analysis, and interpretation of 
data; critical revision of the manuscript for 
intellectual content 

Claudia Langenberg, 
MD, PhD 

Cambridge 
University, 
UK 

Author Concept and design; Data acquisition, analysis, 
and interpretation of data; critical revision of 
the manuscript for intellectual content 

Nicholas J. 
Wareham, MD, PhD 

Cambridge 
University, 
UK 

Author Concept and design; data acquisition, analysis, 
and interpretation of data; critical revision of 
the manuscript for intellectual content  

Hugh S. Markus, 
DM, F Med Sci 

Cambridge 
University, 
UK 

Author Concept and design; data acquisition, analysis, 
and interpretation of data; critical revision of 
the manuscript for intellectual content  

Martin Dichgans, 
MD 

LMU 
Munich, 
Germany 

Author Concept and design; data acquisition, analysis, 
and interpretation of data; critical revision of 
the manuscript for intellectual content  

 2 

  3 



22 

 

REFERENCES 1 

1. G. B. D. DALYs and Hale Collaborators. Global, regional, and national disability-adjusted life-years 2 
(DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for 3 
the Global Burden of Disease Study 2015. Lancet 2016;388:1603-1658. 4 
2. G. B. D. Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-5 
cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the 6 
Global Burden of Disease Study 2015. Lancet 2016;388:1459-1544. 7 
3. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and 8 
cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2019. 9 
4. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a 10 
statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 11 
2014;45:3754-3832. 12 
5. Emerging Risk Factors C, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, 13 
and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215-2222. 14 
6. Fang HJ, Zhou YH, Tian YJ, Du HY, Sun YX, Zhong LY. Effects of intensive glucose lowering in 15 
treatment of type 2 diabetes mellitus on cardiovascular outcomes: A meta-analysis of data from 58,160 patients in 16 
13 randomized controlled trials. Int J Cardiol 2016;218:50-58. 17 
7. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, et al. Effects of 18 
intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-2559. 19 
8. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular 20 
outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 21 
2009;373:1765-1772. 22 
9. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 23 
2 diabetes mellitus. Nat Rev Endocrinol 2016;12:566-592. 24 
10. Zethelius B, Byberg L, Hales CN, Lithell H, Berne C. Proinsulin is an independent predictor of coronary 25 
heart disease: Report from a 27-year follow-up study. Circulation 2002;105:2153-2158. 26 
11. Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident 27 
cardiovascular events in adults without diabetes: meta-analysis. PLoS One 2012;7:e52036. 28 
12. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: 29 
challenges in evaluating causality. Nature reviews Cardiology 2017;14:577-590. 30 
13. O'Donnell CJ, Sabatine MS. Opportunities and Challenges in Mendelian Randomization Studies to Guide 31 
Trial Design. JAMA Cardiol 2018;3:967. 32 
14. Georgakis MK, Gill D, Rannikmae K, et al. Genetically Determined Levels of Circulating Cytokines and 33 
Risk of Stroke. Circulation 2019;139:256-268. 34 
15. Davey Smith G, Davies NM, Dimou N, et al. STROBE-MR: Guidelines for strengthening the reporting 35 
of Mendelian randomization studies. . PeerJ Preprints 2019;7:e27857v27851. 36 
16. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution 37 
using high-density imputation and islet-specific epigenome maps. Nat Genet 2018;50:1505-1513. 38 
17. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. 39 
Science 2002;296:2225-2229. 40 
18. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of 41 
a wide range of complex diseases of middle and old age. PLoS Med 2015;12:e1001779. 42 
19. Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci influencing 43 
glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012;44:991-1005. 44 
20. Wheeler E, Leong A, Liu CT, et al. Impact of common genetic determinants of Hemoglobin A1c on type 45 
2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS 46 
Med 2017;14:e1002383. 47 
21. Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human 48 
genotype-phenotype associations. Bioinformatics 2019;35:4851-4853. 49 
22. Heid IM, Winkler TW. A multitrait GWAS sheds light on insulin resistance. Nat Genet 2016;49:7-8. 50 
23. Strawbridge RJ, Dupuis J, Prokopenko I, et al. Genome-wide association identifies nine common variants 51 
associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. 52 
Diabetes 2011;60:2624-2634. 53 
24. Li M, Feng D, Zhang K, Gao S, Lu J. Disproportionately Elevated Proinsulin Levels as an Early Indicator 54 
of beta-Cell Dysfunction in Nondiabetic Offspring of Chinese Diabetic Patients. Int J Endocrinol 55 
2016;2016:4740678. 56 
25. Udler MS, Kim J, von Grotthuss M, et al. Type 2 diabetes genetic loci informed by multi-trait 57 
associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med 2018;15:e1002654. 58 



23 

 

26. So HC, Gui AH, Cherny SS, Sham PC. Evaluating the heritability explained by known susceptibility 1 
variants: a survey of ten complex diseases. Genet Epidemiol 2011;35:310-317. 2 
27. Shim H, Chasman DI, Smith JD, et al. A multivariate genome-wide association analysis of 10 LDL 3 
subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 2015;10:e0120758. 4 
28. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the 5 
prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017;128:40-50. 6 
29. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects 7 
identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018;50:524-537. 8 
30. Malik R, Rannikmae K, Traylor M, et al. Genome-wide meta-analysis identifies 3 novel loci associated 9 
with stroke. Ann Neurol 2018;84:934-939. 10 
31. Adams HP, Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. 11 
Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 12 
1993;24:35-41. 13 
32. Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association studies identifies 1q22 14 
as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet 2014;94:511-521. 15 
33. Franceschini N, Giambartolomei C, de Vries PS, et al. GWAS and colocalization analyses implicate 16 
carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat Commun 2018;9:5141. 17 
34. Cox SR, Lyall DM, Ritchie SJ, et al. Associations between vascular risk factors and brain MRI indices in 18 
UK Biobank. Eur Heart J 2019;40:2290-2300. 19 
35. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic 20 
variants using summarized data. Genet Epidemiol 2013;37:658-665. 21 
36. Bowden J, Hemani G, Davey Smith G. Invited Commentary: Detecting Individual and Global Horizontal 22 
Pleiotropy in Mendelian Randomization-A Job for the Humble Heterogeneity Statistic? Am J Epidemiol 23 
2018;187:2681-2685. 24 
37. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via 25 
the zero modal pleiotropy assumption. Int J Epidemiol 2017;46:1985-1998. 26 
38. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 27 
estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512-525. 28 
39. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal 29 
relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 30 
2018;50:693-698. 31 
40. MEGASTROKE: Multi-ancestry genome-wide association study of 520,000 subjects identifies 32 loci 32 
associated with stroke and stroke subtypes [online]. Available at: https://www.megastroke.org/download.html. 33 
Accessed 26 Aug 2020. 34 
41. International Stroke Genetics Consortium (ISGC) [online]. Available at: 35 
http://www.kp4cd.org/dataset_downloads/stroke. Accessed 26 Aug 2020. 36 
42. MAGIC (the Meta-Analyses of Glucose and Insulin-related traits Consortium) [online]. Available at: 37 
https://www.magicinvestigators.org/downloads/. Accessed 26 Aug 2020. 38 
43. Larsson SC, Scott RA, Traylor M, et al. Type 2 diabetes, glucose, insulin, BMI, and ischemic stroke 39 
subtypes: Mendelian randomization study. Neurology 2017;89:454-460. 40 
44. Liu J, Rutten-Jacobs L, Liu M, Markus HS, Traylor M. Causal Impact of Type 2 Diabetes Mellitus on 41 
Cerebral Small Vessel Disease: A Mendelian Randomization Analysis. Stroke 2018;49:1325-1331. 42 
45. Bonnet F, Scheen AJ. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes 43 
Metab 2017;43:299-313. 44 
46. Holmes MV, Davey Smith G. Problems in interpreting and using GWAS of conditional phenotypes 45 
illustrated by 'alcohol GWAS'. Mol Psychiatry 2019;24:167-168. 46 
47. Georgakis MK, Gill D, Malik R, Protogerou AD, Webb AJS, Dichgans M. Genetically Predicted Blood 47 
Pressure Across the Lifespan: Differential Effects of Mean and Pulse Pressure on Stroke Risk. Hypertension 48 
2020;76:953-961. 49 

  50 



24 

 

Table 1. Data sources that were used in the analyses for the current study.  

Phenotype Source N (Total or 
Cases/Controls 

Imputation 
reference 
panel 

Ancestry Adjustments 

Diabetes 
mellitus type 2  

DIAGRAM 
Consortium 16 

74,124/824,006 HRC European   age, sex, 6 PCs 

HbA1c  UK Biobank 18 421,923 HRC + 
UK10K 

White 
British   

age, sex, 20 PCs, genotyping 
platform array, assessment 
center 

Fasting glucose 
levels 

MAGIC 
Consortium 19 

133,010 HapMap  European   age, sex 

Insulin 
resistance 
(fasting insulin 
levels) 

Multi-trait GWAS  
and MAGIC 
Consortium 19 

108,557 HapMap  European age, sex, BMI 

β-cell 
dysfunction 
(fasting 
proinsulin 
levels) 

MAGIC 
Consortium 23 

16,378 1000 
Genomes  

European   age, sex, fasting insulin 

Any ischemic 
stroke 

MEGASTROKE 
Consortium 29 

60,341/454,450 1000 
Genomes  

Trans-ethnic 
(70% 
European) 

age, sex, population structure up 
to 20 PCs 

Large artery 
stroke 

MEGASTROKE 
Consortium 29 

6,688/454,450 1000 
Genomes  

Trans-ethnic 
(70% 
European) 

age, sex, population structure up 
to 20 PCs 

Cardioembolic 
stroke 

MEGASTROKE 
Consortium 29 

9,006/454,450 1000 
Genomes  

Trans-ethnic 
(70% 
European) 

age, sex, population structure up 
to 20 PCs 

Small vessel 
stroke 

MEGASTROKE 
Consortium 29 

11,710/454,450 1000 
Genomes  

Trans-ethnic 
(70% 
European) 

age, sex, up to 20 PCs  

Intracerebral 
hemorrhage 

ISGC meta-
analysis 32 

1,545/1,481 1000 
Genomes  

European age, sex, 4 PCs 

Carotid plaque CHARGE 
Consortium 33 

21,540/26,894 1000 
Genomes  

European   age, sex, up to 10 PCs 

WMH volume UK Biobank 
imaging database 
34 

17,534 HRC + 
UK10K 

White 
British 

age, sex, mean resting and task 
functional MRI head motion, 10 
PCs, genotyping platform array 

Mean diffusivity UK Biobank 
imaging database 
34 

17,534 HRC + 
UK10K 

White 
British 

age, sex, mean resting and task 
functional MRI head motion, 10 
PCs, genotyping platform array 

Fractional 
anisotropy 

UK Biobank 
imaging database 
34 

17,534 HRC + 
UK10K 

White 
British 

age, sex, mean resting and task 
functional MRI head motion, 10 
PCs, genotyping platform array 

Normalized 
grey matter 
volume 

UK Biobank 
imaging database 
34 

17,534 HRC + 
UK10K 
 

White 
British 

age, sex, mean resting and task 
functional MRI head motion, 10 
PCs, genotyping platform array 

Normalized 
total brain 
volume 

UK Biobank 
imaging database 
34 

17,534 HRC + 
UK10K 

White 
British 

age, sex, mean resting and task 
functional MRI head motion, 10 
PCs, genotyping platform array 

PC: principal component.
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Table 2. Mendelian randomization associations between genetically predicted diabetic traits and 
etiologically related cerebrovascular phenotypes, as derived from random-effects inverse-variance 
weighted analyses. 

  Exposures  

Outcomes 
 

T2D 
(1-log-odds increment) 

HbA1c  
(1%-increment) 

Insulin resistance  
(1 log-increment in 

fasting insulin levels) 

β-cell dysfunction  
(1 log-increment in 

fasting proinsulin levels) 

Carotid 
atherosclerosis   

 
odds ratios (95%CI) 

Carotid plaque 
 

1.06 (1.03-1.10) 1.21 (1.03-1.42) a 0.93 (0.83-1.05) 1.10 (0.80-1.50) 

White matter 
integrity 

 
beta coefficients (95%CI) 

WMH volume 
 

0.003 (-0.010, 0.019) -0.002 (-0.081, 0.077) 0.094 (-0.062, 0.251) 0.062 (-0.021, 0.146) 

Mean diffusivity 
 

0.005 (-0.016, 0.026) --0.086 (-0.171, -0.002) a 0.146 (-0.056, 0.347) 0.048 (-0.017, 0.114) 

Fractional anisotropy 
 

-0.028 (-0.048, -0.006) -0.008 (-0.118, 0.101) -0.181 (-0.380, 0.019) -0.048 (-0.115, 0.020) 

Brain atrophy 
 

beta coefficients (95%CI) 

Grey matter volume 
 

-0.031 (-0.048, -0.013) -0.074 (-0.143, -0.005) a -0.039 (-0.220, 0.142) -0.130 (-0.195, -0.065) 

Total brain volume 
 

-0.027 (-0.047, -0.008) -0.181 (-0.272, -0.089) -0.087 (-0.285, 0.112) -0.170 (-0.232, -0.108) 

Odds Ratios are presented for binary traits (carotid plaque) and beta coefficients (standardized based on the SD of the 
measure) for the continuous imaging traits. 

Bold indicates statistical significance at an FDR-adjusted p-value<0.05. 

a Associations reaching nominal significance (unadjusted p<0.05). 
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FIGURE LEGENDS 

 

Figure 1. Mendelian Randomization associations of genetic predisposition to (A) type 2 diabetes 

mellitus, and (B) HbA1c levels among both diabetic and non-diabetic individuals. Results derived from 

random-effects inverse-variance weighted analyses. 

Full circles correspond to statistically significant association estimates at an FDR-adjusted p-value<0.05. 

Abbreviations. HbA1c, Glycated hemoglobin. 

 

Figure 2. Mendelian Randomization associations of genetically predicted insulin resistance and β-cell 

dysfunction with stroke subtypes. (A) Results derived from random-effects inverse-variance weighted 

analyses. (B) Heatmap of the associations between clusters of diabetic endophenotypes related to β-cell 

dysfunction and insulin resistance with the risk of stroke subtypes. 

Full colored circles in panel A correspond to statistically significant association estimates at an FDR-

adjusted p-value<0.05. 

 

 






